pmap.c revision 194101
1/*-
2 * Copyright (C) 2007-2009 Semihalf, Rafal Jaworowski <raj@semihalf.com>
3 * Copyright (C) 2006 Semihalf, Marian Balakowicz <m8@semihalf.com>
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN
18 * NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
19 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
20 * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
21 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
22 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
23 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
24 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25 *
26 * Some hw specific parts of this pmap were derived or influenced
27 * by NetBSD's ibm4xx pmap module. More generic code is shared with
28 * a few other pmap modules from the FreeBSD tree.
29 */
30
31 /*
32  * VM layout notes:
33  *
34  * Kernel and user threads run within one common virtual address space
35  * defined by AS=0.
36  *
37  * Virtual address space layout:
38  * -----------------------------
39  * 0x0000_0000 - 0xafff_ffff	: user process
40  * 0xb000_0000 - 0xbfff_ffff	: pmap_mapdev()-ed area (PCI/PCIE etc.)
41  * 0xc000_0000 - 0xc0ff_ffff	: kernel reserved
42  *   0xc000_0000 - data_end	: kernel code+data, env, metadata etc.
43  * 0xc100_0000 - 0xfeef_ffff	: KVA
44  *   0xc100_0000 - 0xc100_3fff : reserved for page zero/copy
45  *   0xc100_4000 - 0xc200_3fff : reserved for ptbl bufs
46  *   0xc200_4000 - 0xc200_8fff : guard page + kstack0
47  *   0xc200_9000 - 0xfeef_ffff	: actual free KVA space
48  * 0xfef0_0000 - 0xffff_ffff	: I/O devices region
49  */
50
51#include <sys/cdefs.h>
52__FBSDID("$FreeBSD: head/sys/powerpc/booke/pmap.c 194101 2009-06-13 08:57:04Z raj $");
53
54#include <sys/types.h>
55#include <sys/param.h>
56#include <sys/malloc.h>
57#include <sys/ktr.h>
58#include <sys/proc.h>
59#include <sys/user.h>
60#include <sys/queue.h>
61#include <sys/systm.h>
62#include <sys/kernel.h>
63#include <sys/msgbuf.h>
64#include <sys/lock.h>
65#include <sys/mutex.h>
66#include <sys/smp.h>
67#include <sys/vmmeter.h>
68
69#include <vm/vm.h>
70#include <vm/vm_page.h>
71#include <vm/vm_kern.h>
72#include <vm/vm_pageout.h>
73#include <vm/vm_extern.h>
74#include <vm/vm_object.h>
75#include <vm/vm_param.h>
76#include <vm/vm_map.h>
77#include <vm/vm_pager.h>
78#include <vm/uma.h>
79
80#include <machine/bootinfo.h>
81#include <machine/cpu.h>
82#include <machine/pcb.h>
83#include <machine/platform.h>
84
85#include <machine/tlb.h>
86#include <machine/spr.h>
87#include <machine/vmparam.h>
88#include <machine/md_var.h>
89#include <machine/mmuvar.h>
90#include <machine/pmap.h>
91#include <machine/pte.h>
92
93#include "mmu_if.h"
94
95#define DEBUG
96#undef DEBUG
97
98#ifdef  DEBUG
99#define debugf(fmt, args...) printf(fmt, ##args)
100#else
101#define debugf(fmt, args...)
102#endif
103
104#define TODO			panic("%s: not implemented", __func__);
105
106#include "opt_sched.h"
107#ifndef SCHED_4BSD
108#error "e500 only works with SCHED_4BSD which uses a global scheduler lock."
109#endif
110extern struct mtx sched_lock;
111
112extern int dumpsys_minidump;
113
114extern unsigned char _etext[];
115extern unsigned char _end[];
116
117/* Kernel physical load address. */
118extern uint32_t kernload;
119vm_offset_t kernstart;
120vm_size_t kernsize;
121
122/* Message buffer and tables. */
123static vm_offset_t data_start;
124static vm_size_t data_end;
125
126/* Phys/avail memory regions. */
127static struct mem_region *availmem_regions;
128static int availmem_regions_sz;
129static struct mem_region *physmem_regions;
130static int physmem_regions_sz;
131
132/* Reserved KVA space and mutex for mmu_booke_zero_page. */
133static vm_offset_t zero_page_va;
134static struct mtx zero_page_mutex;
135
136static struct mtx tlbivax_mutex;
137
138/*
139 * Reserved KVA space for mmu_booke_zero_page_idle. This is used
140 * by idle thred only, no lock required.
141 */
142static vm_offset_t zero_page_idle_va;
143
144/* Reserved KVA space and mutex for mmu_booke_copy_page. */
145static vm_offset_t copy_page_src_va;
146static vm_offset_t copy_page_dst_va;
147static struct mtx copy_page_mutex;
148
149/**************************************************************************/
150/* PMAP */
151/**************************************************************************/
152
153static void mmu_booke_enter_locked(mmu_t, pmap_t, vm_offset_t, vm_page_t,
154    vm_prot_t, boolean_t);
155
156unsigned int kptbl_min;		/* Index of the first kernel ptbl. */
157unsigned int kernel_ptbls;	/* Number of KVA ptbls. */
158
159static int pagedaemon_waken;
160
161/*
162 * If user pmap is processed with mmu_booke_remove and the resident count
163 * drops to 0, there are no more pages to remove, so we need not continue.
164 */
165#define PMAP_REMOVE_DONE(pmap) \
166	((pmap) != kernel_pmap && (pmap)->pm_stats.resident_count == 0)
167
168extern void tlb_lock(uint32_t *);
169extern void tlb_unlock(uint32_t *);
170extern void tid_flush(tlbtid_t);
171
172/**************************************************************************/
173/* TLB and TID handling */
174/**************************************************************************/
175
176/* Translation ID busy table */
177static volatile pmap_t tidbusy[MAXCPU][TID_MAX + 1];
178
179/*
180 * TLB0 capabilities (entry, way numbers etc.). These can vary between e500
181 * core revisions and should be read from h/w registers during early config.
182 */
183uint32_t tlb0_entries;
184uint32_t tlb0_ways;
185uint32_t tlb0_entries_per_way;
186
187#define TLB0_ENTRIES		(tlb0_entries)
188#define TLB0_WAYS		(tlb0_ways)
189#define TLB0_ENTRIES_PER_WAY	(tlb0_entries_per_way)
190
191#define TLB1_ENTRIES 16
192
193/* In-ram copy of the TLB1 */
194static tlb_entry_t tlb1[TLB1_ENTRIES];
195
196/* Next free entry in the TLB1 */
197static unsigned int tlb1_idx;
198
199static tlbtid_t tid_alloc(struct pmap *);
200
201static void tlb_print_entry(int, uint32_t, uint32_t, uint32_t, uint32_t);
202
203static int tlb1_set_entry(vm_offset_t, vm_offset_t, vm_size_t, uint32_t);
204static void tlb1_write_entry(unsigned int);
205static int tlb1_iomapped(int, vm_paddr_t, vm_size_t, vm_offset_t *);
206static vm_size_t tlb1_mapin_region(vm_offset_t, vm_offset_t, vm_size_t);
207
208static vm_size_t tsize2size(unsigned int);
209static unsigned int size2tsize(vm_size_t);
210static unsigned int ilog2(unsigned int);
211
212static void set_mas4_defaults(void);
213
214static inline void tlb0_flush_entry(vm_offset_t);
215static inline unsigned int tlb0_tableidx(vm_offset_t, unsigned int);
216
217/**************************************************************************/
218/* Page table management */
219/**************************************************************************/
220
221/* Data for the pv entry allocation mechanism */
222static uma_zone_t pvzone;
223static struct vm_object pvzone_obj;
224static int pv_entry_count = 0, pv_entry_max = 0, pv_entry_high_water = 0;
225
226#define PV_ENTRY_ZONE_MIN	2048	/* min pv entries in uma zone */
227
228#ifndef PMAP_SHPGPERPROC
229#define PMAP_SHPGPERPROC	200
230#endif
231
232static void ptbl_init(void);
233static struct ptbl_buf *ptbl_buf_alloc(void);
234static void ptbl_buf_free(struct ptbl_buf *);
235static void ptbl_free_pmap_ptbl(pmap_t, pte_t *);
236
237static pte_t *ptbl_alloc(mmu_t, pmap_t, unsigned int);
238static void ptbl_free(mmu_t, pmap_t, unsigned int);
239static void ptbl_hold(mmu_t, pmap_t, unsigned int);
240static int ptbl_unhold(mmu_t, pmap_t, unsigned int);
241
242static vm_paddr_t pte_vatopa(mmu_t, pmap_t, vm_offset_t);
243static pte_t *pte_find(mmu_t, pmap_t, vm_offset_t);
244static void pte_enter(mmu_t, pmap_t, vm_page_t, vm_offset_t, uint32_t);
245static int pte_remove(mmu_t, pmap_t, vm_offset_t, uint8_t);
246
247static pv_entry_t pv_alloc(void);
248static void pv_free(pv_entry_t);
249static void pv_insert(pmap_t, vm_offset_t, vm_page_t);
250static void pv_remove(pmap_t, vm_offset_t, vm_page_t);
251
252/* Number of kva ptbl buffers, each covering one ptbl (PTBL_PAGES). */
253#define PTBL_BUFS		(128 * 16)
254
255struct ptbl_buf {
256	TAILQ_ENTRY(ptbl_buf) link;	/* list link */
257	vm_offset_t kva;		/* va of mapping */
258};
259
260/* ptbl free list and a lock used for access synchronization. */
261static TAILQ_HEAD(, ptbl_buf) ptbl_buf_freelist;
262static struct mtx ptbl_buf_freelist_lock;
263
264/* Base address of kva space allocated fot ptbl bufs. */
265static vm_offset_t ptbl_buf_pool_vabase;
266
267/* Pointer to ptbl_buf structures. */
268static struct ptbl_buf *ptbl_bufs;
269
270void pmap_bootstrap_ap(volatile uint32_t *);
271
272/*
273 * Kernel MMU interface
274 */
275static void		mmu_booke_change_wiring(mmu_t, pmap_t, vm_offset_t, boolean_t);
276static void		mmu_booke_clear_modify(mmu_t, vm_page_t);
277static void		mmu_booke_clear_reference(mmu_t, vm_page_t);
278static void		mmu_booke_copy(mmu_t, pmap_t, pmap_t, vm_offset_t,
279    vm_size_t, vm_offset_t);
280static void		mmu_booke_copy_page(mmu_t, vm_page_t, vm_page_t);
281static void		mmu_booke_enter(mmu_t, pmap_t, vm_offset_t, vm_page_t,
282    vm_prot_t, boolean_t);
283static void		mmu_booke_enter_object(mmu_t, pmap_t, vm_offset_t, vm_offset_t,
284    vm_page_t, vm_prot_t);
285static void		mmu_booke_enter_quick(mmu_t, pmap_t, vm_offset_t, vm_page_t,
286    vm_prot_t);
287static vm_paddr_t	mmu_booke_extract(mmu_t, pmap_t, vm_offset_t);
288static vm_page_t	mmu_booke_extract_and_hold(mmu_t, pmap_t, vm_offset_t,
289    vm_prot_t);
290static void		mmu_booke_init(mmu_t);
291static boolean_t	mmu_booke_is_modified(mmu_t, vm_page_t);
292static boolean_t	mmu_booke_is_prefaultable(mmu_t, pmap_t, vm_offset_t);
293static boolean_t	mmu_booke_ts_referenced(mmu_t, vm_page_t);
294static vm_offset_t	mmu_booke_map(mmu_t, vm_offset_t *, vm_offset_t, vm_offset_t,
295    int);
296static int		mmu_booke_mincore(mmu_t, pmap_t, vm_offset_t);
297static void		mmu_booke_object_init_pt(mmu_t, pmap_t, vm_offset_t,
298    vm_object_t, vm_pindex_t, vm_size_t);
299static boolean_t	mmu_booke_page_exists_quick(mmu_t, pmap_t, vm_page_t);
300static void		mmu_booke_page_init(mmu_t, vm_page_t);
301static int		mmu_booke_page_wired_mappings(mmu_t, vm_page_t);
302static void		mmu_booke_pinit(mmu_t, pmap_t);
303static void		mmu_booke_pinit0(mmu_t, pmap_t);
304static void		mmu_booke_protect(mmu_t, pmap_t, vm_offset_t, vm_offset_t,
305    vm_prot_t);
306static void		mmu_booke_qenter(mmu_t, vm_offset_t, vm_page_t *, int);
307static void		mmu_booke_qremove(mmu_t, vm_offset_t, int);
308static void		mmu_booke_release(mmu_t, pmap_t);
309static void		mmu_booke_remove(mmu_t, pmap_t, vm_offset_t, vm_offset_t);
310static void		mmu_booke_remove_all(mmu_t, vm_page_t);
311static void		mmu_booke_remove_write(mmu_t, vm_page_t);
312static void		mmu_booke_zero_page(mmu_t, vm_page_t);
313static void		mmu_booke_zero_page_area(mmu_t, vm_page_t, int, int);
314static void		mmu_booke_zero_page_idle(mmu_t, vm_page_t);
315static void		mmu_booke_activate(mmu_t, struct thread *);
316static void		mmu_booke_deactivate(mmu_t, struct thread *);
