pmap.c revision 195840
1129198Scognet/*-
2129198Scognet * Copyright (C) 2007-2009 Semihalf, Rafal Jaworowski <raj@semihalf.com>
3139735Simp * Copyright (C) 2006 Semihalf, Marian Balakowicz <m8@semihalf.com>
4129198Scognet * All rights reserved.
5129198Scognet *
6129198Scognet * Redistribution and use in source and binary forms, with or without
7129198Scognet * modification, are permitted provided that the following conditions
8129198Scognet * are met:
9129198Scognet * 1. Redistributions of source code must retain the above copyright
10129198Scognet *    notice, this list of conditions and the following disclaimer.
11129198Scognet * 2. Redistributions in binary form must reproduce the above copyright
12129198Scognet *    notice, this list of conditions and the following disclaimer in the
13129198Scognet *    documentation and/or other materials provided with the distribution.
14129198Scognet *
15129198Scognet * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16129198Scognet * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17129198Scognet * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN
18129198Scognet * NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
19129198Scognet * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
20129198Scognet * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
21129198Scognet * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
22129198Scognet * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
23129198Scognet * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
24129198Scognet * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25129198Scognet *
26129198Scognet * Some hw specific parts of this pmap were derived or influenced
27129198Scognet * by NetBSD's ibm4xx pmap module. More generic code is shared with
28129198Scognet * a few other pmap modules from the FreeBSD tree.
29129198Scognet */
30129198Scognet
31129198Scognet /*
32129198Scognet  * VM layout notes:
33129198Scognet  *
34129198Scognet  * Kernel and user threads run within one common virtual address space
35129198Scognet  * defined by AS=0.
36129198Scognet  *
37129198Scognet  * Virtual address space layout:
38129198Scognet  * -----------------------------
39129198Scognet  * 0x0000_0000 - 0xafff_ffff	: user process
40129198Scognet  * 0xb000_0000 - 0xbfff_ffff	: pmap_mapdev()-ed area (PCI/PCIE etc.)
41129198Scognet  * 0xc000_0000 - 0xc0ff_ffff	: kernel reserved
42129198Scognet  *   0xc000_0000 - data_end	: kernel code+data, env, metadata etc.
43129198Scognet  * 0xc100_0000 - 0xfeef_ffff	: KVA
44129198Scognet  *   0xc100_0000 - 0xc100_3fff : reserved for page zero/copy
45129198Scognet  *   0xc100_4000 - 0xc200_3fff : reserved for ptbl bufs
46129198Scognet  *   0xc200_4000 - 0xc200_8fff : guard page + kstack0
47129198Scognet  *   0xc200_9000 - 0xfeef_ffff	: actual free KVA space
48129198Scognet  * 0xfef0_0000 - 0xffff_ffff	: I/O devices region
49129198Scognet  */
50129198Scognet
51129198Scognet#include <sys/cdefs.h>
52129198Scognet__FBSDID("$FreeBSD: head/sys/powerpc/booke/pmap.c 195840 2009-07-24 13:50:29Z jhb $");
53129198Scognet
54129198Scognet#include <sys/types.h>
55129198Scognet#include <sys/param.h>
56129198Scognet#include <sys/malloc.h>
57129198Scognet#include <sys/ktr.h>
58129198Scognet#include <sys/proc.h>
59129198Scognet#include <sys/user.h>
60129198Scognet#include <sys/queue.h>
61236992Simp#include <sys/systm.h>
62129198Scognet#include <sys/kernel.h>
63129198Scognet#include <sys/msgbuf.h>
64129198Scognet#include <sys/lock.h>
65129198Scognet#include <sys/mutex.h>
66129198Scognet#include <sys/smp.h>
67129198Scognet#include <sys/vmmeter.h>
68129198Scognet
69129198Scognet#include <vm/vm.h>
70129198Scognet#include <vm/vm_page.h>
71129198Scognet#include <vm/vm_kern.h>
72129198Scognet#include <vm/vm_pageout.h>
73129198Scognet#include <vm/vm_extern.h>
74129198Scognet#include <vm/vm_object.h>
75129198Scognet#include <vm/vm_param.h>
76129198Scognet#include <vm/vm_map.h>
77129198Scognet#include <vm/vm_pager.h>
78129198Scognet#include <vm/uma.h>
79129198Scognet
80129198Scognet#include <machine/bootinfo.h>
81129198Scognet#include <machine/cpu.h>
82129198Scognet#include <machine/pcb.h>
83129198Scognet#include <machine/platform.h>
84129198Scognet
85129198Scognet#include <machine/tlb.h>
86129198Scognet#include <machine/spr.h>
87129198Scognet#include <machine/vmparam.h>
88129198Scognet#include <machine/md_var.h>
89129198Scognet#include <machine/mmuvar.h>
90129198Scognet#include <machine/pmap.h>
91129198Scognet#include <machine/pte.h>
92129198Scognet
93129198Scognet#include "mmu_if.h"
94129198Scognet
95129198Scognet#define DEBUG
96129198Scognet#undef DEBUG
97129198Scognet
98129198Scognet#ifdef  DEBUG
99129198Scognet#define debugf(fmt, args...) printf(fmt, ##args)
100129198Scognet#else
101129198Scognet#define debugf(fmt, args...)
102129198Scognet#endif
103129198Scognet
104129198Scognet#define TODO			panic("%s: not implemented", __func__);
105129198Scognet
106129198Scognet#include "opt_sched.h"
107129198Scognet#ifndef SCHED_4BSD
108129198Scognet#error "e500 only works with SCHED_4BSD which uses a global scheduler lock."
109129198Scognet#endif
110129198Scognetextern struct mtx sched_lock;
111129198Scognet
112129198Scognetextern int dumpsys_minidump;
113129198Scognet
114129198Scognetextern unsigned char _etext[];
115129198Scognetextern unsigned char _end[];
116129198Scognet
117129198Scognet/* Kernel physical load address. */
118129198Scognetextern uint32_t kernload;
119129198Scognetvm_offset_t kernstart;
120129198Scognetvm_size_t kernsize;
121129198Scognet
122129198Scognet/* Message buffer and tables. */
123129198Scognetstatic vm_offset_t data_start;
124129198Scognetstatic vm_size_t data_end;
125129198Scognet
126129198Scognet/* Phys/avail memory regions. */
127129198Scognetstatic struct mem_region *availmem_regions;
128129198Scognetstatic int availmem_regions_sz;
129129198Scognetstatic struct mem_region *physmem_regions;
130129198Scognetstatic int physmem_regions_sz;
131129198Scognet
132129198Scognet/* Reserved KVA space and mutex for mmu_booke_zero_page. */
133129198Scognetstatic vm_offset_t zero_page_va;
134129198Scognetstatic struct mtx zero_page_mutex;
135129198Scognet
136129198Scognetstatic struct mtx tlbivax_mutex;
137129198Scognet
138129198Scognet/*
139129198Scognet * Reserved KVA space for mmu_booke_zero_page_idle. This is used
140129198Scognet * by idle thred only, no lock required.
141129198Scognet */
142129198Scognetstatic vm_offset_t zero_page_idle_va;
143170582Scognet
144170582Scognet/* Reserved KVA space and mutex for mmu_booke_copy_page. */
145170582Scognetstatic vm_offset_t copy_page_src_va;
146170582Scognetstatic vm_offset_t copy_page_dst_va;
147170582Scognetstatic struct mtx copy_page_mutex;
148170582Scognet
149129198Scognet/**************************************************************************/
150129198Scognet/* PMAP */
151129198Scognet/**************************************************************************/
152129198Scognet
153129198Scognetstatic void mmu_booke_enter_locked(mmu_t, pmap_t, vm_offset_t, vm_page_t,
154129198Scognet    vm_prot_t, boolean_t);
155129198Scognet
156129198Scognetunsigned int kptbl_min;		/* Index of the first kernel ptbl. */
157129198Scognetunsigned int kernel_ptbls;	/* Number of KVA ptbls. */
158129198Scognet
159129198Scognet/*
160129198Scognet * If user pmap is processed with mmu_booke_remove and the resident count
161129198Scognet * drops to 0, there are no more pages to remove, so we need not continue.
162129198Scognet */
163129198Scognet#define PMAP_REMOVE_DONE(pmap) \
164129198Scognet	((pmap) != kernel_pmap && (pmap)->pm_stats.resident_count == 0)
165129198Scognet
166129198Scognetextern void tlb_lock(uint32_t *);
167129198Scognetextern void tlb_unlock(uint32_t *);
168129198Scognetextern void tid_flush(tlbtid_t);
169129198Scognet
170129198Scognet/**************************************************************************/
171129198Scognet/* TLB and TID handling */
172129198Scognet/**************************************************************************/
173129198Scognet
174129198Scognet/* Translation ID busy table */
175129198Scognetstatic volatile pmap_t tidbusy[MAXCPU][TID_MAX + 1];
176129198Scognet
177129198Scognet/*
178129198Scognet * TLB0 capabilities (entry, way numbers etc.). These can vary between e500
179129198Scognet * core revisions and should be read from h/w registers during early config.
180129198Scognet */
181129198Scognetuint32_t tlb0_entries;
182129198Scognetuint32_t tlb0_ways;
183129198Scognetuint32_t tlb0_entries_per_way;
184129198Scognet
185129198Scognet#define TLB0_ENTRIES		(tlb0_entries)
186129198Scognet#define TLB0_WAYS		(tlb0_ways)
187129198Scognet#define TLB0_ENTRIES_PER_WAY	(tlb0_entries_per_way)
188129198Scognet
189129198Scognet#define TLB1_ENTRIES 16
190129198Scognet
191129198Scognet/* In-ram copy of the TLB1 */
192129198Scognetstatic tlb_entry_t tlb1[TLB1_ENTRIES];
193129198Scognet
194129198Scognet/* Next free entry in the TLB1 */
195129198Scognetstatic unsigned int tlb1_idx;
196129198Scognet
197129198Scognetstatic tlbtid_t tid_alloc(struct pmap *);
198129198Scognet
199129198Scognetstatic void tlb_print_entry(int, uint32_t, uint32_t, uint32_t, uint32_t);
200129198Scognet
201129198Scognetstatic int tlb1_set_entry(vm_offset_t, vm_offset_t, vm_size_t, uint32_t);
202129198Scognetstatic void tlb1_write_entry(unsigned int);
203129198Scognetstatic int tlb1_iomapped(int, vm_paddr_t, vm_size_t, vm_offset_t *);
204129198Scognetstatic vm_size_t tlb1_mapin_region(vm_offset_t, vm_offset_t, vm_size_t);
205129198Scognet
206129198Scognetstatic vm_size_t tsize2size(unsigned int);
207129198Scognetstatic unsigned int size2tsize(vm_size_t);
208170582Scognetstatic unsigned int ilog2(unsigned int);
209129198Scognet
210129198Scognetstatic void set_mas4_defaults(void);
211129198Scognet
212129198Scognetstatic inline void tlb0_flush_entry(vm_offset_t);
213170582Scognetstatic inline unsigned int tlb0_tableidx(vm_offset_t, unsigned int);
214170582Scognet
215129198Scognet/**************************************************************************/
216129198Scognet/* Page table management */
217129198Scognet/**************************************************************************/
218129198Scognet
219129198Scognet/* Data for the pv entry allocation mechanism */
220129198Scognetstatic uma_zone_t pvzone;
221129198Scognetstatic struct vm_object pvzone_obj;
222129198Scognetstatic int pv_entry_count = 0, pv_entry_max = 0, pv_entry_high_water = 0;
223129198Scognet
224129198Scognet#define PV_ENTRY_ZONE_MIN	2048	/* min pv entries in uma zone */
225129198Scognet
226129198Scognet#ifndef PMAP_SHPGPERPROC
227129198Scognet#define PMAP_SHPGPERPROC	200
228129198Scognet#endif
229129198Scognet
230129198Scognetstatic void ptbl_init(void);
231129198Scognetstatic struct ptbl_buf *ptbl_buf_alloc(void);
232129198Scognetstatic void ptbl_buf_free(struct ptbl_buf *);
233129198Scognetstatic void ptbl_free_pmap_ptbl(pmap_t, pte_t *);
234129198Scognet
235129198Scognetstatic pte_t *ptbl_alloc(mmu_t, pmap_t, unsigned int);
236129198Scognetstatic void ptbl_free(mmu_t, pmap_t, unsigned int);
237129198Scognetstatic void ptbl_hold(mmu_t, pmap_t, unsigned int);
238129198Scognetstatic int ptbl_unhold(mmu_t, pmap_t, unsigned int);
239129198Scognet
240129198Scognetstatic vm_paddr_t pte_vatopa(mmu_t, pmap_t, vm_offset_t);
241129198Scognetstatic pte_t *pte_find(mmu_t, pmap_t, vm_offset_t);
242129198Scognetstatic void pte_enter(mmu_t, pmap_t, vm_page_t, vm_offset_t, uint32_t);
243129198Scognetstatic int pte_remove(mmu_t, pmap_t, vm_offset_t, uint8_t);
244129198Scognet
245129198Scognetstatic pv_entry_t pv_alloc(void);
246129198Scognetstatic void pv_free(pv_entry_t);
247129198Scognetstatic void pv_insert(pmap_t, vm_offset_t, vm_page_t);
248129198Scognetstatic void pv_remove(pmap_t, vm_offset_t, vm_page_t);
249129198Scognet
250129198Scognet/* Number of kva ptbl buffers, each covering one ptbl (PTBL_PAGES). */
251129198Scognet#define PTBL_BUFS		(128 * 16)
252129198Scognet
253129198Scognetstruct ptbl_buf {
254129198Scognet	TAILQ_ENTRY(ptbl_buf) link;	/* list link */
255129198Scognet	vm_offset_t kva;		/* va of mapping */
256129198Scognet};
257129198Scognet
258129198Scognet/* ptbl free list and a lock used for access synchronization. */
259129198Scognetstatic TAILQ_HEAD(, ptbl_buf) ptbl_buf_freelist;
260129198Scognetstatic struct mtx ptbl_buf_freelist_lock;
261129198Scognet
262170582Scognet/* Base address of kva space allocated fot ptbl bufs. */
263129198Scognetstatic vm_offset_t ptbl_buf_pool_vabase;
264129198Scognet
265129198Scognet/* Pointer to ptbl_buf structures. */
266129198Scognetstatic struct ptbl_buf *ptbl_bufs;
267129198Scognet
268129198Scognetvoid pmap_bootstrap_ap(volatile uint32_t *);
269129198Scognet
270129198Scognet/*
