pmap.c revision 207796
1/*-
2 * Copyright (C) 2007-2009 Semihalf, Rafal Jaworowski <raj@semihalf.com>
3 * Copyright (C) 2006 Semihalf, Marian Balakowicz <m8@semihalf.com>
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN
18 * NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
19 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
20 * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
21 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
22 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
23 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
24 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25 *
26 * Some hw specific parts of this pmap were derived or influenced
27 * by NetBSD's ibm4xx pmap module. More generic code is shared with
28 * a few other pmap modules from the FreeBSD tree.
29 */
30
31 /*
32  * VM layout notes:
33  *
34  * Kernel and user threads run within one common virtual address space
35  * defined by AS=0.
36  *
37  * Virtual address space layout:
38  * -----------------------------
39  * 0x0000_0000 - 0xafff_ffff	: user process
40  * 0xb000_0000 - 0xbfff_ffff	: pmap_mapdev()-ed area (PCI/PCIE etc.)
41  * 0xc000_0000 - 0xc0ff_ffff	: kernel reserved
42  *   0xc000_0000 - data_end	: kernel code+data, env, metadata etc.
43  * 0xc100_0000 - 0xfeef_ffff	: KVA
44  *   0xc100_0000 - 0xc100_3fff : reserved for page zero/copy
45  *   0xc100_4000 - 0xc200_3fff : reserved for ptbl bufs
46  *   0xc200_4000 - 0xc200_8fff : guard page + kstack0
47  *   0xc200_9000 - 0xfeef_ffff	: actual free KVA space
48  * 0xfef0_0000 - 0xffff_ffff	: I/O devices region
49  */
50
51#include <sys/cdefs.h>
52__FBSDID("$FreeBSD: head/sys/powerpc/booke/pmap.c 207796 2010-05-08 20:34:01Z alc $");
53
54#include <sys/types.h>
55#include <sys/param.h>
56#include <sys/malloc.h>
57#include <sys/ktr.h>
58#include <sys/proc.h>
59#include <sys/user.h>
60#include <sys/queue.h>
61#include <sys/systm.h>
62#include <sys/kernel.h>
63#include <sys/msgbuf.h>
64#include <sys/lock.h>
65#include <sys/mutex.h>
66#include <sys/smp.h>
67#include <sys/vmmeter.h>
68
69#include <vm/vm.h>
70#include <vm/vm_page.h>
71#include <vm/vm_kern.h>
72#include <vm/vm_pageout.h>
73#include <vm/vm_extern.h>
74#include <vm/vm_object.h>
75#include <vm/vm_param.h>
76#include <vm/vm_map.h>
77#include <vm/vm_pager.h>
78#include <vm/uma.h>
79
80#include <machine/bootinfo.h>
81#include <machine/cpu.h>
82#include <machine/pcb.h>
83#include <machine/platform.h>
84
85#include <machine/tlb.h>
86#include <machine/spr.h>
87#include <machine/vmparam.h>
88#include <machine/md_var.h>
89#include <machine/mmuvar.h>
90#include <machine/pmap.h>
91#include <machine/pte.h>
92
93#include "mmu_if.h"
94
95#define DEBUG
96#undef DEBUG
97
98#ifdef  DEBUG
99#define debugf(fmt, args...) printf(fmt, ##args)
100#else
101#define debugf(fmt, args...)
102#endif
103
104#define TODO			panic("%s: not implemented", __func__);
105
106#include "opt_sched.h"
107#ifndef SCHED_4BSD
108#error "e500 only works with SCHED_4BSD which uses a global scheduler lock."
109#endif
110extern struct mtx sched_lock;
111
112extern int dumpsys_minidump;
113
114extern unsigned char _etext[];
115extern unsigned char _end[];
116
117/* Kernel physical load address. */
118extern uint32_t kernload;
119vm_offset_t kernstart;
120vm_size_t kernsize;
121
122/* Message buffer and tables. */
123static vm_offset_t data_start;
124static vm_size_t data_end;
125
126/* Phys/avail memory regions. */
127static struct mem_region *availmem_regions;
128static int availmem_regions_sz;
129static struct mem_region *physmem_regions;
130static int physmem_regions_sz;
131
132/* Reserved KVA space and mutex for mmu_booke_zero_page. */
133static vm_offset_t zero_page_va;
134static struct mtx zero_page_mutex;
135
136static struct mtx tlbivax_mutex;
137
138/*
139 * Reserved KVA space for mmu_booke_zero_page_idle. This is used
140 * by idle thred only, no lock required.
141 */
142static vm_offset_t zero_page_idle_va;
143
144/* Reserved KVA space and mutex for mmu_booke_copy_page. */
145static vm_offset_t copy_page_src_va;
146static vm_offset_t copy_page_dst_va;
147static struct mtx copy_page_mutex;
148
149/**************************************************************************/
150/* PMAP */
151/**************************************************************************/
152
153static void mmu_booke_enter_locked(mmu_t, pmap_t, vm_offset_t, vm_page_t,
154    vm_prot_t, boolean_t);
155
156unsigned int kptbl_min;		/* Index of the first kernel ptbl. */
157unsigned int kernel_ptbls;	/* Number of KVA ptbls. */
158
159/*
160 * If user pmap is processed with mmu_booke_remove and the resident count
161 * drops to 0, there are no more pages to remove, so we need not continue.
162 */
163#define PMAP_REMOVE_DONE(pmap) \
164	((pmap) != kernel_pmap && (pmap)->pm_stats.resident_count == 0)
165
166extern void tlb_lock(uint32_t *);
167extern void tlb_unlock(uint32_t *);
168extern void tid_flush(tlbtid_t);
169
170/**************************************************************************/
171/* TLB and TID handling */
172/**************************************************************************/
173
174/* Translation ID busy table */
175static volatile pmap_t tidbusy[MAXCPU][TID_MAX + 1];
176
177/*
178 * TLB0 capabilities (entry, way numbers etc.). These can vary between e500
179 * core revisions and should be read from h/w registers during early config.
180 */
181uint32_t tlb0_entries;
182uint32_t tlb0_ways;
183uint32_t tlb0_entries_per_way;
184
185#define TLB0_ENTRIES		(tlb0_entries)
186#define TLB0_WAYS		(tlb0_ways)
187#define TLB0_ENTRIES_PER_WAY	(tlb0_entries_per_way)
188
189#define TLB1_ENTRIES 16
190
191/* In-ram copy of the TLB1 */
192static tlb_entry_t tlb1[TLB1_ENTRIES];
193
194/* Next free entry in the TLB1 */
195static unsigned int tlb1_idx;
196
197static tlbtid_t tid_alloc(struct pmap *);
198
199static void tlb_print_entry(int, uint32_t, uint32_t, uint32_t, uint32_t);
200
201static int tlb1_set_entry(vm_offset_t, vm_offset_t, vm_size_t, uint32_t);
202static void tlb1_write_entry(unsigned int);
203static int tlb1_iomapped(int, vm_paddr_t, vm_size_t, vm_offset_t *);
204static vm_size_t tlb1_mapin_region(vm_offset_t, vm_offset_t, vm_size_t);
205
206static vm_size_t tsize2size(unsigned int);
207static unsigned int size2tsize(vm_size_t);
208static unsigned int ilog2(unsigned int);
209
210static void set_mas4_defaults(void);
211
212static inline void tlb0_flush_entry(vm_offset_t);
213static inline unsigned int tlb0_tableidx(vm_offset_t, unsigned int);
214
215/**************************************************************************/
216/* Page table management */
217/**************************************************************************/
218
219/* Data for the pv entry allocation mechanism */
220static uma_zone_t pvzone;
221static struct vm_object pvzone_obj;
222static int pv_entry_count = 0, pv_entry_max = 0, pv_entry_high_water = 0;
223
224#define PV_ENTRY_ZONE_MIN	2048	/* min pv entries in uma zone */
225
226#ifndef PMAP_SHPGPERPROC
227#define PMAP_SHPGPERPROC	200
228#endif
229
230static void ptbl_init(void);
231static struct ptbl_buf *ptbl_buf_alloc(void);
232static void ptbl_buf_free(struct ptbl_buf *);
233static void ptbl_free_pmap_ptbl(pmap_t, pte_t *);
234
235static pte_t *ptbl_alloc(mmu_t, pmap_t, unsigned int);
236static void ptbl_free(mmu_t, pmap_t, unsigned int);
237static void ptbl_hold(mmu_t, pmap_t, unsigned int);
238static int ptbl_unhold(mmu_t, pmap_t, unsigned int);
239
240static vm_paddr_t pte_vatopa(mmu_t, pmap_t, vm_offset_t);
241static pte_t *pte_find(mmu_t, pmap_t, vm_offset_t);
242static void pte_enter(mmu_t, pmap_t, vm_page_t, vm_offset_t, uint32_t);
243static int pte_remove(mmu_t, pmap_t, vm_offset_t, uint8_t);
244
245static pv_entry_t pv_alloc(void);
246static void pv_free(pv_entry_t);
247static void pv_insert(pmap_t, vm_offset_t, vm_page_t);
248static void pv_remove(pmap_t, vm_offset_t, vm_page_t);
249
250/* Number of kva ptbl buffers, each covering one ptbl (PTBL_PAGES). */
251#define PTBL_BUFS		(128 * 16)
252
253struct ptbl_buf {
254	TAILQ_ENTRY(ptbl_buf) link;	/* list link */
255	vm_offset_t kva;		/* va of mapping */
256};
257
258/* ptbl free list and a lock used for access synchronization. */
259static TAILQ_HEAD(, ptbl_buf) ptbl_buf_freelist;
260static struct mtx ptbl_buf_freelist_lock;
261
262/* Base address of kva space allocated fot ptbl bufs. */
263static vm_offset_t ptbl_buf_pool_vabase;
264
265/* Pointer to ptbl_buf structures. */
266static struct ptbl_buf *ptbl_bufs;
267
268void pmap_bootstrap_ap(volatile uint32_t *);
269
270/*
271 * Kernel MMU interface
272 */
273static void		mmu_booke_change_wiring(mmu_t, pmap_t, vm_offset_t, boolean_t);
274static void		mmu_booke_clear_modify(mmu_t, vm_page_t);
275static void		mmu_booke_clear_reference(mmu_t, vm_page_t);
276static void		mmu_booke_copy(mmu_t, pmap_t, pmap_t, vm_offset_t,
277    vm_size_t, vm_offset_t);
278static void		mmu_booke_copy_page(mmu_t, vm_page_t, vm_page_t);
279static void		mmu_booke_enter(mmu_t, pmap_t, vm_offset_t, vm_page_t,
280    vm_prot_t, boolean_t);
281static void		mmu_booke_enter_object(mmu_t, pmap_t, vm_offset_t, vm_offset_t,
282    vm_page_t, vm_prot_t);
283static void		mmu_booke_enter_quick(mmu_t, pmap_t, vm_offset_t, vm_page_t,
284    vm_prot_t);
285static vm_paddr_t	mmu_booke_extract(mmu_t, pmap_t, vm_offset_t);
286static vm_page_t	mmu_booke_extract_and_hold(mmu_t, pmap_t, vm_offset_t,
287    vm_prot_t);
288static void		mmu_booke_init(mmu_t);
289static boolean_t	mmu_booke_is_modified(mmu_t, vm_page_t);
290static boolean_t	mmu_booke_is_prefaultable(mmu_t, pmap_t, vm_offset_t);
291static boolean_t	mmu_booke_is_referenced(mmu_t, vm_page_t);
292static boolean_t	mmu_booke_ts_referenced(mmu_t, vm_page_t);
293static vm_offset_t	mmu_booke_map(mmu_t, vm_offset_t *, vm_offset_t, vm_offset_t,
294    int);
295static int		mmu_booke_mincore(mmu_t, pmap_t, vm_offset_t);
296static void		mmu_booke_object_init_pt(mmu_t, pmap_t, vm_offset_t,
297    vm_object_t, vm_pindex_t, vm_size_t);
298static boolean_t	mmu_booke_page_exists_quick(mmu_t, pmap_t, vm_page_t);
299static void		mmu_booke_page_init(mmu_t, vm_page_t);
300static int		mmu_booke_page_wired_mappings(mmu_t, vm_page_t);
301static void		mmu_booke_pinit(mmu_t, pmap_t);
302static void		mmu_booke_pinit0(mmu_t, pmap_t);
303static void		mmu_booke_protect(mmu_t, pmap_t, vm_offset_t, vm_offset_t,
304    vm_prot_t);
305static void		mmu_booke_qenter(mmu_t, vm_offset_t, vm_page_t *, int);
306static void		mmu_booke_qremove(mmu_t, vm_offset_t, int);
307static void		mmu_booke_release(mmu_t, pmap_t);
308static void		mmu_booke_remove(mmu_t, pmap_t, vm_offset_t, vm_offset_t);
309static void		mmu_booke_remove_all(mmu_t, vm_page_t);
310static void		mmu_booke_remove_write(mmu_t, vm_page_t);
311static void		mmu_booke_zero_page(mmu_t, vm_page_t);
312static void		mmu_booke_zero_page_area(mmu_t, vm_page_t, int, int);
313static void		mmu_booke_zero_page_idle(mmu_t, vm_page_t);
314static void		mmu_booke_activate(mmu_t, struct thread *);
315static void		mmu_booke_deactivate(mmu_t, struct thread *);
