pmap.c revision 178626
1/*-
2 * Copyright (C) 2007 Semihalf, Rafal Jaworowski <raj@semihalf.com>
3 * Copyright (C) 2006 Semihalf, Marian Balakowicz <m8@semihalf.com>
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 * 3. The name of the author may not be used to endorse or promote products
15 *    derived from this software without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN
20 * NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
22 * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
23 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
24 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
25 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
26 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Some hw specific parts of this pmap were derived or influenced
29 * by NetBSD's ibm4xx pmap module. More generic code is shared with
30 * a few other pmap modules from the FreeBSD tree.
31 */
32
33 /*
34  * VM layout notes:
35  *
36  * Kernel and user threads run within one common virtual address space
37  * defined by AS=0.
38  *
39  * Virtual address space layout:
40  * -----------------------------
41  * 0x0000_0000 - 0xbfff_efff	: user process
42  * 0xc000_0000 - 0xc1ff_ffff	: kerel reserved
43  *   0xc000_0000 - kernelend	: kernel code &data
44  *   0xc1ff_c000 - 0xc200_0000	: kstack0
45  * 0xc200_0000 - 0xffef_ffff	: KVA
46  *   0xc200_0000 - 0xc200_3fff : reserved for page zero/copy
47  *   0xc200_4000 - ptbl buf end: reserved for ptbl bufs
48  *   ptbl buf end- 0xffef_ffff	: actual free KVA space
49  * 0xfff0_0000 - 0xffff_ffff	: I/O devices region
50  */
51
52#include <sys/cdefs.h>
53__FBSDID("$FreeBSD: head/sys/powerpc/booke/pmap.c 178626 2008-04-27 21:04:54Z marcel $");
54
55#include <sys/types.h>
56#include <sys/param.h>
57#include <sys/malloc.h>
58#include <sys/proc.h>
59#include <sys/user.h>
60#include <sys/queue.h>
61#include <sys/systm.h>
62#include <sys/kernel.h>
63#include <sys/msgbuf.h>
64#include <sys/lock.h>
65#include <sys/mutex.h>
66#include <sys/vmmeter.h>
67
68#include <vm/vm.h>
69#include <vm/vm_page.h>
70#include <vm/vm_kern.h>
71#include <vm/vm_pageout.h>
72#include <vm/vm_extern.h>
73#include <vm/vm_object.h>
74#include <vm/vm_param.h>
75#include <vm/vm_map.h>
76#include <vm/vm_pager.h>
77#include <vm/uma.h>
78
79#include <machine/cpu.h>
80#include <machine/pcb.h>
81#include <machine/powerpc.h>
82
83#include <machine/tlb.h>
84#include <machine/spr.h>
85#include <machine/vmparam.h>
86#include <machine/md_var.h>
87#include <machine/mmuvar.h>
88#include <machine/pmap.h>
89#include <machine/pte.h>
90
91#include "mmu_if.h"
92
93#define DEBUG
94#undef DEBUG
95
96#ifdef  DEBUG
97#define debugf(fmt, args...) printf(fmt, ##args)
98#else
99#define debugf(fmt, args...)
100#endif
101
102#define TODO			panic("%s: not implemented", __func__);
103#define memmove(d, s, l)	bcopy(s, d, l)
104
105#include "opt_sched.h"
106#ifndef SCHED_4BSD
107#error "e500 only works with SCHED_4BSD which uses a global scheduler lock."
108#endif
109extern struct mtx sched_lock;
110
111/* Kernel physical load address. */
112extern uint32_t kernload;
113
114struct mem_region availmem_regions[MEM_REGIONS];
115int availmem_regions_sz;
116
117/* Reserved KVA space and mutex for mmu_booke_zero_page. */
118static vm_offset_t zero_page_va;
119static struct mtx zero_page_mutex;
120
121/*
122 * Reserved KVA space for mmu_booke_zero_page_idle. This is used
123 * by idle thred only, no lock required.