271129198Scognet * Kernel MMU interface
272129198Scognet */
273129198Scognetstatic void		mmu_booke_change_wiring(mmu_t, pmap_t, vm_offset_t, boolean_t);
274129198Scognetstatic void		mmu_booke_clear_modify(mmu_t, vm_page_t);
275129198Scognetstatic void		mmu_booke_clear_reference(mmu_t, vm_page_t);
276129198Scognetstatic void		mmu_booke_copy(mmu_t, pmap_t, pmap_t, vm_offset_t,
277129198Scognet    vm_size_t, vm_offset_t);
278129198Scognetstatic void		mmu_booke_copy_page(mmu_t, vm_page_t, vm_page_t);
279129198Scognetstatic void		mmu_booke_enter(mmu_t, pmap_t, vm_offset_t, vm_page_t,
280129198Scognet    vm_prot_t, boolean_t);
281129198Scognetstatic void		mmu_booke_enter_object(mmu_t, pmap_t, vm_offset_t, vm_offset_t,
282129198Scognet    vm_page_t, vm_prot_t);
283129198Scognetstatic void		mmu_booke_enter_quick(mmu_t, pmap_t, vm_offset_t, vm_page_t,
284129198Scognet    vm_prot_t);
285129198Scognetstatic vm_paddr_t	mmu_booke_extract(mmu_t, pmap_t, vm_offset_t);
286129198Scognetstatic vm_page_t	mmu_booke_extract_and_hold(mmu_t, pmap_t, vm_offset_t,
287129198Scognet    vm_prot_t);
288129198Scognetstatic void		mmu_booke_init(mmu_t);
289129198Scognetstatic boolean_t	mmu_booke_is_modified(mmu_t, vm_page_t);
290129198Scognetstatic boolean_t	mmu_booke_is_prefaultable(mmu_t, pmap_t, vm_offset_t);
291129198Scognetstatic boolean_t	mmu_booke_ts_referenced(mmu_t, vm_page_t);
292129198Scognetstatic vm_offset_t	mmu_booke_map(mmu_t, vm_offset_t *, vm_offset_t, vm_offset_t,
293129198Scognet    int);
294129198Scognetstatic int		mmu_booke_mincore(mmu_t, pmap_t, vm_offset_t);
295129198Scognetstatic void		mmu_booke_object_init_pt(mmu_t, pmap_t, vm_offset_t,
296129198Scognet    vm_object_t, vm_pindex_t, vm_size_t);
297129198Scognetstatic boolean_t	mmu_booke_page_exists_quick(mmu_t, pmap_t, vm_page_t);
298129198Scognetstatic void		mmu_booke_page_init(mmu_t, vm_page_t);
299129198Scognetstatic int		mmu_booke_page_wired_mappings(mmu_t, vm_page_t);
300129198Scognetstatic void		mmu_booke_pinit(mmu_t, pmap_t);
301129198Scognetstatic void		mmu_booke_pinit0(mmu_t, pmap_t);
302129198Scognetstatic void		mmu_booke_protect(mmu_t, pmap_t, vm_offset_t, vm_offset_t,
303129198Scognet    vm_prot_t);
304129198Scognetstatic void		mmu_booke_qenter(mmu_t, vm_offset_t, vm_page_t *, int);
305129198Scognetstatic void		mmu_booke_qremove(mmu_t, vm_offset_t, int);
306129198Scognetstatic void		mmu_booke_release(mmu_t, pmap_t);
307129198Scognetstatic void		mmu_booke_remove(mmu_t, pmap_t, vm_offset_t, vm_offset_t);
308129198Scognetstatic void		mmu_booke_remove_all(mmu_t, vm_page_t);
309170582Scognetstatic void		mmu_booke_remove_write(mmu_t, vm_page_t);
310170582Scognetstatic void		mmu_booke_zero_page(mmu_t, vm_page_t);
311170582Scognetstatic void		mmu_booke_zero_page_area(mmu_t, vm_page_t, int, int);
312170582Scognetstatic void		mmu_booke_zero_page_idle(mmu_t, vm_page_t);
313170582Scognetstatic void		mmu_booke_activate(mmu_t, struct thread *);
314170582Scognetstatic void		mmu_booke_deactivate(mmu_t, struct thread *);
315170582Scognetstatic void		mmu_booke_bootstrap(mmu_t, vm_offset_t, vm_offset_t);
316170582Scognetstatic void		*mmu_booke_mapdev(mmu_t, vm_offset_t, vm_size_t);
317170582Scognetstatic void		mmu_booke_unmapdev(mmu_t, vm_offset_t, vm_size_t);
318236992Simpstatic vm_offset_t	mmu_booke_kextract(mmu_t, vm_offset_t);
319170582Scognetstatic void		mmu_booke_kenter(mmu_t, vm_offset_t, vm_offset_t);
320170582Scognetstatic void		mmu_booke_kremove(mmu_t, vm_offset_t);
321170582Scognetstatic boolean_t	mmu_booke_dev_direct_mapped(mmu_t, vm_offset_t, vm_size_t);
322170582Scognetstatic boolean_t	mmu_booke_page_executable(mmu_t, vm_page_t);
323170582Scognetstatic vm_offset_t	mmu_booke_dumpsys_map(mmu_t, struct pmap_md *,
324170582Scognet    vm_size_t, vm_size_t *);
325170582Scognetstatic void		mmu_booke_dumpsys_unmap(mmu_t, struct pmap_md *,
326170582Scognet    vm_size_t, vm_offset_t);
327170582Scognetstatic struct pmap_md	*mmu_booke_scan_md(mmu_t, struct pmap_md *);
328170582Scognet
329170582Scognetstatic mmu_method_t mmu_booke_methods[] = {
330170582Scognet	/* pmap dispatcher interface */
331170582Scognet	MMUMETHOD(mmu_change_wiring,	mmu_booke_change_wiring),
332171621Scognet	MMUMETHOD(mmu_clear_modify,	mmu_booke_clear_modify),
333171621Scognet	MMUMETHOD(mmu_clear_reference,	mmu_booke_clear_reference),
334171621Scognet	MMUMETHOD(mmu_copy,		mmu_booke_copy),
335170582Scognet	MMUMETHOD(mmu_copy_page,	mmu_booke_copy_page),
336171621Scognet	MMUMETHOD(mmu_enter,		mmu_booke_enter),
337170582Scognet	MMUMETHOD(mmu_enter_object,	mmu_booke_enter_object),
338171621Scognet	MMUMETHOD(mmu_enter_quick,	mmu_booke_enter_quick),
339170582Scognet	MMUMETHOD(mmu_extract,		mmu_booke_extract),
340170582Scognet	MMUMETHOD(mmu_extract_and_hold,	mmu_booke_extract_and_hold),
341170582Scognet	MMUMETHOD(mmu_init,		mmu_booke_init),
342170582Scognet	MMUMETHOD(mmu_is_modified,	mmu_booke_is_modified),
343170582Scognet	MMUMETHOD(mmu_is_prefaultable,	mmu_booke_is_prefaultable),
344170582Scognet	MMUMETHOD(mmu_ts_referenced,	mmu_booke_ts_referenced),
345236992Simp	MMUMETHOD(mmu_map,		mmu_booke_map),
346170582Scognet	MMUMETHOD(mmu_mincore,		mmu_booke_mincore),
347170582Scognet	MMUMETHOD(mmu_object_init_pt,	mmu_booke_object_init_pt),
348170582Scognet	MMUMETHOD(mmu_page_exists_quick,mmu_booke_page_exists_quick),
349170582Scognet	MMUMETHOD(mmu_page_init,	mmu_booke_page_init),
350170582Scognet	MMUMETHOD(mmu_page_wired_mappings, mmu_booke_page_wired_mappings),
351170582Scognet	MMUMETHOD(mmu_pinit,		mmu_booke_pinit),
352170582Scognet	MMUMETHOD(mmu_pinit0,		mmu_booke_pinit0),
353170582Scognet	MMUMETHOD(mmu_protect,		mmu_booke_protect),
354170582Scognet	MMUMETHOD(mmu_qenter,		mmu_booke_qenter),
355170582Scognet	MMUMETHOD(mmu_qremove,		mmu_booke_qremove),
356170582Scognet	MMUMETHOD(mmu_release,		mmu_booke_release),
357170582Scognet	MMUMETHOD(mmu_remove,		mmu_booke_remove),
358170582Scognet	MMUMETHOD(mmu_remove_all,	mmu_booke_remove_all),
359170582Scognet	MMUMETHOD(mmu_remove_write,	mmu_booke_remove_write),
360170582Scognet	MMUMETHOD(mmu_zero_page,	mmu_booke_zero_page),
361170582Scognet	MMUMETHOD(mmu_zero_page_area,	mmu_booke_zero_page_area),
362170582Scognet	MMUMETHOD(mmu_zero_page_idle,	mmu_booke_zero_page_idle),
363170582Scognet	MMUMETHOD(mmu_activate,		mmu_booke_activate),
364170582Scognet	MMUMETHOD(mmu_deactivate,	mmu_booke_deactivate),
365170582Scognet
366170582Scognet	/* Internal interfaces */
367129198Scognet	MMUMETHOD(mmu_bootstrap,	mmu_booke_bootstrap),
368129198Scognet	MMUMETHOD(mmu_dev_direct_mapped,mmu_booke_dev_direct_mapped),
369129198Scognet	MMUMETHOD(mmu_mapdev,		mmu_booke_mapdev),
370	MMUMETHOD(mmu_kenter,		mmu_booke_kenter),
371	MMUMETHOD(mmu_kextract,		mmu_booke_kextract),
372/*	MMUMETHOD(mmu_kremove,		mmu_booke_kremove),	*/
373	MMUMETHOD(mmu_page_executable,	mmu_booke_page_executable),
374	MMUMETHOD(mmu_unmapdev,		mmu_booke_unmapdev),
375
376	/* dumpsys() support */
377	MMUMETHOD(mmu_dumpsys_map,	mmu_booke_dumpsys_map),
378	MMUMETHOD(mmu_dumpsys_unmap,	mmu_booke_dumpsys_unmap),
379	MMUMETHOD(mmu_scan_md,		mmu_booke_scan_md),
380
381	{ 0, 0 }
382};
383
384static mmu_def_t booke_mmu = {
385	MMU_TYPE_BOOKE,
386	mmu_booke_methods,
387	0
388};
389MMU_DEF(booke_mmu);
390
391static inline void
392tlb_miss_lock(void)
393{
394#ifdef SMP
395	struct pcpu *pc;
396
397	if (!smp_started)
398		return;
399
400	SLIST_FOREACH(pc, &cpuhead, pc_allcpu) {
401		if (pc != pcpup) {
402
403			CTR3(KTR_PMAP, "%s: tlb miss LOCK of CPU=%d, "
404			    "tlb_lock=%p", __func__, pc->pc_cpuid, pc->pc_booke_tlb_lock);
405
406			KASSERT((pc->pc_cpuid != PCPU_GET(cpuid)),
407			    ("tlb_miss_lock: tried to lock self"));
408
409			tlb_lock(pc->pc_booke_tlb_lock);
410
411			CTR1(KTR_PMAP, "%s: locked", __func__);
412		}
413	}
414#endif
415}
416
417static inline void
418tlb_miss_unlock(void)
419{
420#ifdef SMP
421	struct pcpu *pc;
422
423	if (!smp_started)
424		return;
425
426	SLIST_FOREACH(pc, &cpuhead, pc_allcpu) {
427		if (pc != pcpup) {
428			CTR2(KTR_PMAP, "%s: tlb miss UNLOCK of CPU=%d",
429			    __func__, pc->pc_cpuid);
430
431			tlb_unlock(pc->pc_booke_tlb_lock);
432
433			CTR1(KTR_PMAP, "%s: unlocked", __func__);
434		}
435	}
436#endif
437}
438
439/* Return number of entries in TLB0. */
440static __inline void
441tlb0_get_tlbconf(void)
442{
443	uint32_t tlb0_cfg;
444
445	tlb0_cfg = mfspr(SPR_TLB0CFG);
446	tlb0_entries = tlb0_cfg & TLBCFG_NENTRY_MASK;
447	tlb0_ways = (tlb0_cfg & TLBCFG_ASSOC_MASK) >> TLBCFG_ASSOC_SHIFT;
448	tlb0_entries_per_way = tlb0_entries / tlb0_ways;
449}
450
451/* Initialize pool of kva ptbl buffers. */
452static void
453ptbl_init(void)
454{
455	int i;
456
457	CTR3(KTR_PMAP, "%s: s (ptbl_bufs = 0x%08x size 0x%08x)", __func__,
458	    (uint32_t)ptbl_bufs, sizeof(struct ptbl_buf) * PTBL_BUFS);
459	CTR3(KTR_PMAP, "%s: s (ptbl_buf_pool_vabase = 0x%08x size = 0x%08x)",
460	    __func__, ptbl_buf_pool_vabase, PTBL_BUFS * PTBL_PAGES * PAGE_SIZE);
461
462	mtx_init(&ptbl_buf_freelist_lock, "ptbl bufs lock", NULL, MTX_DEF);
463	TAILQ_INIT(&ptbl_buf_freelist);
464
465	for (i = 0; i < PTBL_BUFS; i++) {
466		ptbl_bufs[i].kva = ptbl_buf_pool_vabase + i * PTBL_PAGES * PAGE_SIZE;
467		TAILQ_INSERT_TAIL(&ptbl_buf_freelist, &ptbl_bufs[i], link);
468	}
469}
470
471/* Get a ptbl_buf from the freelist. */
472static struct ptbl_buf *
473ptbl_buf_alloc(void)
474{
475	struct ptbl_buf *buf;
476
477	mtx_lock(&ptbl_buf_freelist_lock);
478	buf = TAILQ_FIRST(&ptbl_buf_freelist);
479	if (buf != NULL)
480		TAILQ_REMOVE(&ptbl_buf_freelist, buf, link);
481	mtx_unlock(&ptbl_buf_freelist_lock);
482
483	CTR2(KTR_PMAP, "%s: buf = %p", __func__, buf);
484
485	return (buf);
486}
487
488/* Return ptbl buff to free pool. */
489static void
490ptbl_buf_free(struct ptbl_buf *buf)
491{
492
493	CTR2(KTR_PMAP, "%s: buf = %p", __func__, buf);
494
495	mtx_lock(&ptbl_buf_freelist_lock);
496	TAILQ_INSERT_TAIL(&ptbl_buf_freelist, buf, link);
497	mtx_unlock(&ptbl_buf_freelist_lock);
498}
499
500/*
501 * Search the list of allocated ptbl bufs and find on list of allocated ptbls
502 */
503static void
504ptbl_free_pmap_ptbl(pmap_t pmap, pte_t *ptbl)
505{
506	struct ptbl_buf *pbuf;
507
508	CTR2(KTR_PMAP, "%s: ptbl = %p", __func__, ptbl);
509
510	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
511
512	TAILQ_FOREACH(pbuf, &pmap->pm_ptbl_list, link)
513		if (pbuf->kva == (vm_offset_t)ptbl) {
514			/* Remove from pmap ptbl buf list. */
515			TAILQ_REMOVE(&pmap->pm_ptbl_list, pbuf, link);
516
517			/* Free corresponding ptbl buf. */
518			ptbl_buf_free(pbuf);
519			break;
520		}
521}
522
523/* Allocate page table. */
524static pte_t *
525ptbl_alloc(mmu_t mmu, pmap_t pmap, unsigned int pdir_idx)
526{
527	vm_page_t mtbl[PTBL_PAGES];
528	vm_page_t m;
529	struct ptbl_buf *pbuf;
530	unsigned int pidx;
531	pte_t *ptbl;
532	int i;
533
534	CTR4(KTR_PMAP, "%s: pmap = %p su = %d pdir_idx = %d", __func__, pmap,
535	    (pmap == kernel_pmap), pdir_idx);
536
537	KASSERT((pdir_idx <= (VM_MAXUSER_ADDRESS / PDIR_SIZE)),
538	    ("ptbl_alloc: invalid pdir_idx"));
539	KASSERT((pmap->pm_pdir[pdir_idx] == NULL),
540	    ("pte_alloc: valid ptbl entry exists!"));
541
542	pbuf = ptbl_buf_alloc();
543	if (pbuf == NULL)
544		panic("pte_alloc: couldn't alloc kernel virtual memory");
545
546	ptbl = (pte_t *)pbuf->kva;
547
548	CTR2(KTR_PMAP, "%s: ptbl kva = %p", __func__, ptbl);
549
550	/* Allocate ptbl pages, this will sleep! */
551	for (i = 0; i < PTBL_PAGES; i++) {
552		pidx = (PTBL_PAGES * pdir_idx) + i;
553		while ((m = vm_page_alloc(NULL, pidx,
554		    VM_ALLOC_NOOBJ | VM_ALLOC_WIRED)) == NULL) {
555
556			PMAP_UNLOCK(pmap);
557			vm_page_unlock_queues();
558			VM_WAIT;
559			vm_page_lock_queues();
560			PMAP_LOCK(pmap);
561		}
562		mtbl[i] = m;
563	}
564
565	/* Map allocated pages into kernel_pmap. */
566	mmu_booke_qenter(mmu, (vm_offset_t)ptbl, mtbl, PTBL_PAGES);
567
568	/* Zero whole ptbl. */
569	bzero((caddr_t)ptbl, PTBL_PAGES * PAGE_SIZE);
570
571	/* Add pbuf to the pmap ptbl bufs list. */
572	TAILQ_INSERT_TAIL(&pmap->pm_ptbl_list, pbuf, link);
573
574	return (ptbl);
575}
576
577/* Free ptbl pages and invalidate pdir entry. */
578static void
579ptbl_free(mmu_t mmu, pmap_t pmap, unsigned int pdir_idx)
580{
581	pte_t *ptbl;
582	vm_paddr_t pa;
583	vm_offset_t va;
584	vm_page_t m;
585	int i;
586
587	CTR4(KTR_PMAP, "%s: pmap = %p su = %d pdir_idx = %d", __func__, pmap,
588	    (pmap == kernel_pmap), pdir_idx);
589
590	KASSERT((pdir_idx <= (VM_MAXUSER_ADDRESS / PDIR_SIZE)),
591	    ("ptbl_free: invalid pdir_idx"));
592
593	ptbl = pmap->pm_pdir[pdir_idx];
594
595	CTR2(KTR_PMAP, "%s: ptbl = %p", __func__, ptbl);
596
597	KASSERT((ptbl != NULL), ("ptbl_free: null ptbl"));
598
599	/*
600	 * Invalidate the pdir entry as soon as possible, so that other CPUs
601	 * don't attempt to look up the page tables we are releasing.