317static void		mmu_booke_bootstrap(mmu_t, vm_offset_t, vm_offset_t);
318static void		*mmu_booke_mapdev(mmu_t, vm_offset_t, vm_size_t);
319static void		mmu_booke_unmapdev(mmu_t, vm_offset_t, vm_size_t);
320static vm_offset_t	mmu_booke_kextract(mmu_t, vm_offset_t);
321static void		mmu_booke_kenter(mmu_t, vm_offset_t, vm_offset_t);
322static void		mmu_booke_kremove(mmu_t, vm_offset_t);
323static boolean_t	mmu_booke_dev_direct_mapped(mmu_t, vm_offset_t, vm_size_t);
324static boolean_t	mmu_booke_page_executable(mmu_t, vm_page_t);
325static vm_offset_t	mmu_booke_dumpsys_map(mmu_t, struct pmap_md *,
326    vm_size_t, vm_size_t *);
327static void		mmu_booke_dumpsys_unmap(mmu_t, struct pmap_md *,
328    vm_size_t, vm_offset_t);
329static struct pmap_md	*mmu_booke_scan_md(mmu_t, struct pmap_md *);
330
331static mmu_method_t mmu_booke_methods[] = {
332	/* pmap dispatcher interface */
333	MMUMETHOD(mmu_change_wiring,	mmu_booke_change_wiring),
334	MMUMETHOD(mmu_clear_modify,	mmu_booke_clear_modify),
335	MMUMETHOD(mmu_clear_reference,	mmu_booke_clear_reference),
336	MMUMETHOD(mmu_copy,		mmu_booke_copy),
337	MMUMETHOD(mmu_copy_page,	mmu_booke_copy_page),
338	MMUMETHOD(mmu_enter,		mmu_booke_enter),
339	MMUMETHOD(mmu_enter_object,	mmu_booke_enter_object),
340	MMUMETHOD(mmu_enter_quick,	mmu_booke_enter_quick),
341	MMUMETHOD(mmu_extract,		mmu_booke_extract),
342	MMUMETHOD(mmu_extract_and_hold,	mmu_booke_extract_and_hold),
343	MMUMETHOD(mmu_init,		mmu_booke_init),
344	MMUMETHOD(mmu_is_modified,	mmu_booke_is_modified),
345	MMUMETHOD(mmu_is_prefaultable,	mmu_booke_is_prefaultable),
346	MMUMETHOD(mmu_ts_referenced,	mmu_booke_ts_referenced),
347	MMUMETHOD(mmu_map,		mmu_booke_map),
348	MMUMETHOD(mmu_mincore,		mmu_booke_mincore),
349	MMUMETHOD(mmu_object_init_pt,	mmu_booke_object_init_pt),
350	MMUMETHOD(mmu_page_exists_quick,mmu_booke_page_exists_quick),
351	MMUMETHOD(mmu_page_init,	mmu_booke_page_init),
352	MMUMETHOD(mmu_page_wired_mappings, mmu_booke_page_wired_mappings),
353	MMUMETHOD(mmu_pinit,		mmu_booke_pinit),
354	MMUMETHOD(mmu_pinit0,		mmu_booke_pinit0),
355	MMUMETHOD(mmu_protect,		mmu_booke_protect),
356	MMUMETHOD(mmu_qenter,		mmu_booke_qenter),
357	MMUMETHOD(mmu_qremove,		mmu_booke_qremove),
358	MMUMETHOD(mmu_release,		mmu_booke_release),
359	MMUMETHOD(mmu_remove,		mmu_booke_remove),
360	MMUMETHOD(mmu_remove_all,	mmu_booke_remove_all),
361	MMUMETHOD(mmu_remove_write,	mmu_booke_remove_write),
362	MMUMETHOD(mmu_zero_page,	mmu_booke_zero_page),
363	MMUMETHOD(mmu_zero_page_area,	mmu_booke_zero_page_area),
364	MMUMETHOD(mmu_zero_page_idle,	mmu_booke_zero_page_idle),
365	MMUMETHOD(mmu_activate,		mmu_booke_activate),
366	MMUMETHOD(mmu_deactivate,	mmu_booke_deactivate),
367
368	/* Internal interfaces */
369	MMUMETHOD(mmu_bootstrap,	mmu_booke_bootstrap),
370	MMUMETHOD(mmu_dev_direct_mapped,mmu_booke_dev_direct_mapped),
371	MMUMETHOD(mmu_mapdev,		mmu_booke_mapdev),
372	MMUMETHOD(mmu_kenter,		mmu_booke_kenter),
373	MMUMETHOD(mmu_kextract,		mmu_booke_kextract),
374/*	MMUMETHOD(mmu_kremove,		mmu_booke_kremove),	*/
375	MMUMETHOD(mmu_page_executable,	mmu_booke_page_executable),
376	MMUMETHOD(mmu_unmapdev,		mmu_booke_unmapdev),
377
378	/* dumpsys() support */
379	MMUMETHOD(mmu_dumpsys_map,	mmu_booke_dumpsys_map),
380	MMUMETHOD(mmu_dumpsys_unmap,	mmu_booke_dumpsys_unmap),
381	MMUMETHOD(mmu_scan_md,		mmu_booke_scan_md),
382
383	{ 0, 0 }
384};
385
386static mmu_def_t booke_mmu = {
387	MMU_TYPE_BOOKE,
388	mmu_booke_methods,
389	0
390};
391MMU_DEF(booke_mmu);
392
393static inline void
394tlb_miss_lock(void)
395{
396#ifdef SMP
397	struct pcpu *pc;
398
399	if (!smp_started)
400		return;
401
402	SLIST_FOREACH(pc, &cpuhead, pc_allcpu) {
403		if (pc != pcpup) {
404
405			CTR3(KTR_PMAP, "%s: tlb miss LOCK of CPU=%d, "
406			    "tlb_lock=%p", __func__, pc->pc_cpuid, pc->pc_booke_tlb_lock);
407
408			KASSERT((pc->pc_cpuid != PCPU_GET(cpuid)),
409			    ("tlb_miss_lock: tried to lock self"));
410
411			tlb_lock(pc->pc_booke_tlb_lock);
412
413			CTR1(KTR_PMAP, "%s: locked", __func__);
414		}
415	}
416#endif
417}
418
419static inline void
420tlb_miss_unlock(void)
421{
422#ifdef SMP
423	struct pcpu *pc;
424
425	if (!smp_started)
426		return;
427
428	SLIST_FOREACH(pc, &cpuhead, pc_allcpu) {
429		if (pc != pcpup) {
430			CTR2(KTR_PMAP, "%s: tlb miss UNLOCK of CPU=%d",
431			    __func__, pc->pc_cpuid);
432
433			tlb_unlock(pc->pc_booke_tlb_lock);
434
435			CTR1(KTR_PMAP, "%s: unlocked", __func__);
436		}
437	}
438#endif
439}
440
441/* Return number of entries in TLB0. */
442static __inline void
443tlb0_get_tlbconf(void)
444{
445	uint32_t tlb0_cfg;
446
447	tlb0_cfg = mfspr(SPR_TLB0CFG);
448	tlb0_entries = tlb0_cfg & TLBCFG_NENTRY_MASK;
449	tlb0_ways = (tlb0_cfg & TLBCFG_ASSOC_MASK) >> TLBCFG_ASSOC_SHIFT;
450	tlb0_entries_per_way = tlb0_entries / tlb0_ways;
451}
452
453/* Initialize pool of kva ptbl buffers. */
454static void
455ptbl_init(void)
456{
457	int i;
458
459	CTR3(KTR_PMAP, "%s: s (ptbl_bufs = 0x%08x size 0x%08x)", __func__,
460	    (uint32_t)ptbl_bufs, sizeof(struct ptbl_buf) * PTBL_BUFS);
461	CTR3(KTR_PMAP, "%s: s (ptbl_buf_pool_vabase = 0x%08x size = 0x%08x)",
462	    __func__, ptbl_buf_pool_vabase, PTBL_BUFS * PTBL_PAGES * PAGE_SIZE);
463
464	mtx_init(&ptbl_buf_freelist_lock, "ptbl bufs lock", NULL, MTX_DEF);
465	TAILQ_INIT(&ptbl_buf_freelist);
466
467	for (i = 0; i < PTBL_BUFS; i++) {
468		ptbl_bufs[i].kva = ptbl_buf_pool_vabase + i * PTBL_PAGES * PAGE_SIZE;
469		TAILQ_INSERT_TAIL(&ptbl_buf_freelist, &ptbl_bufs[i], link);
470	}
471}
472
473/* Get a ptbl_buf from the freelist. */
474static struct ptbl_buf *
475ptbl_buf_alloc(void)
476{
477	struct ptbl_buf *buf;
478
479	mtx_lock(&ptbl_buf_freelist_lock);
480	buf = TAILQ_FIRST(&ptbl_buf_freelist);
481	if (buf != NULL)
482		TAILQ_REMOVE(&ptbl_buf_freelist, buf, link);
483	mtx_unlock(&ptbl_buf_freelist_lock);
484
485	CTR2(KTR_PMAP, "%s: buf = %p", __func__, buf);
486
487	return (buf);
488}
489
490/* Return ptbl buff to free pool. */
491static void
492ptbl_buf_free(struct ptbl_buf *buf)
493{
494
495	CTR2(KTR_PMAP, "%s: buf = %p", __func__, buf);
496
497	mtx_lock(&ptbl_buf_freelist_lock);
498	TAILQ_INSERT_TAIL(&ptbl_buf_freelist, buf, link);
499	mtx_unlock(&ptbl_buf_freelist_lock);
500}
501
502/*
503 * Search the list of allocated ptbl bufs and find on list of allocated ptbls
504 */
505static void
506ptbl_free_pmap_ptbl(pmap_t pmap, pte_t *ptbl)
507{
508	struct ptbl_buf *pbuf;
509
510	CTR2(KTR_PMAP, "%s: ptbl = %p", __func__, ptbl);
511
512	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
513
514	TAILQ_FOREACH(pbuf, &pmap->pm_ptbl_list, link)
515		if (pbuf->kva == (vm_offset_t)ptbl) {
516			/* Remove from pmap ptbl buf list. */
517			TAILQ_REMOVE(&pmap->pm_ptbl_list, pbuf, link);
518
519			/* Free corresponding ptbl buf. */
520			ptbl_buf_free(pbuf);
521			break;
522		}
523}
524
525/* Allocate page table. */
526static pte_t *
527ptbl_alloc(mmu_t mmu, pmap_t pmap, unsigned int pdir_idx)
528{
529	vm_page_t mtbl[PTBL_PAGES];
530	vm_page_t m;
531	struct ptbl_buf *pbuf;
532	unsigned int pidx;
533	pte_t *ptbl;
534	int i;
535
536	CTR4(KTR_PMAP, "%s: pmap = %p su = %d pdir_idx = %d", __func__, pmap,
537	    (pmap == kernel_pmap), pdir_idx);
538
539	KASSERT((pdir_idx <= (VM_MAXUSER_ADDRESS / PDIR_SIZE)),
540	    ("ptbl_alloc: invalid pdir_idx"));
541	KASSERT((pmap->pm_pdir[pdir_idx] == NULL),
542	    ("pte_alloc: valid ptbl entry exists!"));
543
544	pbuf = ptbl_buf_alloc();
545	if (pbuf == NULL)
546		panic("pte_alloc: couldn't alloc kernel virtual memory");
547
548	ptbl = (pte_t *)pbuf->kva;
549
550	CTR2(KTR_PMAP, "%s: ptbl kva = %p", __func__, ptbl);
551
552	/* Allocate ptbl pages, this will sleep! */
553	for (i = 0; i < PTBL_PAGES; i++) {
554		pidx = (PTBL_PAGES * pdir_idx) + i;
555		while ((m = vm_page_alloc(NULL, pidx,
556		    VM_ALLOC_NOOBJ | VM_ALLOC_WIRED)) == NULL) {
557
558			PMAP_UNLOCK(pmap);
559			vm_page_unlock_queues();
560			VM_WAIT;
561			vm_page_lock_queues();
562			PMAP_LOCK(pmap);
563		}
564		mtbl[i] = m;
565	}
566
567	/* Map allocated pages into kernel_pmap. */
568	mmu_booke_qenter(mmu, (vm_offset_t)ptbl, mtbl, PTBL_PAGES);
569
570	/* Zero whole ptbl. */
571	bzero((caddr_t)ptbl, PTBL_PAGES * PAGE_SIZE);
572
573	/* Add pbuf to the pmap ptbl bufs list. */
574	TAILQ_INSERT_TAIL(&pmap->pm_ptbl_list, pbuf, link);
575
576	return (ptbl);
577}
578
579/* Free ptbl pages and invalidate pdir entry. */
580static void
581ptbl_free(mmu_t mmu, pmap_t pmap, unsigned int pdir_idx)
582{
583	pte_t *ptbl;
584	vm_paddr_t pa;
585	vm_offset_t va;
586	vm_page_t m;
587	int i;
588
589	CTR4(KTR_PMAP, "%s: pmap = %p su = %d pdir_idx = %d", __func__, pmap,
590	    (pmap == kernel_pmap), pdir_idx);
591
592	KASSERT((pdir_idx <= (VM_MAXUSER_ADDRESS / PDIR_SIZE)),
593	    ("ptbl_free: invalid pdir_idx"));
594
595	ptbl = pmap->pm_pdir[pdir_idx];
596
597	CTR2(KTR_PMAP, "%s: ptbl = %p", __func__, ptbl);
598
599	KASSERT((ptbl != NULL), ("ptbl_free: null ptbl"));
600
601	/*
602	 * Invalidate the pdir entry as soon as possible, so that other CPUs
603	 * don't attempt to look up the page tables we are releasing.
604	 */
605	mtx_lock_spin(&tlbivax_mutex);
606	tlb_miss_lock();
607
608	pmap->pm_pdir[pdir_idx] = NULL;
609
610	tlb_miss_unlock();
611	mtx_unlock_spin(&tlbivax_mutex);
612
613	for (i = 0; i < PTBL_PAGES; i++) {
614		va = ((vm_offset_t)ptbl + (i * PAGE_SIZE));
615		pa = pte_vatopa(mmu, kernel_pmap, va);
616		m = PHYS_TO_VM_PAGE(pa);
617		vm_page_free_zero(m);
618		atomic_subtract_int(&cnt.v_wire_count, 1);
619		mmu_booke_kremove(mmu, va);
620	}
621
622	ptbl_free_pmap_ptbl(pmap, ptbl);
623}
624
625/*
626 * Decrement ptbl pages hold count and attempt to free ptbl pages.
627 * Called when removing pte entry from ptbl.
628 *
629 * Return 1 if ptbl pages were freed.
630 */
631static int
632ptbl_unhold(mmu_t mmu, pmap_t pmap, unsigned int pdir_idx)
633{
634	pte_t *ptbl;
635	vm_paddr_t pa;
636	vm_page_t m;
637	int i;
638
639	CTR4(KTR_PMAP, "%s: pmap = %p su = %d pdir_idx = %d", __func__, pmap,
640	    (pmap == kernel_pmap), pdir_idx);
641
642	KASSERT((pdir_idx <= (VM_MAXUSER_ADDRESS / PDIR_SIZE)),
643	    ("ptbl_unhold: invalid pdir_idx"));
644	KASSERT((pmap != kernel_pmap),
645	    ("ptbl_unhold: unholding kernel ptbl!"));
646
647	ptbl = pmap->pm_pdir[pdir_idx];
648
649	//debugf("ptbl_unhold: ptbl = 0x%08x\n", (u_int32_t)ptbl);
650	KASSERT(((vm_offset_t)ptbl >= VM_MIN_KERNEL_ADDRESS),
651	    ("ptbl_unhold: non kva ptbl"));
652
653	/* decrement hold count */
654	for (i = 0; i < PTBL_PAGES; i++) {
655		pa = pte_vatopa(mmu, kernel_pmap,
656		    (vm_offset_t)ptbl + (i * PAGE_SIZE));
657		m = PHYS_TO_VM_PAGE(pa);
658		m->wire_count--;
659	}
660
661	/*
662	 * Free ptbl pages if there are no pte etries in this ptbl.
663	 * wire_count has the same value for all ptbl pages, so check the last
664	 * page.
665	 */
666	if (m->wire_count == 0) {
667		ptbl_free(mmu, pmap, pdir_idx);
668
669		//debugf("ptbl_unhold: e (freed ptbl)\n");
670		return (1);
671	}
672
673	return (0);
674}
675
676/*
677 * Increment hold count for ptbl pages. This routine is used when a new pte
678 * entry is being inserted into the ptbl.