316static void		mmu_booke_bootstrap(mmu_t, vm_offset_t, vm_offset_t);
317static void		*mmu_booke_mapdev(mmu_t, vm_offset_t, vm_size_t);
318static void		mmu_booke_unmapdev(mmu_t, vm_offset_t, vm_size_t);
319static vm_offset_t	mmu_booke_kextract(mmu_t, vm_offset_t);
320static void		mmu_booke_kenter(mmu_t, vm_offset_t, vm_offset_t);
321static void		mmu_booke_kremove(mmu_t, vm_offset_t);
322static boolean_t	mmu_booke_dev_direct_mapped(mmu_t, vm_offset_t, vm_size_t);
323static void		mmu_booke_sync_icache(mmu_t, pmap_t, vm_offset_t,
324    vm_size_t);
325static vm_offset_t	mmu_booke_dumpsys_map(mmu_t, struct pmap_md *,
326    vm_size_t, vm_size_t *);
327static void		mmu_booke_dumpsys_unmap(mmu_t, struct pmap_md *,
328    vm_size_t, vm_offset_t);
329static struct pmap_md	*mmu_booke_scan_md(mmu_t, struct pmap_md *);
330
331static mmu_method_t mmu_booke_methods[] = {
332	/* pmap dispatcher interface */
333	MMUMETHOD(mmu_change_wiring,	mmu_booke_change_wiring),
334	MMUMETHOD(mmu_clear_modify,	mmu_booke_clear_modify),
335	MMUMETHOD(mmu_clear_reference,	mmu_booke_clear_reference),
336	MMUMETHOD(mmu_copy,		mmu_booke_copy),
337	MMUMETHOD(mmu_copy_page,	mmu_booke_copy_page),
338	MMUMETHOD(mmu_enter,		mmu_booke_enter),
339	MMUMETHOD(mmu_enter_object,	mmu_booke_enter_object),
340	MMUMETHOD(mmu_enter_quick,	mmu_booke_enter_quick),
341	MMUMETHOD(mmu_extract,		mmu_booke_extract),
342	MMUMETHOD(mmu_extract_and_hold,	mmu_booke_extract_and_hold),
343	MMUMETHOD(mmu_init,		mmu_booke_init),
344	MMUMETHOD(mmu_is_modified,	mmu_booke_is_modified),
345	MMUMETHOD(mmu_is_prefaultable,	mmu_booke_is_prefaultable),
346	MMUMETHOD(mmu_is_referenced,	mmu_booke_is_referenced),
347	MMUMETHOD(mmu_ts_referenced,	mmu_booke_ts_referenced),
348	MMUMETHOD(mmu_map,		mmu_booke_map),
349	MMUMETHOD(mmu_mincore,		mmu_booke_mincore),
350	MMUMETHOD(mmu_object_init_pt,	mmu_booke_object_init_pt),
351	MMUMETHOD(mmu_page_exists_quick,mmu_booke_page_exists_quick),
352	MMUMETHOD(mmu_page_init,	mmu_booke_page_init),
353	MMUMETHOD(mmu_page_wired_mappings, mmu_booke_page_wired_mappings),
354	MMUMETHOD(mmu_pinit,		mmu_booke_pinit),
355	MMUMETHOD(mmu_pinit0,		mmu_booke_pinit0),
356	MMUMETHOD(mmu_protect,		mmu_booke_protect),
357	MMUMETHOD(mmu_qenter,		mmu_booke_qenter),
358	MMUMETHOD(mmu_qremove,		mmu_booke_qremove),
359	MMUMETHOD(mmu_release,		mmu_booke_release),
360	MMUMETHOD(mmu_remove,		mmu_booke_remove),
361	MMUMETHOD(mmu_remove_all,	mmu_booke_remove_all),
362	MMUMETHOD(mmu_remove_write,	mmu_booke_remove_write),
363	MMUMETHOD(mmu_sync_icache,	mmu_booke_sync_icache),
364	MMUMETHOD(mmu_zero_page,	mmu_booke_zero_page),
365	MMUMETHOD(mmu_zero_page_area,	mmu_booke_zero_page_area),
366	MMUMETHOD(mmu_zero_page_idle,	mmu_booke_zero_page_idle),
367	MMUMETHOD(mmu_activate,		mmu_booke_activate),
368	MMUMETHOD(mmu_deactivate,	mmu_booke_deactivate),
369
370	/* Internal interfaces */
371	MMUMETHOD(mmu_bootstrap,	mmu_booke_bootstrap),
372	MMUMETHOD(mmu_dev_direct_mapped,mmu_booke_dev_direct_mapped),
373	MMUMETHOD(mmu_mapdev,		mmu_booke_mapdev),
374	MMUMETHOD(mmu_kenter,		mmu_booke_kenter),
375	MMUMETHOD(mmu_kextract,		mmu_booke_kextract),
376/*	MMUMETHOD(mmu_kremove,		mmu_booke_kremove),	*/
377	MMUMETHOD(mmu_unmapdev,		mmu_booke_unmapdev),
378
379	/* dumpsys() support */
380	MMUMETHOD(mmu_dumpsys_map,	mmu_booke_dumpsys_map),
381	MMUMETHOD(mmu_dumpsys_unmap,	mmu_booke_dumpsys_unmap),
382	MMUMETHOD(mmu_scan_md,		mmu_booke_scan_md),
383
384	{ 0, 0 }
385};
386
387static mmu_def_t booke_mmu = {
388	MMU_TYPE_BOOKE,
389	mmu_booke_methods,
390	0
391};
392MMU_DEF(booke_mmu);
393
394static inline void
395tlb_miss_lock(void)
396{
397#ifdef SMP
398	struct pcpu *pc;
399
400	if (!smp_started)
401		return;
402
403	SLIST_FOREACH(pc, &cpuhead, pc_allcpu) {
404		if (pc != pcpup) {
405
406			CTR3(KTR_PMAP, "%s: tlb miss LOCK of CPU=%d, "
407			    "tlb_lock=%p", __func__, pc->pc_cpuid, pc->pc_booke_tlb_lock);
408
409			KASSERT((pc->pc_cpuid != PCPU_GET(cpuid)),
410			    ("tlb_miss_lock: tried to lock self"));
411
412			tlb_lock(pc->pc_booke_tlb_lock);
413
414			CTR1(KTR_PMAP, "%s: locked", __func__);
415		}
416	}
417#endif
418}
419
420static inline void
421tlb_miss_unlock(void)
422{
423#ifdef SMP
424	struct pcpu *pc;
425
426	if (!smp_started)
427		return;
428
429	SLIST_FOREACH(pc, &cpuhead, pc_allcpu) {
430		if (pc != pcpup) {
431			CTR2(KTR_PMAP, "%s: tlb miss UNLOCK of CPU=%d",
432			    __func__, pc->pc_cpuid);
433
434			tlb_unlock(pc->pc_booke_tlb_lock);
435
436			CTR1(KTR_PMAP, "%s: unlocked", __func__);
437		}
438	}
439#endif
440}
441
442/* Return number of entries in TLB0. */
443static __inline void
444tlb0_get_tlbconf(void)
445{
446	uint32_t tlb0_cfg;
447
448	tlb0_cfg = mfspr(SPR_TLB0CFG);
449	tlb0_entries = tlb0_cfg & TLBCFG_NENTRY_MASK;
450	tlb0_ways = (tlb0_cfg & TLBCFG_ASSOC_MASK) >> TLBCFG_ASSOC_SHIFT;
451	tlb0_entries_per_way = tlb0_entries / tlb0_ways;
452}
453
454/* Initialize pool of kva ptbl buffers. */
455static void
456ptbl_init(void)
457{
458	int i;
459
460	CTR3(KTR_PMAP, "%s: s (ptbl_bufs = 0x%08x size 0x%08x)", __func__,
461	    (uint32_t)ptbl_bufs, sizeof(struct ptbl_buf) * PTBL_BUFS);
462	CTR3(KTR_PMAP, "%s: s (ptbl_buf_pool_vabase = 0x%08x size = 0x%08x)",
463	    __func__, ptbl_buf_pool_vabase, PTBL_BUFS * PTBL_PAGES * PAGE_SIZE);
464
465	mtx_init(&ptbl_buf_freelist_lock, "ptbl bufs lock", NULL, MTX_DEF);
466	TAILQ_INIT(&ptbl_buf_freelist);
467
468	for (i = 0; i < PTBL_BUFS; i++) {
469		ptbl_bufs[i].kva = ptbl_buf_pool_vabase + i * PTBL_PAGES * PAGE_SIZE;
470		TAILQ_INSERT_TAIL(&ptbl_buf_freelist, &ptbl_bufs[i], link);
471	}
472}
473
474/* Get a ptbl_buf from the freelist. */
475static struct ptbl_buf *
476ptbl_buf_alloc(void)
477{
478	struct ptbl_buf *buf;
479
480	mtx_lock(&ptbl_buf_freelist_lock);
481	buf = TAILQ_FIRST(&ptbl_buf_freelist);
482	if (buf != NULL)
483		TAILQ_REMOVE(&ptbl_buf_freelist, buf, link);
484	mtx_unlock(&ptbl_buf_freelist_lock);
485
486	CTR2(KTR_PMAP, "%s: buf = %p", __func__, buf);
487
488	return (buf);
489}
490
491/* Return ptbl buff to free pool. */
492static void
493ptbl_buf_free(struct ptbl_buf *buf)
494{
495
496	CTR2(KTR_PMAP, "%s: buf = %p", __func__, buf);
497
498	mtx_lock(&ptbl_buf_freelist_lock);
499	TAILQ_INSERT_TAIL(&ptbl_buf_freelist, buf, link);
500	mtx_unlock(&ptbl_buf_freelist_lock);
501}
502
503/*
504 * Search the list of allocated ptbl bufs and find on list of allocated ptbls
505 */
506static void
507ptbl_free_pmap_ptbl(pmap_t pmap, pte_t *ptbl)
508{
509	struct ptbl_buf *pbuf;
510
511	CTR2(KTR_PMAP, "%s: ptbl = %p", __func__, ptbl);
512
513	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
514
515	TAILQ_FOREACH(pbuf, &pmap->pm_ptbl_list, link)
516		if (pbuf->kva == (vm_offset_t)ptbl) {
517			/* Remove from pmap ptbl buf list. */
518			TAILQ_REMOVE(&pmap->pm_ptbl_list, pbuf, link);
519
520			/* Free corresponding ptbl buf. */
521			ptbl_buf_free(pbuf);
522			break;
523		}
524}
525
526/* Allocate page table. */
527static pte_t *
528ptbl_alloc(mmu_t mmu, pmap_t pmap, unsigned int pdir_idx)
529{
530	vm_page_t mtbl[PTBL_PAGES];
531	vm_page_t m;
532	struct ptbl_buf *pbuf;
533	unsigned int pidx;
534	pte_t *ptbl;
535	int i;
536
537	CTR4(KTR_PMAP, "%s: pmap = %p su = %d pdir_idx = %d", __func__, pmap,
538	    (pmap == kernel_pmap), pdir_idx);
539
540	KASSERT((pdir_idx <= (VM_MAXUSER_ADDRESS / PDIR_SIZE)),
541	    ("ptbl_alloc: invalid pdir_idx"));
542	KASSERT((pmap->pm_pdir[pdir_idx] == NULL),
543	    ("pte_alloc: valid ptbl entry exists!"));
544
545	pbuf = ptbl_buf_alloc();
546	if (pbuf == NULL)
547		panic("pte_alloc: couldn't alloc kernel virtual memory");
548
549	ptbl = (pte_t *)pbuf->kva;
550
551	CTR2(KTR_PMAP, "%s: ptbl kva = %p", __func__, ptbl);
552
553	/* Allocate ptbl pages, this will sleep! */
554	for (i = 0; i < PTBL_PAGES; i++) {
555		pidx = (PTBL_PAGES * pdir_idx) + i;
556		while ((m = vm_page_alloc(NULL, pidx,
557		    VM_ALLOC_NOOBJ | VM_ALLOC_WIRED)) == NULL) {
558
559			PMAP_UNLOCK(pmap);
560			vm_page_unlock_queues();
561			VM_WAIT;
562			vm_page_lock_queues();
563			PMAP_LOCK(pmap);
564		}
565		mtbl[i] = m;
566	}
567
568	/* Map allocated pages into kernel_pmap. */
569	mmu_booke_qenter(mmu, (vm_offset_t)ptbl, mtbl, PTBL_PAGES);
570
571	/* Zero whole ptbl. */
572	bzero((caddr_t)ptbl, PTBL_PAGES * PAGE_SIZE);
573
574	/* Add pbuf to the pmap ptbl bufs list. */
575	TAILQ_INSERT_TAIL(&pmap->pm_ptbl_list, pbuf, link);
576
577	return (ptbl);
578}
579
580/* Free ptbl pages and invalidate pdir entry. */
581static void
582ptbl_free(mmu_t mmu, pmap_t pmap, unsigned int pdir_idx)
583{
584	pte_t *ptbl;
585	vm_paddr_t pa;
586	vm_offset_t va;
587	vm_page_t m;
588	int i;
589
590	CTR4(KTR_PMAP, "%s: pmap = %p su = %d pdir_idx = %d", __func__, pmap,
591	    (pmap == kernel_pmap), pdir_idx);
592
593	KASSERT((pdir_idx <= (VM_MAXUSER_ADDRESS / PDIR_SIZE)),
594	    ("ptbl_free: invalid pdir_idx"));
595
596	ptbl = pmap->pm_pdir[pdir_idx];
597
598	CTR2(KTR_PMAP, "%s: ptbl = %p", __func__, ptbl);
599
600	KASSERT((ptbl != NULL), ("ptbl_free: null ptbl"));
601
602	/*
603	 * Invalidate the pdir entry as soon as possible, so that other CPUs
604	 * don't attempt to look up the page tables we are releasing.
605	 */
606	mtx_lock_spin(&tlbivax_mutex);
607	tlb_miss_lock();
608
609	pmap->pm_pdir[pdir_idx] = NULL;
610
611	tlb_miss_unlock();
612	mtx_unlock_spin(&tlbivax_mutex);
613
614	for (i = 0; i < PTBL_PAGES; i++) {
615		va = ((vm_offset_t)ptbl + (i * PAGE_SIZE));
616		pa = pte_vatopa(mmu, kernel_pmap, va);
617		m = PHYS_TO_VM_PAGE(pa);
618		vm_page_free_zero(m);
619		atomic_subtract_int(&cnt.v_wire_count, 1);
620		mmu_booke_kremove(mmu, va);
621	}
622
623	ptbl_free_pmap_ptbl(pmap, ptbl);
624}
625
626/*
627 * Decrement ptbl pages hold count and attempt to free ptbl pages.
628 * Called when removing pte entry from ptbl.
629 *
630 * Return 1 if ptbl pages were freed.
631 */
632static int
633ptbl_unhold(mmu_t mmu, pmap_t pmap, unsigned int pdir_idx)
634{
635	pte_t *ptbl;
636	vm_paddr_t pa;
637	vm_page_t m;
638	int i;
639
640	CTR4(KTR_PMAP, "%s: pmap = %p su = %d pdir_idx = %d", __func__, pmap,
641	    (pmap == kernel_pmap), pdir_idx);
642
643	KASSERT((pdir_idx <= (VM_MAXUSER_ADDRESS / PDIR_SIZE)),
644	    ("ptbl_unhold: invalid pdir_idx"));
645	KASSERT((pmap != kernel_pmap),
646	    ("ptbl_unhold: unholding kernel ptbl!"));
647
648	ptbl = pmap->pm_pdir[pdir_idx];
649
650	//debugf("ptbl_unhold: ptbl = 0x%08x\n", (u_int32_t)ptbl);
651	KASSERT(((vm_offset_t)ptbl >= VM_MIN_KERNEL_ADDRESS),
652	    ("ptbl_unhold: non kva ptbl"));
653
654	/* decrement hold count */
655	for (i = 0; i < PTBL_PAGES; i++) {
656		pa = pte_vatopa(mmu, kernel_pmap,
657		    (vm_offset_t)ptbl + (i * PAGE_SIZE));
658		m = PHYS_TO_VM_PAGE(pa);
659		m->wire_count--;
660	}
661
662	/*
663	 * Free ptbl pages if there are no pte etries in this ptbl.
664	 * wire_count has the same value for all ptbl pages, so check the last
665	 * page.
666	 */
667	if (m->wire_count == 0) {
668		ptbl_free(mmu, pmap, pdir_idx);
669
670		//debugf("ptbl_unhold: e (freed ptbl)\n");
671		return (1);
672	}
673
674	return (0);
675}
676
677/*
678 * Increment hold count for ptbl pages. This routine is used when a new pte
679 * entry is being inserted into the ptbl.