602	 */
603	mtx_lock_spin(&tlbivax_mutex);
604	tlb_miss_lock();
605
606	pmap->pm_pdir[pdir_idx] = NULL;
607
608	tlb_miss_unlock();
609	mtx_unlock_spin(&tlbivax_mutex);
610
611	for (i = 0; i < PTBL_PAGES; i++) {
612		va = ((vm_offset_t)ptbl + (i * PAGE_SIZE));
613		pa = pte_vatopa(mmu, kernel_pmap, va);
614		m = PHYS_TO_VM_PAGE(pa);
615		vm_page_free_zero(m);
616		atomic_subtract_int(&cnt.v_wire_count, 1);
617		mmu_booke_kremove(mmu, va);
618	}
619
620	ptbl_free_pmap_ptbl(pmap, ptbl);
621}
622
623/*
624 * Decrement ptbl pages hold count and attempt to free ptbl pages.
625 * Called when removing pte entry from ptbl.
626 *
627 * Return 1 if ptbl pages were freed.
628 */
629static int
630ptbl_unhold(mmu_t mmu, pmap_t pmap, unsigned int pdir_idx)
631{
632	pte_t *ptbl;
633	vm_paddr_t pa;
634	vm_page_t m;
635	int i;
636
637	CTR4(KTR_PMAP, "%s: pmap = %p su = %d pdir_idx = %d", __func__, pmap,
638	    (pmap == kernel_pmap), pdir_idx);
639
640	KASSERT((pdir_idx <= (VM_MAXUSER_ADDRESS / PDIR_SIZE)),
641	    ("ptbl_unhold: invalid pdir_idx"));
642	KASSERT((pmap != kernel_pmap),
643	    ("ptbl_unhold: unholding kernel ptbl!"));
644
645	ptbl = pmap->pm_pdir[pdir_idx];
646
647	//debugf("ptbl_unhold: ptbl = 0x%08x\n", (u_int32_t)ptbl);
648	KASSERT(((vm_offset_t)ptbl >= VM_MIN_KERNEL_ADDRESS),
649	    ("ptbl_unhold: non kva ptbl"));
650
651	/* decrement hold count */
652	for (i = 0; i < PTBL_PAGES; i++) {
653		pa = pte_vatopa(mmu, kernel_pmap,
654		    (vm_offset_t)ptbl + (i * PAGE_SIZE));
655		m = PHYS_TO_VM_PAGE(pa);
656		m->wire_count--;
657	}
658
659	/*
660	 * Free ptbl pages if there are no pte etries in this ptbl.
661	 * wire_count has the same value for all ptbl pages, so check the last
662	 * page.
663	 */
664	if (m->wire_count == 0) {
665		ptbl_free(mmu, pmap, pdir_idx);
666
667		//debugf("ptbl_unhold: e (freed ptbl)\n");
668		return (1);
669	}
670
671	return (0);
672}
673
674/*
675 * Increment hold count for ptbl pages. This routine is used when a new pte
676 * entry is being inserted into the ptbl.
677 */
678static void
679ptbl_hold(mmu_t mmu, pmap_t pmap, unsigned int pdir_idx)
680{
681	vm_paddr_t pa;
682	pte_t *ptbl;
683	vm_page_t m;
684	int i;
685
686	CTR3(KTR_PMAP, "%s: pmap = %p pdir_idx = %d", __func__, pmap,
687	    pdir_idx);
688
689	KASSERT((pdir_idx <= (VM_MAXUSER_ADDRESS / PDIR_SIZE)),
690	    ("ptbl_hold: invalid pdir_idx"));
691	KASSERT((pmap != kernel_pmap),
692	    ("ptbl_hold: holding kernel ptbl!"));
693
694	ptbl = pmap->pm_pdir[pdir_idx];
695
696	KASSERT((ptbl != NULL), ("ptbl_hold: null ptbl"));
697
698	for (i = 0; i < PTBL_PAGES; i++) {
699		pa = pte_vatopa(mmu, kernel_pmap,
700		    (vm_offset_t)ptbl + (i * PAGE_SIZE));
701		m = PHYS_TO_VM_PAGE(pa);
702		m->wire_count++;
703	}
704}
705
706/* Allocate pv_entry structure. */
707pv_entry_t
708pv_alloc(void)
709{
710	pv_entry_t pv;
711
712	pv_entry_count++;
713	if (pv_entry_count > pv_entry_high_water)
714		pagedaemon_wakeup();
715	pv = uma_zalloc(pvzone, M_NOWAIT);
716
717	return (pv);
718}
719
720/* Free pv_entry structure. */
721static __inline void
722pv_free(pv_entry_t pve)
723{
724
725	pv_entry_count--;
726	uma_zfree(pvzone, pve);
727}
728
729
730/* Allocate and initialize pv_entry structure. */
731static void
732pv_insert(pmap_t pmap, vm_offset_t va, vm_page_t m)
733{
734	pv_entry_t pve;
735
736	//int su = (pmap == kernel_pmap);
737	//debugf("pv_insert: s (su = %d pmap = 0x%08x va = 0x%08x m = 0x%08x)\n", su,
738	//	(u_int32_t)pmap, va, (u_int32_t)m);
739
740	pve = pv_alloc();
741	if (pve == NULL)
742		panic("pv_insert: no pv entries!");
743
744	pve->pv_pmap = pmap;
745	pve->pv_va = va;
746
747	/* add to pv_list */
748	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
749	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
750
751	TAILQ_INSERT_TAIL(&m->md.pv_list, pve, pv_link);
752
753	//debugf("pv_insert: e\n");
754}
755
756/* Destroy pv entry. */
757static void
758pv_remove(pmap_t pmap, vm_offset_t va, vm_page_t m)
759{
760	pv_entry_t pve;
761
762	//int su = (pmap == kernel_pmap);
763	//debugf("pv_remove: s (su = %d pmap = 0x%08x va = 0x%08x)\n", su, (u_int32_t)pmap, va);
764
765	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
766	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
767
768	/* find pv entry */
769	TAILQ_FOREACH(pve, &m->md.pv_list, pv_link) {
770		if ((pmap == pve->pv_pmap) && (va == pve->pv_va)) {
771			/* remove from pv_list */
772			TAILQ_REMOVE(&m->md.pv_list, pve, pv_link);
773			if (TAILQ_EMPTY(&m->md.pv_list))
774				vm_page_flag_clear(m, PG_WRITEABLE);
775
776			/* free pv entry struct */
777			pv_free(pve);
778			break;
779		}
780	}
781
782	//debugf("pv_remove: e\n");
783}
784
785/*
786 * Clean pte entry, try to free page table page if requested.
787 *
788 * Return 1 if ptbl pages were freed, otherwise return 0.
789 */
790static int
791pte_remove(mmu_t mmu, pmap_t pmap, vm_offset_t va, uint8_t flags)
792{
793	unsigned int pdir_idx = PDIR_IDX(va);
794	unsigned int ptbl_idx = PTBL_IDX(va);
795	vm_page_t m;
796	pte_t *ptbl;
797	pte_t *pte;
798
799	//int su = (pmap == kernel_pmap);
800	//debugf("pte_remove: s (su = %d pmap = 0x%08x va = 0x%08x flags = %d)\n",
801	//		su, (u_int32_t)pmap, va, flags);
802
803	ptbl = pmap->pm_pdir[pdir_idx];
804	KASSERT(ptbl, ("pte_remove: null ptbl"));
805
806	pte = &ptbl[ptbl_idx];
807
808	if (pte == NULL || !PTE_ISVALID(pte))
809		return (0);
810
811	if (PTE_ISWIRED(pte))
812		pmap->pm_stats.wired_count--;
813
814	/* Handle managed entry. */
815	if (PTE_ISMANAGED(pte)) {
816		/* Get vm_page_t for mapped pte. */
817		m = PHYS_TO_VM_PAGE(PTE_PA(pte));
818
819		if (PTE_ISMODIFIED(pte))
820			vm_page_dirty(m);
821
822		if (PTE_ISREFERENCED(pte))
823			vm_page_flag_set(m, PG_REFERENCED);
824
825		pv_remove(pmap, va, m);
826	}
827
828	mtx_lock_spin(&tlbivax_mutex);
829	tlb_miss_lock();
830
831	tlb0_flush_entry(va);
832	pte->flags = 0;
833	pte->rpn = 0;
834
835	tlb_miss_unlock();
836	mtx_unlock_spin(&tlbivax_mutex);
837
838	pmap->pm_stats.resident_count--;
839
840	if (flags & PTBL_UNHOLD) {
841		//debugf("pte_remove: e (unhold)\n");
842		return (ptbl_unhold(mmu, pmap, pdir_idx));
843	}
844
845	//debugf("pte_remove: e\n");
846	return (0);
847}
848
849/*
850 * Insert PTE for a given page and virtual address.
851 */
852static void
853pte_enter(mmu_t mmu, pmap_t pmap, vm_page_t m, vm_offset_t va, uint32_t flags)
854{
855	unsigned int pdir_idx = PDIR_IDX(va);
856	unsigned int ptbl_idx = PTBL_IDX(va);
857	pte_t *ptbl, *pte;
858
859	CTR4(KTR_PMAP, "%s: su = %d pmap = %p va = %p", __func__,
860	    pmap == kernel_pmap, pmap, va);
861
862	/* Get the page table pointer. */
863	ptbl = pmap->pm_pdir[pdir_idx];
864
865	if (ptbl == NULL) {
866		/* Allocate page table pages. */
867		ptbl = ptbl_alloc(mmu, pmap, pdir_idx);
868	} else {
869		/*
870		 * Check if there is valid mapping for requested
871		 * va, if there is, remove it.
872		 */
873		pte = &pmap->pm_pdir[pdir_idx][ptbl_idx];
874		if (PTE_ISVALID(pte)) {
875			pte_remove(mmu, pmap, va, PTBL_HOLD);
876		} else {
877			/*
878			 * pte is not used, increment hold count
879			 * for ptbl pages.
880			 */
881			if (pmap != kernel_pmap)
882				ptbl_hold(mmu, pmap, pdir_idx);
883		}
884	}
885
886	/*
887	 * Insert pv_entry into pv_list for mapped page if part of managed
888	 * memory.
889	 */
890        if ((m->flags & PG_FICTITIOUS) == 0) {
891		if ((m->flags & PG_UNMANAGED) == 0) {
892			flags |= PTE_MANAGED;
893
894			/* Create and insert pv entry. */
895			pv_insert(pmap, va, m);
896		}
897	}
898
899	pmap->pm_stats.resident_count++;
900
901	mtx_lock_spin(&tlbivax_mutex);
902	tlb_miss_lock();
903
904	tlb0_flush_entry(va);
905	if (pmap->pm_pdir[pdir_idx] == NULL) {
906		/*
907		 * If we just allocated a new page table, hook it in
908		 * the pdir.
909		 */
910		pmap->pm_pdir[pdir_idx] = ptbl;
911	}
912	pte = &(pmap->pm_pdir[pdir_idx][ptbl_idx]);
913	pte->rpn = VM_PAGE_TO_PHYS(m) & ~PTE_PA_MASK;
914	pte->flags |= (PTE_VALID | flags);
915
916	tlb_miss_unlock();
917	mtx_unlock_spin(&tlbivax_mutex);
918}
919
920/* Return the pa for the given pmap/va. */
921static vm_paddr_t
922pte_vatopa(mmu_t mmu, pmap_t pmap, vm_offset_t va)
923{
924	vm_paddr_t pa = 0;
925	pte_t *pte;
926
927	pte = pte_find(mmu, pmap, va);
928	if ((pte != NULL) && PTE_ISVALID(pte))
929		pa = (PTE_PA(pte) | (va & PTE_PA_MASK));
930	return (pa);
931}
932
933/* Get a pointer to a PTE in a page table. */
934static pte_t *
935pte_find(mmu_t mmu, pmap_t pmap, vm_offset_t va)
936{
937	unsigned int pdir_idx = PDIR_IDX(va);
938	unsigned int ptbl_idx = PTBL_IDX(va);
939
940	KASSERT((pmap != NULL), ("pte_find: invalid pmap"));
941
942	if (pmap->pm_pdir[pdir_idx])
943		return (&(pmap->pm_pdir[pdir_idx][ptbl_idx]));
944
945	return (NULL);
946}
947
948/**************************************************************************/
949/* PMAP related */
950/**************************************************************************/
951
952/*
953 * This is called during e500_init, before the system is really initialized.