679 */
680static void
681ptbl_hold(mmu_t mmu, pmap_t pmap, unsigned int pdir_idx)
682{
683	vm_paddr_t pa;
684	pte_t *ptbl;
685	vm_page_t m;
686	int i;
687
688	CTR3(KTR_PMAP, "%s: pmap = %p pdir_idx = %d", __func__, pmap,
689	    pdir_idx);
690
691	KASSERT((pdir_idx <= (VM_MAXUSER_ADDRESS / PDIR_SIZE)),
692	    ("ptbl_hold: invalid pdir_idx"));
693	KASSERT((pmap != kernel_pmap),
694	    ("ptbl_hold: holding kernel ptbl!"));
695
696	ptbl = pmap->pm_pdir[pdir_idx];
697
698	KASSERT((ptbl != NULL), ("ptbl_hold: null ptbl"));
699
700	for (i = 0; i < PTBL_PAGES; i++) {
701		pa = pte_vatopa(mmu, kernel_pmap,
702		    (vm_offset_t)ptbl + (i * PAGE_SIZE));
703		m = PHYS_TO_VM_PAGE(pa);
704		m->wire_count++;
705	}
706}
707
708/* Allocate pv_entry structure. */
709pv_entry_t
710pv_alloc(void)
711{
712	pv_entry_t pv;
713
714	pv_entry_count++;
715	if ((pv_entry_count > pv_entry_high_water) &&
716	    (pagedaemon_waken == 0)) {
717		pagedaemon_waken = 1;
718		wakeup(&vm_pages_needed);
719	}
720	pv = uma_zalloc(pvzone, M_NOWAIT);
721
722	return (pv);
723}
724
725/* Free pv_entry structure. */
726static __inline void
727pv_free(pv_entry_t pve)
728{
729
730	pv_entry_count--;
731	uma_zfree(pvzone, pve);
732}
733
734
735/* Allocate and initialize pv_entry structure. */
736static void
737pv_insert(pmap_t pmap, vm_offset_t va, vm_page_t m)
738{
739	pv_entry_t pve;
740
741	//int su = (pmap == kernel_pmap);
742	//debugf("pv_insert: s (su = %d pmap = 0x%08x va = 0x%08x m = 0x%08x)\n", su,
743	//	(u_int32_t)pmap, va, (u_int32_t)m);
744
745	pve = pv_alloc();
746	if (pve == NULL)
747		panic("pv_insert: no pv entries!");
748
749	pve->pv_pmap = pmap;
750	pve->pv_va = va;
751
752	/* add to pv_list */
753	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
754	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
755
756	TAILQ_INSERT_TAIL(&m->md.pv_list, pve, pv_link);
757
758	//debugf("pv_insert: e\n");
759}
760
761/* Destroy pv entry. */
762static void
763pv_remove(pmap_t pmap, vm_offset_t va, vm_page_t m)
764{
765	pv_entry_t pve;
766
767	//int su = (pmap == kernel_pmap);
768	//debugf("pv_remove: s (su = %d pmap = 0x%08x va = 0x%08x)\n", su, (u_int32_t)pmap, va);
769
770	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
771	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
772
773	/* find pv entry */
774	TAILQ_FOREACH(pve, &m->md.pv_list, pv_link) {
775		if ((pmap == pve->pv_pmap) && (va == pve->pv_va)) {
776			/* remove from pv_list */
777			TAILQ_REMOVE(&m->md.pv_list, pve, pv_link);
778			if (TAILQ_EMPTY(&m->md.pv_list))
779				vm_page_flag_clear(m, PG_WRITEABLE);
780
781			/* free pv entry struct */
782			pv_free(pve);
783			break;
784		}
785	}
786
787	//debugf("pv_remove: e\n");
788}
789
790/*
791 * Clean pte entry, try to free page table page if requested.
792 *
793 * Return 1 if ptbl pages were freed, otherwise return 0.
794 */
795static int
796pte_remove(mmu_t mmu, pmap_t pmap, vm_offset_t va, uint8_t flags)
797{
798	unsigned int pdir_idx = PDIR_IDX(va);
799	unsigned int ptbl_idx = PTBL_IDX(va);
800	vm_page_t m;
801	pte_t *ptbl;
802	pte_t *pte;
803
804	//int su = (pmap == kernel_pmap);
805	//debugf("pte_remove: s (su = %d pmap = 0x%08x va = 0x%08x flags = %d)\n",
806	//		su, (u_int32_t)pmap, va, flags);
807
808	ptbl = pmap->pm_pdir[pdir_idx];
809	KASSERT(ptbl, ("pte_remove: null ptbl"));
810
811	pte = &ptbl[ptbl_idx];
812
813	if (pte == NULL || !PTE_ISVALID(pte))
814		return (0);
815
816	if (PTE_ISWIRED(pte))
817		pmap->pm_stats.wired_count--;
818
819	/* Handle managed entry. */
820	if (PTE_ISMANAGED(pte)) {
821		/* Get vm_page_t for mapped pte. */
822		m = PHYS_TO_VM_PAGE(PTE_PA(pte));
823
824		if (PTE_ISMODIFIED(pte))
825			vm_page_dirty(m);
826
827		if (PTE_ISREFERENCED(pte))
828			vm_page_flag_set(m, PG_REFERENCED);
829
830		pv_remove(pmap, va, m);
831	}
832
833	mtx_lock_spin(&tlbivax_mutex);
834	tlb_miss_lock();
835
836	tlb0_flush_entry(va);
837	pte->flags = 0;
838	pte->rpn = 0;
839
840	tlb_miss_unlock();
841	mtx_unlock_spin(&tlbivax_mutex);
842
843	pmap->pm_stats.resident_count--;
844
845	if (flags & PTBL_UNHOLD) {
846		//debugf("pte_remove: e (unhold)\n");
847		return (ptbl_unhold(mmu, pmap, pdir_idx));
848	}
849
850	//debugf("pte_remove: e\n");
851	return (0);
852}
853
854/*
855 * Insert PTE for a given page and virtual address.
856 */
857static void
858pte_enter(mmu_t mmu, pmap_t pmap, vm_page_t m, vm_offset_t va, uint32_t flags)
859{
860	unsigned int pdir_idx = PDIR_IDX(va);
861	unsigned int ptbl_idx = PTBL_IDX(va);
862	pte_t *ptbl, *pte;
863
864	CTR4(KTR_PMAP, "%s: su = %d pmap = %p va = %p", __func__,
865	    pmap == kernel_pmap, pmap, va);
866
867	/* Get the page table pointer. */
868	ptbl = pmap->pm_pdir[pdir_idx];
869
870	if (ptbl == NULL) {
871		/* Allocate page table pages. */
872		ptbl = ptbl_alloc(mmu, pmap, pdir_idx);
873	} else {
874		/*
875		 * Check if there is valid mapping for requested
876		 * va, if there is, remove it.
877		 */
878		pte = &pmap->pm_pdir[pdir_idx][ptbl_idx];
879		if (PTE_ISVALID(pte)) {
880			pte_remove(mmu, pmap, va, PTBL_HOLD);
881		} else {
882			/*
883			 * pte is not used, increment hold count
884			 * for ptbl pages.
885			 */
886			if (pmap != kernel_pmap)
887				ptbl_hold(mmu, pmap, pdir_idx);
888		}
889	}
890
891	/*
892	 * Insert pv_entry into pv_list for mapped page if part of managed
893	 * memory.
894	 */
895        if ((m->flags & PG_FICTITIOUS) == 0) {
896		if ((m->flags & PG_UNMANAGED) == 0) {
897			flags |= PTE_MANAGED;
898
899			/* Create and insert pv entry. */
900			pv_insert(pmap, va, m);
901		}
902	}
903
904	pmap->pm_stats.resident_count++;
905
906	mtx_lock_spin(&tlbivax_mutex);
907	tlb_miss_lock();
908
909	tlb0_flush_entry(va);
910	if (pmap->pm_pdir[pdir_idx] == NULL) {
911		/*
912		 * If we just allocated a new page table, hook it in
913		 * the pdir.
914		 */
915		pmap->pm_pdir[pdir_idx] = ptbl;
916	}
917	pte = &(pmap->pm_pdir[pdir_idx][ptbl_idx]);
918	pte->rpn = VM_PAGE_TO_PHYS(m) & ~PTE_PA_MASK;
919	pte->flags |= (PTE_VALID | flags);
920
921	tlb_miss_unlock();
922	mtx_unlock_spin(&tlbivax_mutex);
923}
924
925/* Return the pa for the given pmap/va. */
926static vm_paddr_t
927pte_vatopa(mmu_t mmu, pmap_t pmap, vm_offset_t va)
928{
929	vm_paddr_t pa = 0;
930	pte_t *pte;
931
932	pte = pte_find(mmu, pmap, va);
933	if ((pte != NULL) && PTE_ISVALID(pte))
934		pa = (PTE_PA(pte) | (va & PTE_PA_MASK));
935	return (pa);
936}
937
938/* Get a pointer to a PTE in a page table. */
939static pte_t *
940pte_find(mmu_t mmu, pmap_t pmap, vm_offset_t va)
941{
942	unsigned int pdir_idx = PDIR_IDX(va);
943	unsigned int ptbl_idx = PTBL_IDX(va);
944
945	KASSERT((pmap != NULL), ("pte_find: invalid pmap"));
946
947	if (pmap->pm_pdir[pdir_idx])
948		return (&(pmap->pm_pdir[pdir_idx][ptbl_idx]));
949
950	return (NULL);
951}
952
953/**************************************************************************/
954/* PMAP related */
955/**************************************************************************/
956
957/*
958 * This is called during e500_init, before the system is really initialized.
959 */
960static void
961mmu_booke_bootstrap(mmu_t mmu, vm_offset_t start, vm_offset_t kernelend)
962{
963	vm_offset_t phys_kernelend;
964	struct mem_region *mp, *mp1;
965	int cnt, i, j;
966	u_int s, e, sz;
967	u_int phys_avail_count;
968	vm_size_t physsz, hwphyssz, kstack0_sz;
969	vm_offset_t kernel_pdir, kstack0, va;
970	vm_paddr_t kstack0_phys;
971	pte_t *pte;
972
973	debugf("mmu_booke_bootstrap: entered\n");
974
975	/* Initialize invalidation mutex */
976	mtx_init(&tlbivax_mutex, "tlbivax", NULL, MTX_SPIN);
977
978	/* Read TLB0 size and associativity. */
979	tlb0_get_tlbconf();
980
981	/* Align kernel start and end address (kernel image). */
982	kernstart = trunc_page(start);
983	data_start = round_page(kernelend);
984	kernsize = data_start - kernstart;
985
986	data_end = data_start;
987
988	/* Allocate space for the message buffer. */
989	msgbufp = (struct msgbuf *)data_end;
990	data_end += MSGBUF_SIZE;
991	debugf(" msgbufp at 0x%08x end = 0x%08x\n", (uint32_t)msgbufp,
992	    data_end);
993
994	data_end = round_page(data_end);
995
996	/* Allocate space for ptbl_bufs. */
997	ptbl_bufs = (struct ptbl_buf *)data_end;
998	data_end += sizeof(struct ptbl_buf) * PTBL_BUFS;
999	debugf(" ptbl_bufs at 0x%08x end = 0x%08x\n", (uint32_t)ptbl_bufs,
1000	    data_end);
1001
1002	data_end = round_page(data_end);
1003
1004	/* Allocate PTE tables for kernel KVA. */
1005	kernel_pdir = data_end;
1006	kernel_ptbls = (VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS +
1007	    PDIR_SIZE - 1) / PDIR_SIZE;
1008	data_end += kernel_ptbls * PTBL_PAGES * PAGE_SIZE;
1009	debugf(" kernel ptbls: %d\n", kernel_ptbls);
1010	debugf(" kernel pdir at 0x%08x end = 0x%08x\n", kernel_pdir, data_end);
1011
1012	debugf(" data_end: 0x%08x\n", data_end);
1013	if (data_end - kernstart > 0x1000000) {
1014		data_end = (data_end + 0x3fffff) & ~0x3fffff;
1015		tlb1_mapin_region(kernstart + 0x1000000,
1016		    kernload + 0x1000000, data_end - kernstart - 0x1000000);
1017	} else
1018		data_end = (data_end + 0xffffff) & ~0xffffff;
1019
1020	debugf(" updated data_end: 0x%08x\n", data_end);
1021
1022	kernsize += data_end - data_start;
1023
1024	/*
1025	 * Clear the structures - note we can only do it safely after the
1026	 * possible additional TLB1 translations are in place (above) so that
1027	 * all range up to the currently calculated 'data_end' is covered.
1028	 */
1029	memset((void *)ptbl_bufs, 0, sizeof(struct ptbl_buf) * PTBL_SIZE);
1030	memset((void *)kernel_pdir, 0, kernel_ptbls * PTBL_PAGES * PAGE_SIZE);
1031
1032	/*******************************************************/
1033	/* Set the start and end of kva. */
1034	/*******************************************************/
1035	virtual_avail = round_page(data_end);
1036	virtual_end = VM_MAX_KERNEL_ADDRESS;
1037
1038	/* Allocate KVA space for page zero/copy operations. */
1039	zero_page_va = virtual_avail;
1040	virtual_avail += PAGE_SIZE;
1041	zero_page_idle_va = virtual_avail;
1042	virtual_avail += PAGE_SIZE;
1043	copy_page_src_va = virtual_avail;
1044	virtual_avail += PAGE_SIZE;
1045	copy_page_dst_va = virtual_avail;
1046	virtual_avail += PAGE_SIZE;
1047	debugf("zero_page_va = 0x%08x\n", zero_page_va);
1048	debugf("zero_page_idle_va = 0x%08x\n", zero_page_idle_va);
1049	debugf("copy_page_src_va = 0x%08x\n", copy_page_src_va);
1050	debugf("copy_page_dst_va = 0x%08x\n", copy_page_dst_va);
1051
1052	/* Initialize page zero/copy mutexes. */
1053	mtx_init(&zero_page_mutex, "mmu_booke_zero_page", NULL, MTX_DEF);
1054	mtx_init(&copy_page_mutex, "mmu_booke_copy_page", NULL, MTX_DEF);
1055
1056	/* Allocate KVA space for ptbl bufs. */
1057	ptbl_buf_pool_vabase = virtual_avail;
1058	virtual_avail += PTBL_BUFS * PTBL_PAGES * PAGE_SIZE;
1059	debugf("ptbl_buf_pool_vabase = 0x%08x end = 0x%08x\n",
1060	    ptbl_buf_pool_vabase, virtual_avail);
1061
1062	/* Calculate corresponding physical addresses for the kernel region. */
1063	phys_kernelend = kernload + kernsize;
1064	debugf("kernel image and allocated data:\n");
1065	debugf(" kernload    = 0x%08x\n", kernload);
1066	debugf(" kernstart   = 0x%08x\n", kernstart);
1067	debugf(" kernsize    = 0x%08x\n", kernsize);
1068
1069	if (sizeof(phys_avail) / sizeof(phys_avail[0]) < availmem_regions_sz)
1070		panic("mmu_booke_bootstrap: phys_avail too small");
1071
1072	/*
1073	 * Remove kernel physical address range from avail regions list. Page
1074	 * align all regions.  Non-page aligned memory isn't very interesting
1075	 * to us.  Also, sort the entries for ascending addresses.