680 */
681static void
682ptbl_hold(mmu_t mmu, pmap_t pmap, unsigned int pdir_idx)
683{
684	vm_paddr_t pa;
685	pte_t *ptbl;
686	vm_page_t m;
687	int i;
688
689	CTR3(KTR_PMAP, "%s: pmap = %p pdir_idx = %d", __func__, pmap,
690	    pdir_idx);
691
692	KASSERT((pdir_idx <= (VM_MAXUSER_ADDRESS / PDIR_SIZE)),
693	    ("ptbl_hold: invalid pdir_idx"));
694	KASSERT((pmap != kernel_pmap),
695	    ("ptbl_hold: holding kernel ptbl!"));
696
697	ptbl = pmap->pm_pdir[pdir_idx];
698
699	KASSERT((ptbl != NULL), ("ptbl_hold: null ptbl"));
700
701	for (i = 0; i < PTBL_PAGES; i++) {
702		pa = pte_vatopa(mmu, kernel_pmap,
703		    (vm_offset_t)ptbl + (i * PAGE_SIZE));
704		m = PHYS_TO_VM_PAGE(pa);
705		m->wire_count++;
706	}
707}
708
709/* Allocate pv_entry structure. */
710pv_entry_t
711pv_alloc(void)
712{
713	pv_entry_t pv;
714
715	pv_entry_count++;
716	if (pv_entry_count > pv_entry_high_water)
717		pagedaemon_wakeup();
718	pv = uma_zalloc(pvzone, M_NOWAIT);
719
720	return (pv);
721}
722
723/* Free pv_entry structure. */
724static __inline void
725pv_free(pv_entry_t pve)
726{
727
728	pv_entry_count--;
729	uma_zfree(pvzone, pve);
730}
731
732
733/* Allocate and initialize pv_entry structure. */
734static void
735pv_insert(pmap_t pmap, vm_offset_t va, vm_page_t m)
736{
737	pv_entry_t pve;
738
739	//int su = (pmap == kernel_pmap);
740	//debugf("pv_insert: s (su = %d pmap = 0x%08x va = 0x%08x m = 0x%08x)\n", su,
741	//	(u_int32_t)pmap, va, (u_int32_t)m);
742
743	pve = pv_alloc();
744	if (pve == NULL)
745		panic("pv_insert: no pv entries!");
746
747	pve->pv_pmap = pmap;
748	pve->pv_va = va;
749
750	/* add to pv_list */
751	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
752	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
753
754	TAILQ_INSERT_TAIL(&m->md.pv_list, pve, pv_link);
755
756	//debugf("pv_insert: e\n");
757}
758
759/* Destroy pv entry. */
760static void
761pv_remove(pmap_t pmap, vm_offset_t va, vm_page_t m)
762{
763	pv_entry_t pve;
764
765	//int su = (pmap == kernel_pmap);
766	//debugf("pv_remove: s (su = %d pmap = 0x%08x va = 0x%08x)\n", su, (u_int32_t)pmap, va);
767
768	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
769	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
770
771	/* find pv entry */
772	TAILQ_FOREACH(pve, &m->md.pv_list, pv_link) {
773		if ((pmap == pve->pv_pmap) && (va == pve->pv_va)) {
774			/* remove from pv_list */
775			TAILQ_REMOVE(&m->md.pv_list, pve, pv_link);
776			if (TAILQ_EMPTY(&m->md.pv_list))
777				vm_page_flag_clear(m, PG_WRITEABLE);
778
779			/* free pv entry struct */
780			pv_free(pve);
781			break;
782		}
783	}
784
785	//debugf("pv_remove: e\n");
786}
787
788/*
789 * Clean pte entry, try to free page table page if requested.
790 *
791 * Return 1 if ptbl pages were freed, otherwise return 0.
792 */
793static int
794pte_remove(mmu_t mmu, pmap_t pmap, vm_offset_t va, uint8_t flags)
795{
796	unsigned int pdir_idx = PDIR_IDX(va);
797	unsigned int ptbl_idx = PTBL_IDX(va);
798	vm_page_t m;
799	pte_t *ptbl;
800	pte_t *pte;
801
802	//int su = (pmap == kernel_pmap);
803	//debugf("pte_remove: s (su = %d pmap = 0x%08x va = 0x%08x flags = %d)\n",
804	//		su, (u_int32_t)pmap, va, flags);
805
806	ptbl = pmap->pm_pdir[pdir_idx];
807	KASSERT(ptbl, ("pte_remove: null ptbl"));
808
809	pte = &ptbl[ptbl_idx];
810
811	if (pte == NULL || !PTE_ISVALID(pte))
812		return (0);
813
814	if (PTE_ISWIRED(pte))
815		pmap->pm_stats.wired_count--;
816
817	/* Handle managed entry. */
818	if (PTE_ISMANAGED(pte)) {
819		/* Get vm_page_t for mapped pte. */
820		m = PHYS_TO_VM_PAGE(PTE_PA(pte));
821
822		if (PTE_ISMODIFIED(pte))
823			vm_page_dirty(m);
824
825		if (PTE_ISREFERENCED(pte))
826			vm_page_flag_set(m, PG_REFERENCED);
827
828		pv_remove(pmap, va, m);
829	}
830
831	mtx_lock_spin(&tlbivax_mutex);
832	tlb_miss_lock();
833
834	tlb0_flush_entry(va);
835	pte->flags = 0;
836	pte->rpn = 0;
837
838	tlb_miss_unlock();
839	mtx_unlock_spin(&tlbivax_mutex);
840
841	pmap->pm_stats.resident_count--;
842
843	if (flags & PTBL_UNHOLD) {
844		//debugf("pte_remove: e (unhold)\n");
845		return (ptbl_unhold(mmu, pmap, pdir_idx));
846	}
847
848	//debugf("pte_remove: e\n");
849	return (0);
850}
851
852/*
853 * Insert PTE for a given page and virtual address.
854 */
855static void
856pte_enter(mmu_t mmu, pmap_t pmap, vm_page_t m, vm_offset_t va, uint32_t flags)
857{
858	unsigned int pdir_idx = PDIR_IDX(va);
859	unsigned int ptbl_idx = PTBL_IDX(va);
860	pte_t *ptbl, *pte;
861
862	CTR4(KTR_PMAP, "%s: su = %d pmap = %p va = %p", __func__,
863	    pmap == kernel_pmap, pmap, va);
864
865	/* Get the page table pointer. */
866	ptbl = pmap->pm_pdir[pdir_idx];
867
868	if (ptbl == NULL) {
869		/* Allocate page table pages. */
870		ptbl = ptbl_alloc(mmu, pmap, pdir_idx);
871	} else {
872		/*
873		 * Check if there is valid mapping for requested
874		 * va, if there is, remove it.
875		 */
876		pte = &pmap->pm_pdir[pdir_idx][ptbl_idx];
877		if (PTE_ISVALID(pte)) {
878			pte_remove(mmu, pmap, va, PTBL_HOLD);
879		} else {
880			/*
881			 * pte is not used, increment hold count
882			 * for ptbl pages.
883			 */
884			if (pmap != kernel_pmap)
885				ptbl_hold(mmu, pmap, pdir_idx);
886		}
887	}
888
889	/*
890	 * Insert pv_entry into pv_list for mapped page if part of managed
891	 * memory.
892	 */
893        if ((m->flags & PG_FICTITIOUS) == 0) {
894		if ((m->flags & PG_UNMANAGED) == 0) {
895			flags |= PTE_MANAGED;
896
897			/* Create and insert pv entry. */
898			pv_insert(pmap, va, m);
899		}
900	}
901
902	pmap->pm_stats.resident_count++;
903
904	mtx_lock_spin(&tlbivax_mutex);
905	tlb_miss_lock();
906
907	tlb0_flush_entry(va);
908	if (pmap->pm_pdir[pdir_idx] == NULL) {
909		/*
910		 * If we just allocated a new page table, hook it in
911		 * the pdir.
912		 */
913		pmap->pm_pdir[pdir_idx] = ptbl;
914	}
915	pte = &(pmap->pm_pdir[pdir_idx][ptbl_idx]);
916	pte->rpn = VM_PAGE_TO_PHYS(m) & ~PTE_PA_MASK;
917	pte->flags |= (PTE_VALID | flags);
918
919	tlb_miss_unlock();
920	mtx_unlock_spin(&tlbivax_mutex);
921}
922
923/* Return the pa for the given pmap/va. */
924static vm_paddr_t
925pte_vatopa(mmu_t mmu, pmap_t pmap, vm_offset_t va)
926{
927	vm_paddr_t pa = 0;
928	pte_t *pte;
929
930	pte = pte_find(mmu, pmap, va);
931	if ((pte != NULL) && PTE_ISVALID(pte))
932		pa = (PTE_PA(pte) | (va & PTE_PA_MASK));
933	return (pa);
934}
935
936/* Get a pointer to a PTE in a page table. */
937static pte_t *
938pte_find(mmu_t mmu, pmap_t pmap, vm_offset_t va)
939{
940	unsigned int pdir_idx = PDIR_IDX(va);
941	unsigned int ptbl_idx = PTBL_IDX(va);
942
943	KASSERT((pmap != NULL), ("pte_find: invalid pmap"));
944
945	if (pmap->pm_pdir[pdir_idx])
946		return (&(pmap->pm_pdir[pdir_idx][ptbl_idx]));
947
948	return (NULL);
949}
950
951/**************************************************************************/
952/* PMAP related */
953/**************************************************************************/
954
955/*
956 * This is called during e500_init, before the system is really initialized.
957 */
958static void
959mmu_booke_bootstrap(mmu_t mmu, vm_offset_t start, vm_offset_t kernelend)
960{
961	vm_offset_t phys_kernelend;
962	struct mem_region *mp, *mp1;
963	int cnt, i, j;
964	u_int s, e, sz;
965	u_int phys_avail_count;
966	vm_size_t physsz, hwphyssz, kstack0_sz;
967	vm_offset_t kernel_pdir, kstack0, va;
968	vm_paddr_t kstack0_phys;
969	void *dpcpu;
970	pte_t *pte;
971
972	debugf("mmu_booke_bootstrap: entered\n");
973
974	/* Initialize invalidation mutex */
975	mtx_init(&tlbivax_mutex, "tlbivax", NULL, MTX_SPIN);
976
977	/* Read TLB0 size and associativity. */
978	tlb0_get_tlbconf();
979
980	/* Align kernel start and end address (kernel image). */
981	kernstart = trunc_page(start);
982	data_start = round_page(kernelend);
983	kernsize = data_start - kernstart;
984
985	data_end = data_start;
986
987	/* Allocate space for the message buffer. */
988	msgbufp = (struct msgbuf *)data_end;
989	data_end += MSGBUF_SIZE;
990	debugf(" msgbufp at 0x%08x end = 0x%08x\n", (uint32_t)msgbufp,
991	    data_end);
992
993	data_end = round_page(data_end);
994
995	/* Allocate the dynamic per-cpu area. */
996	dpcpu = (void *)data_end;
997	data_end += DPCPU_SIZE;
998	dpcpu_init(dpcpu, 0);
999
1000	/* Allocate space for ptbl_bufs. */
1001	ptbl_bufs = (struct ptbl_buf *)data_end;
1002	data_end += sizeof(struct ptbl_buf) * PTBL_BUFS;
1003	debugf(" ptbl_bufs at 0x%08x end = 0x%08x\n", (uint32_t)ptbl_bufs,
1004	    data_end);
1005
1006	data_end = round_page(data_end);
1007
1008	/* Allocate PTE tables for kernel KVA. */
1009	kernel_pdir = data_end;
1010	kernel_ptbls = (VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS +
1011	    PDIR_SIZE - 1) / PDIR_SIZE;
1012	data_end += kernel_ptbls * PTBL_PAGES * PAGE_SIZE;
1013	debugf(" kernel ptbls: %d\n", kernel_ptbls);
1014	debugf(" kernel pdir at 0x%08x end = 0x%08x\n", kernel_pdir, data_end);
1015
1016	debugf(" data_end: 0x%08x\n", data_end);
1017	if (data_end - kernstart > 0x1000000) {
1018		data_end = (data_end + 0x3fffff) & ~0x3fffff;
1019		tlb1_mapin_region(kernstart + 0x1000000,
1020		    kernload + 0x1000000, data_end - kernstart - 0x1000000);
1021	} else
1022		data_end = (data_end + 0xffffff) & ~0xffffff;
1023
1024	debugf(" updated data_end: 0x%08x\n", data_end);
1025
1026	kernsize += data_end - data_start;
1027
1028	/*
1029	 * Clear the structures - note we can only do it safely after the
1030	 * possible additional TLB1 translations are in place (above) so that
1031	 * all range up to the currently calculated 'data_end' is covered.
1032	 */
1033	memset((void *)ptbl_bufs, 0, sizeof(struct ptbl_buf) * PTBL_SIZE);
1034	memset((void *)kernel_pdir, 0, kernel_ptbls * PTBL_PAGES * PAGE_SIZE);
1035
1036	/*******************************************************/
1037	/* Set the start and end of kva. */
1038	/*******************************************************/
1039	virtual_avail = round_page(data_end);
1040	virtual_end = VM_MAX_KERNEL_ADDRESS;
1041
1042	/* Allocate KVA space for page zero/copy operations. */
1043	zero_page_va = virtual_avail;
1044	virtual_avail += PAGE_SIZE;
1045	zero_page_idle_va = virtual_avail;
1046	virtual_avail += PAGE_SIZE;
1047	copy_page_src_va = virtual_avail;
1048	virtual_avail += PAGE_SIZE;
1049	copy_page_dst_va = virtual_avail;
1050	virtual_avail += PAGE_SIZE;
1051	debugf("zero_page_va = 0x%08x\n", zero_page_va);
1052	debugf("zero_page_idle_va = 0x%08x\n", zero_page_idle_va);
1053	debugf("copy_page_src_va = 0x%08x\n", copy_page_src_va);
1054	debugf("copy_page_dst_va = 0x%08x\n", copy_page_dst_va);
1055
1056	/* Initialize page zero/copy mutexes. */
1057	mtx_init(&zero_page_mutex, "mmu_booke_zero_page", NULL, MTX_DEF);
1058	mtx_init(&copy_page_mutex, "mmu_booke_copy_page", NULL, MTX_DEF);
1059
1060	/* Allocate KVA space for ptbl bufs. */
1061	ptbl_buf_pool_vabase = virtual_avail;
1062	virtual_avail += PTBL_BUFS * PTBL_PAGES * PAGE_SIZE;
1063	debugf("ptbl_buf_pool_vabase = 0x%08x end = 0x%08x\n",
1064	    ptbl_buf_pool_vabase, virtual_avail);
1065
1066	/* Calculate corresponding physical addresses for the kernel region. */
1067	phys_kernelend = kernload + kernsize;
1068	debugf("kernel image and allocated data:\n");
1069	debugf(" kernload    = 0x%08x\n", kernload);
1070	debugf(" kernstart   = 0x%08x\n", kernstart);
1071	debugf(" kernsize    = 0x%08x\n", kernsize);
1072
1073	if (sizeof(phys_avail) / sizeof(phys_avail[0]) < availmem_regions_sz)
1074		panic("mmu_booke_bootstrap: phys_avail too small");
1075
1076	/*
1077	 * Remove kernel physical address range from avail regions list. Page
1078	 * align all regions.  Non-page aligned memory isn't very interesting
1079	 * to us.  Also, sort the entries for ascending addresses.