954 */
955static void
956mmu_booke_bootstrap(mmu_t mmu, vm_offset_t start, vm_offset_t kernelend)
957{
958	vm_offset_t phys_kernelend;
959	struct mem_region *mp, *mp1;
960	int cnt, i, j;
961	u_int s, e, sz;
962	u_int phys_avail_count;
963	vm_size_t physsz, hwphyssz, kstack0_sz;
964	vm_offset_t kernel_pdir, kstack0, va;
965	vm_paddr_t kstack0_phys;
966	void *dpcpu;
967	pte_t *pte;
968
969	debugf("mmu_booke_bootstrap: entered\n");
970
971	/* Initialize invalidation mutex */
972	mtx_init(&tlbivax_mutex, "tlbivax", NULL, MTX_SPIN);
973
974	/* Read TLB0 size and associativity. */
975	tlb0_get_tlbconf();
976
977	/* Align kernel start and end address (kernel image). */
978	kernstart = trunc_page(start);
979	data_start = round_page(kernelend);
980	kernsize = data_start - kernstart;
981
982	data_end = data_start;
983
984	/* Allocate space for the message buffer. */
985	msgbufp = (struct msgbuf *)data_end;
986	data_end += MSGBUF_SIZE;
987	debugf(" msgbufp at 0x%08x end = 0x%08x\n", (uint32_t)msgbufp,
988	    data_end);
989
990	data_end = round_page(data_end);
991
992	/* Allocate the dynamic per-cpu area. */
993	dpcpu = (void *)data_end;
994	data_end += DPCPU_SIZE;
995	dpcpu_init(dpcpu, 0);
996
997	/* Allocate space for ptbl_bufs. */
998	ptbl_bufs = (struct ptbl_buf *)data_end;
999	data_end += sizeof(struct ptbl_buf) * PTBL_BUFS;
1000	debugf(" ptbl_bufs at 0x%08x end = 0x%08x\n", (uint32_t)ptbl_bufs,
1001	    data_end);
1002
1003	data_end = round_page(data_end);
1004
1005	/* Allocate PTE tables for kernel KVA. */
1006	kernel_pdir = data_end;
1007	kernel_ptbls = (VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS +
1008	    PDIR_SIZE - 1) / PDIR_SIZE;
1009	data_end += kernel_ptbls * PTBL_PAGES * PAGE_SIZE;
1010	debugf(" kernel ptbls: %d\n", kernel_ptbls);
1011	debugf(" kernel pdir at 0x%08x end = 0x%08x\n", kernel_pdir, data_end);
1012
1013	debugf(" data_end: 0x%08x\n", data_end);
1014	if (data_end - kernstart > 0x1000000) {
1015		data_end = (data_end + 0x3fffff) & ~0x3fffff;
1016		tlb1_mapin_region(kernstart + 0x1000000,
1017		    kernload + 0x1000000, data_end - kernstart - 0x1000000);
1018	} else
1019		data_end = (data_end + 0xffffff) & ~0xffffff;
1020
1021	debugf(" updated data_end: 0x%08x\n", data_end);
1022
1023	kernsize += data_end - data_start;
1024
1025	/*
1026	 * Clear the structures - note we can only do it safely after the
1027	 * possible additional TLB1 translations are in place (above) so that
1028	 * all range up to the currently calculated 'data_end' is covered.
1029	 */
1030	memset((void *)ptbl_bufs, 0, sizeof(struct ptbl_buf) * PTBL_SIZE);
1031	memset((void *)kernel_pdir, 0, kernel_ptbls * PTBL_PAGES * PAGE_SIZE);
1032
1033	/*******************************************************/
1034	/* Set the start and end of kva. */
1035	/*******************************************************/
1036	virtual_avail = round_page(data_end);
1037	virtual_end = VM_MAX_KERNEL_ADDRESS;
1038
1039	/* Allocate KVA space for page zero/copy operations. */
1040	zero_page_va = virtual_avail;
1041	virtual_avail += PAGE_SIZE;
1042	zero_page_idle_va = virtual_avail;
1043	virtual_avail += PAGE_SIZE;
1044	copy_page_src_va = virtual_avail;
1045	virtual_avail += PAGE_SIZE;
1046	copy_page_dst_va = virtual_avail;
1047	virtual_avail += PAGE_SIZE;
1048	debugf("zero_page_va = 0x%08x\n", zero_page_va);
1049	debugf("zero_page_idle_va = 0x%08x\n", zero_page_idle_va);
1050	debugf("copy_page_src_va = 0x%08x\n", copy_page_src_va);
1051	debugf("copy_page_dst_va = 0x%08x\n", copy_page_dst_va);
1052
1053	/* Initialize page zero/copy mutexes. */
1054	mtx_init(&zero_page_mutex, "mmu_booke_zero_page", NULL, MTX_DEF);
1055	mtx_init(&copy_page_mutex, "mmu_booke_copy_page", NULL, MTX_DEF);
1056
1057	/* Allocate KVA space for ptbl bufs. */
1058	ptbl_buf_pool_vabase = virtual_avail;
1059	virtual_avail += PTBL_BUFS * PTBL_PAGES * PAGE_SIZE;
1060	debugf("ptbl_buf_pool_vabase = 0x%08x end = 0x%08x\n",
1061	    ptbl_buf_pool_vabase, virtual_avail);
1062
1063	/* Calculate corresponding physical addresses for the kernel region. */
1064	phys_kernelend = kernload + kernsize;
1065	debugf("kernel image and allocated data:\n");
1066	debugf(" kernload    = 0x%08x\n", kernload);
1067	debugf(" kernstart   = 0x%08x\n", kernstart);
1068	debugf(" kernsize    = 0x%08x\n", kernsize);
1069
1070	if (sizeof(phys_avail) / sizeof(phys_avail[0]) < availmem_regions_sz)
1071		panic("mmu_booke_bootstrap: phys_avail too small");
1072
1073	/*
1074	 * Remove kernel physical address range from avail regions list. Page
1075	 * align all regions.  Non-page aligned memory isn't very interesting
1076	 * to us.  Also, sort the entries for ascending addresses.
1077	 */
1078
1079	/* Retrieve phys/avail mem regions */
1080	mem_regions(&physmem_regions, &physmem_regions_sz,
1081	    &availmem_regions, &availmem_regions_sz);
1082	sz = 0;
1083	cnt = availmem_regions_sz;
1084	debugf("processing avail regions:\n");
1085	for (mp = availmem_regions; mp->mr_size; mp++) {
1086		s = mp->mr_start;
1087		e = mp->mr_start + mp->mr_size;
1088		debugf(" %08x-%08x -> ", s, e);
1089		/* Check whether this region holds all of the kernel. */
1090		if (s < kernload && e > phys_kernelend) {
1091			availmem_regions[cnt].mr_start = phys_kernelend;
1092			availmem_regions[cnt++].mr_size = e - phys_kernelend;
1093			e = kernload;
1094		}
1095		/* Look whether this regions starts within the kernel. */
1096		if (s >= kernload && s < phys_kernelend) {
1097			if (e <= phys_kernelend)
1098				goto empty;
1099			s = phys_kernelend;
1100		}
1101		/* Now look whether this region ends within the kernel. */
1102		if (e > kernload && e <= phys_kernelend) {
1103			if (s >= kernload)
1104				goto empty;
1105			e = kernload;
1106		}
1107		/* Now page align the start and size of the region. */
1108		s = round_page(s);
1109		e = trunc_page(e);
1110		if (e < s)
1111			e = s;
1112		sz = e - s;
1113		debugf("%08x-%08x = %x\n", s, e, sz);
1114
1115		/* Check whether some memory is left here. */
1116		if (sz == 0) {
1117		empty:
1118			memmove(mp, mp + 1,
1119			    (cnt - (mp - availmem_regions)) * sizeof(*mp));
1120			cnt--;
1121			mp--;
1122			continue;
1123		}
1124
1125		/* Do an insertion sort. */
1126		for (mp1 = availmem_regions; mp1 < mp; mp1++)
1127			if (s < mp1->mr_start)
1128				break;
1129		if (mp1 < mp) {
1130			memmove(mp1 + 1, mp1, (char *)mp - (char *)mp1);
1131			mp1->mr_start = s;
1132			mp1->mr_size = sz;
1133		} else {
1134			mp->mr_start = s;
1135			mp->mr_size = sz;
1136		}
1137	}
1138	availmem_regions_sz = cnt;
1139
1140	/*******************************************************/
1141	/* Steal physical memory for kernel stack from the end */
1142	/* of the first avail region                           */
1143	/*******************************************************/
1144	kstack0_sz = KSTACK_PAGES * PAGE_SIZE;
1145	kstack0_phys = availmem_regions[0].mr_start +
1146	    availmem_regions[0].mr_size;
1147	kstack0_phys -= kstack0_sz;
1148	availmem_regions[0].mr_size -= kstack0_sz;
1149
1150	/*******************************************************/
1151	/* Fill in phys_avail table, based on availmem_regions */
1152	/*******************************************************/
1153	phys_avail_count = 0;
1154	physsz = 0;
1155	hwphyssz = 0;
1156	TUNABLE_ULONG_FETCH("hw.physmem", (u_long *) &hwphyssz);
1157
1158	debugf("fill in phys_avail:\n");
1159	for (i = 0, j = 0; i < availmem_regions_sz; i++, j += 2) {
1160
1161		debugf(" region: 0x%08x - 0x%08x (0x%08x)\n",
1162		    availmem_regions[i].mr_start,
1163		    availmem_regions[i].mr_start +
1164		        availmem_regions[i].mr_size,
1165		    availmem_regions[i].mr_size);
1166
1167		if (hwphyssz != 0 &&
1168		    (physsz + availmem_regions[i].mr_size) >= hwphyssz) {
1169			debugf(" hw.physmem adjust\n");
1170			if (physsz < hwphyssz) {
1171				phys_avail[j] = availmem_regions[i].mr_start;
1172				phys_avail[j + 1] =
1173				    availmem_regions[i].mr_start +
1174				    hwphyssz - physsz;
1175				physsz = hwphyssz;
1176				phys_avail_count++;
1177			}
1178			break;
1179		}
1180
1181		phys_avail[j] = availmem_regions[i].mr_start;
1182		phys_avail[j + 1] = availmem_regions[i].mr_start +
1183		    availmem_regions[i].mr_size;
1184		phys_avail_count++;
1185		physsz += availmem_regions[i].mr_size;
1186	}
1187	physmem = btoc(physsz);
1188
1189	/* Calculate the last available physical address. */
1190	for (i = 0; phys_avail[i + 2] != 0; i += 2)
1191		;
1192	Maxmem = powerpc_btop(phys_avail[i + 1]);
1193
1194	debugf("Maxmem = 0x%08lx\n", Maxmem);
1195	debugf("phys_avail_count = %d\n", phys_avail_count);
1196	debugf("physsz = 0x%08x physmem = %ld (0x%08lx)\n", physsz, physmem,
1197	    physmem);
1198
1199	/*******************************************************/
1200	/* Initialize (statically allocated) kernel pmap. */
1201	/*******************************************************/
1202	PMAP_LOCK_INIT(kernel_pmap);
1203	kptbl_min = VM_MIN_KERNEL_ADDRESS / PDIR_SIZE;
1204
1205	debugf("kernel_pmap = 0x%08x\n", (uint32_t)kernel_pmap);
1206	debugf("kptbl_min = %d, kernel_ptbls = %d\n", kptbl_min, kernel_ptbls);
1207	debugf("kernel pdir range: 0x%08x - 0x%08x\n",
1208	    kptbl_min * PDIR_SIZE, (kptbl_min + kernel_ptbls) * PDIR_SIZE - 1);
1209
1210	/* Initialize kernel pdir */
1211	for (i = 0; i < kernel_ptbls; i++)
1212		kernel_pmap->pm_pdir[kptbl_min + i] =
1213		    (pte_t *)(kernel_pdir + (i * PAGE_SIZE * PTBL_PAGES));
1214
1215	for (i = 0; i < MAXCPU; i++) {
1216		kernel_pmap->pm_tid[i] = TID_KERNEL;
1217
1218		/* Initialize each CPU's tidbusy entry 0 with kernel_pmap */
1219		tidbusy[i][0] = kernel_pmap;
1220	}
1221
1222	/*
1223	 * Fill in PTEs covering kernel code and data. They are not required
1224	 * for address translation, as this area is covered by static TLB1
1225	 * entries, but for pte_vatopa() to work correctly with kernel area
1226	 * addresses.
1227	 */
1228	for (va = KERNBASE; va < data_end; va += PAGE_SIZE) {
1229		pte = &(kernel_pmap->pm_pdir[PDIR_IDX(va)][PTBL_IDX(va)]);
1230		pte->rpn = kernload + (va - KERNBASE);
1231		pte->flags = PTE_M | PTE_SR | PTE_SW | PTE_SX | PTE_WIRED |
1232		    PTE_VALID;
1233	}
1234	/* Mark kernel_pmap active on all CPUs */
1235	kernel_pmap->pm_active = ~0;
1236
1237	/*******************************************************/
1238	/* Final setup */
1239	/*******************************************************/
1240
1241	/* Enter kstack0 into kernel map, provide guard page */
1242	kstack0 = virtual_avail + KSTACK_GUARD_PAGES * PAGE_SIZE;
1243	thread0.td_kstack = kstack0;
1244	thread0.td_kstack_pages = KSTACK_PAGES;
1245
1246	debugf("kstack_sz = 0x%08x\n", kstack0_sz);
1247	debugf("kstack0_phys at 0x%08x - 0x%08x\n",
1248	    kstack0_phys, kstack0_phys + kstack0_sz);
1249	debugf("kstack0 at 0x%08x - 0x%08x\n", kstack0, kstack0 + kstack0_sz);
1250
1251	virtual_avail += KSTACK_GUARD_PAGES * PAGE_SIZE + kstack0_sz;
1252	for (i = 0; i < KSTACK_PAGES; i++) {
1253		mmu_booke_kenter(mmu, kstack0, kstack0_phys);
1254		kstack0 += PAGE_SIZE;
1255		kstack0_phys += PAGE_SIZE;
1256	}
1257
1258	debugf("virtual_avail = %08x\n", virtual_avail);
1259	debugf("virtual_end   = %08x\n", virtual_end);
1260
1261	debugf("mmu_booke_bootstrap: exit\n");
1262}
1263
1264void
1265pmap_bootstrap_ap(volatile uint32_t *trcp __unused)
1266{
1267	int i;
1268
1269	/*
1270	 * Finish TLB1 configuration: the BSP already set up its TLB1 and we
1271	 * have the snapshot of its contents in the s/w tlb1[] table, so use
1272	 * these values directly to (re)program AP's TLB1 hardware.
1273	 */
1274	for (i = 0; i < tlb1_idx; i ++) {
1275		/* Skip invalid entries */
1276		if (!(tlb1[i].mas1 & MAS1_VALID))
1277			continue;
1278
1279		tlb1_write_entry(i);
1280	}
1281
1282	set_mas4_defaults();
1283}
1284
1285/*
1286 * Get the physical page address for the given pmap/virtual address.
1287 */
1288static vm_paddr_t
1289mmu_booke_extract(mmu_t mmu, pmap_t pmap, vm_offset_t va)
1290{
1291	vm_paddr_t pa;
1292
1293	PMAP_LOCK(pmap);
1294	pa = pte_vatopa(mmu, pmap, va);
1295	PMAP_UNLOCK(pmap);
1296
1297	return (pa);
1298}
1299
1300/*
1301 * Extract the physical page address associated with the given
1302 * kernel virtual address.
1303 */
1304static vm_paddr_t
1305mmu_booke_kextract(mmu_t mmu, vm_offset_t va)
1306{
1307
1308	return (pte_vatopa(mmu, kernel_pmap, va));
1309}
1310
1311/*
1312 * Initialize the pmap module.
1313 * Called by vm_init, to initialize any structures that the pmap
1314 * system needs to map virtual memory.
1315 */
1316static void
1317mmu_booke_init(mmu_t mmu)
1318{
1319	int shpgperproc = PMAP_SHPGPERPROC;
1320
1321	/*
1322	 * Initialize the address space (zone) for the pv entries.  Set a
1323	 * high water mark so that the system can recover from excessive
1324	 * numbers of pv entries.
1325	 */
1326	pvzone = uma_zcreate("PV ENTRY", sizeof(struct pv_entry), NULL, NULL,
1327	    NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_VM | UMA_ZONE_NOFREE);
1328
1329	TUNABLE_INT_FETCH("vm.pmap.shpgperproc", &shpgperproc);
1330	pv_entry_max = shpgperproc * maxproc + cnt.v_page_count;
1331
1332	TUNABLE_INT_FETCH("vm.pmap.pv_entries", &pv_entry_max);
1333	pv_entry_high_water = 9 * (pv_entry_max / 10);
1334
1335	uma_zone_set_obj(pvzone, &pvzone_obj, pv_entry_max);
1336
1337	/* Pre-fill pvzone with initial number of pv entries. */
1338	uma_prealloc(pvzone, PV_ENTRY_ZONE_MIN);
1339
1340	/* Initialize ptbl allocation. */
1341	ptbl_init();
1342}
1343
1344/*
1345 * Map a list of wired pages into kernel virtual address space.  This is
1346 * intended for temporary mappings which do not need page modification or
1347 * references recorded.  Existing mappings in the region are overwritten.