1076	 */
1077
1078	/* Retrieve phys/avail mem regions */
1079	mem_regions(&physmem_regions, &physmem_regions_sz,
1080	    &availmem_regions, &availmem_regions_sz);
1081	sz = 0;
1082	cnt = availmem_regions_sz;
1083	debugf("processing avail regions:\n");
1084	for (mp = availmem_regions; mp->mr_size; mp++) {
1085		s = mp->mr_start;
1086		e = mp->mr_start + mp->mr_size;
1087		debugf(" %08x-%08x -> ", s, e);
1088		/* Check whether this region holds all of the kernel. */
1089		if (s < kernload && e > phys_kernelend) {
1090			availmem_regions[cnt].mr_start = phys_kernelend;
1091			availmem_regions[cnt++].mr_size = e - phys_kernelend;
1092			e = kernload;
1093		}
1094		/* Look whether this regions starts within the kernel. */
1095		if (s >= kernload && s < phys_kernelend) {
1096			if (e <= phys_kernelend)
1097				goto empty;
1098			s = phys_kernelend;
1099		}
1100		/* Now look whether this region ends within the kernel. */
1101		if (e > kernload && e <= phys_kernelend) {
1102			if (s >= kernload)
1103				goto empty;
1104			e = kernload;
1105		}
1106		/* Now page align the start and size of the region. */
1107		s = round_page(s);
1108		e = trunc_page(e);
1109		if (e < s)
1110			e = s;
1111		sz = e - s;
1112		debugf("%08x-%08x = %x\n", s, e, sz);
1113
1114		/* Check whether some memory is left here. */
1115		if (sz == 0) {
1116		empty:
1117			memmove(mp, mp + 1,
1118			    (cnt - (mp - availmem_regions)) * sizeof(*mp));
1119			cnt--;
1120			mp--;
1121			continue;
1122		}
1123
1124		/* Do an insertion sort. */
1125		for (mp1 = availmem_regions; mp1 < mp; mp1++)
1126			if (s < mp1->mr_start)
1127				break;
1128		if (mp1 < mp) {
1129			memmove(mp1 + 1, mp1, (char *)mp - (char *)mp1);
1130			mp1->mr_start = s;
1131			mp1->mr_size = sz;
1132		} else {
1133			mp->mr_start = s;
1134			mp->mr_size = sz;
1135		}
1136	}
1137	availmem_regions_sz = cnt;
1138
1139	/*******************************************************/
1140	/* Steal physical memory for kernel stack from the end */
1141	/* of the first avail region                           */
1142	/*******************************************************/
1143	kstack0_sz = KSTACK_PAGES * PAGE_SIZE;
1144	kstack0_phys = availmem_regions[0].mr_start +
1145	    availmem_regions[0].mr_size;
1146	kstack0_phys -= kstack0_sz;
1147	availmem_regions[0].mr_size -= kstack0_sz;
1148
1149	/*******************************************************/
1150	/* Fill in phys_avail table, based on availmem_regions */
1151	/*******************************************************/
1152	phys_avail_count = 0;
1153	physsz = 0;
1154	hwphyssz = 0;
1155	TUNABLE_ULONG_FETCH("hw.physmem", (u_long *) &hwphyssz);
1156
1157	debugf("fill in phys_avail:\n");
1158	for (i = 0, j = 0; i < availmem_regions_sz; i++, j += 2) {
1159
1160		debugf(" region: 0x%08x - 0x%08x (0x%08x)\n",
1161		    availmem_regions[i].mr_start,
1162		    availmem_regions[i].mr_start +
1163		        availmem_regions[i].mr_size,
1164		    availmem_regions[i].mr_size);
1165
1166		if (hwphyssz != 0 &&
1167		    (physsz + availmem_regions[i].mr_size) >= hwphyssz) {
1168			debugf(" hw.physmem adjust\n");
1169			if (physsz < hwphyssz) {
1170				phys_avail[j] = availmem_regions[i].mr_start;
1171				phys_avail[j + 1] =
1172				    availmem_regions[i].mr_start +
1173				    hwphyssz - physsz;
1174				physsz = hwphyssz;
1175				phys_avail_count++;
1176			}
1177			break;
1178		}
1179
1180		phys_avail[j] = availmem_regions[i].mr_start;
1181		phys_avail[j + 1] = availmem_regions[i].mr_start +
1182		    availmem_regions[i].mr_size;
1183		phys_avail_count++;
1184		physsz += availmem_regions[i].mr_size;
1185	}
1186	physmem = btoc(physsz);
1187
1188	/* Calculate the last available physical address. */
1189	for (i = 0; phys_avail[i + 2] != 0; i += 2)
1190		;
1191	Maxmem = powerpc_btop(phys_avail[i + 1]);
1192
1193	debugf("Maxmem = 0x%08lx\n", Maxmem);
1194	debugf("phys_avail_count = %d\n", phys_avail_count);
1195	debugf("physsz = 0x%08x physmem = %ld (0x%08lx)\n", physsz, physmem,
1196	    physmem);
1197
1198	/*******************************************************/
1199	/* Initialize (statically allocated) kernel pmap. */
1200	/*******************************************************/
1201	PMAP_LOCK_INIT(kernel_pmap);
1202	kptbl_min = VM_MIN_KERNEL_ADDRESS / PDIR_SIZE;
1203
1204	debugf("kernel_pmap = 0x%08x\n", (uint32_t)kernel_pmap);
1205	debugf("kptbl_min = %d, kernel_ptbls = %d\n", kptbl_min, kernel_ptbls);
1206	debugf("kernel pdir range: 0x%08x - 0x%08x\n",
1207	    kptbl_min * PDIR_SIZE, (kptbl_min + kernel_ptbls) * PDIR_SIZE - 1);
1208
1209	/* Initialize kernel pdir */
1210	for (i = 0; i < kernel_ptbls; i++)
1211		kernel_pmap->pm_pdir[kptbl_min + i] =
1212		    (pte_t *)(kernel_pdir + (i * PAGE_SIZE * PTBL_PAGES));
1213
1214	for (i = 0; i < MAXCPU; i++) {
1215		kernel_pmap->pm_tid[i] = TID_KERNEL;
1216
1217		/* Initialize each CPU's tidbusy entry 0 with kernel_pmap */
1218		tidbusy[i][0] = kernel_pmap;
1219	}
1220
1221	/*
1222	 * Fill in PTEs covering kernel code and data. They are not required
1223	 * for address translation, as this area is covered by static TLB1
1224	 * entries, but for pte_vatopa() to work correctly with kernel area
1225	 * addresses.
1226	 */
1227	for (va = KERNBASE; va < data_end; va += PAGE_SIZE) {
1228		pte = &(kernel_pmap->pm_pdir[PDIR_IDX(va)][PTBL_IDX(va)]);
1229		pte->rpn = kernload + (va - KERNBASE);
1230		pte->flags = PTE_M | PTE_SR | PTE_SW | PTE_SX | PTE_WIRED |
1231		    PTE_VALID;
1232	}
1233	/* Mark kernel_pmap active on all CPUs */
1234	kernel_pmap->pm_active = ~0;
1235
1236	/*******************************************************/
1237	/* Final setup */
1238	/*******************************************************/
1239
1240	/* Enter kstack0 into kernel map, provide guard page */
1241	kstack0 = virtual_avail + KSTACK_GUARD_PAGES * PAGE_SIZE;
1242	thread0.td_kstack = kstack0;
1243	thread0.td_kstack_pages = KSTACK_PAGES;
1244
1245	debugf("kstack_sz = 0x%08x\n", kstack0_sz);
1246	debugf("kstack0_phys at 0x%08x - 0x%08x\n",
1247	    kstack0_phys, kstack0_phys + kstack0_sz);
1248	debugf("kstack0 at 0x%08x - 0x%08x\n", kstack0, kstack0 + kstack0_sz);
1249
1250	virtual_avail += KSTACK_GUARD_PAGES * PAGE_SIZE + kstack0_sz;
1251	for (i = 0; i < KSTACK_PAGES; i++) {
1252		mmu_booke_kenter(mmu, kstack0, kstack0_phys);
1253		kstack0 += PAGE_SIZE;
1254		kstack0_phys += PAGE_SIZE;
1255	}
1256
1257	debugf("virtual_avail = %08x\n", virtual_avail);
1258	debugf("virtual_end   = %08x\n", virtual_end);
1259
1260	debugf("mmu_booke_bootstrap: exit\n");
1261}
1262
1263void
1264pmap_bootstrap_ap(volatile uint32_t *trcp __unused)
1265{
1266	int i;
1267
1268	/*
1269	 * Finish TLB1 configuration: the BSP already set up its TLB1 and we
1270	 * have the snapshot of its contents in the s/w tlb1[] table, so use
1271	 * these values directly to (re)program AP's TLB1 hardware.
1272	 */
1273	for (i = 0; i < tlb1_idx; i ++) {
1274		/* Skip invalid entries */
1275		if (!(tlb1[i].mas1 & MAS1_VALID))
1276			continue;
1277
1278		tlb1_write_entry(i);
1279	}
1280
1281	set_mas4_defaults();
1282}
1283
1284/*
1285 * Get the physical page address for the given pmap/virtual address.
1286 */
1287static vm_paddr_t
1288mmu_booke_extract(mmu_t mmu, pmap_t pmap, vm_offset_t va)
1289{
1290	vm_paddr_t pa;
1291
1292	PMAP_LOCK(pmap);
1293	pa = pte_vatopa(mmu, pmap, va);
1294	PMAP_UNLOCK(pmap);
1295
1296	return (pa);
1297}
1298
1299/*
1300 * Extract the physical page address associated with the given
1301 * kernel virtual address.
1302 */
1303static vm_paddr_t
1304mmu_booke_kextract(mmu_t mmu, vm_offset_t va)
1305{
1306
1307	return (pte_vatopa(mmu, kernel_pmap, va));
1308}
1309
1310/*
1311 * Initialize the pmap module.
1312 * Called by vm_init, to initialize any structures that the pmap
1313 * system needs to map virtual memory.
1314 */
1315static void
1316mmu_booke_init(mmu_t mmu)
1317{
1318	int shpgperproc = PMAP_SHPGPERPROC;
1319
1320	/*
1321	 * Initialize the address space (zone) for the pv entries.  Set a
1322	 * high water mark so that the system can recover from excessive
1323	 * numbers of pv entries.
1324	 */
1325	pvzone = uma_zcreate("PV ENTRY", sizeof(struct pv_entry), NULL, NULL,
1326	    NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_VM | UMA_ZONE_NOFREE);
1327
1328	TUNABLE_INT_FETCH("vm.pmap.shpgperproc", &shpgperproc);
1329	pv_entry_max = shpgperproc * maxproc + cnt.v_page_count;
1330
1331	TUNABLE_INT_FETCH("vm.pmap.pv_entries", &pv_entry_max);
1332	pv_entry_high_water = 9 * (pv_entry_max / 10);
1333
1334	uma_zone_set_obj(pvzone, &pvzone_obj, pv_entry_max);
1335
1336	/* Pre-fill pvzone with initial number of pv entries. */
1337	uma_prealloc(pvzone, PV_ENTRY_ZONE_MIN);
1338
1339	/* Initialize ptbl allocation. */
1340	ptbl_init();
1341}
1342
1343/*
1344 * Map a list of wired pages into kernel virtual address space.  This is
1345 * intended for temporary mappings which do not need page modification or
1346 * references recorded.  Existing mappings in the region are overwritten.
1347 */
1348static void
1349mmu_booke_qenter(mmu_t mmu, vm_offset_t sva, vm_page_t *m, int count)
1350{
1351	vm_offset_t va;
1352
1353	va = sva;
1354	while (count-- > 0) {
1355		mmu_booke_kenter(mmu, va, VM_PAGE_TO_PHYS(*m));
1356		va += PAGE_SIZE;
1357		m++;
1358	}
1359}
1360
1361/*
1362 * Remove page mappings from kernel virtual address space.  Intended for
1363 * temporary mappings entered by mmu_booke_qenter.
1364 */
1365static void
1366mmu_booke_qremove(mmu_t mmu, vm_offset_t sva, int count)
1367{
1368	vm_offset_t va;
1369
1370	va = sva;
1371	while (count-- > 0) {
1372		mmu_booke_kremove(mmu, va);
1373		va += PAGE_SIZE;
1374	}
1375}
1376
1377/*
1378 * Map a wired page into kernel virtual address space.
1379 */
1380static void
1381mmu_booke_kenter(mmu_t mmu, vm_offset_t va, vm_offset_t pa)
1382{
1383	unsigned int pdir_idx = PDIR_IDX(va);
1384	unsigned int ptbl_idx = PTBL_IDX(va);
1385	uint32_t flags;
1386	pte_t *pte;
1387
1388	KASSERT(((va >= VM_MIN_KERNEL_ADDRESS) &&
1389	    (va <= VM_MAX_KERNEL_ADDRESS)), ("mmu_booke_kenter: invalid va"));
1390
1391	flags = 0;
1392	flags |= (PTE_SR | PTE_SW | PTE_SX | PTE_WIRED | PTE_VALID);
1393	flags |= PTE_M;
1394
1395	pte = &(kernel_pmap->pm_pdir[pdir_idx][ptbl_idx]);
1396
1397	mtx_lock_spin(&tlbivax_mutex);
1398	tlb_miss_lock();
1399
1400	if (PTE_ISVALID(pte)) {
1401
1402		CTR1(KTR_PMAP, "%s: replacing entry!", __func__);
1403
1404		/* Flush entry from TLB0 */
1405		tlb0_flush_entry(va);
1406	}
1407
1408	pte->rpn = pa & ~PTE_PA_MASK;
1409	pte->flags = flags;
1410
1411	//debugf("mmu_booke_kenter: pdir_idx = %d ptbl_idx = %d va=0x%08x "
1412	//		"pa=0x%08x rpn=0x%08x flags=0x%08x\n",
1413	//		pdir_idx, ptbl_idx, va, pa, pte->rpn, pte->flags);
1414
1415	/* Flush the real memory from the instruction cache. */
1416	if ((flags & (PTE_I | PTE_G)) == 0) {
1417		__syncicache((void *)va, PAGE_SIZE);
1418	}
1419
1420	tlb_miss_unlock();
1421	mtx_unlock_spin(&tlbivax_mutex);
1422}
1423
1424/*
1425 * Remove a page from kernel page table.
