pmap.c revision 194123
1/*-
2 * Copyright (C) 2007-2009 Semihalf, Rafal Jaworowski <raj@semihalf.com>
3 * Copyright (C) 2006 Semihalf, Marian Balakowicz <m8@semihalf.com>
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN
18 * NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
19 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
20 * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
21 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
22 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
23 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
24 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25 *
26 * Some hw specific parts of this pmap were derived or influenced
27 * by NetBSD's ibm4xx pmap module. More generic code is shared with
28 * a few other pmap modules from the FreeBSD tree.
29 */
30
31 /*
32  * VM layout notes:
33  *
34  * Kernel and user threads run within one common virtual address space
35  * defined by AS=0.
36  *
37  * Virtual address space layout:
38  * -----------------------------
39  * 0x0000_0000 - 0xafff_ffff	: user process
40  * 0xb000_0000 - 0xbfff_ffff	: pmap_mapdev()-ed area (PCI/PCIE etc.)
41  * 0xc000_0000 - 0xc0ff_ffff	: kernel reserved
42  *   0xc000_0000 - data_end	: kernel code+data, env, metadata etc.
43  * 0xc100_0000 - 0xfeef_ffff	: KVA
44  *   0xc100_0000 - 0xc100_3fff : reserved for page zero/copy
45  *   0xc100_4000 - 0xc200_3fff : reserved for ptbl bufs
46  *   0xc200_4000 - 0xc200_8fff : guard page + kstack0
47  *   0xc200_9000 - 0xfeef_ffff	: actual free KVA space
48  * 0xfef0_0000 - 0xffff_ffff	: I/O devices region
49  */
50
51#include <sys/cdefs.h>
52__FBSDID("$FreeBSD: head/sys/powerpc/booke/pmap.c 194123 2009-06-13 18:35:29Z alc $");
53
54#include <sys/types.h>
55#include <sys/param.h>
56#include <sys/malloc.h>
57#include <sys/ktr.h>
58#include <sys/proc.h>
59#include <sys/user.h>
60#include <sys/queue.h>
61#include <sys/systm.h>
62#include <sys/kernel.h>
63#include <sys/msgbuf.h>
64#include <sys/lock.h>
65#include <sys/mutex.h>
66#include <sys/smp.h>
67#include <sys/vmmeter.h>
68
69#include <vm/vm.h>
70#include <vm/vm_page.h>
71#include <vm/vm_kern.h>
72#include <vm/vm_pageout.h>
73#include <vm/vm_extern.h>
74#include <vm/vm_object.h>
75#include <vm/vm_param.h>
76#include <vm/vm_map.h>
77#include <vm/vm_pager.h>
78#include <vm/uma.h>
79
80#include <machine/bootinfo.h>
81#include <machine/cpu.h>
82#include <machine/pcb.h>
83#include <machine/platform.h>
84
85#include <machine/tlb.h>
86#include <machine/spr.h>
87#include <machine/vmparam.h>
88#include <machine/md_var.h>
89#include <machine/mmuvar.h>
90#include <machine/pmap.h>
91#include <machine/pte.h>
92
93#include "mmu_if.h"
94
95#define DEBUG
96#undef DEBUG
97
98#ifdef  DEBUG
99#define debugf(fmt, args...) printf(fmt, ##args)
100#else
101#define debugf(fmt, args...)
102#endif
103
104#define TODO			panic("%s: not implemented", __func__);
105
106#include "opt_sched.h"
107#ifndef SCHED_4BSD
108#error "e500 only works with SCHED_4BSD which uses a global scheduler lock."
109#endif
110extern struct mtx sched_lock;
111
112extern int dumpsys_minidump;
113
114extern unsigned char _etext[];
115extern unsigned char _end[];
116
117/* Kernel physical load address. */
118extern uint32_t kernload;
119vm_offset_t kernstart;
120vm_size_t kernsize;
121
122/* Message buffer and tables. */
123static vm_offset_t data_start;
124static vm_size_t data_end;
125
126/* Phys/avail memory regions. */
127static struct mem_region *availmem_regions;
128static int availmem_regions_sz;
129static struct mem_region *physmem_regions;
130static int physmem_regions_sz;
131
132/* Reserved KVA space and mutex for mmu_booke_zero_page. */
133static vm_offset_t zero_page_va;
134static struct mtx zero_page_mutex;
135
136static struct mtx tlbivax_mutex;
137
138/*
139 * Reserved KVA space for mmu_booke_zero_page_idle. This is used
140 * by idle thred only, no lock required.
141 */
142static vm_offset_t zero_page_idle_va;
143
144/* Reserved KVA space and mutex for mmu_booke_copy_page. */
145static vm_offset_t copy_page_src_va;
146static vm_offset_t copy_page_dst_va;
147static struct mtx copy_page_mutex;
148
149/**************************************************************************/
150/* PMAP */
151/**************************************************************************/
152
153static void mmu_booke_enter_locked(mmu_t, pmap_t, vm_offset_t, vm_page_t,
154    vm_prot_t, boolean_t);
155
156unsigned int kptbl_min;		/* Index of the first kernel ptbl. */
157unsigned int kernel_ptbls;	/* Number of KVA ptbls. */
158
159/*
160 * If user pmap is processed with mmu_booke_remove and the resident count
161 * drops to 0, there are no more pages to remove, so we need not continue.
162 */
163#define PMAP_REMOVE_DONE(pmap) \
164	((pmap) != kernel_pmap && (pmap)->pm_stats.resident_count == 0)
165
166extern void tlb_lock(uint32_t *);
167extern void tlb_unlock(uint32_t *);
168extern void tid_flush(tlbtid_t);
169
170/**************************************************************************/
171/* TLB and TID handling */
172/**************************************************************************/
173
174/* Translation ID busy table */
175static volatile pmap_t tidbusy[MAXCPU][TID_MAX + 1];
176
177/*
178 * TLB0 capabilities (entry, way numbers etc.). These can vary between e500
179 * core revisions and should be read from h/w registers during early config.
180 */
181uint32_t tlb0_entries;
182uint32_t tlb0_ways;
183uint32_t tlb0_entries_per_way;
184
185#define TLB0_ENTRIES		(tlb0_entries)
186#define TLB0_WAYS		(tlb0_ways)
187#define TLB0_ENTRIES_PER_WAY	(tlb0_entries_per_way)
188
189#define TLB1_ENTRIES 16
190
191/* In-ram copy of the TLB1 */
192static tlb_entry_t tlb1[TLB1_ENTRIES];
193
194/* Next free entry in the TLB1 */
195static unsigned int tlb1_idx;
196
197static tlbtid_t tid_alloc(struct pmap *);
198
199static void tlb_print_entry(int, uint32_t, uint32_t, uint32_t, uint32_t);
200
201static int tlb1_set_entry(vm_offset_t, vm_offset_t, vm_size_t, uint32_t);
202static void tlb1_write_entry(unsigned int);
203static int tlb1_iomapped(int, vm_paddr_t, vm_size_t, vm_offset_t *);
204static vm_size_t tlb1_mapin_region(vm_offset_t, vm_offset_t, vm_size_t);
205
206static vm_size_t tsize2size(unsigned int);
207static unsigned int size2tsize(vm_size_t);
208static unsigned int ilog2(unsigned int);
209
210static void set_mas4_defaults(void);
211
212static inline void tlb0_flush_entry(vm_offset_t);
213static inline unsigned int tlb0_tableidx(vm_offset_t, unsigned int);
214
215/**************************************************************************/
216/* Page table management */
217/**************************************************************************/
218
219/* Data for the pv entry allocation mechanism */
220static uma_zone_t pvzone;
221static struct vm_object pvzone_obj;
222static int pv_entry_count = 0, pv_entry_max = 0, pv_entry_high_water = 0;
223
224#define PV_ENTRY_ZONE_MIN	2048	/* min pv entries in uma zone */
225
226#ifndef PMAP_SHPGPERPROC
227#define PMAP_SHPGPERPROC	200
228#endif
229
230static void ptbl_init(void);
231static struct ptbl_buf *ptbl_buf_alloc(void);
232static void ptbl_buf_free(struct ptbl_buf *);
233static void ptbl_free_pmap_ptbl(pmap_t, pte_t *);
234
235static pte_t *ptbl_alloc(mmu_t, pmap_t, unsigned int);
236static void ptbl_free(mmu_t, pmap_t, unsigned int);
237static void ptbl_hold(mmu_t, pmap_t, unsigned int);
238static int ptbl_unhold(mmu_t, pmap_t, unsigned int);
239
240static vm_paddr_t pte_vatopa(mmu_t, pmap_t, vm_offset_t);
241static pte_t *pte_find(mmu_t, pmap_t, vm_offset_t);
242static void pte_enter(mmu_t, pmap_t, vm_page_t, vm_offset_t, uint32_t);
243static int pte_remove(mmu_t, pmap_t, vm_offset_t, uint8_t);
244
245static pv_entry_t pv_alloc(void);
246static void pv_free(pv_entry_t);
247static void pv_insert(pmap_t, vm_offset_t, vm_page_t);
248static void pv_remove(pmap_t, vm_offset_t, vm_page_t);
249
250/* Number of kva ptbl buffers, each covering one ptbl (PTBL_PAGES). */
251#define PTBL_BUFS		(128 * 16)
252
253struct ptbl_buf {
254	TAILQ_ENTRY(ptbl_buf) link;	/* list link */
255	vm_offset_t kva;		/* va of mapping */
256};
257
258/* ptbl free list and a lock used for access synchronization. */
259static TAILQ_HEAD(, ptbl_buf) ptbl_buf_freelist;
260static struct mtx ptbl_buf_freelist_lock;
261
262/* Base address of kva space allocated fot ptbl bufs. */
263static vm_offset_t ptbl_buf_pool_vabase;
264
265/* Pointer to ptbl_buf structures. */
266static struct ptbl_buf *ptbl_bufs;
267
268void pmap_bootstrap_ap(volatile uint32_t *);
269
270/*
271 * Kernel MMU interface
272 */
273static void		mmu_booke_change_wiring(mmu_t, pmap_t, vm_offset_t, boolean_t);
274static void		mmu_booke_clear_modify(mmu_t, vm_page_t);
275static void		mmu_booke_clear_reference(mmu_t, vm_page_t);
276static void		mmu_booke_copy(mmu_t, pmap_t, pmap_t, vm_offset_t,
277    vm_size_t, vm_offset_t);
278static void		mmu_booke_copy_page(mmu_t, vm_page_t, vm_page_t);
279static void		mmu_booke_enter(mmu_t, pmap_t, vm_offset_t, vm_page_t,
280    vm_prot_t, boolean_t);
281static void		mmu_booke_enter_object(mmu_t, pmap_t, vm_offset_t, vm_offset_t,
282    vm_page_t, vm_prot_t);
283static void		mmu_booke_enter_quick(mmu_t, pmap_t, vm_offset_t, vm_page_t,
284    vm_prot_t);
285static vm_paddr_t	mmu_booke_extract(mmu_t, pmap_t, vm_offset_t);
286static vm_page_t	mmu_booke_extract_and_hold(mmu_t, pmap_t, vm_offset_t,
287    vm_prot_t);
288static void		mmu_booke_init(mmu_t);
289static boolean_t	mmu_booke_is_modified(mmu_t, vm_page_t);
290static boolean_t	mmu_booke_is_prefaultable(mmu_t, pmap_t, vm_offset_t);
291static boolean_t	mmu_booke_ts_referenced(mmu_t, vm_page_t);
292static vm_offset_t	mmu_booke_map(mmu_t, vm_offset_t *, vm_offset_t, vm_offset_t,
293    int);
294static int		mmu_booke_mincore(mmu_t, pmap_t, vm_offset_t);
295static void		mmu_booke_object_init_pt(mmu_t, pmap_t, vm_offset_t,
296    vm_object_t, vm_pindex_t, vm_size_t);
297static boolean_t	mmu_booke_page_exists_quick(mmu_t, pmap_t, vm_page_t);
298static void		mmu_booke_page_init(mmu_t, vm_page_t);
299static int		mmu_booke_page_wired_mappings(mmu_t, vm_page_t);
300static void		mmu_booke_pinit(mmu_t, pmap_t);
301static void		mmu_booke_pinit0(mmu_t, pmap_t);
302static void		mmu_booke_protect(mmu_t, pmap_t, vm_offset_t, vm_offset_t,
303    vm_prot_t);
304static void		mmu_booke_qenter(mmu_t, vm_offset_t, vm_page_t *, int);
305static void		mmu_booke_qremove(mmu_t, vm_offset_t, int);
306static void		mmu_booke_release(mmu_t, pmap_t);
307static void		mmu_booke_remove(mmu_t, pmap_t, vm_offset_t, vm_offset_t);
308static void		mmu_booke_remove_all(mmu_t, vm_page_t);
309static void		mmu_booke_remove_write(mmu_t, vm_page_t);
310static void		mmu_booke_zero_page(mmu_t, vm_page_t);
311static void		mmu_booke_zero_page_area(mmu_t, vm_page_t, int, int);
312static void		mmu_booke_zero_page_idle(mmu_t, vm_page_t);
313static void		mmu_booke_activate(mmu_t, struct thread *);
314static void		mmu_booke_deactivate(mmu_t, struct thread *);