1348 */
1349static void
1350mmu_booke_qenter(mmu_t mmu, vm_offset_t sva, vm_page_t *m, int count)
1351{
1352	vm_offset_t va;
1353
1354	va = sva;
1355	while (count-- > 0) {
1356		mmu_booke_kenter(mmu, va, VM_PAGE_TO_PHYS(*m));
1357		va += PAGE_SIZE;
1358		m++;
1359	}
1360}
1361
1362/*
1363 * Remove page mappings from kernel virtual address space.  Intended for
1364 * temporary mappings entered by mmu_booke_qenter.
1365 */
1366static void
1367mmu_booke_qremove(mmu_t mmu, vm_offset_t sva, int count)
1368{
1369	vm_offset_t va;
1370
1371	va = sva;
1372	while (count-- > 0) {
1373		mmu_booke_kremove(mmu, va);
1374		va += PAGE_SIZE;
1375	}
1376}
1377
1378/*
1379 * Map a wired page into kernel virtual address space.
1380 */
1381static void
1382mmu_booke_kenter(mmu_t mmu, vm_offset_t va, vm_offset_t pa)
1383{
1384	unsigned int pdir_idx = PDIR_IDX(va);
1385	unsigned int ptbl_idx = PTBL_IDX(va);
1386	uint32_t flags;
1387	pte_t *pte;
1388
1389	KASSERT(((va >= VM_MIN_KERNEL_ADDRESS) &&
1390	    (va <= VM_MAX_KERNEL_ADDRESS)), ("mmu_booke_kenter: invalid va"));
1391
1392	flags = 0;
1393	flags |= (PTE_SR | PTE_SW | PTE_SX | PTE_WIRED | PTE_VALID);
1394	flags |= PTE_M;
1395
1396	pte = &(kernel_pmap->pm_pdir[pdir_idx][ptbl_idx]);
1397
1398	mtx_lock_spin(&tlbivax_mutex);
1399	tlb_miss_lock();
1400
1401	if (PTE_ISVALID(pte)) {
1402
1403		CTR1(KTR_PMAP, "%s: replacing entry!", __func__);
1404
1405		/* Flush entry from TLB0 */
1406		tlb0_flush_entry(va);
1407	}
1408
1409	pte->rpn = pa & ~PTE_PA_MASK;
1410	pte->flags = flags;
1411
1412	//debugf("mmu_booke_kenter: pdir_idx = %d ptbl_idx = %d va=0x%08x "
1413	//		"pa=0x%08x rpn=0x%08x flags=0x%08x\n",
1414	//		pdir_idx, ptbl_idx, va, pa, pte->rpn, pte->flags);
1415
1416	/* Flush the real memory from the instruction cache. */
1417	if ((flags & (PTE_I | PTE_G)) == 0) {
1418		__syncicache((void *)va, PAGE_SIZE);
1419	}
1420
1421	tlb_miss_unlock();
1422	mtx_unlock_spin(&tlbivax_mutex);
1423}
1424
1425/*
1426 * Remove a page from kernel page table.
1427 */
1428static void
1429mmu_booke_kremove(mmu_t mmu, vm_offset_t va)
1430{
1431	unsigned int pdir_idx = PDIR_IDX(va);
1432	unsigned int ptbl_idx = PTBL_IDX(va);
1433	pte_t *pte;
1434
1435//	CTR2(KTR_PMAP,("%s: s (va = 0x%08x)\n", __func__, va));
1436
1437	KASSERT(((va >= VM_MIN_KERNEL_ADDRESS) &&
1438	    (va <= VM_MAX_KERNEL_ADDRESS)),
1439	    ("mmu_booke_kremove: invalid va"));
1440
1441	pte = &(kernel_pmap->pm_pdir[pdir_idx][ptbl_idx]);
1442
1443	if (!PTE_ISVALID(pte)) {
1444
1445		CTR1(KTR_PMAP, "%s: invalid pte", __func__);
1446
1447		return;
1448	}
1449
1450	mtx_lock_spin(&tlbivax_mutex);
1451	tlb_miss_lock();
1452
1453	/* Invalidate entry in TLB0, update PTE. */
1454	tlb0_flush_entry(va);
1455	pte->flags = 0;
1456	pte->rpn = 0;
1457
1458	tlb_miss_unlock();
1459	mtx_unlock_spin(&tlbivax_mutex);
1460}
1461
1462/*
1463 * Initialize pmap associated with process 0.
1464 */
1465static void
1466mmu_booke_pinit0(mmu_t mmu, pmap_t pmap)
1467{
1468
1469	mmu_booke_pinit(mmu, pmap);
1470	PCPU_SET(curpmap, pmap);
1471}
1472
1473/*
1474 * Initialize a preallocated and zeroed pmap structure,
1475 * such as one in a vmspace structure.
1476 */
1477static void
1478mmu_booke_pinit(mmu_t mmu, pmap_t pmap)
1479{
1480	int i;
1481
1482	CTR4(KTR_PMAP, "%s: pmap = %p, proc %d '%s'", __func__, pmap,
1483	    curthread->td_proc->p_pid, curthread->td_proc->p_comm);
1484
1485	KASSERT((pmap != kernel_pmap), ("pmap_pinit: initializing kernel_pmap"));
1486
1487	PMAP_LOCK_INIT(pmap);
1488	for (i = 0; i < MAXCPU; i++)
1489		pmap->pm_tid[i] = TID_NONE;
1490	pmap->pm_active = 0;
1491	bzero(&pmap->pm_stats, sizeof(pmap->pm_stats));
1492	bzero(&pmap->pm_pdir, sizeof(pte_t *) * PDIR_NENTRIES);
1493	TAILQ_INIT(&pmap->pm_ptbl_list);
1494}
1495
1496/*
1497 * Release any resources held by the given physical map.
1498 * Called when a pmap initialized by mmu_booke_pinit is being released.
1499 * Should only be called if the map contains no valid mappings.
1500 */
1501static void
1502mmu_booke_release(mmu_t mmu, pmap_t pmap)
1503{
1504
1505	printf("mmu_booke_release: s\n");
1506
1507	KASSERT(pmap->pm_stats.resident_count == 0,
1508	    ("pmap_release: pmap resident count %ld != 0",
1509	    pmap->pm_stats.resident_count));
1510
1511	PMAP_LOCK_DESTROY(pmap);
1512}
1513
1514/*
1515 * Insert the given physical page at the specified virtual address in the
1516 * target physical map with the protection requested. If specified the page
1517 * will be wired down.
1518 */
1519static void
1520mmu_booke_enter(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_page_t m,
1521    vm_prot_t prot, boolean_t wired)
1522{
1523
1524	vm_page_lock_queues();
1525	PMAP_LOCK(pmap);
1526	mmu_booke_enter_locked(mmu, pmap, va, m, prot, wired);
1527	vm_page_unlock_queues();
1528	PMAP_UNLOCK(pmap);
1529}
1530
1531static void
1532mmu_booke_enter_locked(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_page_t m,
1533    vm_prot_t prot, boolean_t wired)
1534{
1535	pte_t *pte;
1536	vm_paddr_t pa;
1537	uint32_t flags;
1538	int su, sync;
1539
1540	pa = VM_PAGE_TO_PHYS(m);
1541	su = (pmap == kernel_pmap);
1542	sync = 0;
1543
1544	//debugf("mmu_booke_enter_locked: s (pmap=0x%08x su=%d tid=%d m=0x%08x va=0x%08x "
1545	//		"pa=0x%08x prot=0x%08x wired=%d)\n",
1546	//		(u_int32_t)pmap, su, pmap->pm_tid,
1547	//		(u_int32_t)m, va, pa, prot, wired);
1548
1549	if (su) {
1550		KASSERT(((va >= virtual_avail) &&
1551		    (va <= VM_MAX_KERNEL_ADDRESS)),
1552		    ("mmu_booke_enter_locked: kernel pmap, non kernel va"));
1553	} else {
1554		KASSERT((va <= VM_MAXUSER_ADDRESS),
1555		    ("mmu_booke_enter_locked: user pmap, non user va"));
1556	}
1557
1558	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1559
1560	/*
1561	 * If there is an existing mapping, and the physical address has not
1562	 * changed, must be protection or wiring change.
1563	 */
1564	if (((pte = pte_find(mmu, pmap, va)) != NULL) &&
1565	    (PTE_ISVALID(pte)) && (PTE_PA(pte) == pa)) {
1566
1567		/*
1568		 * Before actually updating pte->flags we calculate and
1569		 * prepare its new value in a helper var.
1570		 */
1571		flags = pte->flags;
1572		flags &= ~(PTE_UW | PTE_UX | PTE_SW | PTE_SX | PTE_MODIFIED);
1573
1574		/* Wiring change, just update stats. */
1575		if (wired) {
1576			if (!PTE_ISWIRED(pte)) {
1577				flags |= PTE_WIRED;
1578				pmap->pm_stats.wired_count++;
1579			}
1580		} else {
1581			if (PTE_ISWIRED(pte)) {
1582				flags &= ~PTE_WIRED;
1583				pmap->pm_stats.wired_count--;
1584			}
1585		}
1586
1587		if (prot & VM_PROT_WRITE) {
1588			/* Add write permissions. */
1589			flags |= PTE_SW;
1590			if (!su)
1591				flags |= PTE_UW;
1592
1593			vm_page_flag_set(m, PG_WRITEABLE);
1594		} else {
1595			/* Handle modified pages, sense modify status. */
1596
1597			/*
1598			 * The PTE_MODIFIED flag could be set by underlying
1599			 * TLB misses since we last read it (above), possibly
1600			 * other CPUs could update it so we check in the PTE
1601			 * directly rather than rely on that saved local flags
1602			 * copy.
1603			 */
1604			if (PTE_ISMODIFIED(pte))
1605				vm_page_dirty(m);
1606		}
1607
1608		if (prot & VM_PROT_EXECUTE) {
1609			flags |= PTE_SX;
1610			if (!su)
1611				flags |= PTE_UX;
1612
1613			/*
1614			 * Check existing flags for execute permissions: if we
1615			 * are turning execute permissions on, icache should
1616			 * be flushed.
1617			 */
1618			if ((flags & (PTE_UX | PTE_SX)) == 0)
1619				sync++;
1620		}
1621
1622		flags &= ~PTE_REFERENCED;
1623
1624		/*
1625		 * The new flags value is all calculated -- only now actually
1626		 * update the PTE.
1627		 */
1628		mtx_lock_spin(&tlbivax_mutex);
1629		tlb_miss_lock();
1630
1631		tlb0_flush_entry(va);
1632		pte->flags = flags;
1633
1634		tlb_miss_unlock();
1635		mtx_unlock_spin(&tlbivax_mutex);
1636
1637	} else {
1638		/*
1639		 * If there is an existing mapping, but it's for a different
1640		 * physical address, pte_enter() will delete the old mapping.
1641		 */
1642		//if ((pte != NULL) && PTE_ISVALID(pte))
1643		//	debugf("mmu_booke_enter_locked: replace\n");
1644		//else
1645		//	debugf("mmu_booke_enter_locked: new\n");
1646
1647		/* Now set up the flags and install the new mapping. */
1648		flags = (PTE_SR | PTE_VALID);
1649		flags |= PTE_M;
1650
1651		if (!su)
1652			flags |= PTE_UR;
1653
1654		if (prot & VM_PROT_WRITE) {
1655			flags |= PTE_SW;
1656			if (!su)
1657				flags |= PTE_UW;
1658
1659			vm_page_flag_set(m, PG_WRITEABLE);
1660		}
1661
1662		if (prot & VM_PROT_EXECUTE) {
1663			flags |= PTE_SX;
1664			if (!su)
1665				flags |= PTE_UX;
1666		}
1667
1668		/* If its wired update stats. */
1669		if (wired) {
1670			pmap->pm_stats.wired_count++;
1671			flags |= PTE_WIRED;
1672		}
1673
1674		pte_enter(mmu, pmap, m, va, flags);
1675
1676		/* Flush the real memory from the instruction cache. */
1677		if (prot & VM_PROT_EXECUTE)
1678			sync++;
1679	}
1680
1681	if (sync && (su || pmap == PCPU_GET(curpmap))) {
1682		__syncicache((void *)va, PAGE_SIZE);
1683		sync = 0;
1684	}
1685
1686	if (sync) {
1687		/* Create a temporary mapping. */
1688		pmap = PCPU_GET(curpmap);
1689
1690		va = 0;
1691		pte = pte_find(mmu, pmap, va);
1692		KASSERT(pte == NULL, ("%s:%d", __func__, __LINE__));
1693
1694		flags = PTE_SR | PTE_VALID | PTE_UR | PTE_M;
1695
1696		pte_enter(mmu, pmap, m, va, flags);
1697		__syncicache((void *)va, PAGE_SIZE);
1698		pte_remove(mmu, pmap, va, PTBL_UNHOLD);
1699	}
1700}
1701
1702/*
1703 * Maps a sequence of resident pages belonging to the same object.
1704 * The sequence begins with the given page m_start.  This page is
1705 * mapped at the given virtual address start.  Each subsequent page is
1706 * mapped at a virtual address that is offset from start by the same
1707 * amount as the page is offset from m_start within the object.  The
1708 * last page in the sequence is the page with the largest offset from
1709 * m_start that can be mapped at a virtual address less than the given
1710 * virtual address end.  Not every virtual page between start and end
1711 * is mapped; only those for which a resident page exists with the
1712 * corresponding offset from m_start are mapped.
1713 */
1714static void
1715mmu_booke_enter_object(mmu_t mmu, pmap_t pmap, vm_offset_t start,
1716    vm_offset_t end, vm_page_t m_start, vm_prot_t prot)
1717{
1718	vm_page_t m;
1719	vm_pindex_t diff, psize;
1720
1721	psize = atop(end - start);
1722	m = m_start;
1723	PMAP_LOCK(pmap);
1724	while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) {
1725		mmu_booke_enter_locked(mmu, pmap, start + ptoa(diff), m,
1726		    prot & (VM_PROT_READ | VM_PROT_EXECUTE), FALSE);
1727		m = TAILQ_NEXT(m, listq);
1728	}
1729	PMAP_UNLOCK(pmap);
1730}
1731
1732static void
1733mmu_booke_enter_quick(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_page_t m,
1734    vm_prot_t prot)
1735{
1736
1737	PMAP_LOCK(pmap);
1738	mmu_booke_enter_locked(mmu, pmap, va, m,
1739	    prot & (VM_PROT_READ | VM_PROT_EXECUTE), FALSE);
1740	PMAP_UNLOCK(pmap);
1741}
1742
1743/*
1744 * Remove the given range of addresses from the specified map.
1745 *
1746 * It is assumed that the start and end are properly rounded to the page size.
1747 */
1748static void
1749mmu_booke_remove(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_offset_t endva)
1750{
1751	pte_t *pte;
1752	uint8_t hold_flag;
1753
1754	int su = (pmap == kernel_pmap);
1755
1756	//debugf("mmu_booke_remove: s (su = %d pmap=0x%08x tid=%d va=0x%08x endva=0x%08x)\n",
1757	//		su, (u_int32_t)pmap, pmap->pm_tid, va, endva);
1758
1759	if (su) {
1760		KASSERT(((va >= virtual_avail) &&
1761		    (va <= VM_MAX_KERNEL_ADDRESS)),
1762		    ("mmu_booke_remove: kernel pmap, non kernel va"));
1763	} else {
1764		KASSERT((va <= VM_MAXUSER_ADDRESS),
1765		    ("mmu_booke_remove: user pmap, non user va"));
1766	}
1767
1768	if (PMAP_REMOVE_DONE(pmap)) {
1769		//debugf("mmu_booke_remove: e (empty)\n");
1770		return;
1771	}
1772
1773	hold_flag = PTBL_HOLD_FLAG(pmap);
1774	//debugf("mmu_booke_remove: hold_flag = %d\n", hold_flag);
1775
1776	vm_page_lock_queues();
1777	PMAP_LOCK(pmap);
1778	for (; va < endva; va += PAGE_SIZE) {
1779		pte = pte_find(mmu, pmap, va);
1780		if ((pte != NULL) && PTE_ISVALID(pte))
1781			pte_remove(mmu, pmap, va, hold_flag);
1782	}
1783	PMAP_UNLOCK(pmap);
1784	vm_page_unlock_queues();
1785
1786	//debugf("mmu_booke_remove: e\n");
1787}
1788
1789/*
1790 * Remove physical page from all pmaps in which it resides.