1426 */
1427static void
1428mmu_booke_kremove(mmu_t mmu, vm_offset_t va)
1429{
1430	unsigned int pdir_idx = PDIR_IDX(va);
1431	unsigned int ptbl_idx = PTBL_IDX(va);
1432	pte_t *pte;
1433
1434//	CTR2(KTR_PMAP,("%s: s (va = 0x%08x)\n", __func__, va));
1435
1436	KASSERT(((va >= VM_MIN_KERNEL_ADDRESS) &&
1437	    (va <= VM_MAX_KERNEL_ADDRESS)),
1438	    ("mmu_booke_kremove: invalid va"));
1439
1440	pte = &(kernel_pmap->pm_pdir[pdir_idx][ptbl_idx]);
1441
1442	if (!PTE_ISVALID(pte)) {
1443
1444		CTR1(KTR_PMAP, "%s: invalid pte", __func__);
1445
1446		return;
1447	}
1448
1449	mtx_lock_spin(&tlbivax_mutex);
1450	tlb_miss_lock();
1451
1452	/* Invalidate entry in TLB0, update PTE. */
1453	tlb0_flush_entry(va);
1454	pte->flags = 0;
1455	pte->rpn = 0;
1456
1457	tlb_miss_unlock();
1458	mtx_unlock_spin(&tlbivax_mutex);
1459}
1460
1461/*
1462 * Initialize pmap associated with process 0.
1463 */
1464static void
1465mmu_booke_pinit0(mmu_t mmu, pmap_t pmap)
1466{
1467
1468	mmu_booke_pinit(mmu, pmap);
1469	PCPU_SET(curpmap, pmap);
1470}
1471
1472/*
1473 * Initialize a preallocated and zeroed pmap structure,
1474 * such as one in a vmspace structure.
1475 */
1476static void
1477mmu_booke_pinit(mmu_t mmu, pmap_t pmap)
1478{
1479	int i;
1480
1481	CTR4(KTR_PMAP, "%s: pmap = %p, proc %d '%s'", __func__, pmap,
1482	    curthread->td_proc->p_pid, curthread->td_proc->p_comm);
1483
1484	KASSERT((pmap != kernel_pmap), ("pmap_pinit: initializing kernel_pmap"));
1485
1486	PMAP_LOCK_INIT(pmap);
1487	for (i = 0; i < MAXCPU; i++)
1488		pmap->pm_tid[i] = TID_NONE;
1489	pmap->pm_active = 0;
1490	bzero(&pmap->pm_stats, sizeof(pmap->pm_stats));
1491	bzero(&pmap->pm_pdir, sizeof(pte_t *) * PDIR_NENTRIES);
1492	TAILQ_INIT(&pmap->pm_ptbl_list);
1493}
1494
1495/*
1496 * Release any resources held by the given physical map.
1497 * Called when a pmap initialized by mmu_booke_pinit is being released.
1498 * Should only be called if the map contains no valid mappings.
1499 */
1500static void
1501mmu_booke_release(mmu_t mmu, pmap_t pmap)
1502{
1503
1504	printf("mmu_booke_release: s\n");
1505
1506	KASSERT(pmap->pm_stats.resident_count == 0,
1507	    ("pmap_release: pmap resident count %ld != 0",
1508	    pmap->pm_stats.resident_count));
1509
1510	PMAP_LOCK_DESTROY(pmap);
1511}
1512
1513/*
1514 * Insert the given physical page at the specified virtual address in the
1515 * target physical map with the protection requested. If specified the page
1516 * will be wired down.
1517 */
1518static void
1519mmu_booke_enter(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_page_t m,
1520    vm_prot_t prot, boolean_t wired)
1521{
1522
1523	vm_page_lock_queues();
1524	PMAP_LOCK(pmap);
1525	mmu_booke_enter_locked(mmu, pmap, va, m, prot, wired);
1526	vm_page_unlock_queues();
1527	PMAP_UNLOCK(pmap);
1528}
1529
1530static void
1531mmu_booke_enter_locked(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_page_t m,
1532    vm_prot_t prot, boolean_t wired)
1533{
1534	pte_t *pte;
1535	vm_paddr_t pa;
1536	uint32_t flags;
1537	int su, sync;
1538
1539	pa = VM_PAGE_TO_PHYS(m);
1540	su = (pmap == kernel_pmap);
1541	sync = 0;
1542
1543	//debugf("mmu_booke_enter_locked: s (pmap=0x%08x su=%d tid=%d m=0x%08x va=0x%08x "
1544	//		"pa=0x%08x prot=0x%08x wired=%d)\n",
1545	//		(u_int32_t)pmap, su, pmap->pm_tid,
1546	//		(u_int32_t)m, va, pa, prot, wired);
1547
1548	if (su) {
1549		KASSERT(((va >= virtual_avail) &&
1550		    (va <= VM_MAX_KERNEL_ADDRESS)),
1551		    ("mmu_booke_enter_locked: kernel pmap, non kernel va"));
1552	} else {
1553		KASSERT((va <= VM_MAXUSER_ADDRESS),
1554		    ("mmu_booke_enter_locked: user pmap, non user va"));
1555	}
1556
1557	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1558
1559	/*
1560	 * If there is an existing mapping, and the physical address has not
1561	 * changed, must be protection or wiring change.
1562	 */
1563	if (((pte = pte_find(mmu, pmap, va)) != NULL) &&
1564	    (PTE_ISVALID(pte)) && (PTE_PA(pte) == pa)) {
1565
1566		/*
1567		 * Before actually updating pte->flags we calculate and
1568		 * prepare its new value in a helper var.
1569		 */
1570		flags = pte->flags;
1571		flags &= ~(PTE_UW | PTE_UX | PTE_SW | PTE_SX | PTE_MODIFIED);
1572
1573		/* Wiring change, just update stats. */
1574		if (wired) {
1575			if (!PTE_ISWIRED(pte)) {
1576				flags |= PTE_WIRED;
1577				pmap->pm_stats.wired_count++;
1578			}
1579		} else {
1580			if (PTE_ISWIRED(pte)) {
1581				flags &= ~PTE_WIRED;
1582				pmap->pm_stats.wired_count--;
1583			}
1584		}
1585
1586		if (prot & VM_PROT_WRITE) {
1587			/* Add write permissions. */
1588			flags |= PTE_SW;
1589			if (!su)
1590				flags |= PTE_UW;
1591
1592			vm_page_flag_set(m, PG_WRITEABLE);
1593		} else {
1594			/* Handle modified pages, sense modify status. */
1595
1596			/*
1597			 * The PTE_MODIFIED flag could be set by underlying
1598			 * TLB misses since we last read it (above), possibly
1599			 * other CPUs could update it so we check in the PTE
1600			 * directly rather than rely on that saved local flags
1601			 * copy.
1602			 */
1603			if (PTE_ISMODIFIED(pte))
1604				vm_page_dirty(m);
1605		}
1606
1607		if (prot & VM_PROT_EXECUTE) {
1608			flags |= PTE_SX;
1609			if (!su)
1610				flags |= PTE_UX;
1611
1612			/*
1613			 * Check existing flags for execute permissions: if we
1614			 * are turning execute permissions on, icache should
1615			 * be flushed.
1616			 */
1617			if ((flags & (PTE_UX | PTE_SX)) == 0)
1618				sync++;
1619		}
1620
1621		flags &= ~PTE_REFERENCED;
1622
1623		/*
1624		 * The new flags value is all calculated -- only now actually
1625		 * update the PTE.
1626		 */
1627		mtx_lock_spin(&tlbivax_mutex);
1628		tlb_miss_lock();
1629
1630		tlb0_flush_entry(va);
1631		pte->flags = flags;
1632
1633		tlb_miss_unlock();
1634		mtx_unlock_spin(&tlbivax_mutex);
1635
1636	} else {
1637		/*
1638		 * If there is an existing mapping, but it's for a different
1639		 * physical address, pte_enter() will delete the old mapping.
1640		 */
1641		//if ((pte != NULL) && PTE_ISVALID(pte))
1642		//	debugf("mmu_booke_enter_locked: replace\n");
1643		//else
1644		//	debugf("mmu_booke_enter_locked: new\n");
1645
1646		/* Now set up the flags and install the new mapping. */
1647		flags = (PTE_SR | PTE_VALID);
1648		flags |= PTE_M;
1649
1650		if (!su)
1651			flags |= PTE_UR;
1652
1653		if (prot & VM_PROT_WRITE) {
1654			flags |= PTE_SW;
1655			if (!su)
1656				flags |= PTE_UW;
1657
1658			vm_page_flag_set(m, PG_WRITEABLE);
1659		}
1660
1661		if (prot & VM_PROT_EXECUTE) {
1662			flags |= PTE_SX;
1663			if (!su)
1664				flags |= PTE_UX;
1665		}
1666
1667		/* If its wired update stats. */
1668		if (wired) {
1669			pmap->pm_stats.wired_count++;
1670			flags |= PTE_WIRED;
1671		}
1672
1673		pte_enter(mmu, pmap, m, va, flags);
1674
1675		/* Flush the real memory from the instruction cache. */
1676		if (prot & VM_PROT_EXECUTE)
1677			sync++;
1678	}
1679
1680	if (sync && (su || pmap == PCPU_GET(curpmap))) {
1681		__syncicache((void *)va, PAGE_SIZE);
1682		sync = 0;
1683	}
1684
1685	if (sync) {
1686		/* Create a temporary mapping. */
1687		pmap = PCPU_GET(curpmap);
1688
1689		va = 0;
1690		pte = pte_find(mmu, pmap, va);
1691		KASSERT(pte == NULL, ("%s:%d", __func__, __LINE__));
1692
1693		flags = PTE_SR | PTE_VALID | PTE_UR | PTE_M;
1694
1695		pte_enter(mmu, pmap, m, va, flags);
1696		__syncicache((void *)va, PAGE_SIZE);
1697		pte_remove(mmu, pmap, va, PTBL_UNHOLD);
1698	}
1699}
1700
1701/*
1702 * Maps a sequence of resident pages belonging to the same object.
1703 * The sequence begins with the given page m_start.  This page is
1704 * mapped at the given virtual address start.  Each subsequent page is
1705 * mapped at a virtual address that is offset from start by the same
1706 * amount as the page is offset from m_start within the object.  The
1707 * last page in the sequence is the page with the largest offset from
1708 * m_start that can be mapped at a virtual address less than the given
1709 * virtual address end.  Not every virtual page between start and end
1710 * is mapped; only those for which a resident page exists with the
1711 * corresponding offset from m_start are mapped.
1712 */
1713static void
1714mmu_booke_enter_object(mmu_t mmu, pmap_t pmap, vm_offset_t start,
1715    vm_offset_t end, vm_page_t m_start, vm_prot_t prot)
1716{
1717	vm_page_t m;
1718	vm_pindex_t diff, psize;
1719
1720	psize = atop(end - start);
1721	m = m_start;
1722	PMAP_LOCK(pmap);
1723	while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) {
1724		mmu_booke_enter_locked(mmu, pmap, start + ptoa(diff), m,
1725		    prot & (VM_PROT_READ | VM_PROT_EXECUTE), FALSE);
1726		m = TAILQ_NEXT(m, listq);
1727	}
1728	PMAP_UNLOCK(pmap);
1729}
1730
1731static void
1732mmu_booke_enter_quick(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_page_t m,
1733    vm_prot_t prot)
1734{
1735
1736	PMAP_LOCK(pmap);
1737	mmu_booke_enter_locked(mmu, pmap, va, m,
1738	    prot & (VM_PROT_READ | VM_PROT_EXECUTE), FALSE);
1739	PMAP_UNLOCK(pmap);
1740}
1741
1742/*
1743 * Remove the given range of addresses from the specified map.
1744 *
1745 * It is assumed that the start and end are properly rounded to the page size.
1746 */
1747static void
1748mmu_booke_remove(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_offset_t endva)
1749{
1750	pte_t *pte;
1751	uint8_t hold_flag;
1752
1753	int su = (pmap == kernel_pmap);
1754
1755	//debugf("mmu_booke_remove: s (su = %d pmap=0x%08x tid=%d va=0x%08x endva=0x%08x)\n",
1756	//		su, (u_int32_t)pmap, pmap->pm_tid, va, endva);
1757
1758	if (su) {
1759		KASSERT(((va >= virtual_avail) &&
1760		    (va <= VM_MAX_KERNEL_ADDRESS)),
1761		    ("mmu_booke_remove: kernel pmap, non kernel va"));
1762	} else {
1763		KASSERT((va <= VM_MAXUSER_ADDRESS),
1764		    ("mmu_booke_remove: user pmap, non user va"));
1765	}
1766
1767	if (PMAP_REMOVE_DONE(pmap)) {
1768		//debugf("mmu_booke_remove: e (empty)\n");
1769		return;
1770	}
1771
1772	hold_flag = PTBL_HOLD_FLAG(pmap);
1773	//debugf("mmu_booke_remove: hold_flag = %d\n", hold_flag);
1774
1775	vm_page_lock_queues();
1776	PMAP_LOCK(pmap);
1777	for (; va < endva; va += PAGE_SIZE) {
1778		pte = pte_find(mmu, pmap, va);
1779		if ((pte != NULL) && PTE_ISVALID(pte))
1780			pte_remove(mmu, pmap, va, hold_flag);
1781	}
1782	PMAP_UNLOCK(pmap);
1783	vm_page_unlock_queues();
1784
1785	//debugf("mmu_booke_remove: e\n");
1786}
1787
1788/*
1789 * Remove physical page from all pmaps in which it resides.
1790 */
1791static void
1792mmu_booke_remove_all(mmu_t mmu, vm_page_t m)
1793{
1794	pv_entry_t pv, pvn;
1795	uint8_t hold_flag;
1796
1797	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1798
1799	for (pv = TAILQ_FIRST(&m->md.pv_list); pv != NULL; pv = pvn) {
1800		pvn = TAILQ_NEXT(pv, pv_link);
1801
1802		PMAP_LOCK(pv->pv_pmap);
1803		hold_flag = PTBL_HOLD_FLAG(pv->pv_pmap);
1804		pte_remove(mmu, pv->pv_pmap, pv->pv_va, hold_flag);
1805		PMAP_UNLOCK(pv->pv_pmap);
1806	}
1807	vm_page_flag_clear(m, PG_WRITEABLE);
1808}
1809
1810/*
1811 * Map a range of physical addresses into kernel virtual address space.
1812 */
1813static vm_offset_t
1814mmu_booke_map(mmu_t mmu, vm_offset_t *virt, vm_offset_t pa_start,
1815    vm_offset_t pa_end, int prot)
1816{
1817	vm_offset_t sva = *virt;
1818	vm_offset_t va = sva;
1819
1820	//debugf("mmu_booke_map: s (sva = 0x%08x pa_start = 0x%08x pa_end = 0x%08x)\n",
1821	//		sva, pa_start, pa_end);
1822
1823	while (pa_start < pa_end) {
1824		mmu_booke_kenter(mmu, va, pa_start);
1825		va += PAGE_SIZE;
1826		pa_start += PAGE_SIZE;
1827	}
1828	*virt = va;
1829
1830	//debugf("mmu_booke_map: e (va = 0x%08x)\n", va);
1831	return (sva);
1832}
1833
1834/*
1835 * The pmap must be activated before it's address space can be accessed in any
1836 * way.