315static void		mmu_booke_bootstrap(mmu_t, vm_offset_t, vm_offset_t);
316static void		*mmu_booke_mapdev(mmu_t, vm_offset_t, vm_size_t);
317static void		mmu_booke_unmapdev(mmu_t, vm_offset_t, vm_size_t);
318static vm_offset_t	mmu_booke_kextract(mmu_t, vm_offset_t);
319static void		mmu_booke_kenter(mmu_t, vm_offset_t, vm_offset_t);
320static void		mmu_booke_kremove(mmu_t, vm_offset_t);
321static boolean_t	mmu_booke_dev_direct_mapped(mmu_t, vm_offset_t, vm_size_t);
322static boolean_t	mmu_booke_page_executable(mmu_t, vm_page_t);
323static vm_offset_t	mmu_booke_dumpsys_map(mmu_t, struct pmap_md *,
324    vm_size_t, vm_size_t *);
325static void		mmu_booke_dumpsys_unmap(mmu_t, struct pmap_md *,
326    vm_size_t, vm_offset_t);
327static struct pmap_md	*mmu_booke_scan_md(mmu_t, struct pmap_md *);
328
329static mmu_method_t mmu_booke_methods[] = {
330	/* pmap dispatcher interface */
331	MMUMETHOD(mmu_change_wiring,	mmu_booke_change_wiring),
332	MMUMETHOD(mmu_clear_modify,	mmu_booke_clear_modify),
333	MMUMETHOD(mmu_clear_reference,	mmu_booke_clear_reference),
334	MMUMETHOD(mmu_copy,		mmu_booke_copy),
335	MMUMETHOD(mmu_copy_page,	mmu_booke_copy_page),
336	MMUMETHOD(mmu_enter,		mmu_booke_enter),
337	MMUMETHOD(mmu_enter_object,	mmu_booke_enter_object),
338	MMUMETHOD(mmu_enter_quick,	mmu_booke_enter_quick),
339	MMUMETHOD(mmu_extract,		mmu_booke_extract),
340	MMUMETHOD(mmu_extract_and_hold,	mmu_booke_extract_and_hold),
341	MMUMETHOD(mmu_init,		mmu_booke_init),
342	MMUMETHOD(mmu_is_modified,	mmu_booke_is_modified),
343	MMUMETHOD(mmu_is_prefaultable,	mmu_booke_is_prefaultable),
344	MMUMETHOD(mmu_ts_referenced,	mmu_booke_ts_referenced),
345	MMUMETHOD(mmu_map,		mmu_booke_map),
346	MMUMETHOD(mmu_mincore,		mmu_booke_mincore),
347	MMUMETHOD(mmu_object_init_pt,	mmu_booke_object_init_pt),
348	MMUMETHOD(mmu_page_exists_quick,mmu_booke_page_exists_quick),
349	MMUMETHOD(mmu_page_init,	mmu_booke_page_init),
350	MMUMETHOD(mmu_page_wired_mappings, mmu_booke_page_wired_mappings),
351	MMUMETHOD(mmu_pinit,		mmu_booke_pinit),
352	MMUMETHOD(mmu_pinit0,		mmu_booke_pinit0),
353	MMUMETHOD(mmu_protect,		mmu_booke_protect),
354	MMUMETHOD(mmu_qenter,		mmu_booke_qenter),
355	MMUMETHOD(mmu_qremove,		mmu_booke_qremove),
356	MMUMETHOD(mmu_release,		mmu_booke_release),
357	MMUMETHOD(mmu_remove,		mmu_booke_remove),
358	MMUMETHOD(mmu_remove_all,	mmu_booke_remove_all),
359	MMUMETHOD(mmu_remove_write,	mmu_booke_remove_write),
360	MMUMETHOD(mmu_zero_page,	mmu_booke_zero_page),
361	MMUMETHOD(mmu_zero_page_area,	mmu_booke_zero_page_area),
362	MMUMETHOD(mmu_zero_page_idle,	mmu_booke_zero_page_idle),
363	MMUMETHOD(mmu_activate,		mmu_booke_activate),
364	MMUMETHOD(mmu_deactivate,	mmu_booke_deactivate),
365
366	/* Internal interfaces */
367	MMUMETHOD(mmu_bootstrap,	mmu_booke_bootstrap),
368	MMUMETHOD(mmu_dev_direct_mapped,mmu_booke_dev_direct_mapped),
369	MMUMETHOD(mmu_mapdev,		mmu_booke_mapdev),
370	MMUMETHOD(mmu_kenter,		mmu_booke_kenter),
371	MMUMETHOD(mmu_kextract,		mmu_booke_kextract),
372/*	MMUMETHOD(mmu_kremove,		mmu_booke_kremove),	*/
373	MMUMETHOD(mmu_page_executable,	mmu_booke_page_executable),
374	MMUMETHOD(mmu_unmapdev,		mmu_booke_unmapdev),
375
376	/* dumpsys() support */
377	MMUMETHOD(mmu_dumpsys_map,	mmu_booke_dumpsys_map),
378	MMUMETHOD(mmu_dumpsys_unmap,	mmu_booke_dumpsys_unmap),
379	MMUMETHOD(mmu_scan_md,		mmu_booke_scan_md),
380
381	{ 0, 0 }
382};
383
384static mmu_def_t booke_mmu = {
385	MMU_TYPE_BOOKE,
386	mmu_booke_methods,
387	0
388};
389MMU_DEF(booke_mmu);
390
391static inline void
392tlb_miss_lock(void)
393{
394#ifdef SMP
395	struct pcpu *pc;
396
397	if (!smp_started)
398		return;
399
400	SLIST_FOREACH(pc, &cpuhead, pc_allcpu) {
401		if (pc != pcpup) {
402
403			CTR3(KTR_PMAP, "%s: tlb miss LOCK of CPU=%d, "
404			    "tlb_lock=%p", __func__, pc->pc_cpuid, pc->pc_booke_tlb_lock);
405
406			KASSERT((pc->pc_cpuid != PCPU_GET(cpuid)),
407			    ("tlb_miss_lock: tried to lock self"));
408
409			tlb_lock(pc->pc_booke_tlb_lock);
410
411			CTR1(KTR_PMAP, "%s: locked", __func__);
412		}
413	}
414#endif
415}
416
417static inline void
418tlb_miss_unlock(void)
419{
420#ifdef SMP
421	struct pcpu *pc;
422
423	if (!smp_started)
424		return;
425
426	SLIST_FOREACH(pc, &cpuhead, pc_allcpu) {
427		if (pc != pcpup) {
428			CTR2(KTR_PMAP, "%s: tlb miss UNLOCK of CPU=%d",
429			    __func__, pc->pc_cpuid);
430
431			tlb_unlock(pc->pc_booke_tlb_lock);
432
433			CTR1(KTR_PMAP, "%s: unlocked", __func__);
434		}
435	}
436#endif
437}
438
439/* Return number of entries in TLB0. */
440static __inline void
441tlb0_get_tlbconf(void)
442{
443	uint32_t tlb0_cfg;
444
445	tlb0_cfg = mfspr(SPR_TLB0CFG);
446	tlb0_entries = tlb0_cfg & TLBCFG_NENTRY_MASK;
447	tlb0_ways = (tlb0_cfg & TLBCFG_ASSOC_MASK) >> TLBCFG_ASSOC_SHIFT;
448	tlb0_entries_per_way = tlb0_entries / tlb0_ways;
449}
450
451/* Initialize pool of kva ptbl buffers. */
452static void
453ptbl_init(void)
454{
455	int i;
456
457	CTR3(KTR_PMAP, "%s: s (ptbl_bufs = 0x%08x size 0x%08x)", __func__,
458	    (uint32_t)ptbl_bufs, sizeof(struct ptbl_buf) * PTBL_BUFS);
459	CTR3(KTR_PMAP, "%s: s (ptbl_buf_pool_vabase = 0x%08x size = 0x%08x)",
460	    __func__, ptbl_buf_pool_vabase, PTBL_BUFS * PTBL_PAGES * PAGE_SIZE);
461
462	mtx_init(&ptbl_buf_freelist_lock, "ptbl bufs lock", NULL, MTX_DEF);
463	TAILQ_INIT(&ptbl_buf_freelist);
464
465	for (i = 0; i < PTBL_BUFS; i++) {
466		ptbl_bufs[i].kva = ptbl_buf_pool_vabase + i * PTBL_PAGES * PAGE_SIZE;
467		TAILQ_INSERT_TAIL(&ptbl_buf_freelist, &ptbl_bufs[i], link);
468	}
469}
470
471/* Get a ptbl_buf from the freelist. */
472static struct ptbl_buf *
473ptbl_buf_alloc(void)
474{
475	struct ptbl_buf *buf;
476
477	mtx_lock(&ptbl_buf_freelist_lock);
478	buf = TAILQ_FIRST(&ptbl_buf_freelist);
479	if (buf != NULL)
480		TAILQ_REMOVE(&ptbl_buf_freelist, buf, link);
481	mtx_unlock(&ptbl_buf_freelist_lock);
482
483	CTR2(KTR_PMAP, "%s: buf = %p", __func__, buf);
484
485	return (buf);
486}
487
488/* Return ptbl buff to free pool. */
489static void
490ptbl_buf_free(struct ptbl_buf *buf)
491{
492
493	CTR2(KTR_PMAP, "%s: buf = %p", __func__, buf);
494
495	mtx_lock(&ptbl_buf_freelist_lock);
496	TAILQ_INSERT_TAIL(&ptbl_buf_freelist, buf, link);
497	mtx_unlock(&ptbl_buf_freelist_lock);
498}
499
500/*
501 * Search the list of allocated ptbl bufs and find on list of allocated ptbls
502 */
503static void
504ptbl_free_pmap_ptbl(pmap_t pmap, pte_t *ptbl)
505{
506	struct ptbl_buf *pbuf;
507
508	CTR2(KTR_PMAP, "%s: ptbl = %p", __func__, ptbl);
509
510	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
511
512	TAILQ_FOREACH(pbuf, &pmap->pm_ptbl_list, link)
513		if (pbuf->kva == (vm_offset_t)ptbl) {
514			/* Remove from pmap ptbl buf list. */
515			TAILQ_REMOVE(&pmap->pm_ptbl_list, pbuf, link);
516
517			/* Free corresponding ptbl buf. */
518			ptbl_buf_free(pbuf);
519			break;
520		}
521}
522
523/* Allocate page table. */
524static pte_t *
525ptbl_alloc(mmu_t mmu, pmap_t pmap, unsigned int pdir_idx)
526{
527	vm_page_t mtbl[PTBL_PAGES];
528	vm_page_t m;
529	struct ptbl_buf *pbuf;
530	unsigned int pidx;
531	pte_t *ptbl;
532	int i;
533
534	CTR4(KTR_PMAP, "%s: pmap = %p su = %d pdir_idx = %d", __func__, pmap,
535	    (pmap == kernel_pmap), pdir_idx);
536
537	KASSERT((pdir_idx <= (VM_MAXUSER_ADDRESS / PDIR_SIZE)),
538	    ("ptbl_alloc: invalid pdir_idx"));
539	KASSERT((pmap->pm_pdir[pdir_idx] == NULL),
540	    ("pte_alloc: valid ptbl entry exists!"));
541
542	pbuf = ptbl_buf_alloc();
543	if (pbuf == NULL)
544		panic("pte_alloc: couldn't alloc kernel virtual memory");
545
546	ptbl = (pte_t *)pbuf->kva;
547
548	CTR2(KTR_PMAP, "%s: ptbl kva = %p", __func__, ptbl);
549
550	/* Allocate ptbl pages, this will sleep! */
551	for (i = 0; i < PTBL_PAGES; i++) {
552		pidx = (PTBL_PAGES * pdir_idx) + i;
553		while ((m = vm_page_alloc(NULL, pidx,
554		    VM_ALLOC_NOOBJ | VM_ALLOC_WIRED)) == NULL) {
555
556			PMAP_UNLOCK(pmap);
557			vm_page_unlock_queues();
558			VM_WAIT;
559			vm_page_lock_queues();
560			PMAP_LOCK(pmap);
561		}
562		mtbl[i] = m;
563	}
564
565	/* Map allocated pages into kernel_pmap. */
566	mmu_booke_qenter(mmu, (vm_offset_t)ptbl, mtbl, PTBL_PAGES);
567
568	/* Zero whole ptbl. */
569	bzero((caddr_t)ptbl, PTBL_PAGES * PAGE_SIZE);
570
571	/* Add pbuf to the pmap ptbl bufs list. */
572	TAILQ_INSERT_TAIL(&pmap->pm_ptbl_list, pbuf, link);
573
574	return (ptbl);
575}
576
577/* Free ptbl pages and invalidate pdir entry. */
578static void
579ptbl_free(mmu_t mmu, pmap_t pmap, unsigned int pdir_idx)
580{
581	pte_t *ptbl;
582	vm_paddr_t pa;
583	vm_offset_t va;
584	vm_page_t m;
585	int i;
586
587	CTR4(KTR_PMAP, "%s: pmap = %p su = %d pdir_idx = %d", __func__, pmap,
588	    (pmap == kernel_pmap), pdir_idx);
589
590	KASSERT((pdir_idx <= (VM_MAXUSER_ADDRESS / PDIR_SIZE)),
591	    ("ptbl_free: invalid pdir_idx"));
592
593	ptbl = pmap->pm_pdir[pdir_idx];
594
595	CTR2(KTR_PMAP, "%s: ptbl = %p", __func__, ptbl);
596
597	KASSERT((ptbl != NULL), ("ptbl_free: null ptbl"));
598
599	/*
600	 * Invalidate the pdir entry as soon as possible, so that other CPUs
601	 * don't attempt to look up the page tables we are releasing.
602	 */
603	mtx_lock_spin(&tlbivax_mutex);
604	tlb_miss_lock();
605
606	pmap->pm_pdir[pdir_idx] = NULL;
607
608	tlb_miss_unlock();
609	mtx_unlock_spin(&tlbivax_mutex);
610
611	for (i = 0; i < PTBL_PAGES; i++) {
612		va = ((vm_offset_t)ptbl + (i * PAGE_SIZE));
613		pa = pte_vatopa(mmu, kernel_pmap, va);
614		m = PHYS_TO_VM_PAGE(pa);
615		vm_page_free_zero(m);
616		atomic_subtract_int(&cnt.v_wire_count, 1);
617		mmu_booke_kremove(mmu, va);
618	}
619
620	ptbl_free_pmap_ptbl(pmap, ptbl);
621}
622
623/*
624 * Decrement ptbl pages hold count and attempt to free ptbl pages.
625 * Called when removing pte entry from ptbl.
626 *
627 * Return 1 if ptbl pages were freed.
628 */
629static int
630ptbl_unhold(mmu_t mmu, pmap_t pmap, unsigned int pdir_idx)
631{
632	pte_t *ptbl;
633	vm_paddr_t pa;
634	vm_page_t m;
635	int i;
636
637	CTR4(KTR_PMAP, "%s: pmap = %p su = %d pdir_idx = %d", __func__, pmap,
638	    (pmap == kernel_pmap), pdir_idx);
639
640	KASSERT((pdir_idx <= (VM_MAXUSER_ADDRESS / PDIR_SIZE)),
641	    ("ptbl_unhold: invalid pdir_idx"));
642	KASSERT((pmap != kernel_pmap),
643	    ("ptbl_unhold: unholding kernel ptbl!"));
644
645	ptbl = pmap->pm_pdir[pdir_idx];
646
647	//debugf("ptbl_unhold: ptbl = 0x%08x\n", (u_int32_t)ptbl);
648	KASSERT(((vm_offset_t)ptbl >= VM_MIN_KERNEL_ADDRESS),
649	    ("ptbl_unhold: non kva ptbl"));
650
651	/* decrement hold count */
652	for (i = 0; i < PTBL_PAGES; i++) {
653		pa = pte_vatopa(mmu, kernel_pmap,
654		    (vm_offset_t)ptbl + (i * PAGE_SIZE));
655		m = PHYS_TO_VM_PAGE(pa);
656		m->wire_count--;
657	}
658
659	/*
660	 * Free ptbl pages if there are no pte etries in this ptbl.
661	 * wire_count has the same value for all ptbl pages, so check the last
662	 * page.
663	 */
664	if (m->wire_count == 0) {
665		ptbl_free(mmu, pmap, pdir_idx);
666
667		//debugf("ptbl_unhold: e (freed ptbl)\n");
668		return (1);
669	}
670
671	return (0);
672}
673
674/*
675 * Increment hold count for ptbl pages. This routine is used when a new pte
676 * entry is being inserted into the ptbl.