1791 */
1792static void
1793mmu_booke_remove_all(mmu_t mmu, vm_page_t m)
1794{
1795	pv_entry_t pv, pvn;
1796	uint8_t hold_flag;
1797
1798	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1799
1800	for (pv = TAILQ_FIRST(&m->md.pv_list); pv != NULL; pv = pvn) {
1801		pvn = TAILQ_NEXT(pv, pv_link);
1802
1803		PMAP_LOCK(pv->pv_pmap);
1804		hold_flag = PTBL_HOLD_FLAG(pv->pv_pmap);
1805		pte_remove(mmu, pv->pv_pmap, pv->pv_va, hold_flag);
1806		PMAP_UNLOCK(pv->pv_pmap);
1807	}
1808	vm_page_flag_clear(m, PG_WRITEABLE);
1809}
1810
1811/*
1812 * Map a range of physical addresses into kernel virtual address space.
1813 */
1814static vm_offset_t
1815mmu_booke_map(mmu_t mmu, vm_offset_t *virt, vm_offset_t pa_start,
1816    vm_offset_t pa_end, int prot)
1817{
1818	vm_offset_t sva = *virt;
1819	vm_offset_t va = sva;
1820
1821	//debugf("mmu_booke_map: s (sva = 0x%08x pa_start = 0x%08x pa_end = 0x%08x)\n",
1822	//		sva, pa_start, pa_end);
1823
1824	while (pa_start < pa_end) {
1825		mmu_booke_kenter(mmu, va, pa_start);
1826		va += PAGE_SIZE;
1827		pa_start += PAGE_SIZE;
1828	}
1829	*virt = va;
1830
1831	//debugf("mmu_booke_map: e (va = 0x%08x)\n", va);
1832	return (sva);
1833}
1834
1835/*
1836 * The pmap must be activated before it's address space can be accessed in any
1837 * way.
1838 */
1839static void
1840mmu_booke_activate(mmu_t mmu, struct thread *td)
1841{
1842	pmap_t pmap;
1843
1844	pmap = &td->td_proc->p_vmspace->vm_pmap;
1845
1846	CTR5(KTR_PMAP, "%s: s (td = %p, proc = '%s', id = %d, pmap = 0x%08x)",
1847	    __func__, td, td->td_proc->p_comm, td->td_proc->p_pid, pmap);
1848
1849	KASSERT((pmap != kernel_pmap), ("mmu_booke_activate: kernel_pmap!"));
1850
1851	mtx_lock_spin(&sched_lock);
1852
1853	atomic_set_int(&pmap->pm_active, PCPU_GET(cpumask));
1854	PCPU_SET(curpmap, pmap);
1855
1856	if (pmap->pm_tid[PCPU_GET(cpuid)] == TID_NONE)
1857		tid_alloc(pmap);
1858
1859	/* Load PID0 register with pmap tid value. */
1860	mtspr(SPR_PID0, pmap->pm_tid[PCPU_GET(cpuid)]);
1861	__asm __volatile("isync");
1862
1863	mtx_unlock_spin(&sched_lock);
1864
1865	CTR3(KTR_PMAP, "%s: e (tid = %d for '%s')", __func__,
1866	    pmap->pm_tid[PCPU_GET(cpuid)], td->td_proc->p_comm);
1867}
1868
1869/*
1870 * Deactivate the specified process's address space.
1871 */
1872static void
1873mmu_booke_deactivate(mmu_t mmu, struct thread *td)
1874{
1875	pmap_t pmap;
1876
1877	pmap = &td->td_proc->p_vmspace->vm_pmap;
1878
1879	CTR5(KTR_PMAP, "%s: td=%p, proc = '%s', id = %d, pmap = 0x%08x",
1880	    __func__, td, td->td_proc->p_comm, td->td_proc->p_pid, pmap);
1881
1882	atomic_clear_int(&pmap->pm_active, PCPU_GET(cpumask));
1883	PCPU_SET(curpmap, NULL);
1884}
1885
1886/*
1887 * Copy the range specified by src_addr/len
1888 * from the source map to the range dst_addr/len
1889 * in the destination map.
1890 *
1891 * This routine is only advisory and need not do anything.
1892 */
1893static void
1894mmu_booke_copy(mmu_t mmu, pmap_t dst_pmap, pmap_t src_pmap,
1895    vm_offset_t dst_addr, vm_size_t len, vm_offset_t src_addr)
1896{
1897
1898}
1899
1900/*
1901 * Set the physical protection on the specified range of this map as requested.
1902 */
1903static void
1904mmu_booke_protect(mmu_t mmu, pmap_t pmap, vm_offset_t sva, vm_offset_t eva,
1905    vm_prot_t prot)
1906{
1907	vm_offset_t va;
1908	vm_page_t m;
1909	pte_t *pte;
1910
1911	if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
1912		mmu_booke_remove(mmu, pmap, sva, eva);
1913		return;
1914	}
1915
1916	if (prot & VM_PROT_WRITE)
1917		return;
1918
1919	vm_page_lock_queues();
1920	PMAP_LOCK(pmap);
1921	for (va = sva; va < eva; va += PAGE_SIZE) {
1922		if ((pte = pte_find(mmu, pmap, va)) != NULL) {
1923			if (PTE_ISVALID(pte)) {
1924				m = PHYS_TO_VM_PAGE(PTE_PA(pte));
1925
1926				mtx_lock_spin(&tlbivax_mutex);
1927				tlb_miss_lock();
1928
1929				/* Handle modified pages. */
1930				if (PTE_ISMODIFIED(pte))
1931					vm_page_dirty(m);
1932
1933				/* Referenced pages. */
1934				if (PTE_ISREFERENCED(pte))
1935					vm_page_flag_set(m, PG_REFERENCED);
1936
1937				tlb0_flush_entry(va);
1938				pte->flags &= ~(PTE_UW | PTE_SW | PTE_MODIFIED |
1939				    PTE_REFERENCED);
1940
1941				tlb_miss_unlock();
1942				mtx_unlock_spin(&tlbivax_mutex);
1943			}
1944		}
1945	}
1946	PMAP_UNLOCK(pmap);
1947	vm_page_unlock_queues();
1948}
1949
1950/*
1951 * Clear the write and modified bits in each of the given page's mappings.
1952 */
1953static void
1954mmu_booke_remove_write(mmu_t mmu, vm_page_t m)
1955{
1956	pv_entry_t pv;
1957	pte_t *pte;
1958
1959	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1960	if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) != 0 ||
1961	    (m->flags & PG_WRITEABLE) == 0)
1962		return;
1963
1964	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
1965		PMAP_LOCK(pv->pv_pmap);
1966		if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL) {
1967			if (PTE_ISVALID(pte)) {
1968				m = PHYS_TO_VM_PAGE(PTE_PA(pte));
1969
1970				mtx_lock_spin(&tlbivax_mutex);
1971				tlb_miss_lock();
1972
1973				/* Handle modified pages. */
1974				if (PTE_ISMODIFIED(pte))
1975					vm_page_dirty(m);
1976
1977				/* Referenced pages. */
1978				if (PTE_ISREFERENCED(pte))
1979					vm_page_flag_set(m, PG_REFERENCED);
1980
1981				/* Flush mapping from TLB0. */
1982				pte->flags &= ~(PTE_UW | PTE_SW | PTE_MODIFIED |
1983				    PTE_REFERENCED);
1984
1985				tlb_miss_unlock();
1986				mtx_unlock_spin(&tlbivax_mutex);
1987			}
1988		}
1989		PMAP_UNLOCK(pv->pv_pmap);
1990	}
1991	vm_page_flag_clear(m, PG_WRITEABLE);
1992}
1993
1994static boolean_t
1995mmu_booke_page_executable(mmu_t mmu, vm_page_t m)
1996{
1997	pv_entry_t pv;
1998	pte_t *pte;
1999	boolean_t executable;
2000
2001	executable = FALSE;
2002	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
2003		PMAP_LOCK(pv->pv_pmap);
2004		pte = pte_find(mmu, pv->pv_pmap, pv->pv_va);
2005		if (pte != NULL && PTE_ISVALID(pte) && (pte->flags & PTE_UX))
2006			executable = TRUE;
2007		PMAP_UNLOCK(pv->pv_pmap);
2008		if (executable)
2009			break;
2010	}
2011
2012	return (executable);
2013}
2014
2015/*
2016 * Atomically extract and hold the physical page with the given
2017 * pmap and virtual address pair if that mapping permits the given
2018 * protection.
2019 */
2020static vm_page_t
2021mmu_booke_extract_and_hold(mmu_t mmu, pmap_t pmap, vm_offset_t va,
2022    vm_prot_t prot)
2023{
2024	pte_t *pte;
2025	vm_page_t m;
2026	uint32_t pte_wbit;
2027
2028	m = NULL;
2029	vm_page_lock_queues();
2030	PMAP_LOCK(pmap);
2031
2032	pte = pte_find(mmu, pmap, va);
2033	if ((pte != NULL) && PTE_ISVALID(pte)) {
2034		if (pmap == kernel_pmap)
2035			pte_wbit = PTE_SW;
2036		else
2037			pte_wbit = PTE_UW;
2038
2039		if ((pte->flags & pte_wbit) || ((prot & VM_PROT_WRITE) == 0)) {
2040			m = PHYS_TO_VM_PAGE(PTE_PA(pte));
2041			vm_page_hold(m);
2042		}
2043	}
2044
2045	vm_page_unlock_queues();
2046	PMAP_UNLOCK(pmap);
2047	return (m);
2048}
2049
2050/*
2051 * Initialize a vm_page's machine-dependent fields.
2052 */
2053static void
2054mmu_booke_page_init(mmu_t mmu, vm_page_t m)
2055{
2056
2057	TAILQ_INIT(&m->md.pv_list);
2058}
2059
2060/*
2061 * mmu_booke_zero_page_area zeros the specified hardware page by
2062 * mapping it into virtual memory and using bzero to clear
2063 * its contents.
2064 *
2065 * off and size must reside within a single page.
2066 */
2067static void
2068mmu_booke_zero_page_area(mmu_t mmu, vm_page_t m, int off, int size)
2069{
2070	vm_offset_t va;
2071
2072	/* XXX KASSERT off and size are within a single page? */
2073
2074	mtx_lock(&zero_page_mutex);
2075	va = zero_page_va;
2076
2077	mmu_booke_kenter(mmu, va, VM_PAGE_TO_PHYS(m));
2078	bzero((caddr_t)va + off, size);
2079	mmu_booke_kremove(mmu, va);
2080
2081	mtx_unlock(&zero_page_mutex);
2082}
2083
2084/*
2085 * mmu_booke_zero_page zeros the specified hardware page.
2086 */
2087static void
2088mmu_booke_zero_page(mmu_t mmu, vm_page_t m)
2089{
2090
2091	mmu_booke_zero_page_area(mmu, m, 0, PAGE_SIZE);
2092}
2093
2094/*
2095 * mmu_booke_copy_page copies the specified (machine independent) page by
2096 * mapping the page into virtual memory and using memcopy to copy the page,
2097 * one machine dependent page at a time.
2098 */
2099static void
2100mmu_booke_copy_page(mmu_t mmu, vm_page_t sm, vm_page_t dm)
2101{
2102	vm_offset_t sva, dva;
2103
2104	sva = copy_page_src_va;
2105	dva = copy_page_dst_va;
2106
2107	mtx_lock(&copy_page_mutex);
2108	mmu_booke_kenter(mmu, sva, VM_PAGE_TO_PHYS(sm));
2109	mmu_booke_kenter(mmu, dva, VM_PAGE_TO_PHYS(dm));
2110	memcpy((caddr_t)dva, (caddr_t)sva, PAGE_SIZE);
2111	mmu_booke_kremove(mmu, dva);
2112	mmu_booke_kremove(mmu, sva);
2113	mtx_unlock(&copy_page_mutex);
2114}
2115
2116/*
2117 * mmu_booke_zero_page_idle zeros the specified hardware page by mapping it
2118 * into virtual memory and using bzero to clear its contents. This is intended
2119 * to be called from the vm_pagezero process only and outside of Giant. No
2120 * lock is required.
2121 */
2122static void
2123mmu_booke_zero_page_idle(mmu_t mmu, vm_page_t m)
2124{
2125	vm_offset_t va;
2126
2127	va = zero_page_idle_va;
2128	mmu_booke_kenter(mmu, va, VM_PAGE_TO_PHYS(m));
2129	bzero((caddr_t)va, PAGE_SIZE);
2130	mmu_booke_kremove(mmu, va);
2131}
2132
2133/*
2134 * Return whether or not the specified physical page was modified
2135 * in any of physical maps.
2136 */
2137static boolean_t
2138mmu_booke_is_modified(mmu_t mmu, vm_page_t m)
2139{
2140	pte_t *pte;
2141	pv_entry_t pv;
2142
2143	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2144	if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) != 0)
2145		return (FALSE);
2146
2147	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
2148		PMAP_LOCK(pv->pv_pmap);
2149		if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL) {
2150			if (!PTE_ISVALID(pte))
2151				goto make_sure_to_unlock;
2152
2153			if (PTE_ISMODIFIED(pte)) {
2154				PMAP_UNLOCK(pv->pv_pmap);
2155				return (TRUE);
2156			}
2157		}
2158make_sure_to_unlock:
2159		PMAP_UNLOCK(pv->pv_pmap);
2160	}
2161	return (FALSE);
2162}
2163
2164/*
2165 * Return whether or not the specified virtual address is eligible
2166 * for prefault.
2167 */
2168static boolean_t
2169mmu_booke_is_prefaultable(mmu_t mmu, pmap_t pmap, vm_offset_t addr)
2170{
2171
2172	return (FALSE);
2173}
2174
2175/*
2176 * Clear the modify bits on the specified physical page.
2177 */
2178static void
2179mmu_booke_clear_modify(mmu_t mmu, vm_page_t m)
2180{
2181	pte_t *pte;
2182	pv_entry_t pv;
2183
2184	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2185	if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) != 0)
2186		return;
2187
2188	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
2189		PMAP_LOCK(pv->pv_pmap);
2190		if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL) {
2191			if (!PTE_ISVALID(pte))
2192				goto make_sure_to_unlock;
2193
2194			mtx_lock_spin(&tlbivax_mutex);
2195			tlb_miss_lock();
2196
2197			if (pte->flags & (PTE_SW | PTE_UW | PTE_MODIFIED)) {
2198				tlb0_flush_entry(pv->pv_va);
2199				pte->flags &= ~(PTE_SW | PTE_UW | PTE_MODIFIED |
2200				    PTE_REFERENCED);
2201			}
2202
2203			tlb_miss_unlock();
2204			mtx_unlock_spin(&tlbivax_mutex);
2205		}
2206make_sure_to_unlock:
2207		PMAP_UNLOCK(pv->pv_pmap);
2208	}
2209}
2210
2211/*
2212 * Return a count of reference bits for a page, clearing those bits.