1837 */
1838static void
1839mmu_booke_activate(mmu_t mmu, struct thread *td)
1840{
1841	pmap_t pmap;
1842
1843	pmap = &td->td_proc->p_vmspace->vm_pmap;
1844
1845	CTR5(KTR_PMAP, "%s: s (td = %p, proc = '%s', id = %d, pmap = 0x%08x)",
1846	    __func__, td, td->td_proc->p_comm, td->td_proc->p_pid, pmap);
1847
1848	KASSERT((pmap != kernel_pmap), ("mmu_booke_activate: kernel_pmap!"));
1849
1850	mtx_lock_spin(&sched_lock);
1851
1852	atomic_set_int(&pmap->pm_active, PCPU_GET(cpumask));
1853	PCPU_SET(curpmap, pmap);
1854
1855	if (pmap->pm_tid[PCPU_GET(cpuid)] == TID_NONE)
1856		tid_alloc(pmap);
1857
1858	/* Load PID0 register with pmap tid value. */
1859	mtspr(SPR_PID0, pmap->pm_tid[PCPU_GET(cpuid)]);
1860	__asm __volatile("isync");
1861
1862	mtx_unlock_spin(&sched_lock);
1863
1864	CTR3(KTR_PMAP, "%s: e (tid = %d for '%s')", __func__,
1865	    pmap->pm_tid[PCPU_GET(cpuid)], td->td_proc->p_comm);
1866}
1867
1868/*
1869 * Deactivate the specified process's address space.
1870 */
1871static void
1872mmu_booke_deactivate(mmu_t mmu, struct thread *td)
1873{
1874	pmap_t pmap;
1875
1876	pmap = &td->td_proc->p_vmspace->vm_pmap;
1877
1878	CTR5(KTR_PMAP, "%s: td=%p, proc = '%s', id = %d, pmap = 0x%08x",
1879	    __func__, td, td->td_proc->p_comm, td->td_proc->p_pid, pmap);
1880
1881	atomic_clear_int(&pmap->pm_active, PCPU_GET(cpumask));
1882	PCPU_SET(curpmap, NULL);
1883}
1884
1885/*
1886 * Copy the range specified by src_addr/len
1887 * from the source map to the range dst_addr/len
1888 * in the destination map.
1889 *
1890 * This routine is only advisory and need not do anything.
1891 */
1892static void
1893mmu_booke_copy(mmu_t mmu, pmap_t dst_pmap, pmap_t src_pmap,
1894    vm_offset_t dst_addr, vm_size_t len, vm_offset_t src_addr)
1895{
1896
1897}
1898
1899/*
1900 * Set the physical protection on the specified range of this map as requested.
1901 */
1902static void
1903mmu_booke_protect(mmu_t mmu, pmap_t pmap, vm_offset_t sva, vm_offset_t eva,
1904    vm_prot_t prot)
1905{
1906	vm_offset_t va;
1907	vm_page_t m;
1908	pte_t *pte;
1909
1910	if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
1911		mmu_booke_remove(mmu, pmap, sva, eva);
1912		return;
1913	}
1914
1915	if (prot & VM_PROT_WRITE)
1916		return;
1917
1918	vm_page_lock_queues();
1919	PMAP_LOCK(pmap);
1920	for (va = sva; va < eva; va += PAGE_SIZE) {
1921		if ((pte = pte_find(mmu, pmap, va)) != NULL) {
1922			if (PTE_ISVALID(pte)) {
1923				m = PHYS_TO_VM_PAGE(PTE_PA(pte));
1924
1925				mtx_lock_spin(&tlbivax_mutex);
1926				tlb_miss_lock();
1927
1928				/* Handle modified pages. */
1929				if (PTE_ISMODIFIED(pte))
1930					vm_page_dirty(m);
1931
1932				/* Referenced pages. */
1933				if (PTE_ISREFERENCED(pte))
1934					vm_page_flag_set(m, PG_REFERENCED);
1935
1936				tlb0_flush_entry(va);
1937				pte->flags &= ~(PTE_UW | PTE_SW | PTE_MODIFIED |
1938				    PTE_REFERENCED);
1939
1940				tlb_miss_unlock();
1941				mtx_unlock_spin(&tlbivax_mutex);
1942			}
1943		}
1944	}
1945	PMAP_UNLOCK(pmap);
1946	vm_page_unlock_queues();
1947}
1948
1949/*
1950 * Clear the write and modified bits in each of the given page's mappings.
1951 */
1952static void
1953mmu_booke_remove_write(mmu_t mmu, vm_page_t m)
1954{
1955	pv_entry_t pv;
1956	pte_t *pte;
1957
1958	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1959	if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) != 0 ||
1960	    (m->flags & PG_WRITEABLE) == 0)
1961		return;
1962
1963	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
1964		PMAP_LOCK(pv->pv_pmap);
1965		if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL) {
1966			if (PTE_ISVALID(pte)) {
1967				m = PHYS_TO_VM_PAGE(PTE_PA(pte));
1968
1969				mtx_lock_spin(&tlbivax_mutex);
1970				tlb_miss_lock();
1971
1972				/* Handle modified pages. */
1973				if (PTE_ISMODIFIED(pte))
1974					vm_page_dirty(m);
1975
1976				/* Referenced pages. */
1977				if (PTE_ISREFERENCED(pte))
1978					vm_page_flag_set(m, PG_REFERENCED);
1979
1980				/* Flush mapping from TLB0. */
1981				pte->flags &= ~(PTE_UW | PTE_SW | PTE_MODIFIED |
1982				    PTE_REFERENCED);
1983
1984				tlb_miss_unlock();
1985				mtx_unlock_spin(&tlbivax_mutex);
1986			}
1987		}
1988		PMAP_UNLOCK(pv->pv_pmap);
1989	}
1990	vm_page_flag_clear(m, PG_WRITEABLE);
1991}
1992
1993static boolean_t
1994mmu_booke_page_executable(mmu_t mmu, vm_page_t m)
1995{
1996	pv_entry_t pv;
1997	pte_t *pte;
1998	boolean_t executable;
1999
2000	executable = FALSE;
2001	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
2002		PMAP_LOCK(pv->pv_pmap);
2003		pte = pte_find(mmu, pv->pv_pmap, pv->pv_va);
2004		if (pte != NULL && PTE_ISVALID(pte) && (pte->flags & PTE_UX))
2005			executable = TRUE;
2006		PMAP_UNLOCK(pv->pv_pmap);
2007		if (executable)
2008			break;
2009	}
2010
2011	return (executable);
2012}
2013
2014/*
2015 * Atomically extract and hold the physical page with the given
2016 * pmap and virtual address pair if that mapping permits the given
2017 * protection.
2018 */
2019static vm_page_t
2020mmu_booke_extract_and_hold(mmu_t mmu, pmap_t pmap, vm_offset_t va,
2021    vm_prot_t prot)
2022{
2023	pte_t *pte;
2024	vm_page_t m;
2025	uint32_t pte_wbit;
2026
2027	m = NULL;
2028	vm_page_lock_queues();
2029	PMAP_LOCK(pmap);
2030
2031	pte = pte_find(mmu, pmap, va);
2032	if ((pte != NULL) && PTE_ISVALID(pte)) {
2033		if (pmap == kernel_pmap)
2034			pte_wbit = PTE_SW;
2035		else
2036			pte_wbit = PTE_UW;
2037
2038		if ((pte->flags & pte_wbit) || ((prot & VM_PROT_WRITE) == 0)) {
2039			m = PHYS_TO_VM_PAGE(PTE_PA(pte));
2040			vm_page_hold(m);
2041		}
2042	}
2043
2044	vm_page_unlock_queues();
2045	PMAP_UNLOCK(pmap);
2046	return (m);
2047}
2048
2049/*
2050 * Initialize a vm_page's machine-dependent fields.
2051 */
2052static void
2053mmu_booke_page_init(mmu_t mmu, vm_page_t m)
2054{
2055
2056	TAILQ_INIT(&m->md.pv_list);
2057}
2058
2059/*
2060 * mmu_booke_zero_page_area zeros the specified hardware page by
2061 * mapping it into virtual memory and using bzero to clear
2062 * its contents.
2063 *
2064 * off and size must reside within a single page.
2065 */
2066static void
2067mmu_booke_zero_page_area(mmu_t mmu, vm_page_t m, int off, int size)
2068{
2069	vm_offset_t va;
2070
2071	/* XXX KASSERT off and size are within a single page? */
2072
2073	mtx_lock(&zero_page_mutex);
2074	va = zero_page_va;
2075
2076	mmu_booke_kenter(mmu, va, VM_PAGE_TO_PHYS(m));
2077	bzero((caddr_t)va + off, size);
2078	mmu_booke_kremove(mmu, va);
2079
2080	mtx_unlock(&zero_page_mutex);
2081}
2082
2083/*
2084 * mmu_booke_zero_page zeros the specified hardware page.
2085 */
2086static void
2087mmu_booke_zero_page(mmu_t mmu, vm_page_t m)
2088{
2089
2090	mmu_booke_zero_page_area(mmu, m, 0, PAGE_SIZE);
2091}
2092
2093/*
2094 * mmu_booke_copy_page copies the specified (machine independent) page by
2095 * mapping the page into virtual memory and using memcopy to copy the page,
2096 * one machine dependent page at a time.
2097 */
2098static void
2099mmu_booke_copy_page(mmu_t mmu, vm_page_t sm, vm_page_t dm)
2100{
2101	vm_offset_t sva, dva;
2102
2103	sva = copy_page_src_va;
2104	dva = copy_page_dst_va;
2105
2106	mtx_lock(&copy_page_mutex);
2107	mmu_booke_kenter(mmu, sva, VM_PAGE_TO_PHYS(sm));
2108	mmu_booke_kenter(mmu, dva, VM_PAGE_TO_PHYS(dm));
2109	memcpy((caddr_t)dva, (caddr_t)sva, PAGE_SIZE);
2110	mmu_booke_kremove(mmu, dva);
2111	mmu_booke_kremove(mmu, sva);
2112	mtx_unlock(&copy_page_mutex);
2113}
2114
2115/*
2116 * mmu_booke_zero_page_idle zeros the specified hardware page by mapping it
2117 * into virtual memory and using bzero to clear its contents. This is intended
2118 * to be called from the vm_pagezero process only and outside of Giant. No
2119 * lock is required.
2120 */
2121static void
2122mmu_booke_zero_page_idle(mmu_t mmu, vm_page_t m)
2123{
2124	vm_offset_t va;
2125
2126	va = zero_page_idle_va;
2127	mmu_booke_kenter(mmu, va, VM_PAGE_TO_PHYS(m));
2128	bzero((caddr_t)va, PAGE_SIZE);
2129	mmu_booke_kremove(mmu, va);
2130}
2131
2132/*
2133 * Return whether or not the specified physical page was modified
2134 * in any of physical maps.
2135 */
2136static boolean_t
2137mmu_booke_is_modified(mmu_t mmu, vm_page_t m)
2138{
2139	pte_t *pte;
2140	pv_entry_t pv;
2141
2142	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2143	if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) != 0)
2144		return (FALSE);
2145
2146	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
2147		PMAP_LOCK(pv->pv_pmap);
2148		if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL) {
2149			if (!PTE_ISVALID(pte))
2150				goto make_sure_to_unlock;
2151
2152			if (PTE_ISMODIFIED(pte)) {
2153				PMAP_UNLOCK(pv->pv_pmap);
2154				return (TRUE);
2155			}
2156		}
2157make_sure_to_unlock:
2158		PMAP_UNLOCK(pv->pv_pmap);
2159	}
2160	return (FALSE);
2161}
2162
2163/*
2164 * Return whether or not the specified virtual address is eligible
2165 * for prefault.
2166 */
2167static boolean_t
2168mmu_booke_is_prefaultable(mmu_t mmu, pmap_t pmap, vm_offset_t addr)
2169{
2170
2171	return (FALSE);
2172}
2173
2174/*
2175 * Clear the modify bits on the specified physical page.
2176 */
2177static void
2178mmu_booke_clear_modify(mmu_t mmu, vm_page_t m)
2179{
2180	pte_t *pte;
2181	pv_entry_t pv;
2182
2183	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2184	if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) != 0)
2185		return;
2186
2187	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
2188		PMAP_LOCK(pv->pv_pmap);
2189		if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL) {
2190			if (!PTE_ISVALID(pte))
2191				goto make_sure_to_unlock;
2192
2193			mtx_lock_spin(&tlbivax_mutex);
2194			tlb_miss_lock();
2195
2196			if (pte->flags & (PTE_SW | PTE_UW | PTE_MODIFIED)) {
2197				tlb0_flush_entry(pv->pv_va);
2198				pte->flags &= ~(PTE_SW | PTE_UW | PTE_MODIFIED |
2199				    PTE_REFERENCED);
2200			}
2201
2202			tlb_miss_unlock();
2203			mtx_unlock_spin(&tlbivax_mutex);
2204		}
2205make_sure_to_unlock:
2206		PMAP_UNLOCK(pv->pv_pmap);
2207	}
2208}
2209
2210/*
2211 * Return a count of reference bits for a page, clearing those bits.
2212 * It is not necessary for every reference bit to be cleared, but it
2213 * is necessary that 0 only be returned when there are truly no
2214 * reference bits set.
2215 *
2216 * XXX: The exact number of bits to check and clear is a matter that
2217 * should be tested and standardized at some point in the future for
2218 * optimal aging of shared pages.
2219 */
2220static int
2221mmu_booke_ts_referenced(mmu_t mmu, vm_page_t m)
2222{
2223	pte_t *pte;
2224	pv_entry_t pv;
2225	int count;
2226
2227	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2228	if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) != 0)
2229		return (0);
2230
2231	count = 0;
2232	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
2233		PMAP_LOCK(pv->pv_pmap);
2234		if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL) {
2235			if (!PTE_ISVALID(pte))
2236				goto make_sure_to_unlock;
2237
2238			if (PTE_ISREFERENCED(pte)) {
2239				mtx_lock_spin(&tlbivax_mutex);
2240				tlb_miss_lock();
2241
2242				tlb0_flush_entry(pv->pv_va);
2243				pte->flags &= ~PTE_REFERENCED;
2244
2245				tlb_miss_unlock();
2246				mtx_unlock_spin(&tlbivax_mutex);
2247
2248				if (++count > 4) {
2249					PMAP_UNLOCK(pv->pv_pmap);
2250					break;
2251				}
2252			}
2253		}
2254make_sure_to_unlock:
2255		PMAP_UNLOCK(pv->pv_pmap);
2256	}
2257	return (count);
2258}
2259
2260/*
2261 * Clear the reference bit on the specified physical page.