677 */
678static void
679ptbl_hold(mmu_t mmu, pmap_t pmap, unsigned int pdir_idx)
680{
681	vm_paddr_t pa;
682	pte_t *ptbl;
683	vm_page_t m;
684	int i;
685
686	CTR3(KTR_PMAP, "%s: pmap = %p pdir_idx = %d", __func__, pmap,
687	    pdir_idx);
688
689	KASSERT((pdir_idx <= (VM_MAXUSER_ADDRESS / PDIR_SIZE)),
690	    ("ptbl_hold: invalid pdir_idx"));
691	KASSERT((pmap != kernel_pmap),
692	    ("ptbl_hold: holding kernel ptbl!"));
693
694	ptbl = pmap->pm_pdir[pdir_idx];
695
696	KASSERT((ptbl != NULL), ("ptbl_hold: null ptbl"));
697
698	for (i = 0; i < PTBL_PAGES; i++) {
699		pa = pte_vatopa(mmu, kernel_pmap,
700		    (vm_offset_t)ptbl + (i * PAGE_SIZE));
701		m = PHYS_TO_VM_PAGE(pa);
702		m->wire_count++;
703	}
704}
705
706/* Allocate pv_entry structure. */
707pv_entry_t
708pv_alloc(void)
709{
710	pv_entry_t pv;
711
712	pv_entry_count++;
713	if (pv_entry_count > pv_entry_high_water)
714		pagedaemon_wakeup();
715	pv = uma_zalloc(pvzone, M_NOWAIT);
716
717	return (pv);
718}
719
720/* Free pv_entry structure. */
721static __inline void
722pv_free(pv_entry_t pve)
723{
724
725	pv_entry_count--;
726	uma_zfree(pvzone, pve);
727}
728
729
730/* Allocate and initialize pv_entry structure. */
731static void
732pv_insert(pmap_t pmap, vm_offset_t va, vm_page_t m)
733{
734	pv_entry_t pve;
735
736	//int su = (pmap == kernel_pmap);
737	//debugf("pv_insert: s (su = %d pmap = 0x%08x va = 0x%08x m = 0x%08x)\n", su,
738	//	(u_int32_t)pmap, va, (u_int32_t)m);
739
740	pve = pv_alloc();
741	if (pve == NULL)
742		panic("pv_insert: no pv entries!");
743
744	pve->pv_pmap = pmap;
745	pve->pv_va = va;
746
747	/* add to pv_list */
748	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
749	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
750
751	TAILQ_INSERT_TAIL(&m->md.pv_list, pve, pv_link);
752
753	//debugf("pv_insert: e\n");
754}
755
756/* Destroy pv entry. */
757static void
758pv_remove(pmap_t pmap, vm_offset_t va, vm_page_t m)
759{
760	pv_entry_t pve;
761
762	//int su = (pmap == kernel_pmap);
763	//debugf("pv_remove: s (su = %d pmap = 0x%08x va = 0x%08x)\n", su, (u_int32_t)pmap, va);
764
765	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
766	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
767
768	/* find pv entry */
769	TAILQ_FOREACH(pve, &m->md.pv_list, pv_link) {
770		if ((pmap == pve->pv_pmap) && (va == pve->pv_va)) {
771			/* remove from pv_list */
772			TAILQ_REMOVE(&m->md.pv_list, pve, pv_link);
773			if (TAILQ_EMPTY(&m->md.pv_list))
774				vm_page_flag_clear(m, PG_WRITEABLE);
775
776			/* free pv entry struct */
777			pv_free(pve);
778			break;
779		}
780	}
781
782	//debugf("pv_remove: e\n");
783}
784
785/*
786 * Clean pte entry, try to free page table page if requested.
787 *
788 * Return 1 if ptbl pages were freed, otherwise return 0.
789 */
790static int
791pte_remove(mmu_t mmu, pmap_t pmap, vm_offset_t va, uint8_t flags)
792{
793	unsigned int pdir_idx = PDIR_IDX(va);
794	unsigned int ptbl_idx = PTBL_IDX(va);
795	vm_page_t m;
796	pte_t *ptbl;
797	pte_t *pte;
798
799	//int su = (pmap == kernel_pmap);
800	//debugf("pte_remove: s (su = %d pmap = 0x%08x va = 0x%08x flags = %d)\n",
801	//		su, (u_int32_t)pmap, va, flags);
802
803	ptbl = pmap->pm_pdir[pdir_idx];
804	KASSERT(ptbl, ("pte_remove: null ptbl"));
805
806	pte = &ptbl[ptbl_idx];
807
808	if (pte == NULL || !PTE_ISVALID(pte))
809		return (0);
810
811	if (PTE_ISWIRED(pte))
812		pmap->pm_stats.wired_count--;
813
814	/* Handle managed entry. */
815	if (PTE_ISMANAGED(pte)) {
816		/* Get vm_page_t for mapped pte. */
817		m = PHYS_TO_VM_PAGE(PTE_PA(pte));
818
819		if (PTE_ISMODIFIED(pte))
820			vm_page_dirty(m);
821
822		if (PTE_ISREFERENCED(pte))
823			vm_page_flag_set(m, PG_REFERENCED);
824
825		pv_remove(pmap, va, m);
826	}
827
828	mtx_lock_spin(&tlbivax_mutex);
829	tlb_miss_lock();
830
831	tlb0_flush_entry(va);
832	pte->flags = 0;
833	pte->rpn = 0;
834
835	tlb_miss_unlock();
836	mtx_unlock_spin(&tlbivax_mutex);
837
838	pmap->pm_stats.resident_count--;
839
840	if (flags & PTBL_UNHOLD) {
841		//debugf("pte_remove: e (unhold)\n");
842		return (ptbl_unhold(mmu, pmap, pdir_idx));
843	}
844
845	//debugf("pte_remove: e\n");
846	return (0);
847}
848
849/*
850 * Insert PTE for a given page and virtual address.
851 */
852static void
853pte_enter(mmu_t mmu, pmap_t pmap, vm_page_t m, vm_offset_t va, uint32_t flags)
854{
855	unsigned int pdir_idx = PDIR_IDX(va);
856	unsigned int ptbl_idx = PTBL_IDX(va);
857	pte_t *ptbl, *pte;
858
859	CTR4(KTR_PMAP, "%s: su = %d pmap = %p va = %p", __func__,
860	    pmap == kernel_pmap, pmap, va);
861
862	/* Get the page table pointer. */
863	ptbl = pmap->pm_pdir[pdir_idx];
864
865	if (ptbl == NULL) {
866		/* Allocate page table pages. */
867		ptbl = ptbl_alloc(mmu, pmap, pdir_idx);
868	} else {
869		/*
870		 * Check if there is valid mapping for requested
871		 * va, if there is, remove it.
872		 */
873		pte = &pmap->pm_pdir[pdir_idx][ptbl_idx];
874		if (PTE_ISVALID(pte)) {
875			pte_remove(mmu, pmap, va, PTBL_HOLD);
876		} else {
877			/*
878			 * pte is not used, increment hold count
879			 * for ptbl pages.
880			 */
881			if (pmap != kernel_pmap)
882				ptbl_hold(mmu, pmap, pdir_idx);
883		}
884	}
885
886	/*
887	 * Insert pv_entry into pv_list for mapped page if part of managed
888	 * memory.
889	 */
890        if ((m->flags & PG_FICTITIOUS) == 0) {
891		if ((m->flags & PG_UNMANAGED) == 0) {
892			flags |= PTE_MANAGED;
893
894			/* Create and insert pv entry. */
895			pv_insert(pmap, va, m);
896		}
897	}
898
899	pmap->pm_stats.resident_count++;
900
901	mtx_lock_spin(&tlbivax_mutex);
902	tlb_miss_lock();
903
904	tlb0_flush_entry(va);
905	if (pmap->pm_pdir[pdir_idx] == NULL) {
906		/*
907		 * If we just allocated a new page table, hook it in
908		 * the pdir.
909		 */
910		pmap->pm_pdir[pdir_idx] = ptbl;
911	}
912	pte = &(pmap->pm_pdir[pdir_idx][ptbl_idx]);
913	pte->rpn = VM_PAGE_TO_PHYS(m) & ~PTE_PA_MASK;
914	pte->flags |= (PTE_VALID | flags);
915
916	tlb_miss_unlock();
917	mtx_unlock_spin(&tlbivax_mutex);
918}
919
920/* Return the pa for the given pmap/va. */
921static vm_paddr_t
922pte_vatopa(mmu_t mmu, pmap_t pmap, vm_offset_t va)
923{
924	vm_paddr_t pa = 0;
925	pte_t *pte;
926
927	pte = pte_find(mmu, pmap, va);
928	if ((pte != NULL) && PTE_ISVALID(pte))
929		pa = (PTE_PA(pte) | (va & PTE_PA_MASK));
930	return (pa);
931}
932
933/* Get a pointer to a PTE in a page table. */
934static pte_t *
935pte_find(mmu_t mmu, pmap_t pmap, vm_offset_t va)
936{
937	unsigned int pdir_idx = PDIR_IDX(va);
938	unsigned int ptbl_idx = PTBL_IDX(va);
939
940	KASSERT((pmap != NULL), ("pte_find: invalid pmap"));
941
942	if (pmap->pm_pdir[pdir_idx])
943		return (&(pmap->pm_pdir[pdir_idx][ptbl_idx]));
944
945	return (NULL);
946}
947
948/**************************************************************************/
949/* PMAP related */
950/**************************************************************************/
951
952/*
953 * This is called during e500_init, before the system is really initialized.
954 */
955static void
956mmu_booke_bootstrap(mmu_t mmu, vm_offset_t start, vm_offset_t kernelend)
957{
958	vm_offset_t phys_kernelend;
959	struct mem_region *mp, *mp1;
960	int cnt, i, j;
961	u_int s, e, sz;
962	u_int phys_avail_count;
963	vm_size_t physsz, hwphyssz, kstack0_sz;
964	vm_offset_t kernel_pdir, kstack0, va;
965	vm_paddr_t kstack0_phys;
966	pte_t *pte;
967
968	debugf("mmu_booke_bootstrap: entered\n");
969
970	/* Initialize invalidation mutex */
971	mtx_init(&tlbivax_mutex, "tlbivax", NULL, MTX_SPIN);
972
973	/* Read TLB0 size and associativity. */
974	tlb0_get_tlbconf();
975
976	/* Align kernel start and end address (kernel image). */
977	kernstart = trunc_page(start);
978	data_start = round_page(kernelend);
979	kernsize = data_start - kernstart;
980
981	data_end = data_start;
982
983	/* Allocate space for the message buffer. */
984	msgbufp = (struct msgbuf *)data_end;
985	data_end += MSGBUF_SIZE;
986	debugf(" msgbufp at 0x%08x end = 0x%08x\n", (uint32_t)msgbufp,
987	    data_end);
988
989	data_end = round_page(data_end);
990
991	/* Allocate space for ptbl_bufs. */
992	ptbl_bufs = (struct ptbl_buf *)data_end;
993	data_end += sizeof(struct ptbl_buf) * PTBL_BUFS;
994	debugf(" ptbl_bufs at 0x%08x end = 0x%08x\n", (uint32_t)ptbl_bufs,
995	    data_end);
996
997	data_end = round_page(data_end);
998
999	/* Allocate PTE tables for kernel KVA. */
1000	kernel_pdir = data_end;
1001	kernel_ptbls = (VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS +
1002	    PDIR_SIZE - 1) / PDIR_SIZE;
1003	data_end += kernel_ptbls * PTBL_PAGES * PAGE_SIZE;
1004	debugf(" kernel ptbls: %d\n", kernel_ptbls);
1005	debugf(" kernel pdir at 0x%08x end = 0x%08x\n", kernel_pdir, data_end);
1006
1007	debugf(" data_end: 0x%08x\n", data_end);
1008	if (data_end - kernstart > 0x1000000) {
1009		data_end = (data_end + 0x3fffff) & ~0x3fffff;
1010		tlb1_mapin_region(kernstart + 0x1000000,
1011		    kernload + 0x1000000, data_end - kernstart - 0x1000000);
1012	} else
1013		data_end = (data_end + 0xffffff) & ~0xffffff;
1014
1015	debugf(" updated data_end: 0x%08x\n", data_end);
1016
1017	kernsize += data_end - data_start;
1018
1019	/*
1020	 * Clear the structures - note we can only do it safely after the
1021	 * possible additional TLB1 translations are in place (above) so that
1022	 * all range up to the currently calculated 'data_end' is covered.
1023	 */
1024	memset((void *)ptbl_bufs, 0, sizeof(struct ptbl_buf) * PTBL_SIZE);
1025	memset((void *)kernel_pdir, 0, kernel_ptbls * PTBL_PAGES * PAGE_SIZE);
1026
1027	/*******************************************************/
1028	/* Set the start and end of kva. */
1029	/*******************************************************/
1030	virtual_avail = round_page(data_end);
1031	virtual_end = VM_MAX_KERNEL_ADDRESS;
1032
1033	/* Allocate KVA space for page zero/copy operations. */
1034	zero_page_va = virtual_avail;
1035	virtual_avail += PAGE_SIZE;
1036	zero_page_idle_va = virtual_avail;
1037	virtual_avail += PAGE_SIZE;
1038	copy_page_src_va = virtual_avail;
1039	virtual_avail += PAGE_SIZE;
1040	copy_page_dst_va = virtual_avail;
1041	virtual_avail += PAGE_SIZE;
1042	debugf("zero_page_va = 0x%08x\n", zero_page_va);
1043	debugf("zero_page_idle_va = 0x%08x\n", zero_page_idle_va);
1044	debugf("copy_page_src_va = 0x%08x\n", copy_page_src_va);
1045	debugf("copy_page_dst_va = 0x%08x\n", copy_page_dst_va);
1046
1047	/* Initialize page zero/copy mutexes. */
1048	mtx_init(&zero_page_mutex, "mmu_booke_zero_page", NULL, MTX_DEF);
1049	mtx_init(&copy_page_mutex, "mmu_booke_copy_page", NULL, MTX_DEF);
1050
1051	/* Allocate KVA space for ptbl bufs. */
1052	ptbl_buf_pool_vabase = virtual_avail;
1053	virtual_avail += PTBL_BUFS * PTBL_PAGES * PAGE_SIZE;
1054	debugf("ptbl_buf_pool_vabase = 0x%08x end = 0x%08x\n",
1055	    ptbl_buf_pool_vabase, virtual_avail);
1056
1057	/* Calculate corresponding physical addresses for the kernel region. */
1058	phys_kernelend = kernload + kernsize;
1059	debugf("kernel image and allocated data:\n");
1060	debugf(" kernload    = 0x%08x\n", kernload);
1061	debugf(" kernstart   = 0x%08x\n", kernstart);
1062	debugf(" kernsize    = 0x%08x\n", kernsize);
1063
1064	if (sizeof(phys_avail) / sizeof(phys_avail[0]) < availmem_regions_sz)
1065		panic("mmu_booke_bootstrap: phys_avail too small");
1066
1067	/*
1068	 * Remove kernel physical address range from avail regions list. Page
1069	 * align all regions.  Non-page aligned memory isn't very interesting
1070	 * to us.  Also, sort the entries for ascending addresses.