1080	 */
1081
1082	/* Retrieve phys/avail mem regions */
1083	mem_regions(&physmem_regions, &physmem_regions_sz,
1084	    &availmem_regions, &availmem_regions_sz);
1085	sz = 0;
1086	cnt = availmem_regions_sz;
1087	debugf("processing avail regions:\n");
1088	for (mp = availmem_regions; mp->mr_size; mp++) {
1089		s = mp->mr_start;
1090		e = mp->mr_start + mp->mr_size;
1091		debugf(" %08x-%08x -> ", s, e);
1092		/* Check whether this region holds all of the kernel. */
1093		if (s < kernload && e > phys_kernelend) {
1094			availmem_regions[cnt].mr_start = phys_kernelend;
1095			availmem_regions[cnt++].mr_size = e - phys_kernelend;
1096			e = kernload;
1097		}
1098		/* Look whether this regions starts within the kernel. */
1099		if (s >= kernload && s < phys_kernelend) {
1100			if (e <= phys_kernelend)
1101				goto empty;
1102			s = phys_kernelend;
1103		}
1104		/* Now look whether this region ends within the kernel. */
1105		if (e > kernload && e <= phys_kernelend) {
1106			if (s >= kernload)
1107				goto empty;
1108			e = kernload;
1109		}
1110		/* Now page align the start and size of the region. */
1111		s = round_page(s);
1112		e = trunc_page(e);
1113		if (e < s)
1114			e = s;
1115		sz = e - s;
1116		debugf("%08x-%08x = %x\n", s, e, sz);
1117
1118		/* Check whether some memory is left here. */
1119		if (sz == 0) {
1120		empty:
1121			memmove(mp, mp + 1,
1122			    (cnt - (mp - availmem_regions)) * sizeof(*mp));
1123			cnt--;
1124			mp--;
1125			continue;
1126		}
1127
1128		/* Do an insertion sort. */
1129		for (mp1 = availmem_regions; mp1 < mp; mp1++)
1130			if (s < mp1->mr_start)
1131				break;
1132		if (mp1 < mp) {
1133			memmove(mp1 + 1, mp1, (char *)mp - (char *)mp1);
1134			mp1->mr_start = s;
1135			mp1->mr_size = sz;
1136		} else {
1137			mp->mr_start = s;
1138			mp->mr_size = sz;
1139		}
1140	}
1141	availmem_regions_sz = cnt;
1142
1143	/*******************************************************/
1144	/* Steal physical memory for kernel stack from the end */
1145	/* of the first avail region                           */
1146	/*******************************************************/
1147	kstack0_sz = KSTACK_PAGES * PAGE_SIZE;
1148	kstack0_phys = availmem_regions[0].mr_start +
1149	    availmem_regions[0].mr_size;
1150	kstack0_phys -= kstack0_sz;
1151	availmem_regions[0].mr_size -= kstack0_sz;
1152
1153	/*******************************************************/
1154	/* Fill in phys_avail table, based on availmem_regions */
1155	/*******************************************************/
1156	phys_avail_count = 0;
1157	physsz = 0;
1158	hwphyssz = 0;
1159	TUNABLE_ULONG_FETCH("hw.physmem", (u_long *) &hwphyssz);
1160
1161	debugf("fill in phys_avail:\n");
1162	for (i = 0, j = 0; i < availmem_regions_sz; i++, j += 2) {
1163
1164		debugf(" region: 0x%08x - 0x%08x (0x%08x)\n",
1165		    availmem_regions[i].mr_start,
1166		    availmem_regions[i].mr_start +
1167		        availmem_regions[i].mr_size,
1168		    availmem_regions[i].mr_size);
1169
1170		if (hwphyssz != 0 &&
1171		    (physsz + availmem_regions[i].mr_size) >= hwphyssz) {
1172			debugf(" hw.physmem adjust\n");
1173			if (physsz < hwphyssz) {
1174				phys_avail[j] = availmem_regions[i].mr_start;
1175				phys_avail[j + 1] =
1176				    availmem_regions[i].mr_start +
1177				    hwphyssz - physsz;
1178				physsz = hwphyssz;
1179				phys_avail_count++;
1180			}
1181			break;
1182		}
1183
1184		phys_avail[j] = availmem_regions[i].mr_start;
1185		phys_avail[j + 1] = availmem_regions[i].mr_start +
1186		    availmem_regions[i].mr_size;
1187		phys_avail_count++;
1188		physsz += availmem_regions[i].mr_size;
1189	}
1190	physmem = btoc(physsz);
1191
1192	/* Calculate the last available physical address. */
1193	for (i = 0; phys_avail[i + 2] != 0; i += 2)
1194		;
1195	Maxmem = powerpc_btop(phys_avail[i + 1]);
1196
1197	debugf("Maxmem = 0x%08lx\n", Maxmem);
1198	debugf("phys_avail_count = %d\n", phys_avail_count);
1199	debugf("physsz = 0x%08x physmem = %ld (0x%08lx)\n", physsz, physmem,
1200	    physmem);
1201
1202	/*******************************************************/
1203	/* Initialize (statically allocated) kernel pmap. */
1204	/*******************************************************/
1205	PMAP_LOCK_INIT(kernel_pmap);
1206	kptbl_min = VM_MIN_KERNEL_ADDRESS / PDIR_SIZE;
1207
1208	debugf("kernel_pmap = 0x%08x\n", (uint32_t)kernel_pmap);
1209	debugf("kptbl_min = %d, kernel_ptbls = %d\n", kptbl_min, kernel_ptbls);
1210	debugf("kernel pdir range: 0x%08x - 0x%08x\n",
1211	    kptbl_min * PDIR_SIZE, (kptbl_min + kernel_ptbls) * PDIR_SIZE - 1);
1212
1213	/* Initialize kernel pdir */
1214	for (i = 0; i < kernel_ptbls; i++)
1215		kernel_pmap->pm_pdir[kptbl_min + i] =
1216		    (pte_t *)(kernel_pdir + (i * PAGE_SIZE * PTBL_PAGES));
1217
1218	for (i = 0; i < MAXCPU; i++) {
1219		kernel_pmap->pm_tid[i] = TID_KERNEL;
1220
1221		/* Initialize each CPU's tidbusy entry 0 with kernel_pmap */
1222		tidbusy[i][0] = kernel_pmap;
1223	}
1224
1225	/*
1226	 * Fill in PTEs covering kernel code and data. They are not required
1227	 * for address translation, as this area is covered by static TLB1
1228	 * entries, but for pte_vatopa() to work correctly with kernel area
1229	 * addresses.
1230	 */
1231	for (va = KERNBASE; va < data_end; va += PAGE_SIZE) {
1232		pte = &(kernel_pmap->pm_pdir[PDIR_IDX(va)][PTBL_IDX(va)]);
1233		pte->rpn = kernload + (va - KERNBASE);
1234		pte->flags = PTE_M | PTE_SR | PTE_SW | PTE_SX | PTE_WIRED |
1235		    PTE_VALID;
1236	}
1237	/* Mark kernel_pmap active on all CPUs */
1238	kernel_pmap->pm_active = ~0;
1239
1240	/*******************************************************/
1241	/* Final setup */
1242	/*******************************************************/
1243
1244	/* Enter kstack0 into kernel map, provide guard page */
1245	kstack0 = virtual_avail + KSTACK_GUARD_PAGES * PAGE_SIZE;
1246	thread0.td_kstack = kstack0;
1247	thread0.td_kstack_pages = KSTACK_PAGES;
1248
1249	debugf("kstack_sz = 0x%08x\n", kstack0_sz);
1250	debugf("kstack0_phys at 0x%08x - 0x%08x\n",
1251	    kstack0_phys, kstack0_phys + kstack0_sz);
1252	debugf("kstack0 at 0x%08x - 0x%08x\n", kstack0, kstack0 + kstack0_sz);
1253
1254	virtual_avail += KSTACK_GUARD_PAGES * PAGE_SIZE + kstack0_sz;
1255	for (i = 0; i < KSTACK_PAGES; i++) {
1256		mmu_booke_kenter(mmu, kstack0, kstack0_phys);
1257		kstack0 += PAGE_SIZE;
1258		kstack0_phys += PAGE_SIZE;
1259	}
1260
1261	debugf("virtual_avail = %08x\n", virtual_avail);
1262	debugf("virtual_end   = %08x\n", virtual_end);
1263
1264	debugf("mmu_booke_bootstrap: exit\n");
1265}
1266
1267void
1268pmap_bootstrap_ap(volatile uint32_t *trcp __unused)
1269{
1270	int i;
1271
1272	/*
1273	 * Finish TLB1 configuration: the BSP already set up its TLB1 and we
1274	 * have the snapshot of its contents in the s/w tlb1[] table, so use
1275	 * these values directly to (re)program AP's TLB1 hardware.
1276	 */
1277	for (i = 0; i < tlb1_idx; i ++) {
1278		/* Skip invalid entries */
1279		if (!(tlb1[i].mas1 & MAS1_VALID))
1280			continue;
1281
1282		tlb1_write_entry(i);
1283	}
1284
1285	set_mas4_defaults();
1286}
1287
1288/*
1289 * Get the physical page address for the given pmap/virtual address.
1290 */
1291static vm_paddr_t
1292mmu_booke_extract(mmu_t mmu, pmap_t pmap, vm_offset_t va)
1293{
1294	vm_paddr_t pa;
1295
1296	PMAP_LOCK(pmap);
1297	pa = pte_vatopa(mmu, pmap, va);
1298	PMAP_UNLOCK(pmap);
1299
1300	return (pa);
1301}
1302
1303/*
1304 * Extract the physical page address associated with the given
1305 * kernel virtual address.
1306 */
1307static vm_paddr_t
1308mmu_booke_kextract(mmu_t mmu, vm_offset_t va)
1309{
1310
1311	return (pte_vatopa(mmu, kernel_pmap, va));
1312}
1313
1314/*
1315 * Initialize the pmap module.
1316 * Called by vm_init, to initialize any structures that the pmap
1317 * system needs to map virtual memory.
1318 */
1319static void
1320mmu_booke_init(mmu_t mmu)
1321{
1322	int shpgperproc = PMAP_SHPGPERPROC;
1323
1324	/*
1325	 * Initialize the address space (zone) for the pv entries.  Set a
1326	 * high water mark so that the system can recover from excessive
1327	 * numbers of pv entries.
1328	 */
1329	pvzone = uma_zcreate("PV ENTRY", sizeof(struct pv_entry), NULL, NULL,
1330	    NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_VM | UMA_ZONE_NOFREE);
1331
1332	TUNABLE_INT_FETCH("vm.pmap.shpgperproc", &shpgperproc);
1333	pv_entry_max = shpgperproc * maxproc + cnt.v_page_count;
1334
1335	TUNABLE_INT_FETCH("vm.pmap.pv_entries", &pv_entry_max);
1336	pv_entry_high_water = 9 * (pv_entry_max / 10);
1337
1338	uma_zone_set_obj(pvzone, &pvzone_obj, pv_entry_max);
1339
1340	/* Pre-fill pvzone with initial number of pv entries. */
1341	uma_prealloc(pvzone, PV_ENTRY_ZONE_MIN);
1342
1343	/* Initialize ptbl allocation. */
1344	ptbl_init();
1345}
1346
1347/*
1348 * Map a list of wired pages into kernel virtual address space.  This is
1349 * intended for temporary mappings which do not need page modification or
1350 * references recorded.  Existing mappings in the region are overwritten.
1351 */
1352static void
1353mmu_booke_qenter(mmu_t mmu, vm_offset_t sva, vm_page_t *m, int count)
1354{
1355	vm_offset_t va;
1356
1357	va = sva;
1358	while (count-- > 0) {
1359		mmu_booke_kenter(mmu, va, VM_PAGE_TO_PHYS(*m));
1360		va += PAGE_SIZE;
1361		m++;
1362	}
1363}
1364
1365/*
1366 * Remove page mappings from kernel virtual address space.  Intended for
1367 * temporary mappings entered by mmu_booke_qenter.
1368 */
1369static void
1370mmu_booke_qremove(mmu_t mmu, vm_offset_t sva, int count)
1371{
1372	vm_offset_t va;
1373
1374	va = sva;
1375	while (count-- > 0) {
1376		mmu_booke_kremove(mmu, va);
1377		va += PAGE_SIZE;
1378	}
1379}
1380
1381/*
1382 * Map a wired page into kernel virtual address space.
1383 */
1384static void
1385mmu_booke_kenter(mmu_t mmu, vm_offset_t va, vm_offset_t pa)
1386{
1387	unsigned int pdir_idx = PDIR_IDX(va);
1388	unsigned int ptbl_idx = PTBL_IDX(va);
1389	uint32_t flags;
1390	pte_t *pte;
1391
1392	KASSERT(((va >= VM_MIN_KERNEL_ADDRESS) &&
1393	    (va <= VM_MAX_KERNEL_ADDRESS)), ("mmu_booke_kenter: invalid va"));
1394
1395	flags = 0;
1396	flags |= (PTE_SR | PTE_SW | PTE_SX | PTE_WIRED | PTE_VALID);
1397	flags |= PTE_M;
1398
1399	pte = &(kernel_pmap->pm_pdir[pdir_idx][ptbl_idx]);
1400
1401	mtx_lock_spin(&tlbivax_mutex);
1402	tlb_miss_lock();
1403
1404	if (PTE_ISVALID(pte)) {
1405
1406		CTR1(KTR_PMAP, "%s: replacing entry!", __func__);
1407
1408		/* Flush entry from TLB0 */
1409		tlb0_flush_entry(va);
1410	}
1411
1412	pte->rpn = pa & ~PTE_PA_MASK;
1413	pte->flags = flags;
1414
1415	//debugf("mmu_booke_kenter: pdir_idx = %d ptbl_idx = %d va=0x%08x "
1416	//		"pa=0x%08x rpn=0x%08x flags=0x%08x\n",
1417	//		pdir_idx, ptbl_idx, va, pa, pte->rpn, pte->flags);
1418
1419	/* Flush the real memory from the instruction cache. */
1420	if ((flags & (PTE_I | PTE_G)) == 0) {
1421		__syncicache((void *)va, PAGE_SIZE);
1422	}
1423
1424	tlb_miss_unlock();
1425	mtx_unlock_spin(&tlbivax_mutex);
1426}
1427
1428/*
1429 * Remove a page from kernel page table.