2213 * It is not necessary for every reference bit to be cleared, but it
2214 * is necessary that 0 only be returned when there are truly no
2215 * reference bits set.
2216 *
2217 * XXX: The exact number of bits to check and clear is a matter that
2218 * should be tested and standardized at some point in the future for
2219 * optimal aging of shared pages.
2220 */
2221static int
2222mmu_booke_ts_referenced(mmu_t mmu, vm_page_t m)
2223{
2224	pte_t *pte;
2225	pv_entry_t pv;
2226	int count;
2227
2228	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2229	if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) != 0)
2230		return (0);
2231
2232	count = 0;
2233	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
2234		PMAP_LOCK(pv->pv_pmap);
2235		if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL) {
2236			if (!PTE_ISVALID(pte))
2237				goto make_sure_to_unlock;
2238
2239			if (PTE_ISREFERENCED(pte)) {
2240				mtx_lock_spin(&tlbivax_mutex);
2241				tlb_miss_lock();
2242
2243				tlb0_flush_entry(pv->pv_va);
2244				pte->flags &= ~PTE_REFERENCED;
2245
2246				tlb_miss_unlock();
2247				mtx_unlock_spin(&tlbivax_mutex);
2248
2249				if (++count > 4) {
2250					PMAP_UNLOCK(pv->pv_pmap);
2251					break;
2252				}
2253			}
2254		}
2255make_sure_to_unlock:
2256		PMAP_UNLOCK(pv->pv_pmap);
2257	}
2258	return (count);
2259}
2260
2261/*
2262 * Clear the reference bit on the specified physical page.
2263 */
2264static void
2265mmu_booke_clear_reference(mmu_t mmu, vm_page_t m)
2266{
2267	pte_t *pte;
2268	pv_entry_t pv;
2269
2270	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2271	if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) != 0)
2272		return;
2273
2274	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
2275		PMAP_LOCK(pv->pv_pmap);
2276		if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL) {
2277			if (!PTE_ISVALID(pte))
2278				goto make_sure_to_unlock;
2279
2280			if (PTE_ISREFERENCED(pte)) {
2281				mtx_lock_spin(&tlbivax_mutex);
2282				tlb_miss_lock();
2283
2284				tlb0_flush_entry(pv->pv_va);
2285				pte->flags &= ~PTE_REFERENCED;
2286
2287				tlb_miss_unlock();
2288				mtx_unlock_spin(&tlbivax_mutex);
2289			}
2290		}
2291make_sure_to_unlock:
2292		PMAP_UNLOCK(pv->pv_pmap);
2293	}
2294}
2295
2296/*
2297 * Change wiring attribute for a map/virtual-address pair.
2298 */
2299static void
2300mmu_booke_change_wiring(mmu_t mmu, pmap_t pmap, vm_offset_t va, boolean_t wired)
2301{
2302	pte_t *pte;;
2303
2304	PMAP_LOCK(pmap);
2305	if ((pte = pte_find(mmu, pmap, va)) != NULL) {
2306		if (wired) {
2307			if (!PTE_ISWIRED(pte)) {
2308				pte->flags |= PTE_WIRED;
2309				pmap->pm_stats.wired_count++;
2310			}
2311		} else {
2312			if (PTE_ISWIRED(pte)) {
2313				pte->flags &= ~PTE_WIRED;
2314				pmap->pm_stats.wired_count--;
2315			}
2316		}
2317	}
2318	PMAP_UNLOCK(pmap);
2319}
2320
2321/*
2322 * Return true if the pmap's pv is one of the first 16 pvs linked to from this
2323 * page.  This count may be changed upwards or downwards in the future; it is
2324 * only necessary that true be returned for a small subset of pmaps for proper
2325 * page aging.
2326 */
2327static boolean_t
2328mmu_booke_page_exists_quick(mmu_t mmu, pmap_t pmap, vm_page_t m)
2329{
2330	pv_entry_t pv;
2331	int loops;
2332
2333	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2334	if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) != 0)
2335		return (FALSE);
2336
2337	loops = 0;
2338	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
2339		if (pv->pv_pmap == pmap)
2340			return (TRUE);
2341
2342		if (++loops >= 16)
2343			break;
2344	}
2345	return (FALSE);
2346}
2347
2348/*
2349 * Return the number of managed mappings to the given physical page that are
2350 * wired.
2351 */
2352static int
2353mmu_booke_page_wired_mappings(mmu_t mmu, vm_page_t m)
2354{
2355	pv_entry_t pv;
2356	pte_t *pte;
2357	int count = 0;
2358
2359	if ((m->flags & PG_FICTITIOUS) != 0)
2360		return (count);
2361	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2362
2363	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
2364		PMAP_LOCK(pv->pv_pmap);
2365		if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL)
2366			if (PTE_ISVALID(pte) && PTE_ISWIRED(pte))
2367				count++;
2368		PMAP_UNLOCK(pv->pv_pmap);
2369	}
2370
2371	return (count);
2372}
2373
2374static int
2375mmu_booke_dev_direct_mapped(mmu_t mmu, vm_offset_t pa, vm_size_t size)
2376{
2377	int i;
2378	vm_offset_t va;
2379
2380	/*
2381	 * This currently does not work for entries that
2382	 * overlap TLB1 entries.
2383	 */
2384	for (i = 0; i < tlb1_idx; i ++) {
2385		if (tlb1_iomapped(i, pa, size, &va) == 0)
2386			return (0);
2387	}
2388
2389	return (EFAULT);
2390}
2391
2392vm_offset_t
2393mmu_booke_dumpsys_map(mmu_t mmu, struct pmap_md *md, vm_size_t ofs,
2394    vm_size_t *sz)
2395{
2396	vm_paddr_t pa, ppa;
2397	vm_offset_t va;
2398	vm_size_t gran;
2399
2400	/* Raw physical memory dumps don't have a virtual address. */
2401	if (md->md_vaddr == ~0UL) {
2402		/* We always map a 256MB page at 256M. */
2403		gran = 256 * 1024 * 1024;
2404		pa = md->md_paddr + ofs;
2405		ppa = pa & ~(gran - 1);
2406		ofs = pa - ppa;
2407		va = gran;
2408		tlb1_set_entry(va, ppa, gran, _TLB_ENTRY_IO);
2409		if (*sz > (gran - ofs))
2410			*sz = gran - ofs;
2411		return (va + ofs);
2412	}
2413
2414	/* Minidumps are based on virtual memory addresses. */
2415	va = md->md_vaddr + ofs;
2416	if (va >= kernstart + kernsize) {
2417		gran = PAGE_SIZE - (va & PAGE_MASK);
2418		if (*sz > gran)
2419			*sz = gran;
2420	}
2421	return (va);
2422}
2423
2424void
2425mmu_booke_dumpsys_unmap(mmu_t mmu, struct pmap_md *md, vm_size_t ofs,
2426    vm_offset_t va)
2427{
2428
2429	/* Raw physical memory dumps don't have a virtual address. */
2430	if (md->md_vaddr == ~0UL) {
2431		tlb1_idx--;
2432		tlb1[tlb1_idx].mas1 = 0;
2433		tlb1[tlb1_idx].mas2 = 0;
2434		tlb1[tlb1_idx].mas3 = 0;
2435		tlb1_write_entry(tlb1_idx);
2436		return;
2437	}
2438
2439	/* Minidumps are based on virtual memory addresses. */
2440	/* Nothing to do... */
2441}
2442
2443struct pmap_md *
2444mmu_booke_scan_md(mmu_t mmu, struct pmap_md *prev)
2445{
2446	static struct pmap_md md;
2447	struct bi_mem_region *mr;
2448	pte_t *pte;
2449	vm_offset_t va;
2450
2451	if (dumpsys_minidump) {
2452		md.md_paddr = ~0UL;	/* Minidumps use virtual addresses. */
2453		if (prev == NULL) {
2454			/* 1st: kernel .data and .bss. */
2455			md.md_index = 1;
2456			md.md_vaddr = trunc_page((uintptr_t)_etext);
2457			md.md_size = round_page((uintptr_t)_end) - md.md_vaddr;
2458			return (&md);
2459		}
2460		switch (prev->md_index) {
2461		case 1:
2462			/* 2nd: msgbuf and tables (see pmap_bootstrap()). */
2463			md.md_index = 2;
2464			md.md_vaddr = data_start;
2465			md.md_size = data_end - data_start;
2466			break;
2467		case 2:
2468			/* 3rd: kernel VM. */
2469			va = prev->md_vaddr + prev->md_size;
2470			/* Find start of next chunk (from va). */
2471			while (va < virtual_end) {
2472				/* Don't dump the buffer cache. */
2473				if (va >= kmi.buffer_sva &&
2474				    va < kmi.buffer_eva) {
2475					va = kmi.buffer_eva;
2476					continue;
2477				}
2478				pte = pte_find(mmu, kernel_pmap, va);
2479				if (pte != NULL && PTE_ISVALID(pte))
2480					break;
2481				va += PAGE_SIZE;
2482			}
2483			if (va < virtual_end) {
2484				md.md_vaddr = va;
2485				va += PAGE_SIZE;
2486				/* Find last page in chunk. */
2487				while (va < virtual_end) {
2488					/* Don't run into the buffer cache. */
2489					if (va == kmi.buffer_sva)
2490						break;
2491					pte = pte_find(mmu, kernel_pmap, va);
2492					if (pte == NULL || !PTE_ISVALID(pte))
2493						break;
2494					va += PAGE_SIZE;
2495				}
2496				md.md_size = va - md.md_vaddr;
2497				break;
2498			}
2499			md.md_index = 3;
2500			/* FALLTHROUGH */
2501		default:
2502			return (NULL);
2503		}
2504	} else { /* minidumps */
2505		mr = bootinfo_mr();
2506		if (prev == NULL) {
2507			/* first physical chunk. */
2508			md.md_paddr = mr->mem_base;
2509			md.md_size = mr->mem_size;
2510			md.md_vaddr = ~0UL;
2511			md.md_index = 1;
2512		} else if (md.md_index < bootinfo->bi_mem_reg_no) {
2513			md.md_paddr = mr[md.md_index].mem_base;
2514			md.md_size = mr[md.md_index].mem_size;
2515			md.md_vaddr = ~0UL;
2516			md.md_index++;
2517		} else {
2518			/* There's no next physical chunk. */
2519			return (NULL);
2520		}
2521	}
2522
2523	return (&md);
2524}
2525
2526/*
2527 * Map a set of physical memory pages into the kernel virtual address space.
2528 * Return a pointer to where it is mapped. This routine is intended to be used
2529 * for mapping device memory, NOT real memory.
2530 */
2531static void *
2532mmu_booke_mapdev(mmu_t mmu, vm_offset_t pa, vm_size_t size)
2533{
2534	void *res;
2535	uintptr_t va;
2536	vm_size_t sz;
2537
2538	va = (pa >= 0x80000000) ? pa : (0xe2000000 + pa);
2539	res = (void *)va;
2540
2541	do {
2542		sz = 1 << (ilog2(size) & ~1);
2543		if (bootverbose)
2544			printf("Wiring VA=%x to PA=%x (size=%x), "
2545			    "using TLB1[%d]\n", va, pa, sz, tlb1_idx);
2546		tlb1_set_entry(va, pa, sz, _TLB_ENTRY_IO);
2547		size -= sz;
2548		pa += sz;
2549		va += sz;
2550	} while (size > 0);
2551
2552	return (res);
2553}
2554
2555/*
2556 * 'Unmap' a range mapped by mmu_booke_mapdev().
2557 */
2558static void
2559mmu_booke_unmapdev(mmu_t mmu, vm_offset_t va, vm_size_t size)
2560{
2561	vm_offset_t base, offset;
2562
2563	/*
2564	 * Unmap only if this is inside kernel virtual space.
2565	 */
2566	if ((va >= VM_MIN_KERNEL_ADDRESS) && (va <= VM_MAX_KERNEL_ADDRESS)) {
2567		base = trunc_page(va);
2568		offset = va & PAGE_MASK;
2569		size = roundup(offset + size, PAGE_SIZE);
2570		kmem_free(kernel_map, base, size);
2571	}
2572}
2573
2574/*
2575 * mmu_booke_object_init_pt preloads the ptes for a given object into the
2576 * specified pmap. This eliminates the blast of soft faults on process startup
2577 * and immediately after an mmap.
2578 */
2579static void
2580mmu_booke_object_init_pt(mmu_t mmu, pmap_t pmap, vm_offset_t addr,
2581    vm_object_t object, vm_pindex_t pindex, vm_size_t size)
2582{
2583
2584	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
2585	KASSERT(object->type == OBJT_DEVICE || object->type == OBJT_SG,
2586	    ("mmu_booke_object_init_pt: non-device object"));
2587}
2588
2589/*
2590 * Perform the pmap work for mincore.
2591 */
2592static int
2593mmu_booke_mincore(mmu_t mmu, pmap_t pmap, vm_offset_t addr)
2594{
2595
2596	TODO;
2597	return (0);
2598}
2599
2600/**************************************************************************/
2601/* TID handling */
2602/**************************************************************************/
2603
2604/*
2605 * Allocate a TID. If necessary, steal one from someone else.
2606 * The new TID is flushed from the TLB before returning.
2607 */
2608static tlbtid_t
2609tid_alloc(pmap_t pmap)
2610{
2611	tlbtid_t tid;
2612	int thiscpu;
2613
2614	KASSERT((pmap != kernel_pmap), ("tid_alloc: kernel pmap"));
2615
2616	CTR2(KTR_PMAP, "%s: s (pmap = %p)", __func__, pmap);
2617
2618	thiscpu = PCPU_GET(cpuid);
2619
2620	tid = PCPU_GET(tid_next);
2621	if (tid > TID_MAX)
2622		tid = TID_MIN;
2623	PCPU_SET(tid_next, tid + 1);
2624
2625	/* If we are stealing TID then clear the relevant pmap's field */
2626	if (tidbusy[thiscpu][tid] != NULL) {
2627
2628		CTR2(KTR_PMAP, "%s: warning: stealing tid %d", __func__, tid);
2629
2630		tidbusy[thiscpu][tid]->pm_tid[thiscpu] = TID_NONE;
2631
2632		/* Flush all entries from TLB0 matching this TID. */
2633		tid_flush(tid);
2634	}
2635
2636	tidbusy[thiscpu][tid] = pmap;
2637	pmap->pm_tid[thiscpu] = tid;
2638	__asm __volatile("msync; isync");
2639
2640	CTR3(KTR_PMAP, "%s: e (%02d next = %02d)", __func__, tid,
2641	    PCPU_GET(tid_next));
2642
2643	return (tid);
2644}
2645
2646/**************************************************************************/
2647/* TLB0 handling */
2648/**************************************************************************/
2649
2650static void
2651tlb_print_entry(int i, uint32_t mas1, uint32_t mas2, uint32_t mas3,
2652    uint32_t mas7)
2653{
2654	int as;
2655	char desc[3];
2656	tlbtid_t tid;
2657	vm_size_t size;
2658	unsigned int tsize;
2659
2660	desc[2] = '\0';
2661	if (mas1 & MAS1_VALID)
2662		desc[0] = 'V';
2663	else
2664		desc[0] = ' ';
2665
2666	if (mas1 & MAS1_IPROT)
2667		desc[1] = 'P';
2668	else
2669		desc[1] = ' ';
2670
2671	as = (mas1 & MAS1_TS_MASK) ? 1 : 0;
2672	tid = MAS1_GETTID(mas1);
2673
2674	tsize = (mas1 & MAS1_TSIZE_MASK) >> MAS1_TSIZE_SHIFT;
2675	size = 0;
2676	if (tsize)
2677		size = tsize2size(tsize);
2678
2679	debugf("%3d: (%s) [AS=%d] "
2680	    "sz = 0x%08x tsz = %d tid = %d mas1 = 0x%08x "
2681	    "mas2(va) = 0x%08x mas3(pa) = 0x%08x mas7 = 0x%08x\n",
2682	    i, desc, as, size, tsize, tid, mas1, mas2, mas3, mas7);
2683}
2684
2685/* Convert TLB0 va and way number to tlb0[] table index. */
2686static inline unsigned int
2687tlb0_tableidx(vm_offset_t va, unsigned int way)
2688{
2689	unsigned int idx;
2690
2691	idx = (way * TLB0_ENTRIES_PER_WAY);
2692	idx += (va & MAS2_TLB0_ENTRY_IDX_MASK) >> MAS2_TLB0_ENTRY_IDX_SHIFT;
2693	return (idx);
2694}
2695
2696/*
2697 * Invalidate TLB0 entry.