1071	 */
1072
1073	/* Retrieve phys/avail mem regions */
1074	mem_regions(&physmem_regions, &physmem_regions_sz,
1075	    &availmem_regions, &availmem_regions_sz);
1076	sz = 0;
1077	cnt = availmem_regions_sz;
1078	debugf("processing avail regions:\n");
1079	for (mp = availmem_regions; mp->mr_size; mp++) {
1080		s = mp->mr_start;
1081		e = mp->mr_start + mp->mr_size;
1082		debugf(" %08x-%08x -> ", s, e);
1083		/* Check whether this region holds all of the kernel. */
1084		if (s < kernload && e > phys_kernelend) {
1085			availmem_regions[cnt].mr_start = phys_kernelend;
1086			availmem_regions[cnt++].mr_size = e - phys_kernelend;
1087			e = kernload;
1088		}
1089		/* Look whether this regions starts within the kernel. */
1090		if (s >= kernload && s < phys_kernelend) {
1091			if (e <= phys_kernelend)
1092				goto empty;
1093			s = phys_kernelend;
1094		}
1095		/* Now look whether this region ends within the kernel. */
1096		if (e > kernload && e <= phys_kernelend) {
1097			if (s >= kernload)
1098				goto empty;
1099			e = kernload;
1100		}
1101		/* Now page align the start and size of the region. */
1102		s = round_page(s);
1103		e = trunc_page(e);
1104		if (e < s)
1105			e = s;
1106		sz = e - s;
1107		debugf("%08x-%08x = %x\n", s, e, sz);
1108
1109		/* Check whether some memory is left here. */
1110		if (sz == 0) {
1111		empty:
1112			memmove(mp, mp + 1,
1113			    (cnt - (mp - availmem_regions)) * sizeof(*mp));
1114			cnt--;
1115			mp--;
1116			continue;
1117		}
1118
1119		/* Do an insertion sort. */
1120		for (mp1 = availmem_regions; mp1 < mp; mp1++)
1121			if (s < mp1->mr_start)
1122				break;
1123		if (mp1 < mp) {
1124			memmove(mp1 + 1, mp1, (char *)mp - (char *)mp1);
1125			mp1->mr_start = s;
1126			mp1->mr_size = sz;
1127		} else {
1128			mp->mr_start = s;
1129			mp->mr_size = sz;
1130		}
1131	}
1132	availmem_regions_sz = cnt;
1133
1134	/*******************************************************/
1135	/* Steal physical memory for kernel stack from the end */
1136	/* of the first avail region                           */
1137	/*******************************************************/
1138	kstack0_sz = KSTACK_PAGES * PAGE_SIZE;
1139	kstack0_phys = availmem_regions[0].mr_start +
1140	    availmem_regions[0].mr_size;
1141	kstack0_phys -= kstack0_sz;
1142	availmem_regions[0].mr_size -= kstack0_sz;
1143
1144	/*******************************************************/
1145	/* Fill in phys_avail table, based on availmem_regions */
1146	/*******************************************************/
1147	phys_avail_count = 0;
1148	physsz = 0;
1149	hwphyssz = 0;
1150	TUNABLE_ULONG_FETCH("hw.physmem", (u_long *) &hwphyssz);
1151
1152	debugf("fill in phys_avail:\n");
1153	for (i = 0, j = 0; i < availmem_regions_sz; i++, j += 2) {
1154
1155		debugf(" region: 0x%08x - 0x%08x (0x%08x)\n",
1156		    availmem_regions[i].mr_start,
1157		    availmem_regions[i].mr_start +
1158		        availmem_regions[i].mr_size,
1159		    availmem_regions[i].mr_size);
1160
1161		if (hwphyssz != 0 &&
1162		    (physsz + availmem_regions[i].mr_size) >= hwphyssz) {
1163			debugf(" hw.physmem adjust\n");
1164			if (physsz < hwphyssz) {
1165				phys_avail[j] = availmem_regions[i].mr_start;
1166				phys_avail[j + 1] =
1167				    availmem_regions[i].mr_start +
1168				    hwphyssz - physsz;
1169				physsz = hwphyssz;
1170				phys_avail_count++;
1171			}
1172			break;
1173		}
1174
1175		phys_avail[j] = availmem_regions[i].mr_start;
1176		phys_avail[j + 1] = availmem_regions[i].mr_start +
1177		    availmem_regions[i].mr_size;
1178		phys_avail_count++;
1179		physsz += availmem_regions[i].mr_size;
1180	}
1181	physmem = btoc(physsz);
1182
1183	/* Calculate the last available physical address. */
1184	for (i = 0; phys_avail[i + 2] != 0; i += 2)
1185		;
1186	Maxmem = powerpc_btop(phys_avail[i + 1]);
1187
1188	debugf("Maxmem = 0x%08lx\n", Maxmem);
1189	debugf("phys_avail_count = %d\n", phys_avail_count);
1190	debugf("physsz = 0x%08x physmem = %ld (0x%08lx)\n", physsz, physmem,
1191	    physmem);
1192
1193	/*******************************************************/
1194	/* Initialize (statically allocated) kernel pmap. */
1195	/*******************************************************/
1196	PMAP_LOCK_INIT(kernel_pmap);
1197	kptbl_min = VM_MIN_KERNEL_ADDRESS / PDIR_SIZE;
1198
1199	debugf("kernel_pmap = 0x%08x\n", (uint32_t)kernel_pmap);
1200	debugf("kptbl_min = %d, kernel_ptbls = %d\n", kptbl_min, kernel_ptbls);
1201	debugf("kernel pdir range: 0x%08x - 0x%08x\n",
1202	    kptbl_min * PDIR_SIZE, (kptbl_min + kernel_ptbls) * PDIR_SIZE - 1);
1203
1204	/* Initialize kernel pdir */
1205	for (i = 0; i < kernel_ptbls; i++)
1206		kernel_pmap->pm_pdir[kptbl_min + i] =
1207		    (pte_t *)(kernel_pdir + (i * PAGE_SIZE * PTBL_PAGES));
1208
1209	for (i = 0; i < MAXCPU; i++) {
1210		kernel_pmap->pm_tid[i] = TID_KERNEL;
1211
1212		/* Initialize each CPU's tidbusy entry 0 with kernel_pmap */
1213		tidbusy[i][0] = kernel_pmap;
1214	}
1215
1216	/*
1217	 * Fill in PTEs covering kernel code and data. They are not required
1218	 * for address translation, as this area is covered by static TLB1
1219	 * entries, but for pte_vatopa() to work correctly with kernel area
1220	 * addresses.
1221	 */
1222	for (va = KERNBASE; va < data_end; va += PAGE_SIZE) {
1223		pte = &(kernel_pmap->pm_pdir[PDIR_IDX(va)][PTBL_IDX(va)]);
1224		pte->rpn = kernload + (va - KERNBASE);
1225		pte->flags = PTE_M | PTE_SR | PTE_SW | PTE_SX | PTE_WIRED |
1226		    PTE_VALID;
1227	}
1228	/* Mark kernel_pmap active on all CPUs */
1229	kernel_pmap->pm_active = ~0;
1230
1231	/*******************************************************/
1232	/* Final setup */
1233	/*******************************************************/
1234
1235	/* Enter kstack0 into kernel map, provide guard page */
1236	kstack0 = virtual_avail + KSTACK_GUARD_PAGES * PAGE_SIZE;
1237	thread0.td_kstack = kstack0;
1238	thread0.td_kstack_pages = KSTACK_PAGES;
1239
1240	debugf("kstack_sz = 0x%08x\n", kstack0_sz);
1241	debugf("kstack0_phys at 0x%08x - 0x%08x\n",
1242	    kstack0_phys, kstack0_phys + kstack0_sz);
1243	debugf("kstack0 at 0x%08x - 0x%08x\n", kstack0, kstack0 + kstack0_sz);
1244
1245	virtual_avail += KSTACK_GUARD_PAGES * PAGE_SIZE + kstack0_sz;
1246	for (i = 0; i < KSTACK_PAGES; i++) {
1247		mmu_booke_kenter(mmu, kstack0, kstack0_phys);
1248		kstack0 += PAGE_SIZE;
1249		kstack0_phys += PAGE_SIZE;
1250	}
1251
1252	debugf("virtual_avail = %08x\n", virtual_avail);
1253	debugf("virtual_end   = %08x\n", virtual_end);
1254
1255	debugf("mmu_booke_bootstrap: exit\n");
1256}
1257
1258void
1259pmap_bootstrap_ap(volatile uint32_t *trcp __unused)
1260{
1261	int i;
1262
1263	/*
1264	 * Finish TLB1 configuration: the BSP already set up its TLB1 and we
1265	 * have the snapshot of its contents in the s/w tlb1[] table, so use
1266	 * these values directly to (re)program AP's TLB1 hardware.
1267	 */
1268	for (i = 0; i < tlb1_idx; i ++) {
1269		/* Skip invalid entries */
1270		if (!(tlb1[i].mas1 & MAS1_VALID))
1271			continue;
1272
1273		tlb1_write_entry(i);
1274	}
1275
1276	set_mas4_defaults();
1277}
1278
1279/*
1280 * Get the physical page address for the given pmap/virtual address.
1281 */
1282static vm_paddr_t
1283mmu_booke_extract(mmu_t mmu, pmap_t pmap, vm_offset_t va)
1284{
1285	vm_paddr_t pa;
1286
1287	PMAP_LOCK(pmap);
1288	pa = pte_vatopa(mmu, pmap, va);
1289	PMAP_UNLOCK(pmap);
1290
1291	return (pa);
1292}
1293
1294/*
1295 * Extract the physical page address associated with the given
1296 * kernel virtual address.
1297 */
1298static vm_paddr_t
1299mmu_booke_kextract(mmu_t mmu, vm_offset_t va)
1300{
1301
1302	return (pte_vatopa(mmu, kernel_pmap, va));
1303}
1304
1305/*
1306 * Initialize the pmap module.
1307 * Called by vm_init, to initialize any structures that the pmap
1308 * system needs to map virtual memory.
1309 */
1310static void
1311mmu_booke_init(mmu_t mmu)
1312{
1313	int shpgperproc = PMAP_SHPGPERPROC;
1314
1315	/*
1316	 * Initialize the address space (zone) for the pv entries.  Set a
1317	 * high water mark so that the system can recover from excessive
1318	 * numbers of pv entries.
1319	 */
1320	pvzone = uma_zcreate("PV ENTRY", sizeof(struct pv_entry), NULL, NULL,
1321	    NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_VM | UMA_ZONE_NOFREE);
1322
1323	TUNABLE_INT_FETCH("vm.pmap.shpgperproc", &shpgperproc);
1324	pv_entry_max = shpgperproc * maxproc + cnt.v_page_count;
1325
1326	TUNABLE_INT_FETCH("vm.pmap.pv_entries", &pv_entry_max);
1327	pv_entry_high_water = 9 * (pv_entry_max / 10);
1328
1329	uma_zone_set_obj(pvzone, &pvzone_obj, pv_entry_max);
1330
1331	/* Pre-fill pvzone with initial number of pv entries. */
1332	uma_prealloc(pvzone, PV_ENTRY_ZONE_MIN);
1333
1334	/* Initialize ptbl allocation. */
1335	ptbl_init();
1336}
1337
1338/*
1339 * Map a list of wired pages into kernel virtual address space.  This is
1340 * intended for temporary mappings which do not need page modification or
1341 * references recorded.  Existing mappings in the region are overwritten.
1342 */
1343static void
1344mmu_booke_qenter(mmu_t mmu, vm_offset_t sva, vm_page_t *m, int count)
1345{
1346	vm_offset_t va;
1347
1348	va = sva;
1349	while (count-- > 0) {
1350		mmu_booke_kenter(mmu, va, VM_PAGE_TO_PHYS(*m));
1351		va += PAGE_SIZE;
1352		m++;
1353	}
1354}
1355
1356/*
1357 * Remove page mappings from kernel virtual address space.  Intended for
1358 * temporary mappings entered by mmu_booke_qenter.
1359 */
1360static void
1361mmu_booke_qremove(mmu_t mmu, vm_offset_t sva, int count)
1362{
1363	vm_offset_t va;
1364
1365	va = sva;
1366	while (count-- > 0) {
1367		mmu_booke_kremove(mmu, va);
1368		va += PAGE_SIZE;
1369	}
1370}
1371
1372/*
1373 * Map a wired page into kernel virtual address space.
1374 */
1375static void
1376mmu_booke_kenter(mmu_t mmu, vm_offset_t va, vm_offset_t pa)
1377{
1378	unsigned int pdir_idx = PDIR_IDX(va);
1379	unsigned int ptbl_idx = PTBL_IDX(va);
1380	uint32_t flags;
1381	pte_t *pte;
1382
1383	KASSERT(((va >= VM_MIN_KERNEL_ADDRESS) &&
1384	    (va <= VM_MAX_KERNEL_ADDRESS)), ("mmu_booke_kenter: invalid va"));
1385
1386	flags = 0;
1387	flags |= (PTE_SR | PTE_SW | PTE_SX | PTE_WIRED | PTE_VALID);
1388	flags |= PTE_M;
1389
1390	pte = &(kernel_pmap->pm_pdir[pdir_idx][ptbl_idx]);
1391
1392	mtx_lock_spin(&tlbivax_mutex);
1393	tlb_miss_lock();
1394
1395	if (PTE_ISVALID(pte)) {
1396
1397		CTR1(KTR_PMAP, "%s: replacing entry!", __func__);
1398
1399		/* Flush entry from TLB0 */
1400		tlb0_flush_entry(va);
1401	}
1402
1403	pte->rpn = pa & ~PTE_PA_MASK;
1404	pte->flags = flags;
1405
1406	//debugf("mmu_booke_kenter: pdir_idx = %d ptbl_idx = %d va=0x%08x "
1407	//		"pa=0x%08x rpn=0x%08x flags=0x%08x\n",
1408	//		pdir_idx, ptbl_idx, va, pa, pte->rpn, pte->flags);
1409
1410	/* Flush the real memory from the instruction cache. */
1411	if ((flags & (PTE_I | PTE_G)) == 0) {
1412		__syncicache((void *)va, PAGE_SIZE);
1413	}
1414
1415	tlb_miss_unlock();
1416	mtx_unlock_spin(&tlbivax_mutex);
1417}
1418
1419/*
1420 * Remove a page from kernel page table.