1430 */
1431static void
1432mmu_booke_kremove(mmu_t mmu, vm_offset_t va)
1433{
1434	unsigned int pdir_idx = PDIR_IDX(va);
1435	unsigned int ptbl_idx = PTBL_IDX(va);
1436	pte_t *pte;
1437
1438//	CTR2(KTR_PMAP,("%s: s (va = 0x%08x)\n", __func__, va));
1439
1440	KASSERT(((va >= VM_MIN_KERNEL_ADDRESS) &&
1441	    (va <= VM_MAX_KERNEL_ADDRESS)),
1442	    ("mmu_booke_kremove: invalid va"));
1443
1444	pte = &(kernel_pmap->pm_pdir[pdir_idx][ptbl_idx]);
1445
1446	if (!PTE_ISVALID(pte)) {
1447
1448		CTR1(KTR_PMAP, "%s: invalid pte", __func__);
1449
1450		return;
1451	}
1452
1453	mtx_lock_spin(&tlbivax_mutex);
1454	tlb_miss_lock();
1455
1456	/* Invalidate entry in TLB0, update PTE. */
1457	tlb0_flush_entry(va);
1458	pte->flags = 0;
1459	pte->rpn = 0;
1460
1461	tlb_miss_unlock();
1462	mtx_unlock_spin(&tlbivax_mutex);
1463}
1464
1465/*
1466 * Initialize pmap associated with process 0.
1467 */
1468static void
1469mmu_booke_pinit0(mmu_t mmu, pmap_t pmap)
1470{
1471
1472	mmu_booke_pinit(mmu, pmap);
1473	PCPU_SET(curpmap, pmap);
1474}
1475
1476/*
1477 * Initialize a preallocated and zeroed pmap structure,
1478 * such as one in a vmspace structure.
1479 */
1480static void
1481mmu_booke_pinit(mmu_t mmu, pmap_t pmap)
1482{
1483	int i;
1484
1485	CTR4(KTR_PMAP, "%s: pmap = %p, proc %d '%s'", __func__, pmap,
1486	    curthread->td_proc->p_pid, curthread->td_proc->p_comm);
1487
1488	KASSERT((pmap != kernel_pmap), ("pmap_pinit: initializing kernel_pmap"));
1489
1490	PMAP_LOCK_INIT(pmap);
1491	for (i = 0; i < MAXCPU; i++)
1492		pmap->pm_tid[i] = TID_NONE;
1493	pmap->pm_active = 0;
1494	bzero(&pmap->pm_stats, sizeof(pmap->pm_stats));
1495	bzero(&pmap->pm_pdir, sizeof(pte_t *) * PDIR_NENTRIES);
1496	TAILQ_INIT(&pmap->pm_ptbl_list);
1497}
1498
1499/*
1500 * Release any resources held by the given physical map.
1501 * Called when a pmap initialized by mmu_booke_pinit is being released.
1502 * Should only be called if the map contains no valid mappings.
1503 */
1504static void
1505mmu_booke_release(mmu_t mmu, pmap_t pmap)
1506{
1507
1508	printf("mmu_booke_release: s\n");
1509
1510	KASSERT(pmap->pm_stats.resident_count == 0,
1511	    ("pmap_release: pmap resident count %ld != 0",
1512	    pmap->pm_stats.resident_count));
1513
1514	PMAP_LOCK_DESTROY(pmap);
1515}
1516
1517/*
1518 * Insert the given physical page at the specified virtual address in the
1519 * target physical map with the protection requested. If specified the page
1520 * will be wired down.
1521 */
1522static void
1523mmu_booke_enter(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_page_t m,
1524    vm_prot_t prot, boolean_t wired)
1525{
1526
1527	vm_page_lock_queues();
1528	PMAP_LOCK(pmap);
1529	mmu_booke_enter_locked(mmu, pmap, va, m, prot, wired);
1530	vm_page_unlock_queues();
1531	PMAP_UNLOCK(pmap);
1532}
1533
1534static void
1535mmu_booke_enter_locked(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_page_t m,
1536    vm_prot_t prot, boolean_t wired)
1537{
1538	pte_t *pte;
1539	vm_paddr_t pa;
1540	uint32_t flags;
1541	int su, sync;
1542
1543	pa = VM_PAGE_TO_PHYS(m);
1544	su = (pmap == kernel_pmap);
1545	sync = 0;
1546
1547	//debugf("mmu_booke_enter_locked: s (pmap=0x%08x su=%d tid=%d m=0x%08x va=0x%08x "
1548	//		"pa=0x%08x prot=0x%08x wired=%d)\n",
1549	//		(u_int32_t)pmap, su, pmap->pm_tid,
1550	//		(u_int32_t)m, va, pa, prot, wired);
1551
1552	if (su) {
1553		KASSERT(((va >= virtual_avail) &&
1554		    (va <= VM_MAX_KERNEL_ADDRESS)),
1555		    ("mmu_booke_enter_locked: kernel pmap, non kernel va"));
1556	} else {
1557		KASSERT((va <= VM_MAXUSER_ADDRESS),
1558		    ("mmu_booke_enter_locked: user pmap, non user va"));
1559	}
1560
1561	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1562
1563	/*
1564	 * If there is an existing mapping, and the physical address has not
1565	 * changed, must be protection or wiring change.
1566	 */
1567	if (((pte = pte_find(mmu, pmap, va)) != NULL) &&
1568	    (PTE_ISVALID(pte)) && (PTE_PA(pte) == pa)) {
1569
1570		/*
1571		 * Before actually updating pte->flags we calculate and
1572		 * prepare its new value in a helper var.
1573		 */
1574		flags = pte->flags;
1575		flags &= ~(PTE_UW | PTE_UX | PTE_SW | PTE_SX | PTE_MODIFIED);
1576
1577		/* Wiring change, just update stats. */
1578		if (wired) {
1579			if (!PTE_ISWIRED(pte)) {
1580				flags |= PTE_WIRED;
1581				pmap->pm_stats.wired_count++;
1582			}
1583		} else {
1584			if (PTE_ISWIRED(pte)) {
1585				flags &= ~PTE_WIRED;
1586				pmap->pm_stats.wired_count--;
1587			}
1588		}
1589
1590		if (prot & VM_PROT_WRITE) {
1591			/* Add write permissions. */
1592			flags |= PTE_SW;
1593			if (!su)
1594				flags |= PTE_UW;
1595
1596			vm_page_flag_set(m, PG_WRITEABLE);
1597		} else {
1598			/* Handle modified pages, sense modify status. */
1599
1600			/*
1601			 * The PTE_MODIFIED flag could be set by underlying
1602			 * TLB misses since we last read it (above), possibly
1603			 * other CPUs could update it so we check in the PTE
1604			 * directly rather than rely on that saved local flags
1605			 * copy.
1606			 */
1607			if (PTE_ISMODIFIED(pte))
1608				vm_page_dirty(m);
1609		}
1610
1611		if (prot & VM_PROT_EXECUTE) {
1612			flags |= PTE_SX;
1613			if (!su)
1614				flags |= PTE_UX;
1615
1616			/*
1617			 * Check existing flags for execute permissions: if we
1618			 * are turning execute permissions on, icache should
1619			 * be flushed.
1620			 */
1621			if ((flags & (PTE_UX | PTE_SX)) == 0)
1622				sync++;
1623		}
1624
1625		flags &= ~PTE_REFERENCED;
1626
1627		/*
1628		 * The new flags value is all calculated -- only now actually
1629		 * update the PTE.
1630		 */
1631		mtx_lock_spin(&tlbivax_mutex);
1632		tlb_miss_lock();
1633
1634		tlb0_flush_entry(va);
1635		pte->flags = flags;
1636
1637		tlb_miss_unlock();
1638		mtx_unlock_spin(&tlbivax_mutex);
1639
1640	} else {
1641		/*
1642		 * If there is an existing mapping, but it's for a different
1643		 * physical address, pte_enter() will delete the old mapping.
1644		 */
1645		//if ((pte != NULL) && PTE_ISVALID(pte))
1646		//	debugf("mmu_booke_enter_locked: replace\n");
1647		//else
1648		//	debugf("mmu_booke_enter_locked: new\n");
1649
1650		/* Now set up the flags and install the new mapping. */
1651		flags = (PTE_SR | PTE_VALID);
1652		flags |= PTE_M;
1653
1654		if (!su)
1655			flags |= PTE_UR;
1656
1657		if (prot & VM_PROT_WRITE) {
1658			flags |= PTE_SW;
1659			if (!su)
1660				flags |= PTE_UW;
1661
1662			vm_page_flag_set(m, PG_WRITEABLE);
1663		}
1664
1665		if (prot & VM_PROT_EXECUTE) {
1666			flags |= PTE_SX;
1667			if (!su)
1668				flags |= PTE_UX;
1669		}
1670
1671		/* If its wired update stats. */
1672		if (wired) {
1673			pmap->pm_stats.wired_count++;
1674			flags |= PTE_WIRED;
1675		}
1676
1677		pte_enter(mmu, pmap, m, va, flags);
1678
1679		/* Flush the real memory from the instruction cache. */
1680		if (prot & VM_PROT_EXECUTE)
1681			sync++;
1682	}
1683
1684	if (sync && (su || pmap == PCPU_GET(curpmap))) {
1685		__syncicache((void *)va, PAGE_SIZE);
1686		sync = 0;
1687	}
1688}
1689
1690/*
1691 * Maps a sequence of resident pages belonging to the same object.
1692 * The sequence begins with the given page m_start.  This page is
1693 * mapped at the given virtual address start.  Each subsequent page is
1694 * mapped at a virtual address that is offset from start by the same
1695 * amount as the page is offset from m_start within the object.  The
1696 * last page in the sequence is the page with the largest offset from
1697 * m_start that can be mapped at a virtual address less than the given
1698 * virtual address end.  Not every virtual page between start and end
1699 * is mapped; only those for which a resident page exists with the
1700 * corresponding offset from m_start are mapped.
1701 */
1702static void
1703mmu_booke_enter_object(mmu_t mmu, pmap_t pmap, vm_offset_t start,
1704    vm_offset_t end, vm_page_t m_start, vm_prot_t prot)
1705{
1706	vm_page_t m;
1707	vm_pindex_t diff, psize;
1708
1709	psize = atop(end - start);
1710	m = m_start;
1711	PMAP_LOCK(pmap);
1712	while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) {
1713		mmu_booke_enter_locked(mmu, pmap, start + ptoa(diff), m,
1714		    prot & (VM_PROT_READ | VM_PROT_EXECUTE), FALSE);
1715		m = TAILQ_NEXT(m, listq);
1716	}
1717	PMAP_UNLOCK(pmap);
1718}
1719
1720static void
1721mmu_booke_enter_quick(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_page_t m,
1722    vm_prot_t prot)
1723{
1724
1725	vm_page_lock_queues();
1726	PMAP_LOCK(pmap);
1727	mmu_booke_enter_locked(mmu, pmap, va, m,
1728	    prot & (VM_PROT_READ | VM_PROT_EXECUTE), FALSE);
1729	vm_page_unlock_queues();
1730	PMAP_UNLOCK(pmap);
1731}
1732
1733/*
1734 * Remove the given range of addresses from the specified map.
1735 *
1736 * It is assumed that the start and end are properly rounded to the page size.
1737 */
1738static void
1739mmu_booke_remove(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_offset_t endva)
1740{
1741	pte_t *pte;
1742	uint8_t hold_flag;
1743
1744	int su = (pmap == kernel_pmap);
1745
1746	//debugf("mmu_booke_remove: s (su = %d pmap=0x%08x tid=%d va=0x%08x endva=0x%08x)\n",
1747	//		su, (u_int32_t)pmap, pmap->pm_tid, va, endva);
1748
1749	if (su) {
1750		KASSERT(((va >= virtual_avail) &&
1751		    (va <= VM_MAX_KERNEL_ADDRESS)),
1752		    ("mmu_booke_remove: kernel pmap, non kernel va"));
1753	} else {
1754		KASSERT((va <= VM_MAXUSER_ADDRESS),
1755		    ("mmu_booke_remove: user pmap, non user va"));
1756	}
1757
1758	if (PMAP_REMOVE_DONE(pmap)) {
1759		//debugf("mmu_booke_remove: e (empty)\n");
1760		return;
1761	}
1762
1763	hold_flag = PTBL_HOLD_FLAG(pmap);
1764	//debugf("mmu_booke_remove: hold_flag = %d\n", hold_flag);
1765
1766	vm_page_lock_queues();
1767	PMAP_LOCK(pmap);
1768	for (; va < endva; va += PAGE_SIZE) {
1769		pte = pte_find(mmu, pmap, va);
1770		if ((pte != NULL) && PTE_ISVALID(pte))
1771			pte_remove(mmu, pmap, va, hold_flag);
1772	}
1773	PMAP_UNLOCK(pmap);
1774	vm_page_unlock_queues();
1775
1776	//debugf("mmu_booke_remove: e\n");
1777}
1778
1779/*
1780 * Remove physical page from all pmaps in which it resides.
1781 */
1782static void
1783mmu_booke_remove_all(mmu_t mmu, vm_page_t m)
1784{
1785	pv_entry_t pv, pvn;
1786	uint8_t hold_flag;
1787
1788	vm_page_lock_queues();
1789	for (pv = TAILQ_FIRST(&m->md.pv_list); pv != NULL; pv = pvn) {
1790		pvn = TAILQ_NEXT(pv, pv_link);
1791
1792		PMAP_LOCK(pv->pv_pmap);
1793		hold_flag = PTBL_HOLD_FLAG(pv->pv_pmap);
1794		pte_remove(mmu, pv->pv_pmap, pv->pv_va, hold_flag);
1795		PMAP_UNLOCK(pv->pv_pmap);
1796	}
1797	vm_page_flag_clear(m, PG_WRITEABLE);
1798	vm_page_unlock_queues();
1799}
1800
1801/*
1802 * Map a range of physical addresses into kernel virtual address space.
1803 */
1804static vm_offset_t
1805mmu_booke_map(mmu_t mmu, vm_offset_t *virt, vm_offset_t pa_start,
1806    vm_offset_t pa_end, int prot)
1807{
1808	vm_offset_t sva = *virt;
1809	vm_offset_t va = sva;
1810
1811	//debugf("mmu_booke_map: s (sva = 0x%08x pa_start = 0x%08x pa_end = 0x%08x)\n",
1812	//		sva, pa_start, pa_end);
1813
1814	while (pa_start < pa_end) {
1815		mmu_booke_kenter(mmu, va, pa_start);
1816		va += PAGE_SIZE;
1817		pa_start += PAGE_SIZE;
1818	}
1819	*virt = va;
1820
1821	//debugf("mmu_booke_map: e (va = 0x%08x)\n", va);
1822	return (sva);
1823}
1824
1825/*
1826 * The pmap must be activated before it's address space can be accessed in any
1827 * way.
1828 */
1829static void
1830mmu_booke_activate(mmu_t mmu, struct thread *td)
1831{
1832	pmap_t pmap;
1833
1834	pmap = &td->td_proc->p_vmspace->vm_pmap;
1835
1836	CTR5(KTR_PMAP, "%s: s (td = %p, proc = '%s', id = %d, pmap = 0x%08x)",
1837	    __func__, td, td->td_proc->p_comm, td->td_proc->p_pid, pmap);
1838
1839	KASSERT((pmap != kernel_pmap), ("mmu_booke_activate: kernel_pmap!"));
1840
1841	mtx_lock_spin(&sched_lock);
1842
1843	atomic_set_int(&pmap->pm_active, PCPU_GET(cpumask));
1844	PCPU_SET(curpmap, pmap);
1845
1846	if (pmap->pm_tid[PCPU_GET(cpuid)] == TID_NONE)
1847		tid_alloc(pmap);
1848
1849	/* Load PID0 register with pmap tid value. */
1850	mtspr(SPR_PID0, pmap->pm_tid[PCPU_GET(cpuid)]);
1851	__asm __volatile("isync");
1852
1853	mtx_unlock_spin(&sched_lock);
1854
1855	CTR3(KTR_PMAP, "%s: e (tid = %d for '%s')", __func__,
1856	    pmap->pm_tid[PCPU_GET(cpuid)], td->td_proc->p_comm);
1857}
1858
1859/*
1860 * Deactivate the specified process's address space.