2262 */
2263static void
2264mmu_booke_clear_reference(mmu_t mmu, vm_page_t m)
2265{
2266	pte_t *pte;
2267	pv_entry_t pv;
2268
2269	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2270	if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) != 0)
2271		return;
2272
2273	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
2274		PMAP_LOCK(pv->pv_pmap);
2275		if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL) {
2276			if (!PTE_ISVALID(pte))
2277				goto make_sure_to_unlock;
2278
2279			if (PTE_ISREFERENCED(pte)) {
2280				mtx_lock_spin(&tlbivax_mutex);
2281				tlb_miss_lock();
2282
2283				tlb0_flush_entry(pv->pv_va);
2284				pte->flags &= ~PTE_REFERENCED;
2285
2286				tlb_miss_unlock();
2287				mtx_unlock_spin(&tlbivax_mutex);
2288			}
2289		}
2290make_sure_to_unlock:
2291		PMAP_UNLOCK(pv->pv_pmap);
2292	}
2293}
2294
2295/*
2296 * Change wiring attribute for a map/virtual-address pair.
2297 */
2298static void
2299mmu_booke_change_wiring(mmu_t mmu, pmap_t pmap, vm_offset_t va, boolean_t wired)
2300{
2301	pte_t *pte;;
2302
2303	PMAP_LOCK(pmap);
2304	if ((pte = pte_find(mmu, pmap, va)) != NULL) {
2305		if (wired) {
2306			if (!PTE_ISWIRED(pte)) {
2307				pte->flags |= PTE_WIRED;
2308				pmap->pm_stats.wired_count++;
2309			}
2310		} else {
2311			if (PTE_ISWIRED(pte)) {
2312				pte->flags &= ~PTE_WIRED;
2313				pmap->pm_stats.wired_count--;
2314			}
2315		}
2316	}
2317	PMAP_UNLOCK(pmap);
2318}
2319
2320/*
2321 * Return true if the pmap's pv is one of the first 16 pvs linked to from this
2322 * page.  This count may be changed upwards or downwards in the future; it is
2323 * only necessary that true be returned for a small subset of pmaps for proper
2324 * page aging.
2325 */
2326static boolean_t
2327mmu_booke_page_exists_quick(mmu_t mmu, pmap_t pmap, vm_page_t m)
2328{
2329	pv_entry_t pv;
2330	int loops;
2331
2332	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2333	if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) != 0)
2334		return (FALSE);
2335
2336	loops = 0;
2337	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
2338		if (pv->pv_pmap == pmap)
2339			return (TRUE);
2340
2341		if (++loops >= 16)
2342			break;
2343	}
2344	return (FALSE);
2345}
2346
2347/*
2348 * Return the number of managed mappings to the given physical page that are
2349 * wired.
2350 */
2351static int
2352mmu_booke_page_wired_mappings(mmu_t mmu, vm_page_t m)
2353{
2354	pv_entry_t pv;
2355	pte_t *pte;
2356	int count = 0;
2357
2358	if ((m->flags & PG_FICTITIOUS) != 0)
2359		return (count);
2360	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2361
2362	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
2363		PMAP_LOCK(pv->pv_pmap);
2364		if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL)
2365			if (PTE_ISVALID(pte) && PTE_ISWIRED(pte))
2366				count++;
2367		PMAP_UNLOCK(pv->pv_pmap);
2368	}
2369
2370	return (count);
2371}
2372
2373static int
2374mmu_booke_dev_direct_mapped(mmu_t mmu, vm_offset_t pa, vm_size_t size)
2375{
2376	int i;
2377	vm_offset_t va;
2378
2379	/*
2380	 * This currently does not work for entries that
2381	 * overlap TLB1 entries.
2382	 */
2383	for (i = 0; i < tlb1_idx; i ++) {
2384		if (tlb1_iomapped(i, pa, size, &va) == 0)
2385			return (0);
2386	}
2387
2388	return (EFAULT);
2389}
2390
2391vm_offset_t
2392mmu_booke_dumpsys_map(mmu_t mmu, struct pmap_md *md, vm_size_t ofs,
2393    vm_size_t *sz)
2394{
2395	vm_paddr_t pa, ppa;
2396	vm_offset_t va;
2397	vm_size_t gran;
2398
2399	/* Raw physical memory dumps don't have a virtual address. */
2400	if (md->md_vaddr == ~0UL) {
2401		/* We always map a 256MB page at 256M. */
2402		gran = 256 * 1024 * 1024;
2403		pa = md->md_paddr + ofs;
2404		ppa = pa & ~(gran - 1);
2405		ofs = pa - ppa;
2406		va = gran;
2407		tlb1_set_entry(va, ppa, gran, _TLB_ENTRY_IO);
2408		if (*sz > (gran - ofs))
2409			*sz = gran - ofs;
2410		return (va + ofs);
2411	}
2412
2413	/* Minidumps are based on virtual memory addresses. */
2414	va = md->md_vaddr + ofs;
2415	if (va >= kernstart + kernsize) {
2416		gran = PAGE_SIZE - (va & PAGE_MASK);
2417		if (*sz > gran)
2418			*sz = gran;
2419	}
2420	return (va);
2421}
2422
2423void
2424mmu_booke_dumpsys_unmap(mmu_t mmu, struct pmap_md *md, vm_size_t ofs,
2425    vm_offset_t va)
2426{
2427
2428	/* Raw physical memory dumps don't have a virtual address. */
2429	if (md->md_vaddr == ~0UL) {
2430		tlb1_idx--;
2431		tlb1[tlb1_idx].mas1 = 0;
2432		tlb1[tlb1_idx].mas2 = 0;
2433		tlb1[tlb1_idx].mas3 = 0;
2434		tlb1_write_entry(tlb1_idx);
2435		return;
2436	}
2437
2438	/* Minidumps are based on virtual memory addresses. */
2439	/* Nothing to do... */
2440}
2441
2442struct pmap_md *
2443mmu_booke_scan_md(mmu_t mmu, struct pmap_md *prev)
2444{
2445	static struct pmap_md md;
2446	struct bi_mem_region *mr;
2447	pte_t *pte;
2448	vm_offset_t va;
2449
2450	if (dumpsys_minidump) {
2451		md.md_paddr = ~0UL;	/* Minidumps use virtual addresses. */
2452		if (prev == NULL) {
2453			/* 1st: kernel .data and .bss. */
2454			md.md_index = 1;
2455			md.md_vaddr = trunc_page((uintptr_t)_etext);
2456			md.md_size = round_page((uintptr_t)_end) - md.md_vaddr;
2457			return (&md);
2458		}
2459		switch (prev->md_index) {
2460		case 1:
2461			/* 2nd: msgbuf and tables (see pmap_bootstrap()). */
2462			md.md_index = 2;
2463			md.md_vaddr = data_start;
2464			md.md_size = data_end - data_start;
2465			break;
2466		case 2:
2467			/* 3rd: kernel VM. */
2468			va = prev->md_vaddr + prev->md_size;
2469			/* Find start of next chunk (from va). */
2470			while (va < virtual_end) {
2471				/* Don't dump the buffer cache. */
2472				if (va >= kmi.buffer_sva &&
2473				    va < kmi.buffer_eva) {
2474					va = kmi.buffer_eva;
2475					continue;
2476				}
2477				pte = pte_find(mmu, kernel_pmap, va);
2478				if (pte != NULL && PTE_ISVALID(pte))
2479					break;
2480				va += PAGE_SIZE;
2481			}
2482			if (va < virtual_end) {
2483				md.md_vaddr = va;
2484				va += PAGE_SIZE;
2485				/* Find last page in chunk. */
2486				while (va < virtual_end) {
2487					/* Don't run into the buffer cache. */
2488					if (va == kmi.buffer_sva)
2489						break;
2490					pte = pte_find(mmu, kernel_pmap, va);
2491					if (pte == NULL || !PTE_ISVALID(pte))
2492						break;
2493					va += PAGE_SIZE;
2494				}
2495				md.md_size = va - md.md_vaddr;
2496				break;
2497			}
2498			md.md_index = 3;
2499			/* FALLTHROUGH */
2500		default:
2501			return (NULL);
2502		}
2503	} else { /* minidumps */
2504		mr = bootinfo_mr();
2505		if (prev == NULL) {
2506			/* first physical chunk. */
2507			md.md_paddr = mr->mem_base;
2508			md.md_size = mr->mem_size;
2509			md.md_vaddr = ~0UL;
2510			md.md_index = 1;
2511		} else if (md.md_index < bootinfo->bi_mem_reg_no) {
2512			md.md_paddr = mr[md.md_index].mem_base;
2513			md.md_size = mr[md.md_index].mem_size;
2514			md.md_vaddr = ~0UL;
2515			md.md_index++;
2516		} else {
2517			/* There's no next physical chunk. */
2518			return (NULL);
2519		}
2520	}
2521
2522	return (&md);
2523}
2524
2525/*
2526 * Map a set of physical memory pages into the kernel virtual address space.
2527 * Return a pointer to where it is mapped. This routine is intended to be used
2528 * for mapping device memory, NOT real memory.
2529 */
2530static void *
2531mmu_booke_mapdev(mmu_t mmu, vm_offset_t pa, vm_size_t size)
2532{
2533	void *res;
2534	uintptr_t va;
2535	vm_size_t sz;
2536
2537	va = (pa >= 0x80000000) ? pa : (0xe2000000 + pa);
2538	res = (void *)va;
2539
2540	do {
2541		sz = 1 << (ilog2(size) & ~1);
2542		if (bootverbose)
2543			printf("Wiring VA=%x to PA=%x (size=%x), "
2544			    "using TLB1[%d]\n", va, pa, sz, tlb1_idx);
2545		tlb1_set_entry(va, pa, sz, _TLB_ENTRY_IO);
2546		size -= sz;
2547		pa += sz;
2548		va += sz;
2549	} while (size > 0);
2550
2551	return (res);
2552}
2553
2554/*
2555 * 'Unmap' a range mapped by mmu_booke_mapdev().
2556 */
2557static void
2558mmu_booke_unmapdev(mmu_t mmu, vm_offset_t va, vm_size_t size)
2559{
2560	vm_offset_t base, offset;
2561
2562	/*
2563	 * Unmap only if this is inside kernel virtual space.
2564	 */
2565	if ((va >= VM_MIN_KERNEL_ADDRESS) && (va <= VM_MAX_KERNEL_ADDRESS)) {
2566		base = trunc_page(va);
2567		offset = va & PAGE_MASK;
2568		size = roundup(offset + size, PAGE_SIZE);
2569		kmem_free(kernel_map, base, size);
2570	}
2571}
2572
2573/*
2574 * mmu_booke_object_init_pt preloads the ptes for a given object into the
2575 * specified pmap. This eliminates the blast of soft faults on process startup
2576 * and immediately after an mmap.
2577 */
2578static void
2579mmu_booke_object_init_pt(mmu_t mmu, pmap_t pmap, vm_offset_t addr,
2580    vm_object_t object, vm_pindex_t pindex, vm_size_t size)
2581{
2582
2583	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
2584	KASSERT(object->type == OBJT_DEVICE,
2585	    ("mmu_booke_object_init_pt: non-device object"));
2586}
2587
2588/*
2589 * Perform the pmap work for mincore.
2590 */
2591static int
2592mmu_booke_mincore(mmu_t mmu, pmap_t pmap, vm_offset_t addr)
2593{
2594
2595	TODO;
2596	return (0);
2597}
2598
2599/**************************************************************************/
2600/* TID handling */
2601/**************************************************************************/
2602
2603/*
2604 * Allocate a TID. If necessary, steal one from someone else.
2605 * The new TID is flushed from the TLB before returning.
2606 */
2607static tlbtid_t
2608tid_alloc(pmap_t pmap)
2609{
2610	tlbtid_t tid;
2611	int thiscpu;
2612
2613	KASSERT((pmap != kernel_pmap), ("tid_alloc: kernel pmap"));
2614
2615	CTR2(KTR_PMAP, "%s: s (pmap = %p)", __func__, pmap);
2616
2617	thiscpu = PCPU_GET(cpuid);
2618
2619	tid = PCPU_GET(tid_next);
2620	if (tid > TID_MAX)
2621		tid = TID_MIN;
2622	PCPU_SET(tid_next, tid + 1);
2623
2624	/* If we are stealing TID then clear the relevant pmap's field */
2625	if (tidbusy[thiscpu][tid] != NULL) {
2626
2627		CTR2(KTR_PMAP, "%s: warning: stealing tid %d", __func__, tid);
2628
2629		tidbusy[thiscpu][tid]->pm_tid[thiscpu] = TID_NONE;
2630
2631		/* Flush all entries from TLB0 matching this TID. */
2632		tid_flush(tid);
2633	}
2634
2635	tidbusy[thiscpu][tid] = pmap;
2636	pmap->pm_tid[thiscpu] = tid;
2637	__asm __volatile("msync; isync");
2638
2639	CTR3(KTR_PMAP, "%s: e (%02d next = %02d)", __func__, tid,
2640	    PCPU_GET(tid_next));
2641
2642	return (tid);
2643}
2644
2645/**************************************************************************/
2646/* TLB0 handling */
2647/**************************************************************************/
2648
2649static void
2650tlb_print_entry(int i, uint32_t mas1, uint32_t mas2, uint32_t mas3,
2651    uint32_t mas7)
2652{
2653	int as;
2654	char desc[3];
2655	tlbtid_t tid;
2656	vm_size_t size;
2657	unsigned int tsize;
2658
2659	desc[2] = '\0';
2660	if (mas1 & MAS1_VALID)
2661		desc[0] = 'V';
2662	else
2663		desc[0] = ' ';
2664
2665	if (mas1 & MAS1_IPROT)
2666		desc[1] = 'P';
2667	else
2668		desc[1] = ' ';
2669
2670	as = (mas1 & MAS1_TS_MASK) ? 1 : 0;
2671	tid = MAS1_GETTID(mas1);
2672
2673	tsize = (mas1 & MAS1_TSIZE_MASK) >> MAS1_TSIZE_SHIFT;
2674	size = 0;
2675	if (tsize)
2676		size = tsize2size(tsize);
2677
2678	debugf("%3d: (%s) [AS=%d] "
2679	    "sz = 0x%08x tsz = %d tid = %d mas1 = 0x%08x "
2680	    "mas2(va) = 0x%08x mas3(pa) = 0x%08x mas7 = 0x%08x\n",
2681	    i, desc, as, size, tsize, tid, mas1, mas2, mas3, mas7);
2682}
2683
2684/* Convert TLB0 va and way number to tlb0[] table index. */
2685static inline unsigned int
2686tlb0_tableidx(vm_offset_t va, unsigned int way)
2687{
2688	unsigned int idx;
2689
2690	idx = (way * TLB0_ENTRIES_PER_WAY);
2691	idx += (va & MAS2_TLB0_ENTRY_IDX_MASK) >> MAS2_TLB0_ENTRY_IDX_SHIFT;
2692	return (idx);
2693}
2694
2695/*
2696 * Invalidate TLB0 entry.