1421 */
1422static void
1423mmu_booke_kremove(mmu_t mmu, vm_offset_t va)
1424{
1425	unsigned int pdir_idx = PDIR_IDX(va);
1426	unsigned int ptbl_idx = PTBL_IDX(va);
1427	pte_t *pte;
1428
1429//	CTR2(KTR_PMAP,("%s: s (va = 0x%08x)\n", __func__, va));
1430
1431	KASSERT(((va >= VM_MIN_KERNEL_ADDRESS) &&
1432	    (va <= VM_MAX_KERNEL_ADDRESS)),
1433	    ("mmu_booke_kremove: invalid va"));
1434
1435	pte = &(kernel_pmap->pm_pdir[pdir_idx][ptbl_idx]);
1436
1437	if (!PTE_ISVALID(pte)) {
1438
1439		CTR1(KTR_PMAP, "%s: invalid pte", __func__);
1440
1441		return;
1442	}
1443
1444	mtx_lock_spin(&tlbivax_mutex);
1445	tlb_miss_lock();
1446
1447	/* Invalidate entry in TLB0, update PTE. */
1448	tlb0_flush_entry(va);
1449	pte->flags = 0;
1450	pte->rpn = 0;
1451
1452	tlb_miss_unlock();
1453	mtx_unlock_spin(&tlbivax_mutex);
1454}
1455
1456/*
1457 * Initialize pmap associated with process 0.
1458 */
1459static void
1460mmu_booke_pinit0(mmu_t mmu, pmap_t pmap)
1461{
1462
1463	mmu_booke_pinit(mmu, pmap);
1464	PCPU_SET(curpmap, pmap);
1465}
1466
1467/*
1468 * Initialize a preallocated and zeroed pmap structure,
1469 * such as one in a vmspace structure.
1470 */
1471static void
1472mmu_booke_pinit(mmu_t mmu, pmap_t pmap)
1473{
1474	int i;
1475
1476	CTR4(KTR_PMAP, "%s: pmap = %p, proc %d '%s'", __func__, pmap,
1477	    curthread->td_proc->p_pid, curthread->td_proc->p_comm);
1478
1479	KASSERT((pmap != kernel_pmap), ("pmap_pinit: initializing kernel_pmap"));
1480
1481	PMAP_LOCK_INIT(pmap);
1482	for (i = 0; i < MAXCPU; i++)
1483		pmap->pm_tid[i] = TID_NONE;
1484	pmap->pm_active = 0;
1485	bzero(&pmap->pm_stats, sizeof(pmap->pm_stats));
1486	bzero(&pmap->pm_pdir, sizeof(pte_t *) * PDIR_NENTRIES);
1487	TAILQ_INIT(&pmap->pm_ptbl_list);
1488}
1489
1490/*
1491 * Release any resources held by the given physical map.
1492 * Called when a pmap initialized by mmu_booke_pinit is being released.
1493 * Should only be called if the map contains no valid mappings.
1494 */
1495static void
1496mmu_booke_release(mmu_t mmu, pmap_t pmap)
1497{
1498
1499	printf("mmu_booke_release: s\n");
1500
1501	KASSERT(pmap->pm_stats.resident_count == 0,
1502	    ("pmap_release: pmap resident count %ld != 0",
1503	    pmap->pm_stats.resident_count));
1504
1505	PMAP_LOCK_DESTROY(pmap);
1506}
1507
1508/*
1509 * Insert the given physical page at the specified virtual address in the
1510 * target physical map with the protection requested. If specified the page
1511 * will be wired down.
1512 */
1513static void
1514mmu_booke_enter(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_page_t m,
1515    vm_prot_t prot, boolean_t wired)
1516{
1517
1518	vm_page_lock_queues();
1519	PMAP_LOCK(pmap);
1520	mmu_booke_enter_locked(mmu, pmap, va, m, prot, wired);
1521	vm_page_unlock_queues();
1522	PMAP_UNLOCK(pmap);
1523}
1524
1525static void
1526mmu_booke_enter_locked(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_page_t m,
1527    vm_prot_t prot, boolean_t wired)
1528{
1529	pte_t *pte;
1530	vm_paddr_t pa;
1531	uint32_t flags;
1532	int su, sync;
1533
1534	pa = VM_PAGE_TO_PHYS(m);
1535	su = (pmap == kernel_pmap);
1536	sync = 0;
1537
1538	//debugf("mmu_booke_enter_locked: s (pmap=0x%08x su=%d tid=%d m=0x%08x va=0x%08x "
1539	//		"pa=0x%08x prot=0x%08x wired=%d)\n",
1540	//		(u_int32_t)pmap, su, pmap->pm_tid,
1541	//		(u_int32_t)m, va, pa, prot, wired);
1542
1543	if (su) {
1544		KASSERT(((va >= virtual_avail) &&
1545		    (va <= VM_MAX_KERNEL_ADDRESS)),
1546		    ("mmu_booke_enter_locked: kernel pmap, non kernel va"));
1547	} else {
1548		KASSERT((va <= VM_MAXUSER_ADDRESS),
1549		    ("mmu_booke_enter_locked: user pmap, non user va"));
1550	}
1551
1552	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1553
1554	/*
1555	 * If there is an existing mapping, and the physical address has not
1556	 * changed, must be protection or wiring change.
1557	 */
1558	if (((pte = pte_find(mmu, pmap, va)) != NULL) &&
1559	    (PTE_ISVALID(pte)) && (PTE_PA(pte) == pa)) {
1560
1561		/*
1562		 * Before actually updating pte->flags we calculate and
1563		 * prepare its new value in a helper var.
1564		 */
1565		flags = pte->flags;
1566		flags &= ~(PTE_UW | PTE_UX | PTE_SW | PTE_SX | PTE_MODIFIED);
1567
1568		/* Wiring change, just update stats. */
1569		if (wired) {
1570			if (!PTE_ISWIRED(pte)) {
1571				flags |= PTE_WIRED;
1572				pmap->pm_stats.wired_count++;
1573			}
1574		} else {
1575			if (PTE_ISWIRED(pte)) {
1576				flags &= ~PTE_WIRED;
1577				pmap->pm_stats.wired_count--;
1578			}
1579		}
1580
1581		if (prot & VM_PROT_WRITE) {
1582			/* Add write permissions. */
1583			flags |= PTE_SW;
1584			if (!su)
1585				flags |= PTE_UW;
1586
1587			vm_page_flag_set(m, PG_WRITEABLE);
1588		} else {
1589			/* Handle modified pages, sense modify status. */
1590
1591			/*
1592			 * The PTE_MODIFIED flag could be set by underlying
1593			 * TLB misses since we last read it (above), possibly
1594			 * other CPUs could update it so we check in the PTE
1595			 * directly rather than rely on that saved local flags
1596			 * copy.
1597			 */
1598			if (PTE_ISMODIFIED(pte))
1599				vm_page_dirty(m);
1600		}
1601
1602		if (prot & VM_PROT_EXECUTE) {
1603			flags |= PTE_SX;
1604			if (!su)
1605				flags |= PTE_UX;
1606
1607			/*
1608			 * Check existing flags for execute permissions: if we
1609			 * are turning execute permissions on, icache should
1610			 * be flushed.
1611			 */
1612			if ((flags & (PTE_UX | PTE_SX)) == 0)
1613				sync++;
1614		}
1615
1616		flags &= ~PTE_REFERENCED;
1617
1618		/*
1619		 * The new flags value is all calculated -- only now actually
1620		 * update the PTE.
1621		 */
1622		mtx_lock_spin(&tlbivax_mutex);
1623		tlb_miss_lock();
1624
1625		tlb0_flush_entry(va);
1626		pte->flags = flags;
1627
1628		tlb_miss_unlock();
1629		mtx_unlock_spin(&tlbivax_mutex);
1630
1631	} else {
1632		/*
1633		 * If there is an existing mapping, but it's for a different
1634		 * physical address, pte_enter() will delete the old mapping.
1635		 */
1636		//if ((pte != NULL) && PTE_ISVALID(pte))
1637		//	debugf("mmu_booke_enter_locked: replace\n");
1638		//else
1639		//	debugf("mmu_booke_enter_locked: new\n");
1640
1641		/* Now set up the flags and install the new mapping. */
1642		flags = (PTE_SR | PTE_VALID);
1643		flags |= PTE_M;
1644
1645		if (!su)
1646			flags |= PTE_UR;
1647
1648		if (prot & VM_PROT_WRITE) {
1649			flags |= PTE_SW;
1650			if (!su)
1651				flags |= PTE_UW;
1652
1653			vm_page_flag_set(m, PG_WRITEABLE);
1654		}
1655
1656		if (prot & VM_PROT_EXECUTE) {
1657			flags |= PTE_SX;
1658			if (!su)
1659				flags |= PTE_UX;
1660		}
1661
1662		/* If its wired update stats. */
1663		if (wired) {
1664			pmap->pm_stats.wired_count++;
1665			flags |= PTE_WIRED;
1666		}
1667
1668		pte_enter(mmu, pmap, m, va, flags);
1669
1670		/* Flush the real memory from the instruction cache. */
1671		if (prot & VM_PROT_EXECUTE)
1672			sync++;
1673	}
1674
1675	if (sync && (su || pmap == PCPU_GET(curpmap))) {
1676		__syncicache((void *)va, PAGE_SIZE);
1677		sync = 0;
1678	}
1679
1680	if (sync) {
1681		/* Create a temporary mapping. */
1682		pmap = PCPU_GET(curpmap);
1683
1684		va = 0;
1685		pte = pte_find(mmu, pmap, va);
1686		KASSERT(pte == NULL, ("%s:%d", __func__, __LINE__));
1687
1688		flags = PTE_SR | PTE_VALID | PTE_UR | PTE_M;
1689
1690		pte_enter(mmu, pmap, m, va, flags);
1691		__syncicache((void *)va, PAGE_SIZE);
1692		pte_remove(mmu, pmap, va, PTBL_UNHOLD);
1693	}
1694}
1695
1696/*
1697 * Maps a sequence of resident pages belonging to the same object.
1698 * The sequence begins with the given page m_start.  This page is
1699 * mapped at the given virtual address start.  Each subsequent page is
1700 * mapped at a virtual address that is offset from start by the same
1701 * amount as the page is offset from m_start within the object.  The
1702 * last page in the sequence is the page with the largest offset from
1703 * m_start that can be mapped at a virtual address less than the given
1704 * virtual address end.  Not every virtual page between start and end
1705 * is mapped; only those for which a resident page exists with the
1706 * corresponding offset from m_start are mapped.
1707 */
1708static void
1709mmu_booke_enter_object(mmu_t mmu, pmap_t pmap, vm_offset_t start,
1710    vm_offset_t end, vm_page_t m_start, vm_prot_t prot)
1711{
1712	vm_page_t m;
1713	vm_pindex_t diff, psize;
1714
1715	psize = atop(end - start);
1716	m = m_start;
1717	PMAP_LOCK(pmap);
1718	while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) {
1719		mmu_booke_enter_locked(mmu, pmap, start + ptoa(diff), m,
1720		    prot & (VM_PROT_READ | VM_PROT_EXECUTE), FALSE);
1721		m = TAILQ_NEXT(m, listq);
1722	}
1723	PMAP_UNLOCK(pmap);
1724}
1725
1726static void
1727mmu_booke_enter_quick(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_page_t m,
1728    vm_prot_t prot)
1729{
1730
1731	PMAP_LOCK(pmap);
1732	mmu_booke_enter_locked(mmu, pmap, va, m,
1733	    prot & (VM_PROT_READ | VM_PROT_EXECUTE), FALSE);
1734	PMAP_UNLOCK(pmap);
1735}
1736
1737/*
1738 * Remove the given range of addresses from the specified map.
1739 *
1740 * It is assumed that the start and end are properly rounded to the page size.
1741 */
1742static void
1743mmu_booke_remove(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_offset_t endva)
1744{
1745	pte_t *pte;
1746	uint8_t hold_flag;
1747
1748	int su = (pmap == kernel_pmap);
1749
1750	//debugf("mmu_booke_remove: s (su = %d pmap=0x%08x tid=%d va=0x%08x endva=0x%08x)\n",
1751	//		su, (u_int32_t)pmap, pmap->pm_tid, va, endva);
1752
1753	if (su) {
1754		KASSERT(((va >= virtual_avail) &&
1755		    (va <= VM_MAX_KERNEL_ADDRESS)),
1756		    ("mmu_booke_remove: kernel pmap, non kernel va"));
1757	} else {
1758		KASSERT((va <= VM_MAXUSER_ADDRESS),
1759		    ("mmu_booke_remove: user pmap, non user va"));
1760	}
1761
1762	if (PMAP_REMOVE_DONE(pmap)) {
1763		//debugf("mmu_booke_remove: e (empty)\n");
1764		return;
1765	}
1766
1767	hold_flag = PTBL_HOLD_FLAG(pmap);
1768	//debugf("mmu_booke_remove: hold_flag = %d\n", hold_flag);
1769
1770	vm_page_lock_queues();
1771	PMAP_LOCK(pmap);
1772	for (; va < endva; va += PAGE_SIZE) {
1773		pte = pte_find(mmu, pmap, va);
1774		if ((pte != NULL) && PTE_ISVALID(pte))
1775			pte_remove(mmu, pmap, va, hold_flag);
1776	}
1777	PMAP_UNLOCK(pmap);
1778	vm_page_unlock_queues();
1779
1780	//debugf("mmu_booke_remove: e\n");
1781}
1782
1783/*
1784 * Remove physical page from all pmaps in which it resides.
1785 */
1786static void
1787mmu_booke_remove_all(mmu_t mmu, vm_page_t m)
1788{
1789	pv_entry_t pv, pvn;
1790	uint8_t hold_flag;
1791
1792	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1793
1794	for (pv = TAILQ_FIRST(&m->md.pv_list); pv != NULL; pv = pvn) {
1795		pvn = TAILQ_NEXT(pv, pv_link);
1796
1797		PMAP_LOCK(pv->pv_pmap);
1798		hold_flag = PTBL_HOLD_FLAG(pv->pv_pmap);
1799		pte_remove(mmu, pv->pv_pmap, pv->pv_va, hold_flag);
1800		PMAP_UNLOCK(pv->pv_pmap);
1801	}
1802	vm_page_flag_clear(m, PG_WRITEABLE);
1803}
1804
1805/*
1806 * Map a range of physical addresses into kernel virtual address space.
1807 */
1808static vm_offset_t
1809mmu_booke_map(mmu_t mmu, vm_offset_t *virt, vm_offset_t pa_start,
1810    vm_offset_t pa_end, int prot)
1811{
1812	vm_offset_t sva = *virt;
1813	vm_offset_t va = sva;
1814
1815	//debugf("mmu_booke_map: s (sva = 0x%08x pa_start = 0x%08x pa_end = 0x%08x)\n",
1816	//		sva, pa_start, pa_end);
1817
1818	while (pa_start < pa_end) {
1819		mmu_booke_kenter(mmu, va, pa_start);
1820		va += PAGE_SIZE;
1821		pa_start += PAGE_SIZE;
1822	}
1823	*virt = va;
1824
1825	//debugf("mmu_booke_map: e (va = 0x%08x)\n", va);
1826	return (sva);
1827}
1828
1829/*
1830 * The pmap must be activated before it's address space can be accessed in any
1831 * way.