1861 */
1862static void
1863mmu_booke_deactivate(mmu_t mmu, struct thread *td)
1864{
1865	pmap_t pmap;
1866
1867	pmap = &td->td_proc->p_vmspace->vm_pmap;
1868
1869	CTR5(KTR_PMAP, "%s: td=%p, proc = '%s', id = %d, pmap = 0x%08x",
1870	    __func__, td, td->td_proc->p_comm, td->td_proc->p_pid, pmap);
1871
1872	atomic_clear_int(&pmap->pm_active, PCPU_GET(cpumask));
1873	PCPU_SET(curpmap, NULL);
1874}
1875
1876/*
1877 * Copy the range specified by src_addr/len
1878 * from the source map to the range dst_addr/len
1879 * in the destination map.
1880 *
1881 * This routine is only advisory and need not do anything.
1882 */
1883static void
1884mmu_booke_copy(mmu_t mmu, pmap_t dst_pmap, pmap_t src_pmap,
1885    vm_offset_t dst_addr, vm_size_t len, vm_offset_t src_addr)
1886{
1887
1888}
1889
1890/*
1891 * Set the physical protection on the specified range of this map as requested.
1892 */
1893static void
1894mmu_booke_protect(mmu_t mmu, pmap_t pmap, vm_offset_t sva, vm_offset_t eva,
1895    vm_prot_t prot)
1896{
1897	vm_offset_t va;
1898	vm_page_t m;
1899	pte_t *pte;
1900
1901	if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
1902		mmu_booke_remove(mmu, pmap, sva, eva);
1903		return;
1904	}
1905
1906	if (prot & VM_PROT_WRITE)
1907		return;
1908
1909	vm_page_lock_queues();
1910	PMAP_LOCK(pmap);
1911	for (va = sva; va < eva; va += PAGE_SIZE) {
1912		if ((pte = pte_find(mmu, pmap, va)) != NULL) {
1913			if (PTE_ISVALID(pte)) {
1914				m = PHYS_TO_VM_PAGE(PTE_PA(pte));
1915
1916				mtx_lock_spin(&tlbivax_mutex);
1917				tlb_miss_lock();
1918
1919				/* Handle modified pages. */
1920				if (PTE_ISMODIFIED(pte) && PTE_ISMANAGED(pte))
1921					vm_page_dirty(m);
1922
1923				tlb0_flush_entry(va);
1924				pte->flags &= ~(PTE_UW | PTE_SW | PTE_MODIFIED);
1925
1926				tlb_miss_unlock();
1927				mtx_unlock_spin(&tlbivax_mutex);
1928			}
1929		}
1930	}
1931	PMAP_UNLOCK(pmap);
1932	vm_page_unlock_queues();
1933}
1934
1935/*
1936 * Clear the write and modified bits in each of the given page's mappings.
1937 */
1938static void
1939mmu_booke_remove_write(mmu_t mmu, vm_page_t m)
1940{
1941	pv_entry_t pv;
1942	pte_t *pte;
1943
1944	if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) != 0 ||
1945	    (m->flags & PG_WRITEABLE) == 0)
1946		return;
1947	vm_page_lock_queues();
1948	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
1949		PMAP_LOCK(pv->pv_pmap);
1950		if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL) {
1951			if (PTE_ISVALID(pte)) {
1952				m = PHYS_TO_VM_PAGE(PTE_PA(pte));
1953
1954				mtx_lock_spin(&tlbivax_mutex);
1955				tlb_miss_lock();
1956
1957				/* Handle modified pages. */
1958				if (PTE_ISMODIFIED(pte))
1959					vm_page_dirty(m);
1960
1961				/* Flush mapping from TLB0. */
1962				pte->flags &= ~(PTE_UW | PTE_SW | PTE_MODIFIED);
1963
1964				tlb_miss_unlock();
1965				mtx_unlock_spin(&tlbivax_mutex);
1966			}
1967		}
1968		PMAP_UNLOCK(pv->pv_pmap);
1969	}
1970	vm_page_flag_clear(m, PG_WRITEABLE);
1971	vm_page_unlock_queues();
1972}
1973
1974static void
1975mmu_booke_sync_icache(mmu_t mmu, pmap_t pm, vm_offset_t va, vm_size_t sz)
1976{
1977	pte_t *pte;
1978	pmap_t pmap;
1979	vm_page_t m;
1980	vm_offset_t addr;
1981	vm_paddr_t pa;
1982	int active, valid;
1983
1984	va = trunc_page(va);
1985	sz = round_page(sz);
1986
1987	vm_page_lock_queues();
1988	pmap = PCPU_GET(curpmap);
1989	active = (pm == kernel_pmap || pm == pmap) ? 1 : 0;
1990	while (sz > 0) {
1991		PMAP_LOCK(pm);
1992		pte = pte_find(mmu, pm, va);
1993		valid = (pte != NULL && PTE_ISVALID(pte)) ? 1 : 0;
1994		if (valid)
1995			pa = PTE_PA(pte);
1996		PMAP_UNLOCK(pm);
1997		if (valid) {
1998			if (!active) {
1999				/* Create a mapping in the active pmap. */
2000				addr = 0;
2001				m = PHYS_TO_VM_PAGE(pa);
2002				PMAP_LOCK(pmap);
2003				pte_enter(mmu, pmap, m, addr,
2004				    PTE_SR | PTE_VALID | PTE_UR);
2005				__syncicache((void *)addr, PAGE_SIZE);
2006				pte_remove(mmu, pmap, addr, PTBL_UNHOLD);
2007				PMAP_UNLOCK(pmap);
2008			} else
2009				__syncicache((void *)va, PAGE_SIZE);
2010		}
2011		va += PAGE_SIZE;
2012		sz -= PAGE_SIZE;
2013	}
2014	vm_page_unlock_queues();
2015}
2016
2017/*
2018 * Atomically extract and hold the physical page with the given
2019 * pmap and virtual address pair if that mapping permits the given
2020 * protection.
2021 */
2022static vm_page_t
2023mmu_booke_extract_and_hold(mmu_t mmu, pmap_t pmap, vm_offset_t va,
2024    vm_prot_t prot)
2025{
2026	pte_t *pte;
2027	vm_page_t m;
2028	uint32_t pte_wbit;
2029	vm_paddr_t pa;
2030
2031	m = NULL;
2032	pa = 0;
2033	PMAP_LOCK(pmap);
2034retry:
2035	pte = pte_find(mmu, pmap, va);
2036	if ((pte != NULL) && PTE_ISVALID(pte)) {
2037		if (pmap == kernel_pmap)
2038			pte_wbit = PTE_SW;
2039		else
2040			pte_wbit = PTE_UW;
2041
2042		if ((pte->flags & pte_wbit) || ((prot & VM_PROT_WRITE) == 0)) {
2043			if (vm_page_pa_tryrelock(pmap, PTE_PA(pte), &pa))
2044				goto retry;
2045			m = PHYS_TO_VM_PAGE(PTE_PA(pte));
2046			vm_page_hold(m);
2047		}
2048	}
2049
2050	PA_UNLOCK_COND(pa);
2051	PMAP_UNLOCK(pmap);
2052	return (m);
2053}
2054
2055/*
2056 * Initialize a vm_page's machine-dependent fields.
2057 */
2058static void
2059mmu_booke_page_init(mmu_t mmu, vm_page_t m)
2060{
2061
2062	TAILQ_INIT(&m->md.pv_list);
2063}
2064
2065/*
2066 * mmu_booke_zero_page_area zeros the specified hardware page by
2067 * mapping it into virtual memory and using bzero to clear
2068 * its contents.
2069 *
2070 * off and size must reside within a single page.
2071 */
2072static void
2073mmu_booke_zero_page_area(mmu_t mmu, vm_page_t m, int off, int size)
2074{
2075	vm_offset_t va;
2076
2077	/* XXX KASSERT off and size are within a single page? */
2078
2079	mtx_lock(&zero_page_mutex);
2080	va = zero_page_va;
2081
2082	mmu_booke_kenter(mmu, va, VM_PAGE_TO_PHYS(m));
2083	bzero((caddr_t)va + off, size);
2084	mmu_booke_kremove(mmu, va);
2085
2086	mtx_unlock(&zero_page_mutex);
2087}
2088
2089/*
2090 * mmu_booke_zero_page zeros the specified hardware page.
2091 */
2092static void
2093mmu_booke_zero_page(mmu_t mmu, vm_page_t m)
2094{
2095
2096	mmu_booke_zero_page_area(mmu, m, 0, PAGE_SIZE);
2097}
2098
2099/*
2100 * mmu_booke_copy_page copies the specified (machine independent) page by
2101 * mapping the page into virtual memory and using memcopy to copy the page,
2102 * one machine dependent page at a time.
2103 */
2104static void
2105mmu_booke_copy_page(mmu_t mmu, vm_page_t sm, vm_page_t dm)
2106{
2107	vm_offset_t sva, dva;
2108
2109	sva = copy_page_src_va;
2110	dva = copy_page_dst_va;
2111
2112	mtx_lock(&copy_page_mutex);
2113	mmu_booke_kenter(mmu, sva, VM_PAGE_TO_PHYS(sm));
2114	mmu_booke_kenter(mmu, dva, VM_PAGE_TO_PHYS(dm));
2115	memcpy((caddr_t)dva, (caddr_t)sva, PAGE_SIZE);
2116	mmu_booke_kremove(mmu, dva);
2117	mmu_booke_kremove(mmu, sva);
2118	mtx_unlock(&copy_page_mutex);
2119}
2120
2121/*
2122 * mmu_booke_zero_page_idle zeros the specified hardware page by mapping it
2123 * into virtual memory and using bzero to clear its contents. This is intended
2124 * to be called from the vm_pagezero process only and outside of Giant. No
2125 * lock is required.
2126 */
2127static void
2128mmu_booke_zero_page_idle(mmu_t mmu, vm_page_t m)
2129{
2130	vm_offset_t va;
2131
2132	va = zero_page_idle_va;
2133	mmu_booke_kenter(mmu, va, VM_PAGE_TO_PHYS(m));
2134	bzero((caddr_t)va, PAGE_SIZE);
2135	mmu_booke_kremove(mmu, va);
2136}
2137
2138/*
2139 * Return whether or not the specified physical page was modified
2140 * in any of physical maps.
2141 */
2142static boolean_t
2143mmu_booke_is_modified(mmu_t mmu, vm_page_t m)
2144{
2145	pte_t *pte;
2146	pv_entry_t pv;
2147
2148	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2149	if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) != 0)
2150		return (FALSE);
2151
2152	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
2153		PMAP_LOCK(pv->pv_pmap);
2154		if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL) {
2155			if (!PTE_ISVALID(pte))
2156				goto make_sure_to_unlock;
2157
2158			if (PTE_ISMODIFIED(pte)) {
2159				PMAP_UNLOCK(pv->pv_pmap);
2160				return (TRUE);
2161			}
2162		}
2163make_sure_to_unlock:
2164		PMAP_UNLOCK(pv->pv_pmap);
2165	}
2166	return (FALSE);
2167}
2168
2169/*
2170 * Return whether or not the specified virtual address is eligible
2171 * for prefault.
2172 */
2173static boolean_t
2174mmu_booke_is_prefaultable(mmu_t mmu, pmap_t pmap, vm_offset_t addr)
2175{
2176
2177	return (FALSE);
2178}
2179
2180/*
2181 * Return whether or not the specified physical page was referenced
2182 * in any physical maps.
2183 */
2184static boolean_t
2185mmu_booke_is_referenced(mmu_t mmu, vm_page_t m)
2186{
2187	pte_t *pte;
2188	pv_entry_t pv;
2189	boolean_t rv;
2190
2191	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2192	rv = FALSE;
2193	if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) != 0)
2194		return (rv);
2195	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
2196		PMAP_LOCK(pv->pv_pmap);
2197		if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL &&
2198		    PTE_ISVALID(pte))
2199			rv = PTE_ISREFERENCED(pte) ? TRUE : FALSE;
2200		PMAP_UNLOCK(pv->pv_pmap);
2201		if (rv)
2202			break;
2203	}
2204	return (rv);
2205}
2206
2207/*
2208 * Clear the modify bits on the specified physical page.
2209 */
2210static void
2211mmu_booke_clear_modify(mmu_t mmu, vm_page_t m)
2212{
2213	pte_t *pte;
2214	pv_entry_t pv;
2215
2216	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2217	if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) != 0)
2218		return;
2219
2220	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
2221		PMAP_LOCK(pv->pv_pmap);
2222		if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL) {
2223			if (!PTE_ISVALID(pte))
2224				goto make_sure_to_unlock;
2225
2226			mtx_lock_spin(&tlbivax_mutex);
2227			tlb_miss_lock();
2228
2229			if (pte->flags & (PTE_SW | PTE_UW | PTE_MODIFIED)) {
2230				tlb0_flush_entry(pv->pv_va);
2231				pte->flags &= ~(PTE_SW | PTE_UW | PTE_MODIFIED |
2232				    PTE_REFERENCED);
2233			}
2234
2235			tlb_miss_unlock();
2236			mtx_unlock_spin(&tlbivax_mutex);
2237		}
2238make_sure_to_unlock:
2239		PMAP_UNLOCK(pv->pv_pmap);
2240	}
2241}
2242
2243/*
2244 * Return a count of reference bits for a page, clearing those bits.
2245 * It is not necessary for every reference bit to be cleared, but it
2246 * is necessary that 0 only be returned when there are truly no
2247 * reference bits set.
2248 *
2249 * XXX: The exact number of bits to check and clear is a matter that
2250 * should be tested and standardized at some point in the future for
2251 * optimal aging of shared pages.
2252 */
2253static int
2254mmu_booke_ts_referenced(mmu_t mmu, vm_page_t m)
2255{
2256	pte_t *pte;
2257	pv_entry_t pv;
2258	int count;
2259
2260	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2261	if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) != 0)
2262		return (0);
2263
2264	count = 0;
2265	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
2266		PMAP_LOCK(pv->pv_pmap);
2267		if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL) {
2268			if (!PTE_ISVALID(pte))
2269				goto make_sure_to_unlock;
2270
2271			if (PTE_ISREFERENCED(pte)) {
2272				mtx_lock_spin(&tlbivax_mutex);
2273				tlb_miss_lock();
2274
2275				tlb0_flush_entry(pv->pv_va);
2276				pte->flags &= ~PTE_REFERENCED;
2277
2278				tlb_miss_unlock();
2279				mtx_unlock_spin(&tlbivax_mutex);
2280
2281				if (++count > 4) {
2282					PMAP_UNLOCK(pv->pv_pmap);
2283					break;
2284				}
2285			}
2286		}
2287make_sure_to_unlock:
2288		PMAP_UNLOCK(pv->pv_pmap);
2289	}
2290	return (count);
2291}
2292
2293/*
2294 * Clear the reference bit on the specified physical page.