2698 */
2699static inline void
2700tlb0_flush_entry(vm_offset_t va)
2701{
2702
2703	CTR2(KTR_PMAP, "%s: s va=0x%08x", __func__, va);
2704
2705	mtx_assert(&tlbivax_mutex, MA_OWNED);
2706
2707	__asm __volatile("tlbivax 0, %0" :: "r"(va & MAS2_EPN_MASK));
2708	__asm __volatile("isync; msync");
2709	__asm __volatile("tlbsync; msync");
2710
2711	CTR1(KTR_PMAP, "%s: e", __func__);
2712}
2713
2714/* Print out contents of the MAS registers for each TLB0 entry */
2715void
2716tlb0_print_tlbentries(void)
2717{
2718	uint32_t mas0, mas1, mas2, mas3, mas7;
2719	int entryidx, way, idx;
2720
2721	debugf("TLB0 entries:\n");
2722	for (way = 0; way < TLB0_WAYS; way ++)
2723		for (entryidx = 0; entryidx < TLB0_ENTRIES_PER_WAY; entryidx++) {
2724
2725			mas0 = MAS0_TLBSEL(0) | MAS0_ESEL(way);
2726			mtspr(SPR_MAS0, mas0);
2727			__asm __volatile("isync");
2728
2729			mas2 = entryidx << MAS2_TLB0_ENTRY_IDX_SHIFT;
2730			mtspr(SPR_MAS2, mas2);
2731
2732			__asm __volatile("isync; tlbre");
2733
2734			mas1 = mfspr(SPR_MAS1);
2735			mas2 = mfspr(SPR_MAS2);
2736			mas3 = mfspr(SPR_MAS3);
2737			mas7 = mfspr(SPR_MAS7);
2738
2739			idx = tlb0_tableidx(mas2, way);
2740			tlb_print_entry(idx, mas1, mas2, mas3, mas7);
2741		}
2742}
2743
2744/**************************************************************************/
2745/* TLB1 handling */
2746/**************************************************************************/
2747
2748/*
2749 * TLB1 mapping notes:
2750 *
2751 * TLB1[0]	CCSRBAR
2752 * TLB1[1]	Kernel text and data.
2753 * TLB1[2-15]	Additional kernel text and data mappings (if required), PCI
2754 *		windows, other devices mappings.
2755 */
2756
2757/*
2758 * Write given entry to TLB1 hardware.
2759 * Use 32 bit pa, clear 4 high-order bits of RPN (mas7).
2760 */
2761static void
2762tlb1_write_entry(unsigned int idx)
2763{
2764	uint32_t mas0, mas7;
2765
2766	//debugf("tlb1_write_entry: s\n");
2767
2768	/* Clear high order RPN bits */
2769	mas7 = 0;
2770
2771	/* Select entry */
2772	mas0 = MAS0_TLBSEL(1) | MAS0_ESEL(idx);
2773	//debugf("tlb1_write_entry: mas0 = 0x%08x\n", mas0);
2774
2775	mtspr(SPR_MAS0, mas0);
2776	__asm __volatile("isync");
2777	mtspr(SPR_MAS1, tlb1[idx].mas1);
2778	__asm __volatile("isync");
2779	mtspr(SPR_MAS2, tlb1[idx].mas2);
2780	__asm __volatile("isync");
2781	mtspr(SPR_MAS3, tlb1[idx].mas3);
2782	__asm __volatile("isync");
2783	mtspr(SPR_MAS7, mas7);
2784	__asm __volatile("isync; tlbwe; isync; msync");
2785
2786	//debugf("tlb1_write_entry: e\n");;
2787}
2788
2789/*
2790 * Return the largest uint value log such that 2^log <= num.
2791 */
2792static unsigned int
2793ilog2(unsigned int num)
2794{
2795	int lz;
2796
2797	__asm ("cntlzw %0, %1" : "=r" (lz) : "r" (num));
2798	return (31 - lz);
2799}
2800
2801/*
2802 * Convert TLB TSIZE value to mapped region size.
2803 */
2804static vm_size_t
2805tsize2size(unsigned int tsize)
2806{
2807
2808	/*
2809	 * size = 4^tsize KB
2810	 * size = 4^tsize * 2^10 = 2^(2 * tsize - 10)
2811	 */
2812
2813	return ((1 << (2 * tsize)) * 1024);
2814}
2815
2816/*
2817 * Convert region size (must be power of 4) to TLB TSIZE value.
2818 */
2819static unsigned int
2820size2tsize(vm_size_t size)
2821{
2822
2823	return (ilog2(size) / 2 - 5);
2824}
2825
2826/*
2827 * Register permanent kernel mapping in TLB1.
2828 *
2829 * Entries are created starting from index 0 (current free entry is
2830 * kept in tlb1_idx) and are not supposed to be invalidated.
2831 */
2832static int
2833tlb1_set_entry(vm_offset_t va, vm_offset_t pa, vm_size_t size,
2834    uint32_t flags)
2835{
2836	uint32_t ts, tid;
2837	int tsize;
2838
2839	if (tlb1_idx >= TLB1_ENTRIES) {
2840		printf("tlb1_set_entry: TLB1 full!\n");
2841		return (-1);
2842	}
2843
2844	/* Convert size to TSIZE */
2845	tsize = size2tsize(size);
2846
2847	tid = (TID_KERNEL << MAS1_TID_SHIFT) & MAS1_TID_MASK;
2848	/* XXX TS is hard coded to 0 for now as we only use single address space */
2849	ts = (0 << MAS1_TS_SHIFT) & MAS1_TS_MASK;
2850
2851	/* XXX LOCK tlb1[] */
2852
2853	tlb1[tlb1_idx].mas1 = MAS1_VALID | MAS1_IPROT | ts | tid;
2854	tlb1[tlb1_idx].mas1 |= ((tsize << MAS1_TSIZE_SHIFT) & MAS1_TSIZE_MASK);
2855	tlb1[tlb1_idx].mas2 = (va & MAS2_EPN_MASK) | flags;
2856
2857	/* Set supervisor RWX permission bits */
2858	tlb1[tlb1_idx].mas3 = (pa & MAS3_RPN) | MAS3_SR | MAS3_SW | MAS3_SX;
2859
2860	tlb1_write_entry(tlb1_idx++);
2861
2862	/* XXX UNLOCK tlb1[] */
2863
2864	/*
2865	 * XXX in general TLB1 updates should be propagated between CPUs,
2866	 * since current design assumes to have the same TLB1 set-up on all
2867	 * cores.
2868	 */
2869	return (0);
2870}
2871
2872static int
2873tlb1_entry_size_cmp(const void *a, const void *b)
2874{
2875	const vm_size_t *sza;
2876	const vm_size_t *szb;
2877
2878	sza = a;
2879	szb = b;
2880	if (*sza > *szb)
2881		return (-1);
2882	else if (*sza < *szb)
2883		return (1);
2884	else
2885		return (0);
2886}
2887
2888/*
2889 * Map in contiguous RAM region into the TLB1 using maximum of
2890 * KERNEL_REGION_MAX_TLB_ENTRIES entries.
2891 *
2892 * If necessary round up last entry size and return total size
2893 * used by all allocated entries.
2894 */
2895vm_size_t
2896tlb1_mapin_region(vm_offset_t va, vm_offset_t pa, vm_size_t size)
2897{
2898	vm_size_t entry_size[KERNEL_REGION_MAX_TLB_ENTRIES];
2899	vm_size_t mapped_size, sz, esz;
2900	unsigned int log;
2901	int i;
2902
2903	CTR4(KTR_PMAP, "%s: region size = 0x%08x va = 0x%08x pa = 0x%08x",
2904	    __func__, size, va, pa);
2905
2906	mapped_size = 0;
2907	sz = size;
2908	memset(entry_size, 0, sizeof(entry_size));
2909
2910	/* Calculate entry sizes. */
2911	for (i = 0; i < KERNEL_REGION_MAX_TLB_ENTRIES && sz > 0; i++) {
2912
2913		/* Largest region that is power of 4 and fits within size */
2914		log = ilog2(sz) / 2;
2915		esz = 1 << (2 * log);
2916
2917		/* If this is last entry cover remaining size. */
2918		if (i ==  KERNEL_REGION_MAX_TLB_ENTRIES - 1) {
2919			while (esz < sz)
2920				esz = esz << 2;
2921		}
2922
2923		entry_size[i] = esz;
2924		mapped_size += esz;
2925		if (esz < sz)
2926			sz -= esz;
2927		else
2928			sz = 0;
2929	}
2930
2931	/* Sort entry sizes, required to get proper entry address alignment. */
2932	qsort(entry_size, KERNEL_REGION_MAX_TLB_ENTRIES,
2933	    sizeof(vm_size_t), tlb1_entry_size_cmp);
2934
2935	/* Load TLB1 entries. */
2936	for (i = 0; i < KERNEL_REGION_MAX_TLB_ENTRIES; i++) {
2937		esz = entry_size[i];
2938		if (!esz)
2939			break;
2940
2941		CTR5(KTR_PMAP, "%s: entry %d: sz  = 0x%08x (va = 0x%08x "
2942		    "pa = 0x%08x)", __func__, tlb1_idx, esz, va, pa);
2943
2944		tlb1_set_entry(va, pa, esz, _TLB_ENTRY_MEM);
2945
2946		va += esz;
2947		pa += esz;
2948	}
2949
2950	CTR3(KTR_PMAP, "%s: mapped size 0x%08x (wasted space 0x%08x)",
2951	    __func__, mapped_size, mapped_size - size);
2952
2953	return (mapped_size);
2954}
2955
2956/*
2957 * TLB1 initialization routine, to be called after the very first
2958 * assembler level setup done in locore.S.
2959 */
2960void
2961tlb1_init(vm_offset_t ccsrbar)
2962{
2963	uint32_t mas0;
2964
2965	/* TLB1[1] is used to map the kernel. Save that entry. */
2966	mas0 = MAS0_TLBSEL(1) | MAS0_ESEL(1);
2967	mtspr(SPR_MAS0, mas0);
2968	__asm __volatile("isync; tlbre");
2969
2970	tlb1[1].mas1 = mfspr(SPR_MAS1);
2971	tlb1[1].mas2 = mfspr(SPR_MAS2);
2972	tlb1[1].mas3 = mfspr(SPR_MAS3);
2973
2974	/* Map in CCSRBAR in TLB1[0] */
2975	tlb1_idx = 0;
2976	tlb1_set_entry(CCSRBAR_VA, ccsrbar, CCSRBAR_SIZE, _TLB_ENTRY_IO);
2977	/*
2978	 * Set the next available TLB1 entry index. Note TLB[1] is reserved
2979	 * for initial mapping of kernel text+data, which was set early in
2980	 * locore, we need to skip this [busy] entry.
2981	 */
2982	tlb1_idx = 2;
2983
2984	/* Setup TLB miss defaults */
2985	set_mas4_defaults();
2986}
2987
2988/*
2989 * Setup MAS4 defaults.
2990 * These values are loaded to MAS0-2 on a TLB miss.
2991 */
2992static void
2993set_mas4_defaults(void)
2994{
2995	uint32_t mas4;
2996
2997	/* Defaults: TLB0, PID0, TSIZED=4K */
2998	mas4 = MAS4_TLBSELD0;
2999	mas4 |= (TLB_SIZE_4K << MAS4_TSIZED_SHIFT) & MAS4_TSIZED_MASK;
3000#ifdef SMP
3001	mas4 |= MAS4_MD;
3002#endif
3003	mtspr(SPR_MAS4, mas4);
3004	__asm __volatile("isync");
3005}
3006
3007/*
3008 * Print out contents of the MAS registers for each TLB1 entry
3009 */
3010void
3011tlb1_print_tlbentries(void)
3012{
3013	uint32_t mas0, mas1, mas2, mas3, mas7;
3014	int i;
3015
3016	debugf("TLB1 entries:\n");
3017	for (i = 0; i < TLB1_ENTRIES; i++) {
3018
3019		mas0 = MAS0_TLBSEL(1) | MAS0_ESEL(i);
3020		mtspr(SPR_MAS0, mas0);
3021
3022		__asm __volatile("isync; tlbre");
3023
3024		mas1 = mfspr(SPR_MAS1);
3025		mas2 = mfspr(SPR_MAS2);
3026		mas3 = mfspr(SPR_MAS3);
3027		mas7 = mfspr(SPR_MAS7);
3028
3029		tlb_print_entry(i, mas1, mas2, mas3, mas7);
3030	}
3031}
3032
3033/*
3034 * Print out contents of the in-ram tlb1 table.
3035 */
3036void
3037tlb1_print_entries(void)
3038{
3039	int i;
3040
3041	debugf("tlb1[] table entries:\n");
3042	for (i = 0; i < TLB1_ENTRIES; i++)
3043		tlb_print_entry(i, tlb1[i].mas1, tlb1[i].mas2, tlb1[i].mas3, 0);
3044}
3045
3046/*
3047 * Return 0 if the physical IO range is encompassed by one of the
3048 * the TLB1 entries, otherwise return related error code.
3049 */
3050static int
3051tlb1_iomapped(int i, vm_paddr_t pa, vm_size_t size, vm_offset_t *va)
3052{
3053	uint32_t prot;
3054	vm_paddr_t pa_start;
3055	vm_paddr_t pa_end;
3056	unsigned int entry_tsize;
3057	vm_size_t entry_size;
3058
3059	*va = (vm_offset_t)NULL;
3060
3061	/* Skip invalid entries */
3062	if (!(tlb1[i].mas1 & MAS1_VALID))
3063		return (EINVAL);
3064
3065	/*
3066	 * The entry must be cache-inhibited, guarded, and r/w
3067	 * so it can function as an i/o page
3068	 */
3069	prot = tlb1[i].mas2 & (MAS2_I | MAS2_G);
3070	if (prot != (MAS2_I | MAS2_G))
3071		return (EPERM);
3072
3073	prot = tlb1[i].mas3 & (MAS3_SR | MAS3_SW);
3074	if (prot != (MAS3_SR | MAS3_SW))
3075		return (EPERM);
3076
3077	/* The address should be within the entry range. */
3078	entry_tsize = (tlb1[i].mas1 & MAS1_TSIZE_MASK) >> MAS1_TSIZE_SHIFT;
3079	KASSERT((entry_tsize), ("tlb1_iomapped: invalid entry tsize"));
3080
3081	entry_size = tsize2size(entry_tsize);
3082	pa_start = tlb1[i].mas3 & MAS3_RPN;
3083	pa_end = pa_start + entry_size - 1;
3084
3085	if ((pa < pa_start) || ((pa + size) > pa_end))
3086		return (ERANGE);
3087
3088	/* Return virtual address of this mapping. */
3089	*va = (tlb1[i].mas2 & MAS2_EPN_MASK) + (pa - pa_start);
3090	return (0);
3091}
3092