1832 */
1833static void
1834mmu_booke_activate(mmu_t mmu, struct thread *td)
1835{
1836	pmap_t pmap;
1837
1838	pmap = &td->td_proc->p_vmspace->vm_pmap;
1839
1840	CTR5(KTR_PMAP, "%s: s (td = %p, proc = '%s', id = %d, pmap = 0x%08x)",
1841	    __func__, td, td->td_proc->p_comm, td->td_proc->p_pid, pmap);
1842
1843	KASSERT((pmap != kernel_pmap), ("mmu_booke_activate: kernel_pmap!"));
1844
1845	mtx_lock_spin(&sched_lock);
1846
1847	atomic_set_int(&pmap->pm_active, PCPU_GET(cpumask));
1848	PCPU_SET(curpmap, pmap);
1849
1850	if (pmap->pm_tid[PCPU_GET(cpuid)] == TID_NONE)
1851		tid_alloc(pmap);
1852
1853	/* Load PID0 register with pmap tid value. */
1854	mtspr(SPR_PID0, pmap->pm_tid[PCPU_GET(cpuid)]);
1855	__asm __volatile("isync");
1856
1857	mtx_unlock_spin(&sched_lock);
1858
1859	CTR3(KTR_PMAP, "%s: e (tid = %d for '%s')", __func__,
1860	    pmap->pm_tid[PCPU_GET(cpuid)], td->td_proc->p_comm);
1861}
1862
1863/*
1864 * Deactivate the specified process's address space.
1865 */
1866static void
1867mmu_booke_deactivate(mmu_t mmu, struct thread *td)
1868{
1869	pmap_t pmap;
1870
1871	pmap = &td->td_proc->p_vmspace->vm_pmap;
1872
1873	CTR5(KTR_PMAP, "%s: td=%p, proc = '%s', id = %d, pmap = 0x%08x",
1874	    __func__, td, td->td_proc->p_comm, td->td_proc->p_pid, pmap);
1875
1876	atomic_clear_int(&pmap->pm_active, PCPU_GET(cpumask));
1877	PCPU_SET(curpmap, NULL);
1878}
1879
1880/*
1881 * Copy the range specified by src_addr/len
1882 * from the source map to the range dst_addr/len
1883 * in the destination map.
1884 *
1885 * This routine is only advisory and need not do anything.
1886 */
1887static void
1888mmu_booke_copy(mmu_t mmu, pmap_t dst_pmap, pmap_t src_pmap,
1889    vm_offset_t dst_addr, vm_size_t len, vm_offset_t src_addr)
1890{
1891
1892}
1893
1894/*
1895 * Set the physical protection on the specified range of this map as requested.
1896 */
1897static void
1898mmu_booke_protect(mmu_t mmu, pmap_t pmap, vm_offset_t sva, vm_offset_t eva,
1899    vm_prot_t prot)
1900{
1901	vm_offset_t va;
1902	vm_page_t m;
1903	pte_t *pte;
1904
1905	if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
1906		mmu_booke_remove(mmu, pmap, sva, eva);
1907		return;
1908	}
1909
1910	if (prot & VM_PROT_WRITE)
1911		return;
1912
1913	vm_page_lock_queues();
1914	PMAP_LOCK(pmap);
1915	for (va = sva; va < eva; va += PAGE_SIZE) {
1916		if ((pte = pte_find(mmu, pmap, va)) != NULL) {
1917			if (PTE_ISVALID(pte)) {
1918				m = PHYS_TO_VM_PAGE(PTE_PA(pte));
1919
1920				mtx_lock_spin(&tlbivax_mutex);
1921				tlb_miss_lock();
1922
1923				/* Handle modified pages. */
1924				if (PTE_ISMODIFIED(pte))
1925					vm_page_dirty(m);
1926
1927				/* Referenced pages. */
1928				if (PTE_ISREFERENCED(pte))
1929					vm_page_flag_set(m, PG_REFERENCED);
1930
1931				tlb0_flush_entry(va);
1932				pte->flags &= ~(PTE_UW | PTE_SW | PTE_MODIFIED |
1933				    PTE_REFERENCED);
1934
1935				tlb_miss_unlock();
1936				mtx_unlock_spin(&tlbivax_mutex);
1937			}
1938		}
1939	}
1940	PMAP_UNLOCK(pmap);
1941	vm_page_unlock_queues();
1942}
1943
1944/*
1945 * Clear the write and modified bits in each of the given page's mappings.
1946 */
1947static void
1948mmu_booke_remove_write(mmu_t mmu, vm_page_t m)
1949{
1950	pv_entry_t pv;
1951	pte_t *pte;
1952
1953	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1954	if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) != 0 ||
1955	    (m->flags & PG_WRITEABLE) == 0)
1956		return;
1957
1958	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
1959		PMAP_LOCK(pv->pv_pmap);
1960		if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL) {
1961			if (PTE_ISVALID(pte)) {
1962				m = PHYS_TO_VM_PAGE(PTE_PA(pte));
1963
1964				mtx_lock_spin(&tlbivax_mutex);
1965				tlb_miss_lock();
1966
1967				/* Handle modified pages. */
1968				if (PTE_ISMODIFIED(pte))
1969					vm_page_dirty(m);
1970
1971				/* Referenced pages. */
1972				if (PTE_ISREFERENCED(pte))
1973					vm_page_flag_set(m, PG_REFERENCED);
1974
1975				/* Flush mapping from TLB0. */
1976				pte->flags &= ~(PTE_UW | PTE_SW | PTE_MODIFIED |
1977				    PTE_REFERENCED);
1978
1979				tlb_miss_unlock();
1980				mtx_unlock_spin(&tlbivax_mutex);
1981			}
1982		}
1983		PMAP_UNLOCK(pv->pv_pmap);
1984	}
1985	vm_page_flag_clear(m, PG_WRITEABLE);
1986}
1987
1988static boolean_t
1989mmu_booke_page_executable(mmu_t mmu, vm_page_t m)
1990{
1991	pv_entry_t pv;
1992	pte_t *pte;
1993	boolean_t executable;
1994
1995	executable = FALSE;
1996	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
1997		PMAP_LOCK(pv->pv_pmap);
1998		pte = pte_find(mmu, pv->pv_pmap, pv->pv_va);
1999		if (pte != NULL && PTE_ISVALID(pte) && (pte->flags & PTE_UX))
2000			executable = TRUE;
2001		PMAP_UNLOCK(pv->pv_pmap);
2002		if (executable)
2003			break;
2004	}
2005
2006	return (executable);
2007}
2008
2009/*
2010 * Atomically extract and hold the physical page with the given
2011 * pmap and virtual address pair if that mapping permits the given
2012 * protection.
2013 */
2014static vm_page_t
2015mmu_booke_extract_and_hold(mmu_t mmu, pmap_t pmap, vm_offset_t va,
2016    vm_prot_t prot)
2017{
2018	pte_t *pte;
2019	vm_page_t m;
2020	uint32_t pte_wbit;
2021
2022	m = NULL;
2023	vm_page_lock_queues();
2024	PMAP_LOCK(pmap);
2025
2026	pte = pte_find(mmu, pmap, va);
2027	if ((pte != NULL) && PTE_ISVALID(pte)) {
2028		if (pmap == kernel_pmap)
2029			pte_wbit = PTE_SW;
2030		else
2031			pte_wbit = PTE_UW;
2032
2033		if ((pte->flags & pte_wbit) || ((prot & VM_PROT_WRITE) == 0)) {
2034			m = PHYS_TO_VM_PAGE(PTE_PA(pte));
2035			vm_page_hold(m);
2036		}
2037	}
2038
2039	vm_page_unlock_queues();
2040	PMAP_UNLOCK(pmap);
2041	return (m);
2042}
2043
2044/*
2045 * Initialize a vm_page's machine-dependent fields.
2046 */
2047static void
2048mmu_booke_page_init(mmu_t mmu, vm_page_t m)
2049{
2050
2051	TAILQ_INIT(&m->md.pv_list);
2052}
2053
2054/*
2055 * mmu_booke_zero_page_area zeros the specified hardware page by
2056 * mapping it into virtual memory and using bzero to clear
2057 * its contents.
2058 *
2059 * off and size must reside within a single page.
2060 */
2061static void
2062mmu_booke_zero_page_area(mmu_t mmu, vm_page_t m, int off, int size)
2063{
2064	vm_offset_t va;
2065
2066	/* XXX KASSERT off and size are within a single page? */
2067
2068	mtx_lock(&zero_page_mutex);
2069	va = zero_page_va;
2070
2071	mmu_booke_kenter(mmu, va, VM_PAGE_TO_PHYS(m));
2072	bzero((caddr_t)va + off, size);
2073	mmu_booke_kremove(mmu, va);
2074
2075	mtx_unlock(&zero_page_mutex);
2076}
2077
2078/*
2079 * mmu_booke_zero_page zeros the specified hardware page.
2080 */
2081static void
2082mmu_booke_zero_page(mmu_t mmu, vm_page_t m)
2083{
2084
2085	mmu_booke_zero_page_area(mmu, m, 0, PAGE_SIZE);
2086}
2087
2088/*
2089 * mmu_booke_copy_page copies the specified (machine independent) page by
2090 * mapping the page into virtual memory and using memcopy to copy the page,
2091 * one machine dependent page at a time.
2092 */
2093static void
2094mmu_booke_copy_page(mmu_t mmu, vm_page_t sm, vm_page_t dm)
2095{
2096	vm_offset_t sva, dva;
2097
2098	sva = copy_page_src_va;
2099	dva = copy_page_dst_va;
2100
2101	mtx_lock(&copy_page_mutex);
2102	mmu_booke_kenter(mmu, sva, VM_PAGE_TO_PHYS(sm));
2103	mmu_booke_kenter(mmu, dva, VM_PAGE_TO_PHYS(dm));
2104	memcpy((caddr_t)dva, (caddr_t)sva, PAGE_SIZE);
2105	mmu_booke_kremove(mmu, dva);
2106	mmu_booke_kremove(mmu, sva);
2107	mtx_unlock(&copy_page_mutex);
2108}
2109
2110/*
2111 * mmu_booke_zero_page_idle zeros the specified hardware page by mapping it
2112 * into virtual memory and using bzero to clear its contents. This is intended
2113 * to be called from the vm_pagezero process only and outside of Giant. No
2114 * lock is required.
2115 */
2116static void
2117mmu_booke_zero_page_idle(mmu_t mmu, vm_page_t m)
2118{
2119	vm_offset_t va;
2120
2121	va = zero_page_idle_va;
2122	mmu_booke_kenter(mmu, va, VM_PAGE_TO_PHYS(m));
2123	bzero((caddr_t)va, PAGE_SIZE);
2124	mmu_booke_kremove(mmu, va);
2125}
2126
2127/*
2128 * Return whether or not the specified physical page was modified
2129 * in any of physical maps.
2130 */
2131static boolean_t
2132mmu_booke_is_modified(mmu_t mmu, vm_page_t m)
2133{
2134	pte_t *pte;
2135	pv_entry_t pv;
2136
2137	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2138	if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) != 0)
2139		return (FALSE);
2140
2141	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
2142		PMAP_LOCK(pv->pv_pmap);
2143		if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL) {
2144			if (!PTE_ISVALID(pte))
2145				goto make_sure_to_unlock;
2146
2147			if (PTE_ISMODIFIED(pte)) {
2148				PMAP_UNLOCK(pv->pv_pmap);
2149				return (TRUE);
2150			}
2151		}
2152make_sure_to_unlock:
2153		PMAP_UNLOCK(pv->pv_pmap);
2154	}
2155	return (FALSE);
2156}
2157
2158/*
2159 * Return whether or not the specified virtual address is eligible
2160 * for prefault.
2161 */
2162static boolean_t
2163mmu_booke_is_prefaultable(mmu_t mmu, pmap_t pmap, vm_offset_t addr)
2164{
2165
2166	return (FALSE);
2167}
2168
2169/*
2170 * Clear the modify bits on the specified physical page.
2171 */
2172static void
2173mmu_booke_clear_modify(mmu_t mmu, vm_page_t m)
2174{
2175	pte_t *pte;
2176	pv_entry_t pv;
2177
2178	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2179	if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) != 0)
2180		return;
2181
2182	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
2183		PMAP_LOCK(pv->pv_pmap);
2184		if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL) {
2185			if (!PTE_ISVALID(pte))
2186				goto make_sure_to_unlock;
2187
2188			mtx_lock_spin(&tlbivax_mutex);
2189			tlb_miss_lock();
2190
2191			if (pte->flags & (PTE_SW | PTE_UW | PTE_MODIFIED)) {
2192				tlb0_flush_entry(pv->pv_va);
2193				pte->flags &= ~(PTE_SW | PTE_UW | PTE_MODIFIED |
2194				    PTE_REFERENCED);
2195			}
2196
2197			tlb_miss_unlock();
2198			mtx_unlock_spin(&tlbivax_mutex);
2199		}
2200make_sure_to_unlock:
2201		PMAP_UNLOCK(pv->pv_pmap);
2202	}
2203}
2204
2205/*
2206 * Return a count of reference bits for a page, clearing those bits.
2207 * It is not necessary for every reference bit to be cleared, but it
2208 * is necessary that 0 only be returned when there are truly no
2209 * reference bits set.
2210 *
2211 * XXX: The exact number of bits to check and clear is a matter that
2212 * should be tested and standardized at some point in the future for
2213 * optimal aging of shared pages.
2214 */
2215static int
2216mmu_booke_ts_referenced(mmu_t mmu, vm_page_t m)
2217{
2218	pte_t *pte;
2219	pv_entry_t pv;
2220	int count;
2221
2222	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2223	if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) != 0)
2224		return (0);
2225
2226	count = 0;
2227	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
2228		PMAP_LOCK(pv->pv_pmap);
2229		if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL) {
2230			if (!PTE_ISVALID(pte))
2231				goto make_sure_to_unlock;
2232
2233			if (PTE_ISREFERENCED(pte)) {
2234				mtx_lock_spin(&tlbivax_mutex);
2235				tlb_miss_lock();
2236
2237				tlb0_flush_entry(pv->pv_va);
2238				pte->flags &= ~PTE_REFERENCED;
2239
2240				tlb_miss_unlock();
2241				mtx_unlock_spin(&tlbivax_mutex);
2242
2243				if (++count > 4) {
2244					PMAP_UNLOCK(pv->pv_pmap);
2245					break;
2246				}
2247			}
2248		}
2249make_sure_to_unlock:
2250		PMAP_UNLOCK(pv->pv_pmap);
2251	}
2252	return (count);
2253}
2254
2255/*
2256 * Clear the reference bit on the specified physical page.