2295 */
2296static void
2297mmu_booke_clear_reference(mmu_t mmu, vm_page_t m)
2298{
2299	pte_t *pte;
2300	pv_entry_t pv;
2301
2302	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2303	if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) != 0)
2304		return;
2305
2306	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
2307		PMAP_LOCK(pv->pv_pmap);
2308		if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL) {
2309			if (!PTE_ISVALID(pte))
2310				goto make_sure_to_unlock;
2311
2312			if (PTE_ISREFERENCED(pte)) {
2313				mtx_lock_spin(&tlbivax_mutex);
2314				tlb_miss_lock();
2315
2316				tlb0_flush_entry(pv->pv_va);
2317				pte->flags &= ~PTE_REFERENCED;
2318
2319				tlb_miss_unlock();
2320				mtx_unlock_spin(&tlbivax_mutex);
2321			}
2322		}
2323make_sure_to_unlock:
2324		PMAP_UNLOCK(pv->pv_pmap);
2325	}
2326}
2327
2328/*
2329 * Change wiring attribute for a map/virtual-address pair.
2330 */
2331static void
2332mmu_booke_change_wiring(mmu_t mmu, pmap_t pmap, vm_offset_t va, boolean_t wired)
2333{
2334	pte_t *pte;
2335
2336	PMAP_LOCK(pmap);
2337	if ((pte = pte_find(mmu, pmap, va)) != NULL) {
2338		if (wired) {
2339			if (!PTE_ISWIRED(pte)) {
2340				pte->flags |= PTE_WIRED;
2341				pmap->pm_stats.wired_count++;
2342			}
2343		} else {
2344			if (PTE_ISWIRED(pte)) {
2345				pte->flags &= ~PTE_WIRED;
2346				pmap->pm_stats.wired_count--;
2347			}
2348		}
2349	}
2350	PMAP_UNLOCK(pmap);
2351}
2352
2353/*
2354 * Return true if the pmap's pv is one of the first 16 pvs linked to from this
2355 * page.  This count may be changed upwards or downwards in the future; it is
2356 * only necessary that true be returned for a small subset of pmaps for proper
2357 * page aging.
2358 */
2359static boolean_t
2360mmu_booke_page_exists_quick(mmu_t mmu, pmap_t pmap, vm_page_t m)
2361{
2362	pv_entry_t pv;
2363	int loops;
2364
2365	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2366	if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) != 0)
2367		return (FALSE);
2368
2369	loops = 0;
2370	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
2371		if (pv->pv_pmap == pmap)
2372			return (TRUE);
2373
2374		if (++loops >= 16)
2375			break;
2376	}
2377	return (FALSE);
2378}
2379
2380/*
2381 * Return the number of managed mappings to the given physical page that are
2382 * wired.
2383 */
2384static int
2385mmu_booke_page_wired_mappings(mmu_t mmu, vm_page_t m)
2386{
2387	pv_entry_t pv;
2388	pte_t *pte;
2389	int count = 0;
2390
2391	if ((m->flags & PG_FICTITIOUS) != 0)
2392		return (count);
2393	vm_page_lock_queues();
2394	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
2395		PMAP_LOCK(pv->pv_pmap);
2396		if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL)
2397			if (PTE_ISVALID(pte) && PTE_ISWIRED(pte))
2398				count++;
2399		PMAP_UNLOCK(pv->pv_pmap);
2400	}
2401	vm_page_unlock_queues();
2402	return (count);
2403}
2404
2405static int
2406mmu_booke_dev_direct_mapped(mmu_t mmu, vm_offset_t pa, vm_size_t size)
2407{
2408	int i;
2409	vm_offset_t va;
2410
2411	/*
2412	 * This currently does not work for entries that
2413	 * overlap TLB1 entries.
2414	 */
2415	for (i = 0; i < tlb1_idx; i ++) {
2416		if (tlb1_iomapped(i, pa, size, &va) == 0)
2417			return (0);
2418	}
2419
2420	return (EFAULT);
2421}
2422
2423vm_offset_t
2424mmu_booke_dumpsys_map(mmu_t mmu, struct pmap_md *md, vm_size_t ofs,
2425    vm_size_t *sz)
2426{
2427	vm_paddr_t pa, ppa;
2428	vm_offset_t va;
2429	vm_size_t gran;
2430
2431	/* Raw physical memory dumps don't have a virtual address. */
2432	if (md->md_vaddr == ~0UL) {
2433		/* We always map a 256MB page at 256M. */
2434		gran = 256 * 1024 * 1024;
2435		pa = md->md_paddr + ofs;
2436		ppa = pa & ~(gran - 1);
2437		ofs = pa - ppa;
2438		va = gran;
2439		tlb1_set_entry(va, ppa, gran, _TLB_ENTRY_IO);
2440		if (*sz > (gran - ofs))
2441			*sz = gran - ofs;
2442		return (va + ofs);
2443	}
2444
2445	/* Minidumps are based on virtual memory addresses. */
2446	va = md->md_vaddr + ofs;
2447	if (va >= kernstart + kernsize) {
2448		gran = PAGE_SIZE - (va & PAGE_MASK);
2449		if (*sz > gran)
2450			*sz = gran;
2451	}
2452	return (va);
2453}
2454
2455void
2456mmu_booke_dumpsys_unmap(mmu_t mmu, struct pmap_md *md, vm_size_t ofs,
2457    vm_offset_t va)
2458{
2459
2460	/* Raw physical memory dumps don't have a virtual address. */
2461	if (md->md_vaddr == ~0UL) {
2462		tlb1_idx--;
2463		tlb1[tlb1_idx].mas1 = 0;
2464		tlb1[tlb1_idx].mas2 = 0;
2465		tlb1[tlb1_idx].mas3 = 0;
2466		tlb1_write_entry(tlb1_idx);
2467		return;
2468	}
2469
2470	/* Minidumps are based on virtual memory addresses. */
2471	/* Nothing to do... */
2472}
2473
2474struct pmap_md *
2475mmu_booke_scan_md(mmu_t mmu, struct pmap_md *prev)
2476{
2477	static struct pmap_md md;
2478	struct bi_mem_region *mr;
2479	pte_t *pte;
2480	vm_offset_t va;
2481
2482	if (dumpsys_minidump) {
2483		md.md_paddr = ~0UL;	/* Minidumps use virtual addresses. */
2484		if (prev == NULL) {
2485			/* 1st: kernel .data and .bss. */
2486			md.md_index = 1;
2487			md.md_vaddr = trunc_page((uintptr_t)_etext);
2488			md.md_size = round_page((uintptr_t)_end) - md.md_vaddr;
2489			return (&md);
2490		}
2491		switch (prev->md_index) {
2492		case 1:
2493			/* 2nd: msgbuf and tables (see pmap_bootstrap()). */
2494			md.md_index = 2;
2495			md.md_vaddr = data_start;
2496			md.md_size = data_end - data_start;
2497			break;
2498		case 2:
2499			/* 3rd: kernel VM. */
2500			va = prev->md_vaddr + prev->md_size;
2501			/* Find start of next chunk (from va). */
2502			while (va < virtual_end) {
2503				/* Don't dump the buffer cache. */
2504				if (va >= kmi.buffer_sva &&
2505				    va < kmi.buffer_eva) {
2506					va = kmi.buffer_eva;
2507					continue;
2508				}
2509				pte = pte_find(mmu, kernel_pmap, va);
2510				if (pte != NULL && PTE_ISVALID(pte))
2511					break;
2512				va += PAGE_SIZE;
2513			}
2514			if (va < virtual_end) {
2515				md.md_vaddr = va;
2516				va += PAGE_SIZE;
2517				/* Find last page in chunk. */
2518				while (va < virtual_end) {
2519					/* Don't run into the buffer cache. */
2520					if (va == kmi.buffer_sva)
2521						break;
2522					pte = pte_find(mmu, kernel_pmap, va);
2523					if (pte == NULL || !PTE_ISVALID(pte))
2524						break;
2525					va += PAGE_SIZE;
2526				}
2527				md.md_size = va - md.md_vaddr;
2528				break;
2529			}
2530			md.md_index = 3;
2531			/* FALLTHROUGH */
2532		default:
2533			return (NULL);
2534		}
2535	} else { /* minidumps */
2536		mr = bootinfo_mr();
2537		if (prev == NULL) {
2538			/* first physical chunk. */
2539			md.md_paddr = mr->mem_base;
2540			md.md_size = mr->mem_size;
2541			md.md_vaddr = ~0UL;
2542			md.md_index = 1;
2543		} else if (md.md_index < bootinfo->bi_mem_reg_no) {
2544			md.md_paddr = mr[md.md_index].mem_base;
2545			md.md_size = mr[md.md_index].mem_size;
2546			md.md_vaddr = ~0UL;
2547			md.md_index++;
2548		} else {
2549			/* There's no next physical chunk. */
2550			return (NULL);
2551		}
2552	}
2553
2554	return (&md);
2555}
2556
2557/*
2558 * Map a set of physical memory pages into the kernel virtual address space.
2559 * Return a pointer to where it is mapped. This routine is intended to be used
2560 * for mapping device memory, NOT real memory.
2561 */
2562static void *
2563mmu_booke_mapdev(mmu_t mmu, vm_offset_t pa, vm_size_t size)
2564{
2565	void *res;
2566	uintptr_t va;
2567	vm_size_t sz;
2568
2569	va = (pa >= 0x80000000) ? pa : (0xe2000000 + pa);
2570	res = (void *)va;
2571
2572	do {
2573		sz = 1 << (ilog2(size) & ~1);
2574		if (bootverbose)
2575			printf("Wiring VA=%x to PA=%x (size=%x), "
2576			    "using TLB1[%d]\n", va, pa, sz, tlb1_idx);
2577		tlb1_set_entry(va, pa, sz, _TLB_ENTRY_IO);
2578		size -= sz;
2579		pa += sz;
2580		va += sz;
2581	} while (size > 0);
2582
2583	return (res);
2584}
2585
2586/*
2587 * 'Unmap' a range mapped by mmu_booke_mapdev().
2588 */
2589static void
2590mmu_booke_unmapdev(mmu_t mmu, vm_offset_t va, vm_size_t size)
2591{
2592	vm_offset_t base, offset;
2593
2594	/*
2595	 * Unmap only if this is inside kernel virtual space.
2596	 */
2597	if ((va >= VM_MIN_KERNEL_ADDRESS) && (va <= VM_MAX_KERNEL_ADDRESS)) {
2598		base = trunc_page(va);
2599		offset = va & PAGE_MASK;
2600		size = roundup(offset + size, PAGE_SIZE);
2601		kmem_free(kernel_map, base, size);
2602	}
2603}
2604
2605/*
2606 * mmu_booke_object_init_pt preloads the ptes for a given object into the
2607 * specified pmap. This eliminates the blast of soft faults on process startup
2608 * and immediately after an mmap.
2609 */
2610static void
2611mmu_booke_object_init_pt(mmu_t mmu, pmap_t pmap, vm_offset_t addr,
2612    vm_object_t object, vm_pindex_t pindex, vm_size_t size)
2613{
2614
2615	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
2616	KASSERT(object->type == OBJT_DEVICE || object->type == OBJT_SG,
2617	    ("mmu_booke_object_init_pt: non-device object"));
2618}
2619
2620/*
2621 * Perform the pmap work for mincore.
2622 */
2623static int
2624mmu_booke_mincore(mmu_t mmu, pmap_t pmap, vm_offset_t addr)
2625{
2626
2627	TODO;
2628	return (0);
2629}
2630
2631/**************************************************************************/
2632/* TID handling */
2633/**************************************************************************/
2634
2635/*
2636 * Allocate a TID. If necessary, steal one from someone else.
2637 * The new TID is flushed from the TLB before returning.
2638 */
2639static tlbtid_t
2640tid_alloc(pmap_t pmap)
2641{
2642	tlbtid_t tid;
2643	int thiscpu;
2644
2645	KASSERT((pmap != kernel_pmap), ("tid_alloc: kernel pmap"));
2646
2647	CTR2(KTR_PMAP, "%s: s (pmap = %p)", __func__, pmap);
2648
2649	thiscpu = PCPU_GET(cpuid);
2650
2651	tid = PCPU_GET(tid_next);
2652	if (tid > TID_MAX)
2653		tid = TID_MIN;
2654	PCPU_SET(tid_next, tid + 1);
2655
2656	/* If we are stealing TID then clear the relevant pmap's field */
2657	if (tidbusy[thiscpu][tid] != NULL) {
2658
2659		CTR2(KTR_PMAP, "%s: warning: stealing tid %d", __func__, tid);
2660
2661		tidbusy[thiscpu][tid]->pm_tid[thiscpu] = TID_NONE;
2662
2663		/* Flush all entries from TLB0 matching this TID. */
2664		tid_flush(tid);
2665	}
2666
2667	tidbusy[thiscpu][tid] = pmap;
2668	pmap->pm_tid[thiscpu] = tid;
2669	__asm __volatile("msync; isync");
2670
2671	CTR3(KTR_PMAP, "%s: e (%02d next = %02d)", __func__, tid,
2672	    PCPU_GET(tid_next));
2673
2674	return (tid);
2675}
2676
2677/**************************************************************************/
2678/* TLB0 handling */
2679/**************************************************************************/
2680
2681static void
2682tlb_print_entry(int i, uint32_t mas1, uint32_t mas2, uint32_t mas3,
2683    uint32_t mas7)
2684{
2685	int as;
2686	char desc[3];
2687	tlbtid_t tid;
2688	vm_size_t size;
2689	unsigned int tsize;
2690
2691	desc[2] = '\0';
2692	if (mas1 & MAS1_VALID)
2693		desc[0] = 'V';
2694	else
2695		desc[0] = ' ';
2696
2697	if (mas1 & MAS1_IPROT)
2698		desc[1] = 'P';
2699	else
2700		desc[1] = ' ';
2701
2702	as = (mas1 & MAS1_TS_MASK) ? 1 : 0;
2703	tid = MAS1_GETTID(mas1);
2704
2705	tsize = (mas1 & MAS1_TSIZE_MASK) >> MAS1_TSIZE_SHIFT;
2706	size = 0;
2707	if (tsize)
2708		size = tsize2size(tsize);
2709
2710	debugf("%3d: (%s) [AS=%d] "
2711	    "sz = 0x%08x tsz = %d tid = %d mas1 = 0x%08x "
2712	    "mas2(va) = 0x%08x mas3(pa) = 0x%08x mas7 = 0x%08x\n",
2713	    i, desc, as, size, tsize, tid, mas1, mas2, mas3, mas7);
2714}
2715
2716/* Convert TLB0 va and way number to tlb0[] table index. */
2717static inline unsigned int
2718tlb0_tableidx(vm_offset_t va, unsigned int way)
2719{
2720	unsigned int idx;
2721
2722	idx = (way * TLB0_ENTRIES_PER_WAY);
2723	idx += (va & MAS2_TLB0_ENTRY_IDX_MASK) >> MAS2_TLB0_ENTRY_IDX_SHIFT;
2724	return (idx);
2725}
2726
2727/*
2728 * Invalidate TLB0 entry.