2697 */
2698static inline void
2699tlb0_flush_entry(vm_offset_t va)
2700{
2701
2702	CTR2(KTR_PMAP, "%s: s va=0x%08x", __func__, va);
2703
2704	mtx_assert(&tlbivax_mutex, MA_OWNED);
2705
2706	__asm __volatile("tlbivax 0, %0" :: "r"(va & MAS2_EPN_MASK));
2707	__asm __volatile("isync; msync");
2708	__asm __volatile("tlbsync; msync");
2709
2710	CTR1(KTR_PMAP, "%s: e", __func__);
2711}
2712
2713/* Print out contents of the MAS registers for each TLB0 entry */
2714void
2715tlb0_print_tlbentries(void)
2716{
2717	uint32_t mas0, mas1, mas2, mas3, mas7;
2718	int entryidx, way, idx;
2719
2720	debugf("TLB0 entries:\n");
2721	for (way = 0; way < TLB0_WAYS; way ++)
2722		for (entryidx = 0; entryidx < TLB0_ENTRIES_PER_WAY; entryidx++) {
2723
2724			mas0 = MAS0_TLBSEL(0) | MAS0_ESEL(way);
2725			mtspr(SPR_MAS0, mas0);
2726			__asm __volatile("isync");
2727
2728			mas2 = entryidx << MAS2_TLB0_ENTRY_IDX_SHIFT;
2729			mtspr(SPR_MAS2, mas2);
2730
2731			__asm __volatile("isync; tlbre");
2732
2733			mas1 = mfspr(SPR_MAS1);
2734			mas2 = mfspr(SPR_MAS2);
2735			mas3 = mfspr(SPR_MAS3);
2736			mas7 = mfspr(SPR_MAS7);
2737
2738			idx = tlb0_tableidx(mas2, way);
2739			tlb_print_entry(idx, mas1, mas2, mas3, mas7);
2740		}
2741}
2742
2743/**************************************************************************/
2744/* TLB1 handling */
2745/**************************************************************************/
2746
2747/*
2748 * TLB1 mapping notes:
2749 *
2750 * TLB1[0]	CCSRBAR
2751 * TLB1[1]	Kernel text and data.
2752 * TLB1[2-15]	Additional kernel text and data mappings (if required), PCI
2753 *		windows, other devices mappings.
2754 */
2755
2756/*
2757 * Write given entry to TLB1 hardware.
2758 * Use 32 bit pa, clear 4 high-order bits of RPN (mas7).
2759 */
2760static void
2761tlb1_write_entry(unsigned int idx)
2762{
2763	uint32_t mas0, mas7;
2764
2765	//debugf("tlb1_write_entry: s\n");
2766
2767	/* Clear high order RPN bits */
2768	mas7 = 0;
2769
2770	/* Select entry */
2771	mas0 = MAS0_TLBSEL(1) | MAS0_ESEL(idx);
2772	//debugf("tlb1_write_entry: mas0 = 0x%08x\n", mas0);
2773
2774	mtspr(SPR_MAS0, mas0);
2775	__asm __volatile("isync");
2776	mtspr(SPR_MAS1, tlb1[idx].mas1);
2777	__asm __volatile("isync");
2778	mtspr(SPR_MAS2, tlb1[idx].mas2);
2779	__asm __volatile("isync");
2780	mtspr(SPR_MAS3, tlb1[idx].mas3);
2781	__asm __volatile("isync");
2782	mtspr(SPR_MAS7, mas7);
2783	__asm __volatile("isync; tlbwe; isync; msync");
2784
2785	//debugf("tlb1_write_entry: e\n");;
2786}
2787
2788/*
2789 * Return the largest uint value log such that 2^log <= num.
2790 */
2791static unsigned int
2792ilog2(unsigned int num)
2793{
2794	int lz;
2795
2796	__asm ("cntlzw %0, %1" : "=r" (lz) : "r" (num));
2797	return (31 - lz);
2798}
2799
2800/*
2801 * Convert TLB TSIZE value to mapped region size.
2802 */
2803static vm_size_t
2804tsize2size(unsigned int tsize)
2805{
2806
2807	/*
2808	 * size = 4^tsize KB
2809	 * size = 4^tsize * 2^10 = 2^(2 * tsize - 10)
2810	 */
2811
2812	return ((1 << (2 * tsize)) * 1024);
2813}
2814
2815/*
2816 * Convert region size (must be power of 4) to TLB TSIZE value.
2817 */
2818static unsigned int
2819size2tsize(vm_size_t size)
2820{
2821
2822	return (ilog2(size) / 2 - 5);
2823}
2824
2825/*
2826 * Register permanent kernel mapping in TLB1.
2827 *
2828 * Entries are created starting from index 0 (current free entry is
2829 * kept in tlb1_idx) and are not supposed to be invalidated.
2830 */
2831static int
2832tlb1_set_entry(vm_offset_t va, vm_offset_t pa, vm_size_t size,
2833    uint32_t flags)
2834{
2835	uint32_t ts, tid;
2836	int tsize;
2837
2838	if (tlb1_idx >= TLB1_ENTRIES) {
2839		printf("tlb1_set_entry: TLB1 full!\n");
2840		return (-1);
2841	}
2842
2843	/* Convert size to TSIZE */
2844	tsize = size2tsize(size);
2845
2846	tid = (TID_KERNEL << MAS1_TID_SHIFT) & MAS1_TID_MASK;
2847	/* XXX TS is hard coded to 0 for now as we only use single address space */
2848	ts = (0 << MAS1_TS_SHIFT) & MAS1_TS_MASK;
2849
2850	/* XXX LOCK tlb1[] */
2851
2852	tlb1[tlb1_idx].mas1 = MAS1_VALID | MAS1_IPROT | ts | tid;
2853	tlb1[tlb1_idx].mas1 |= ((tsize << MAS1_TSIZE_SHIFT) & MAS1_TSIZE_MASK);
2854	tlb1[tlb1_idx].mas2 = (va & MAS2_EPN_MASK) | flags;
2855
2856	/* Set supervisor RWX permission bits */
2857	tlb1[tlb1_idx].mas3 = (pa & MAS3_RPN) | MAS3_SR | MAS3_SW | MAS3_SX;
2858
2859	tlb1_write_entry(tlb1_idx++);
2860
2861	/* XXX UNLOCK tlb1[] */
2862
2863	/*
2864	 * XXX in general TLB1 updates should be propagated between CPUs,
2865	 * since current design assumes to have the same TLB1 set-up on all
2866	 * cores.
2867	 */
2868	return (0);
2869}
2870
2871static int
2872tlb1_entry_size_cmp(const void *a, const void *b)
2873{
2874	const vm_size_t *sza;
2875	const vm_size_t *szb;
2876
2877	sza = a;
2878	szb = b;
2879	if (*sza > *szb)
2880		return (-1);
2881	else if (*sza < *szb)
2882		return (1);
2883	else
2884		return (0);
2885}
2886
2887/*
2888 * Map in contiguous RAM region into the TLB1 using maximum of
2889 * KERNEL_REGION_MAX_TLB_ENTRIES entries.
2890 *
2891 * If necessary round up last entry size and return total size
2892 * used by all allocated entries.
2893 */
2894vm_size_t
2895tlb1_mapin_region(vm_offset_t va, vm_offset_t pa, vm_size_t size)
2896{
2897	vm_size_t entry_size[KERNEL_REGION_MAX_TLB_ENTRIES];
2898	vm_size_t mapped_size, sz, esz;
2899	unsigned int log;
2900	int i;
2901
2902	CTR4(KTR_PMAP, "%s: region size = 0x%08x va = 0x%08x pa = 0x%08x",
2903	    __func__, size, va, pa);
2904
2905	mapped_size = 0;
2906	sz = size;
2907	memset(entry_size, 0, sizeof(entry_size));
2908
2909	/* Calculate entry sizes. */
2910	for (i = 0; i < KERNEL_REGION_MAX_TLB_ENTRIES && sz > 0; i++) {
2911
2912		/* Largest region that is power of 4 and fits within size */
2913		log = ilog2(sz) / 2;
2914		esz = 1 << (2 * log);
2915
2916		/* If this is last entry cover remaining size. */
2917		if (i ==  KERNEL_REGION_MAX_TLB_ENTRIES - 1) {
2918			while (esz < sz)
2919				esz = esz << 2;
2920		}
2921
2922		entry_size[i] = esz;
2923		mapped_size += esz;
2924		if (esz < sz)
2925			sz -= esz;
2926		else
2927			sz = 0;
2928	}
2929
2930	/* Sort entry sizes, required to get proper entry address alignment. */
2931	qsort(entry_size, KERNEL_REGION_MAX_TLB_ENTRIES,
2932	    sizeof(vm_size_t), tlb1_entry_size_cmp);
2933
2934	/* Load TLB1 entries. */
2935	for (i = 0; i < KERNEL_REGION_MAX_TLB_ENTRIES; i++) {
2936		esz = entry_size[i];
2937		if (!esz)
2938			break;
2939
2940		CTR5(KTR_PMAP, "%s: entry %d: sz  = 0x%08x (va = 0x%08x "
2941		    "pa = 0x%08x)", __func__, tlb1_idx, esz, va, pa);
2942
2943		tlb1_set_entry(va, pa, esz, _TLB_ENTRY_MEM);
2944
2945		va += esz;
2946		pa += esz;
2947	}
2948
2949	CTR3(KTR_PMAP, "%s: mapped size 0x%08x (wasted space 0x%08x)",
2950	    __func__, mapped_size, mapped_size - size);
2951
2952	return (mapped_size);
2953}
2954
2955/*
2956 * TLB1 initialization routine, to be called after the very first
2957 * assembler level setup done in locore.S.
2958 */
2959void
2960tlb1_init(vm_offset_t ccsrbar)
2961{
2962	uint32_t mas0;
2963
2964	/* TLB1[1] is used to map the kernel. Save that entry. */
2965	mas0 = MAS0_TLBSEL(1) | MAS0_ESEL(1);
2966	mtspr(SPR_MAS0, mas0);
2967	__asm __volatile("isync; tlbre");
2968
2969	tlb1[1].mas1 = mfspr(SPR_MAS1);
2970	tlb1[1].mas2 = mfspr(SPR_MAS2);
2971	tlb1[1].mas3 = mfspr(SPR_MAS3);
2972
2973	/* Map in CCSRBAR in TLB1[0] */
2974	tlb1_idx = 0;
2975	tlb1_set_entry(CCSRBAR_VA, ccsrbar, CCSRBAR_SIZE, _TLB_ENTRY_IO);
2976	/*
2977	 * Set the next available TLB1 entry index. Note TLB[1] is reserved
2978	 * for initial mapping of kernel text+data, which was set early in
2979	 * locore, we need to skip this [busy] entry.
2980	 */
2981	tlb1_idx = 2;
2982
2983	/* Setup TLB miss defaults */
2984	set_mas4_defaults();
2985}
2986
2987/*
2988 * Setup MAS4 defaults.
2989 * These values are loaded to MAS0-2 on a TLB miss.
2990 */
2991static void
2992set_mas4_defaults(void)
2993{
2994	uint32_t mas4;
2995
2996	/* Defaults: TLB0, PID0, TSIZED=4K */
2997	mas4 = MAS4_TLBSELD0;
2998	mas4 |= (TLB_SIZE_4K << MAS4_TSIZED_SHIFT) & MAS4_TSIZED_MASK;
2999#ifdef SMP
3000	mas4 |= MAS4_MD;
3001#endif
3002	mtspr(SPR_MAS4, mas4);
3003	__asm __volatile("isync");
3004}
3005
3006/*
3007 * Print out contents of the MAS registers for each TLB1 entry
3008 */
3009void
3010tlb1_print_tlbentries(void)
3011{
3012	uint32_t mas0, mas1, mas2, mas3, mas7;
3013	int i;
3014
3015	debugf("TLB1 entries:\n");
3016	for (i = 0; i < TLB1_ENTRIES; i++) {
3017
3018		mas0 = MAS0_TLBSEL(1) | MAS0_ESEL(i);
3019		mtspr(SPR_MAS0, mas0);
3020
3021		__asm __volatile("isync; tlbre");
3022
3023		mas1 = mfspr(SPR_MAS1);
3024		mas2 = mfspr(SPR_MAS2);
3025		mas3 = mfspr(SPR_MAS3);
3026		mas7 = mfspr(SPR_MAS7);
3027
3028		tlb_print_entry(i, mas1, mas2, mas3, mas7);
3029	}
3030}
3031
3032/*
3033 * Print out contents of the in-ram tlb1 table.
3034 */
3035void
3036tlb1_print_entries(void)
3037{
3038	int i;
3039
3040	debugf("tlb1[] table entries:\n");
3041	for (i = 0; i < TLB1_ENTRIES; i++)
3042		tlb_print_entry(i, tlb1[i].mas1, tlb1[i].mas2, tlb1[i].mas3, 0);
3043}
3044
3045/*
3046 * Return 0 if the physical IO range is encompassed by one of the
3047 * the TLB1 entries, otherwise return related error code.
3048 */
3049static int
3050tlb1_iomapped(int i, vm_paddr_t pa, vm_size_t size, vm_offset_t *va)
3051{
3052	uint32_t prot;
3053	vm_paddr_t pa_start;
3054	vm_paddr_t pa_end;
3055	unsigned int entry_tsize;
3056	vm_size_t entry_size;
3057
3058	*va = (vm_offset_t)NULL;
3059
3060	/* Skip invalid entries */
3061	if (!(tlb1[i].mas1 & MAS1_VALID))
3062		return (EINVAL);
3063
3064	/*
3065	 * The entry must be cache-inhibited, guarded, and r/w
3066	 * so it can function as an i/o page
3067	 */
3068	prot = tlb1[i].mas2 & (MAS2_I | MAS2_G);
3069	if (prot != (MAS2_I | MAS2_G))
3070		return (EPERM);
3071
3072	prot = tlb1[i].mas3 & (MAS3_SR | MAS3_SW);
3073	if (prot != (MAS3_SR | MAS3_SW))
3074		return (EPERM);
3075
3076	/* The address should be within the entry range. */
3077	entry_tsize = (tlb1[i].mas1 & MAS1_TSIZE_MASK) >> MAS1_TSIZE_SHIFT;
3078	KASSERT((entry_tsize), ("tlb1_iomapped: invalid entry tsize"));
3079
3080	entry_size = tsize2size(entry_tsize);
3081	pa_start = tlb1[i].mas3 & MAS3_RPN;
3082	pa_end = pa_start + entry_size - 1;
3083
3084	if ((pa < pa_start) || ((pa + size) > pa_end))
3085		return (ERANGE);
3086
3087	/* Return virtual address of this mapping. */
3088	*va = (tlb1[i].mas2 & MAS2_EPN_MASK) + (pa - pa_start);
3089	return (0);
3090}
3091