2257 */
2258static void
2259mmu_booke_clear_reference(mmu_t mmu, vm_page_t m)
2260{
2261	pte_t *pte;
2262	pv_entry_t pv;
2263
2264	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2265	if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) != 0)
2266		return;
2267
2268	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
2269		PMAP_LOCK(pv->pv_pmap);
2270		if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL) {
2271			if (!PTE_ISVALID(pte))
2272				goto make_sure_to_unlock;
2273
2274			if (PTE_ISREFERENCED(pte)) {
2275				mtx_lock_spin(&tlbivax_mutex);
2276				tlb_miss_lock();
2277
2278				tlb0_flush_entry(pv->pv_va);
2279				pte->flags &= ~PTE_REFERENCED;
2280
2281				tlb_miss_unlock();
2282				mtx_unlock_spin(&tlbivax_mutex);
2283			}
2284		}
2285make_sure_to_unlock:
2286		PMAP_UNLOCK(pv->pv_pmap);
2287	}
2288}
2289
2290/*
2291 * Change wiring attribute for a map/virtual-address pair.
2292 */
2293static void
2294mmu_booke_change_wiring(mmu_t mmu, pmap_t pmap, vm_offset_t va, boolean_t wired)
2295{
2296	pte_t *pte;;
2297
2298	PMAP_LOCK(pmap);
2299	if ((pte = pte_find(mmu, pmap, va)) != NULL) {
2300		if (wired) {
2301			if (!PTE_ISWIRED(pte)) {
2302				pte->flags |= PTE_WIRED;
2303				pmap->pm_stats.wired_count++;
2304			}
2305		} else {
2306			if (PTE_ISWIRED(pte)) {
2307				pte->flags &= ~PTE_WIRED;
2308				pmap->pm_stats.wired_count--;
2309			}
2310		}
2311	}
2312	PMAP_UNLOCK(pmap);
2313}
2314
2315/*
2316 * Return true if the pmap's pv is one of the first 16 pvs linked to from this
2317 * page.  This count may be changed upwards or downwards in the future; it is
2318 * only necessary that true be returned for a small subset of pmaps for proper
2319 * page aging.
2320 */
2321static boolean_t
2322mmu_booke_page_exists_quick(mmu_t mmu, pmap_t pmap, vm_page_t m)
2323{
2324	pv_entry_t pv;
2325	int loops;
2326
2327	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2328	if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) != 0)
2329		return (FALSE);
2330
2331	loops = 0;
2332	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
2333		if (pv->pv_pmap == pmap)
2334			return (TRUE);
2335
2336		if (++loops >= 16)
2337			break;
2338	}
2339	return (FALSE);
2340}
2341
2342/*
2343 * Return the number of managed mappings to the given physical page that are
2344 * wired.
2345 */
2346static int
2347mmu_booke_page_wired_mappings(mmu_t mmu, vm_page_t m)
2348{
2349	pv_entry_t pv;
2350	pte_t *pte;
2351	int count = 0;
2352
2353	if ((m->flags & PG_FICTITIOUS) != 0)
2354		return (count);
2355	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2356
2357	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
2358		PMAP_LOCK(pv->pv_pmap);
2359		if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL)
2360			if (PTE_ISVALID(pte) && PTE_ISWIRED(pte))
2361				count++;
2362		PMAP_UNLOCK(pv->pv_pmap);
2363	}
2364
2365	return (count);
2366}
2367
2368static int
2369mmu_booke_dev_direct_mapped(mmu_t mmu, vm_offset_t pa, vm_size_t size)
2370{
2371	int i;
2372	vm_offset_t va;
2373
2374	/*
2375	 * This currently does not work for entries that
2376	 * overlap TLB1 entries.
2377	 */
2378	for (i = 0; i < tlb1_idx; i ++) {
2379		if (tlb1_iomapped(i, pa, size, &va) == 0)
2380			return (0);
2381	}
2382
2383	return (EFAULT);
2384}
2385
2386vm_offset_t
2387mmu_booke_dumpsys_map(mmu_t mmu, struct pmap_md *md, vm_size_t ofs,
2388    vm_size_t *sz)
2389{
2390	vm_paddr_t pa, ppa;
2391	vm_offset_t va;
2392	vm_size_t gran;
2393
2394	/* Raw physical memory dumps don't have a virtual address. */
2395	if (md->md_vaddr == ~0UL) {
2396		/* We always map a 256MB page at 256M. */
2397		gran = 256 * 1024 * 1024;
2398		pa = md->md_paddr + ofs;
2399		ppa = pa & ~(gran - 1);
2400		ofs = pa - ppa;
2401		va = gran;
2402		tlb1_set_entry(va, ppa, gran, _TLB_ENTRY_IO);
2403		if (*sz > (gran - ofs))
2404			*sz = gran - ofs;
2405		return (va + ofs);
2406	}
2407
2408	/* Minidumps are based on virtual memory addresses. */
2409	va = md->md_vaddr + ofs;
2410	if (va >= kernstart + kernsize) {
2411		gran = PAGE_SIZE - (va & PAGE_MASK);
2412		if (*sz > gran)
2413			*sz = gran;
2414	}
2415	return (va);
2416}
2417
2418void
2419mmu_booke_dumpsys_unmap(mmu_t mmu, struct pmap_md *md, vm_size_t ofs,
2420    vm_offset_t va)
2421{
2422
2423	/* Raw physical memory dumps don't have a virtual address. */
2424	if (md->md_vaddr == ~0UL) {
2425		tlb1_idx--;
2426		tlb1[tlb1_idx].mas1 = 0;
2427		tlb1[tlb1_idx].mas2 = 0;
2428		tlb1[tlb1_idx].mas3 = 0;
2429		tlb1_write_entry(tlb1_idx);
2430		return;
2431	}
2432
2433	/* Minidumps are based on virtual memory addresses. */
2434	/* Nothing to do... */
2435}
2436
2437struct pmap_md *
2438mmu_booke_scan_md(mmu_t mmu, struct pmap_md *prev)
2439{
2440	static struct pmap_md md;
2441	struct bi_mem_region *mr;
2442	pte_t *pte;
2443	vm_offset_t va;
2444
2445	if (dumpsys_minidump) {
2446		md.md_paddr = ~0UL;	/* Minidumps use virtual addresses. */
2447		if (prev == NULL) {
2448			/* 1st: kernel .data and .bss. */
2449			md.md_index = 1;
2450			md.md_vaddr = trunc_page((uintptr_t)_etext);
2451			md.md_size = round_page((uintptr_t)_end) - md.md_vaddr;
2452			return (&md);
2453		}
2454		switch (prev->md_index) {
2455		case 1:
2456			/* 2nd: msgbuf and tables (see pmap_bootstrap()). */
2457			md.md_index = 2;
2458			md.md_vaddr = data_start;
2459			md.md_size = data_end - data_start;
2460			break;
2461		case 2:
2462			/* 3rd: kernel VM. */
2463			va = prev->md_vaddr + prev->md_size;
2464			/* Find start of next chunk (from va). */
2465			while (va < virtual_end) {
2466				/* Don't dump the buffer cache. */
2467				if (va >= kmi.buffer_sva &&
2468				    va < kmi.buffer_eva) {
2469					va = kmi.buffer_eva;
2470					continue;
2471				}
2472				pte = pte_find(mmu, kernel_pmap, va);
2473				if (pte != NULL && PTE_ISVALID(pte))
2474					break;
2475				va += PAGE_SIZE;
2476			}
2477			if (va < virtual_end) {
2478				md.md_vaddr = va;
2479				va += PAGE_SIZE;
2480				/* Find last page in chunk. */
2481				while (va < virtual_end) {
2482					/* Don't run into the buffer cache. */
2483					if (va == kmi.buffer_sva)
2484						break;
2485					pte = pte_find(mmu, kernel_pmap, va);
2486					if (pte == NULL || !PTE_ISVALID(pte))
2487						break;
2488					va += PAGE_SIZE;
2489				}
2490				md.md_size = va - md.md_vaddr;
2491				break;
2492			}
2493			md.md_index = 3;
2494			/* FALLTHROUGH */
2495		default:
2496			return (NULL);
2497		}
2498	} else { /* minidumps */
2499		mr = bootinfo_mr();
2500		if (prev == NULL) {
2501			/* first physical chunk. */
2502			md.md_paddr = mr->mem_base;
2503			md.md_size = mr->mem_size;
2504			md.md_vaddr = ~0UL;
2505			md.md_index = 1;
2506		} else if (md.md_index < bootinfo->bi_mem_reg_no) {
2507			md.md_paddr = mr[md.md_index].mem_base;
2508			md.md_size = mr[md.md_index].mem_size;
2509			md.md_vaddr = ~0UL;
2510			md.md_index++;
2511		} else {
2512			/* There's no next physical chunk. */
2513			return (NULL);
2514		}
2515	}
2516
2517	return (&md);
2518}
2519
2520/*
2521 * Map a set of physical memory pages into the kernel virtual address space.
2522 * Return a pointer to where it is mapped. This routine is intended to be used
2523 * for mapping device memory, NOT real memory.
2524 */
2525static void *
2526mmu_booke_mapdev(mmu_t mmu, vm_offset_t pa, vm_size_t size)
2527{
2528	void *res;
2529	uintptr_t va;
2530	vm_size_t sz;
2531
2532	va = (pa >= 0x80000000) ? pa : (0xe2000000 + pa);
2533	res = (void *)va;
2534
2535	do {
2536		sz = 1 << (ilog2(size) & ~1);
2537		if (bootverbose)
2538			printf("Wiring VA=%x to PA=%x (size=%x), "
2539			    "using TLB1[%d]\n", va, pa, sz, tlb1_idx);
2540		tlb1_set_entry(va, pa, sz, _TLB_ENTRY_IO);
2541		size -= sz;
2542		pa += sz;
2543		va += sz;
2544	} while (size > 0);
2545
2546	return (res);
2547}
2548
2549/*
2550 * 'Unmap' a range mapped by mmu_booke_mapdev().
2551 */
2552static void
2553mmu_booke_unmapdev(mmu_t mmu, vm_offset_t va, vm_size_t size)
2554{
2555	vm_offset_t base, offset;
2556
2557	/*
2558	 * Unmap only if this is inside kernel virtual space.
2559	 */
2560	if ((va >= VM_MIN_KERNEL_ADDRESS) && (va <= VM_MAX_KERNEL_ADDRESS)) {
2561		base = trunc_page(va);
2562		offset = va & PAGE_MASK;
2563		size = roundup(offset + size, PAGE_SIZE);
2564		kmem_free(kernel_map, base, size);
2565	}
2566}
2567
2568/*
2569 * mmu_booke_object_init_pt preloads the ptes for a given object into the
2570 * specified pmap. This eliminates the blast of soft faults on process startup
2571 * and immediately after an mmap.
2572 */
2573static void
2574mmu_booke_object_init_pt(mmu_t mmu, pmap_t pmap, vm_offset_t addr,
2575    vm_object_t object, vm_pindex_t pindex, vm_size_t size)
2576{
2577
2578	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
2579	KASSERT(object->type == OBJT_DEVICE,
2580	    ("mmu_booke_object_init_pt: non-device object"));
2581}
2582
2583/*
2584 * Perform the pmap work for mincore.
2585 */
2586static int
2587mmu_booke_mincore(mmu_t mmu, pmap_t pmap, vm_offset_t addr)
2588{
2589
2590	TODO;
2591	return (0);
2592}
2593
2594/**************************************************************************/
2595/* TID handling */
2596/**************************************************************************/
2597
2598/*
2599 * Allocate a TID. If necessary, steal one from someone else.
2600 * The new TID is flushed from the TLB before returning.
2601 */
2602static tlbtid_t
2603tid_alloc(pmap_t pmap)
2604{
2605	tlbtid_t tid;
2606	int thiscpu;
2607
2608	KASSERT((pmap != kernel_pmap), ("tid_alloc: kernel pmap"));
2609
2610	CTR2(KTR_PMAP, "%s: s (pmap = %p)", __func__, pmap);
2611
2612	thiscpu = PCPU_GET(cpuid);
2613
2614	tid = PCPU_GET(tid_next);
2615	if (tid > TID_MAX)
2616		tid = TID_MIN;
2617	PCPU_SET(tid_next, tid + 1);
2618
2619	/* If we are stealing TID then clear the relevant pmap's field */
2620	if (tidbusy[thiscpu][tid] != NULL) {
2621
2622		CTR2(KTR_PMAP, "%s: warning: stealing tid %d", __func__, tid);
2623
2624		tidbusy[thiscpu][tid]->pm_tid[thiscpu] = TID_NONE;
2625
2626		/* Flush all entries from TLB0 matching this TID. */
2627		tid_flush(tid);
2628	}
2629
2630	tidbusy[thiscpu][tid] = pmap;
2631	pmap->pm_tid[thiscpu] = tid;
2632	__asm __volatile("msync; isync");
2633
2634	CTR3(KTR_PMAP, "%s: e (%02d next = %02d)", __func__, tid,
2635	    PCPU_GET(tid_next));
2636
2637	return (tid);
2638}
2639
2640/**************************************************************************/
2641/* TLB0 handling */
2642/**************************************************************************/
2643
2644static void
2645tlb_print_entry(int i, uint32_t mas1, uint32_t mas2, uint32_t mas3,
2646    uint32_t mas7)
2647{
2648	int as;
2649	char desc[3];
2650	tlbtid_t tid;
2651	vm_size_t size;
2652	unsigned int tsize;
2653
2654	desc[2] = '\0';
2655	if (mas1 & MAS1_VALID)
2656		desc[0] = 'V';
2657	else
2658		desc[0] = ' ';
2659
2660	if (mas1 & MAS1_IPROT)
2661		desc[1] = 'P';
2662	else
2663		desc[1] = ' ';
2664
2665	as = (mas1 & MAS1_TS_MASK) ? 1 : 0;
2666	tid = MAS1_GETTID(mas1);
2667
2668	tsize = (mas1 & MAS1_TSIZE_MASK) >> MAS1_TSIZE_SHIFT;
2669	size = 0;
2670	if (tsize)
2671		size = tsize2size(tsize);
2672
2673	debugf("%3d: (%s) [AS=%d] "
2674	    "sz = 0x%08x tsz = %d tid = %d mas1 = 0x%08x "
2675	    "mas2(va) = 0x%08x mas3(pa) = 0x%08x mas7 = 0x%08x\n",
2676	    i, desc, as, size, tsize, tid, mas1, mas2, mas3, mas7);
2677}
2678
2679/* Convert TLB0 va and way number to tlb0[] table index. */
2680static inline unsigned int
2681tlb0_tableidx(vm_offset_t va, unsigned int way)
2682{
2683	unsigned int idx;
2684
2685	idx = (way * TLB0_ENTRIES_PER_WAY);
2686	idx += (va & MAS2_TLB0_ENTRY_IDX_MASK) >> MAS2_TLB0_ENTRY_IDX_SHIFT;
2687	return (idx);
2688}
2689
2690/*
2691 * Invalidate TLB0 entry.