2729 */
2730static inline void
2731tlb0_flush_entry(vm_offset_t va)
2732{
2733
2734	CTR2(KTR_PMAP, "%s: s va=0x%08x", __func__, va);
2735
2736	mtx_assert(&tlbivax_mutex, MA_OWNED);
2737
2738	__asm __volatile("tlbivax 0, %0" :: "r"(va & MAS2_EPN_MASK));
2739	__asm __volatile("isync; msync");
2740	__asm __volatile("tlbsync; msync");
2741
2742	CTR1(KTR_PMAP, "%s: e", __func__);
2743}
2744
2745/* Print out contents of the MAS registers for each TLB0 entry */
2746void
2747tlb0_print_tlbentries(void)
2748{
2749	uint32_t mas0, mas1, mas2, mas3, mas7;
2750	int entryidx, way, idx;
2751
2752	debugf("TLB0 entries:\n");
2753	for (way = 0; way < TLB0_WAYS; way ++)
2754		for (entryidx = 0; entryidx < TLB0_ENTRIES_PER_WAY; entryidx++) {
2755
2756			mas0 = MAS0_TLBSEL(0) | MAS0_ESEL(way);
2757			mtspr(SPR_MAS0, mas0);
2758			__asm __volatile("isync");
2759
2760			mas2 = entryidx << MAS2_TLB0_ENTRY_IDX_SHIFT;
2761			mtspr(SPR_MAS2, mas2);
2762
2763			__asm __volatile("isync; tlbre");
2764
2765			mas1 = mfspr(SPR_MAS1);
2766			mas2 = mfspr(SPR_MAS2);
2767			mas3 = mfspr(SPR_MAS3);
2768			mas7 = mfspr(SPR_MAS7);
2769
2770			idx = tlb0_tableidx(mas2, way);
2771			tlb_print_entry(idx, mas1, mas2, mas3, mas7);
2772		}
2773}
2774
2775/**************************************************************************/
2776/* TLB1 handling */
2777/**************************************************************************/
2778
2779/*
2780 * TLB1 mapping notes:
2781 *
2782 * TLB1[0]	CCSRBAR
2783 * TLB1[1]	Kernel text and data.
2784 * TLB1[2-15]	Additional kernel text and data mappings (if required), PCI
2785 *		windows, other devices mappings.
2786 */
2787
2788/*
2789 * Write given entry to TLB1 hardware.
2790 * Use 32 bit pa, clear 4 high-order bits of RPN (mas7).
2791 */
2792static void
2793tlb1_write_entry(unsigned int idx)
2794{
2795	uint32_t mas0, mas7;
2796
2797	//debugf("tlb1_write_entry: s\n");
2798
2799	/* Clear high order RPN bits */
2800	mas7 = 0;
2801
2802	/* Select entry */
2803	mas0 = MAS0_TLBSEL(1) | MAS0_ESEL(idx);
2804	//debugf("tlb1_write_entry: mas0 = 0x%08x\n", mas0);
2805
2806	mtspr(SPR_MAS0, mas0);
2807	__asm __volatile("isync");
2808	mtspr(SPR_MAS1, tlb1[idx].mas1);
2809	__asm __volatile("isync");
2810	mtspr(SPR_MAS2, tlb1[idx].mas2);
2811	__asm __volatile("isync");
2812	mtspr(SPR_MAS3, tlb1[idx].mas3);
2813	__asm __volatile("isync");
2814	mtspr(SPR_MAS7, mas7);
2815	__asm __volatile("isync; tlbwe; isync; msync");
2816
2817	//debugf("tlb1_write_entry: e\n");
2818}
2819
2820/*
2821 * Return the largest uint value log such that 2^log <= num.
2822 */
2823static unsigned int
2824ilog2(unsigned int num)
2825{
2826	int lz;
2827
2828	__asm ("cntlzw %0, %1" : "=r" (lz) : "r" (num));
2829	return (31 - lz);
2830}
2831
2832/*
2833 * Convert TLB TSIZE value to mapped region size.
2834 */
2835static vm_size_t
2836tsize2size(unsigned int tsize)
2837{
2838
2839	/*
2840	 * size = 4^tsize KB
2841	 * size = 4^tsize * 2^10 = 2^(2 * tsize - 10)
2842	 */
2843
2844	return ((1 << (2 * tsize)) * 1024);
2845}
2846
2847/*
2848 * Convert region size (must be power of 4) to TLB TSIZE value.
2849 */
2850static unsigned int
2851size2tsize(vm_size_t size)
2852{
2853
2854	return (ilog2(size) / 2 - 5);
2855}
2856
2857/*
2858 * Register permanent kernel mapping in TLB1.
2859 *
2860 * Entries are created starting from index 0 (current free entry is
2861 * kept in tlb1_idx) and are not supposed to be invalidated.
2862 */
2863static int
2864tlb1_set_entry(vm_offset_t va, vm_offset_t pa, vm_size_t size,
2865    uint32_t flags)
2866{
2867	uint32_t ts, tid;
2868	int tsize;
2869
2870	if (tlb1_idx >= TLB1_ENTRIES) {
2871		printf("tlb1_set_entry: TLB1 full!\n");
2872		return (-1);
2873	}
2874
2875	/* Convert size to TSIZE */
2876	tsize = size2tsize(size);
2877
2878	tid = (TID_KERNEL << MAS1_TID_SHIFT) & MAS1_TID_MASK;
2879	/* XXX TS is hard coded to 0 for now as we only use single address space */
2880	ts = (0 << MAS1_TS_SHIFT) & MAS1_TS_MASK;
2881
2882	/* XXX LOCK tlb1[] */
2883
2884	tlb1[tlb1_idx].mas1 = MAS1_VALID | MAS1_IPROT | ts | tid;
2885	tlb1[tlb1_idx].mas1 |= ((tsize << MAS1_TSIZE_SHIFT) & MAS1_TSIZE_MASK);
2886	tlb1[tlb1_idx].mas2 = (va & MAS2_EPN_MASK) | flags;
2887
2888	/* Set supervisor RWX permission bits */
2889	tlb1[tlb1_idx].mas3 = (pa & MAS3_RPN) | MAS3_SR | MAS3_SW | MAS3_SX;
2890
2891	tlb1_write_entry(tlb1_idx++);
2892
2893	/* XXX UNLOCK tlb1[] */
2894
2895	/*
2896	 * XXX in general TLB1 updates should be propagated between CPUs,
2897	 * since current design assumes to have the same TLB1 set-up on all
2898	 * cores.
2899	 */
2900	return (0);
2901}
2902
2903static int
2904tlb1_entry_size_cmp(const void *a, const void *b)
2905{
2906	const vm_size_t *sza;
2907	const vm_size_t *szb;
2908
2909	sza = a;
2910	szb = b;
2911	if (*sza > *szb)
2912		return (-1);
2913	else if (*sza < *szb)
2914		return (1);
2915	else
2916		return (0);
2917}
2918
2919/*
2920 * Map in contiguous RAM region into the TLB1 using maximum of
2921 * KERNEL_REGION_MAX_TLB_ENTRIES entries.
2922 *
2923 * If necessary round up last entry size and return total size
2924 * used by all allocated entries.
2925 */
2926vm_size_t
2927tlb1_mapin_region(vm_offset_t va, vm_offset_t pa, vm_size_t size)
2928{
2929	vm_size_t entry_size[KERNEL_REGION_MAX_TLB_ENTRIES];
2930	vm_size_t mapped_size, sz, esz;
2931	unsigned int log;
2932	int i;
2933
2934	CTR4(KTR_PMAP, "%s: region size = 0x%08x va = 0x%08x pa = 0x%08x",
2935	    __func__, size, va, pa);
2936
2937	mapped_size = 0;
2938	sz = size;
2939	memset(entry_size, 0, sizeof(entry_size));
2940
2941	/* Calculate entry sizes. */
2942	for (i = 0; i < KERNEL_REGION_MAX_TLB_ENTRIES && sz > 0; i++) {
2943
2944		/* Largest region that is power of 4 and fits within size */
2945		log = ilog2(sz) / 2;
2946		esz = 1 << (2 * log);
2947
2948		/* If this is last entry cover remaining size. */
2949		if (i ==  KERNEL_REGION_MAX_TLB_ENTRIES - 1) {
2950			while (esz < sz)
2951				esz = esz << 2;
2952		}
2953
2954		entry_size[i] = esz;
2955		mapped_size += esz;
2956		if (esz < sz)
2957			sz -= esz;
2958		else
2959			sz = 0;
2960	}
2961
2962	/* Sort entry sizes, required to get proper entry address alignment. */
2963	qsort(entry_size, KERNEL_REGION_MAX_TLB_ENTRIES,
2964	    sizeof(vm_size_t), tlb1_entry_size_cmp);
2965
2966	/* Load TLB1 entries. */
2967	for (i = 0; i < KERNEL_REGION_MAX_TLB_ENTRIES; i++) {
2968		esz = entry_size[i];
2969		if (!esz)
2970			break;
2971
2972		CTR5(KTR_PMAP, "%s: entry %d: sz  = 0x%08x (va = 0x%08x "
2973		    "pa = 0x%08x)", __func__, tlb1_idx, esz, va, pa);
2974
2975		tlb1_set_entry(va, pa, esz, _TLB_ENTRY_MEM);
2976
2977		va += esz;
2978		pa += esz;
2979	}
2980
2981	CTR3(KTR_PMAP, "%s: mapped size 0x%08x (wasted space 0x%08x)",
2982	    __func__, mapped_size, mapped_size - size);
2983
2984	return (mapped_size);
2985}
2986
2987/*
2988 * TLB1 initialization routine, to be called after the very first
2989 * assembler level setup done in locore.S.
2990 */
2991void
2992tlb1_init(vm_offset_t ccsrbar)
2993{
2994	uint32_t mas0;
2995
2996	/* TLB1[1] is used to map the kernel. Save that entry. */
2997	mas0 = MAS0_TLBSEL(1) | MAS0_ESEL(1);
2998	mtspr(SPR_MAS0, mas0);
2999	__asm __volatile("isync; tlbre");
3000
3001	tlb1[1].mas1 = mfspr(SPR_MAS1);
3002	tlb1[1].mas2 = mfspr(SPR_MAS2);
3003	tlb1[1].mas3 = mfspr(SPR_MAS3);
3004
3005	/* Map in CCSRBAR in TLB1[0] */
3006	tlb1_idx = 0;
3007	tlb1_set_entry(CCSRBAR_VA, ccsrbar, CCSRBAR_SIZE, _TLB_ENTRY_IO);
3008	/*
3009	 * Set the next available TLB1 entry index. Note TLB[1] is reserved
3010	 * for initial mapping of kernel text+data, which was set early in
3011	 * locore, we need to skip this [busy] entry.
3012	 */
3013	tlb1_idx = 2;
3014
3015	/* Setup TLB miss defaults */
3016	set_mas4_defaults();
3017}
3018
3019/*
3020 * Setup MAS4 defaults.
3021 * These values are loaded to MAS0-2 on a TLB miss.
3022 */
3023static void
3024set_mas4_defaults(void)
3025{
3026	uint32_t mas4;
3027
3028	/* Defaults: TLB0, PID0, TSIZED=4K */
3029	mas4 = MAS4_TLBSELD0;
3030	mas4 |= (TLB_SIZE_4K << MAS4_TSIZED_SHIFT) & MAS4_TSIZED_MASK;
3031#ifdef SMP
3032	mas4 |= MAS4_MD;
3033#endif
3034	mtspr(SPR_MAS4, mas4);
3035	__asm __volatile("isync");
3036}
3037
3038/*
3039 * Print out contents of the MAS registers for each TLB1 entry
3040 */
3041void
3042tlb1_print_tlbentries(void)
3043{
3044	uint32_t mas0, mas1, mas2, mas3, mas7;
3045	int i;
3046
3047	debugf("TLB1 entries:\n");
3048	for (i = 0; i < TLB1_ENTRIES; i++) {
3049
3050		mas0 = MAS0_TLBSEL(1) | MAS0_ESEL(i);
3051		mtspr(SPR_MAS0, mas0);
3052
3053		__asm __volatile("isync; tlbre");
3054
3055		mas1 = mfspr(SPR_MAS1);
3056		mas2 = mfspr(SPR_MAS2);
3057		mas3 = mfspr(SPR_MAS3);
3058		mas7 = mfspr(SPR_MAS7);
3059
3060		tlb_print_entry(i, mas1, mas2, mas3, mas7);
3061	}
3062}
3063
3064/*
3065 * Print out contents of the in-ram tlb1 table.
3066 */
3067void
3068tlb1_print_entries(void)
3069{
3070	int i;
3071
3072	debugf("tlb1[] table entries:\n");
3073	for (i = 0; i < TLB1_ENTRIES; i++)
3074		tlb_print_entry(i, tlb1[i].mas1, tlb1[i].mas2, tlb1[i].mas3, 0);
3075}
3076
3077/*
3078 * Return 0 if the physical IO range is encompassed by one of the
3079 * the TLB1 entries, otherwise return related error code.
3080 */
3081static int
3082tlb1_iomapped(int i, vm_paddr_t pa, vm_size_t size, vm_offset_t *va)
3083{
3084	uint32_t prot;
3085	vm_paddr_t pa_start;
3086	vm_paddr_t pa_end;
3087	unsigned int entry_tsize;
3088	vm_size_t entry_size;
3089
3090	*va = (vm_offset_t)NULL;
3091
3092	/* Skip invalid entries */
3093	if (!(tlb1[i].mas1 & MAS1_VALID))
3094		return (EINVAL);
3095
3096	/*
3097	 * The entry must be cache-inhibited, guarded, and r/w
3098	 * so it can function as an i/o page
3099	 */
3100	prot = tlb1[i].mas2 & (MAS2_I | MAS2_G);
3101	if (prot != (MAS2_I | MAS2_G))
3102		return (EPERM);
3103
3104	prot = tlb1[i].mas3 & (MAS3_SR | MAS3_SW);
3105	if (prot != (MAS3_SR | MAS3_SW))
3106		return (EPERM);
3107
3108	/* The address should be within the entry range. */
3109	entry_tsize = (tlb1[i].mas1 & MAS1_TSIZE_MASK) >> MAS1_TSIZE_SHIFT;
3110	KASSERT((entry_tsize), ("tlb1_iomapped: invalid entry tsize"));
3111
3112	entry_size = tsize2size(entry_tsize);
3113	pa_start = tlb1[i].mas3 & MAS3_RPN;
3114	pa_end = pa_start + entry_size - 1;
3115
3116	if ((pa < pa_start) || ((pa + size) > pa_end))
3117		return (ERANGE);
3118
3119	/* Return virtual address of this mapping. */
3120	*va = (tlb1[i].mas2 & MAS2_EPN_MASK) + (pa - pa_start);
3121	return (0);
3122}
3123