2692 */
2693static inline void
2694tlb0_flush_entry(vm_offset_t va)
2695{
2696
2697	CTR2(KTR_PMAP, "%s: s va=0x%08x", __func__, va);
2698
2699	mtx_assert(&tlbivax_mutex, MA_OWNED);
2700
2701	__asm __volatile("tlbivax 0, %0" :: "r"(va & MAS2_EPN_MASK));
2702	__asm __volatile("isync; msync");
2703	__asm __volatile("tlbsync; msync");
2704
2705	CTR1(KTR_PMAP, "%s: e", __func__);
2706}
2707
2708/* Print out contents of the MAS registers for each TLB0 entry */
2709void
2710tlb0_print_tlbentries(void)
2711{
2712	uint32_t mas0, mas1, mas2, mas3, mas7;
2713	int entryidx, way, idx;
2714
2715	debugf("TLB0 entries:\n");
2716	for (way = 0; way < TLB0_WAYS; way ++)
2717		for (entryidx = 0; entryidx < TLB0_ENTRIES_PER_WAY; entryidx++) {
2718
2719			mas0 = MAS0_TLBSEL(0) | MAS0_ESEL(way);
2720			mtspr(SPR_MAS0, mas0);
2721			__asm __volatile("isync");
2722
2723			mas2 = entryidx << MAS2_TLB0_ENTRY_IDX_SHIFT;
2724			mtspr(SPR_MAS2, mas2);
2725
2726			__asm __volatile("isync; tlbre");
2727
2728			mas1 = mfspr(SPR_MAS1);
2729			mas2 = mfspr(SPR_MAS2);
2730			mas3 = mfspr(SPR_MAS3);
2731			mas7 = mfspr(SPR_MAS7);
2732
2733			idx = tlb0_tableidx(mas2, way);
2734			tlb_print_entry(idx, mas1, mas2, mas3, mas7);
2735		}
2736}
2737
2738/**************************************************************************/
2739/* TLB1 handling */
2740/**************************************************************************/
2741
2742/*
2743 * TLB1 mapping notes:
2744 *
2745 * TLB1[0]	CCSRBAR
2746 * TLB1[1]	Kernel text and data.
2747 * TLB1[2-15]	Additional kernel text and data mappings (if required), PCI
2748 *		windows, other devices mappings.
2749 */
2750
2751/*
2752 * Write given entry to TLB1 hardware.
2753 * Use 32 bit pa, clear 4 high-order bits of RPN (mas7).
2754 */
2755static void
2756tlb1_write_entry(unsigned int idx)
2757{
2758	uint32_t mas0, mas7;
2759
2760	//debugf("tlb1_write_entry: s\n");
2761
2762	/* Clear high order RPN bits */
2763	mas7 = 0;
2764
2765	/* Select entry */
2766	mas0 = MAS0_TLBSEL(1) | MAS0_ESEL(idx);
2767	//debugf("tlb1_write_entry: mas0 = 0x%08x\n", mas0);
2768
2769	mtspr(SPR_MAS0, mas0);
2770	__asm __volatile("isync");
2771	mtspr(SPR_MAS1, tlb1[idx].mas1);
2772	__asm __volatile("isync");
2773	mtspr(SPR_MAS2, tlb1[idx].mas2);
2774	__asm __volatile("isync");
2775	mtspr(SPR_MAS3, tlb1[idx].mas3);
2776	__asm __volatile("isync");
2777	mtspr(SPR_MAS7, mas7);
2778	__asm __volatile("isync; tlbwe; isync; msync");
2779
2780	//debugf("tlb1_write_entry: e\n");;
2781}
2782
2783/*
2784 * Return the largest uint value log such that 2^log <= num.
2785 */
2786static unsigned int
2787ilog2(unsigned int num)
2788{
2789	int lz;
2790
2791	__asm ("cntlzw %0, %1" : "=r" (lz) : "r" (num));
2792	return (31 - lz);
2793}
2794
2795/*
2796 * Convert TLB TSIZE value to mapped region size.
2797 */
2798static vm_size_t
2799tsize2size(unsigned int tsize)
2800{
2801
2802	/*
2803	 * size = 4^tsize KB
2804	 * size = 4^tsize * 2^10 = 2^(2 * tsize - 10)
2805	 */
2806
2807	return ((1 << (2 * tsize)) * 1024);
2808}
2809
2810/*
2811 * Convert region size (must be power of 4) to TLB TSIZE value.
2812 */
2813static unsigned int
2814size2tsize(vm_size_t size)
2815{
2816
2817	return (ilog2(size) / 2 - 5);
2818}
2819
2820/*
2821 * Register permanent kernel mapping in TLB1.
2822 *
2823 * Entries are created starting from index 0 (current free entry is
2824 * kept in tlb1_idx) and are not supposed to be invalidated.
2825 */
2826static int
2827tlb1_set_entry(vm_offset_t va, vm_offset_t pa, vm_size_t size,
2828    uint32_t flags)
2829{
2830	uint32_t ts, tid;
2831	int tsize;
2832
2833	if (tlb1_idx >= TLB1_ENTRIES) {
2834		printf("tlb1_set_entry: TLB1 full!\n");
2835		return (-1);
2836	}
2837
2838	/* Convert size to TSIZE */
2839	tsize = size2tsize(size);
2840
2841	tid = (TID_KERNEL << MAS1_TID_SHIFT) & MAS1_TID_MASK;
2842	/* XXX TS is hard coded to 0 for now as we only use single address space */
2843	ts = (0 << MAS1_TS_SHIFT) & MAS1_TS_MASK;
2844
2845	/* XXX LOCK tlb1[] */
2846
2847	tlb1[tlb1_idx].mas1 = MAS1_VALID | MAS1_IPROT | ts | tid;
2848	tlb1[tlb1_idx].mas1 |= ((tsize << MAS1_TSIZE_SHIFT) & MAS1_TSIZE_MASK);
2849	tlb1[tlb1_idx].mas2 = (va & MAS2_EPN_MASK) | flags;
2850
2851	/* Set supervisor RWX permission bits */
2852	tlb1[tlb1_idx].mas3 = (pa & MAS3_RPN) | MAS3_SR | MAS3_SW | MAS3_SX;
2853
2854	tlb1_write_entry(tlb1_idx++);
2855
2856	/* XXX UNLOCK tlb1[] */
2857
2858	/*
2859	 * XXX in general TLB1 updates should be propagated between CPUs,
2860	 * since current design assumes to have the same TLB1 set-up on all
2861	 * cores.
2862	 */
2863	return (0);
2864}
2865
2866static int
2867tlb1_entry_size_cmp(const void *a, const void *b)
2868{
2869	const vm_size_t *sza;
2870	const vm_size_t *szb;
2871
2872	sza = a;
2873	szb = b;
2874	if (*sza > *szb)
2875		return (-1);
2876	else if (*sza < *szb)
2877		return (1);
2878	else
2879		return (0);
2880}
2881
2882/*
2883 * Map in contiguous RAM region into the TLB1 using maximum of
2884 * KERNEL_REGION_MAX_TLB_ENTRIES entries.
2885 *
2886 * If necessary round up last entry size and return total size
2887 * used by all allocated entries.
2888 */
2889vm_size_t
2890tlb1_mapin_region(vm_offset_t va, vm_offset_t pa, vm_size_t size)
2891{
2892	vm_size_t entry_size[KERNEL_REGION_MAX_TLB_ENTRIES];
2893	vm_size_t mapped_size, sz, esz;
2894	unsigned int log;
2895	int i;
2896
2897	CTR4(KTR_PMAP, "%s: region size = 0x%08x va = 0x%08x pa = 0x%08x",
2898	    __func__, size, va, pa);
2899
2900	mapped_size = 0;
2901	sz = size;
2902	memset(entry_size, 0, sizeof(entry_size));
2903
2904	/* Calculate entry sizes. */
2905	for (i = 0; i < KERNEL_REGION_MAX_TLB_ENTRIES && sz > 0; i++) {
2906
2907		/* Largest region that is power of 4 and fits within size */
2908		log = ilog2(sz) / 2;
2909		esz = 1 << (2 * log);
2910
2911		/* If this is last entry cover remaining size. */
2912		if (i ==  KERNEL_REGION_MAX_TLB_ENTRIES - 1) {
2913			while (esz < sz)
2914				esz = esz << 2;
2915		}
2916
2917		entry_size[i] = esz;
2918		mapped_size += esz;
2919		if (esz < sz)
2920			sz -= esz;
2921		else
2922			sz = 0;
2923	}
2924
2925	/* Sort entry sizes, required to get proper entry address alignment. */
2926	qsort(entry_size, KERNEL_REGION_MAX_TLB_ENTRIES,
2927	    sizeof(vm_size_t), tlb1_entry_size_cmp);
2928
2929	/* Load TLB1 entries. */
2930	for (i = 0; i < KERNEL_REGION_MAX_TLB_ENTRIES; i++) {
2931		esz = entry_size[i];
2932		if (!esz)
2933			break;
2934
2935		CTR5(KTR_PMAP, "%s: entry %d: sz  = 0x%08x (va = 0x%08x "
2936		    "pa = 0x%08x)", __func__, tlb1_idx, esz, va, pa);
2937
2938		tlb1_set_entry(va, pa, esz, _TLB_ENTRY_MEM);
2939
2940		va += esz;
2941		pa += esz;
2942	}
2943
2944	CTR3(KTR_PMAP, "%s: mapped size 0x%08x (wasted space 0x%08x)",
2945	    __func__, mapped_size, mapped_size - size);
2946
2947	return (mapped_size);
2948}
2949
2950/*
2951 * TLB1 initialization routine, to be called after the very first
2952 * assembler level setup done in locore.S.
2953 */
2954void
2955tlb1_init(vm_offset_t ccsrbar)
2956{
2957	uint32_t mas0;
2958
2959	/* TLB1[1] is used to map the kernel. Save that entry. */
2960	mas0 = MAS0_TLBSEL(1) | MAS0_ESEL(1);
2961	mtspr(SPR_MAS0, mas0);
2962	__asm __volatile("isync; tlbre");
2963
2964	tlb1[1].mas1 = mfspr(SPR_MAS1);
2965	tlb1[1].mas2 = mfspr(SPR_MAS2);
2966	tlb1[1].mas3 = mfspr(SPR_MAS3);
2967
2968	/* Map in CCSRBAR in TLB1[0] */
2969	tlb1_idx = 0;
2970	tlb1_set_entry(CCSRBAR_VA, ccsrbar, CCSRBAR_SIZE, _TLB_ENTRY_IO);
2971	/*
2972	 * Set the next available TLB1 entry index. Note TLB[1] is reserved
2973	 * for initial mapping of kernel text+data, which was set early in
2974	 * locore, we need to skip this [busy] entry.
2975	 */
2976	tlb1_idx = 2;
2977
2978	/* Setup TLB miss defaults */
2979	set_mas4_defaults();
2980}
2981
2982/*
2983 * Setup MAS4 defaults.
2984 * These values are loaded to MAS0-2 on a TLB miss.
2985 */
2986static void
2987set_mas4_defaults(void)
2988{
2989	uint32_t mas4;
2990
2991	/* Defaults: TLB0, PID0, TSIZED=4K */
2992	mas4 = MAS4_TLBSELD0;
2993	mas4 |= (TLB_SIZE_4K << MAS4_TSIZED_SHIFT) & MAS4_TSIZED_MASK;
2994#ifdef SMP
2995	mas4 |= MAS4_MD;
2996#endif
2997	mtspr(SPR_MAS4, mas4);
2998	__asm __volatile("isync");
2999}
3000
3001/*
3002 * Print out contents of the MAS registers for each TLB1 entry
3003 */
3004void
3005tlb1_print_tlbentries(void)
3006{
3007	uint32_t mas0, mas1, mas2, mas3, mas7;
3008	int i;
3009
3010	debugf("TLB1 entries:\n");
3011	for (i = 0; i < TLB1_ENTRIES; i++) {
3012
3013		mas0 = MAS0_TLBSEL(1) | MAS0_ESEL(i);
3014		mtspr(SPR_MAS0, mas0);
3015
3016		__asm __volatile("isync; tlbre");
3017
3018		mas1 = mfspr(SPR_MAS1);
3019		mas2 = mfspr(SPR_MAS2);
3020		mas3 = mfspr(SPR_MAS3);
3021		mas7 = mfspr(SPR_MAS7);
3022
3023		tlb_print_entry(i, mas1, mas2, mas3, mas7);
3024	}
3025}
3026
3027/*
3028 * Print out contents of the in-ram tlb1 table.
3029 */
3030void
3031tlb1_print_entries(void)
3032{
3033	int i;
3034
3035	debugf("tlb1[] table entries:\n");
3036	for (i = 0; i < TLB1_ENTRIES; i++)
3037		tlb_print_entry(i, tlb1[i].mas1, tlb1[i].mas2, tlb1[i].mas3, 0);
3038}
3039
3040/*
3041 * Return 0 if the physical IO range is encompassed by one of the
3042 * the TLB1 entries, otherwise return related error code.
3043 */
3044static int
3045tlb1_iomapped(int i, vm_paddr_t pa, vm_size_t size, vm_offset_t *va)
3046{
3047	uint32_t prot;
3048	vm_paddr_t pa_start;
3049	vm_paddr_t pa_end;
3050	unsigned int entry_tsize;
3051	vm_size_t entry_size;
3052
3053	*va = (vm_offset_t)NULL;
3054
3055	/* Skip invalid entries */
3056	if (!(tlb1[i].mas1 & MAS1_VALID))
3057		return (EINVAL);
3058
3059	/*
3060	 * The entry must be cache-inhibited, guarded, and r/w
3061	 * so it can function as an i/o page
3062	 */
3063	prot = tlb1[i].mas2 & (MAS2_I | MAS2_G);
3064	if (prot != (MAS2_I | MAS2_G))
3065		return (EPERM);
3066
3067	prot = tlb1[i].mas3 & (MAS3_SR | MAS3_SW);
3068	if (prot != (MAS3_SR | MAS3_SW))
3069		return (EPERM);
3070
3071	/* The address should be within the entry range. */
3072	entry_tsize = (tlb1[i].mas1 & MAS1_TSIZE_MASK) >> MAS1_TSIZE_SHIFT;
3073	KASSERT((entry_tsize), ("tlb1_iomapped: invalid entry tsize"));
3074
3075	entry_size = tsize2size(entry_tsize);
3076	pa_start = tlb1[i].mas3 & MAS3_RPN;
3077	pa_end = pa_start + entry_size - 1;
3078
3079	if ((pa < pa_start) || ((pa + size) > pa_end))
3080		return (ERANGE);
3081
3082	/* Return virtual address of this mapping. */
3083	*va = (tlb1[i].mas2 & MAS2_EPN_MASK) + (pa - pa_start);
3084	return (0);
3085}
3086