124 */
125static vm_offset_t zero_page_idle_va;
126
127/* Reserved KVA space and mutex for mmu_booke_copy_page. */
128static vm_offset_t copy_page_src_va;
129static vm_offset_t copy_page_dst_va;
130static struct mtx copy_page_mutex;
131
132/**************************************************************************/
133/* PMAP */
134/**************************************************************************/
135
136static void mmu_booke_enter_locked(mmu_t, pmap_t, vm_offset_t, vm_page_t,
137    vm_prot_t, boolean_t);
138
139unsigned int kptbl_min;		/* Index of the first kernel ptbl. */
140unsigned int kernel_ptbls;	/* Number of KVA ptbls. */
141
142static int pagedaemon_waken;
143
144/*
145 * If user pmap is processed with mmu_booke_remove and the resident count
146 * drops to 0, there are no more pages to remove, so we need not continue.
147 */
148#define PMAP_REMOVE_DONE(pmap) \
149	((pmap) != kernel_pmap && (pmap)->pm_stats.resident_count == 0)
150
151extern void load_pid0(tlbtid_t);
152
153/**************************************************************************/
154/* TLB and TID handling */
155/**************************************************************************/
156
157/* Translation ID busy table */
158static volatile pmap_t tidbusy[TID_MAX + 1];
159
160/*
161 * Actual maximum number of TLB0 entries.
162 * This number differs between e500 core revisions.
163 */
164u_int32_t tlb0_size;
165u_int32_t tlb0_nways;
166u_int32_t tlb0_nentries_per_way;
167
168#define TLB0_SIZE		(tlb0_size)
169#define TLB0_NWAYS		(tlb0_nways)
170#define TLB0_ENTRIES_PER_WAY	(tlb0_nentries_per_way)
171
172/* Pointer to kernel tlb0 table, allocated in mmu_booke_bootstrap() */
173tlb_entry_t *tlb0;
174
175/*
176 * Spinlock to assure proper locking between threads and
177 * between tlb miss handler and kernel.
178 */
179static struct mtx tlb0_mutex;
180
181#define TLB1_SIZE 16
182
183/* In-ram copy of the TLB1 */
184static tlb_entry_t tlb1[TLB1_SIZE];
185
186/* Next free entry in the TLB1 */
187static unsigned int tlb1_idx;
188
189static tlbtid_t tid_alloc(struct pmap *);
190static void tid_flush(tlbtid_t);
191
192extern void tlb1_inval_va(vm_offset_t);
193extern void tlb0_inval_va(vm_offset_t);
194
195static void tlb_print_entry(int, u_int32_t, u_int32_t, u_int32_t, u_int32_t);
196
197static int tlb1_set_entry(vm_offset_t, vm_offset_t, vm_size_t, u_int32_t);
198static void __tlb1_set_entry(unsigned int, vm_offset_t, vm_offset_t,
199    vm_size_t, u_int32_t, unsigned int, unsigned int);
200static void tlb1_write_entry(unsigned int);
201static int tlb1_iomapped(int, vm_paddr_t, vm_size_t, vm_offset_t *);
202static vm_size_t tlb1_mapin_region(vm_offset_t, vm_offset_t, vm_size_t);
203
204static vm_size_t tsize2size(unsigned int);
205static unsigned int size2tsize(vm_size_t);
206static unsigned int ilog2(unsigned int);
207
208static void set_mas4_defaults(void);
209
210static void tlb0_inval_entry(vm_offset_t, unsigned int);
211static inline unsigned int tlb0_tableidx(vm_offset_t, unsigned int);
212static void tlb0_write_entry(unsigned int, unsigned int);
213static void tlb0_flush_entry(pmap_t, vm_offset_t);
214static void tlb0_init(void);
215
216/**************************************************************************/
217/* Page table management */
218/**************************************************************************/
219
220/* Data for the pv entry allocation mechanism */
221static uma_zone_t pvzone;
222static struct vm_object pvzone_obj;
223static int pv_entry_count = 0, pv_entry_max = 0, pv_entry_high_water = 0;
224
225#define PV_ENTRY_ZONE_MIN	2048	/* min pv entries in uma zone */
226
227#ifndef PMAP_SHPGPERPROC
228#define PMAP_SHPGPERPROC	200
229#endif
230
231static void ptbl_init(void);
232static struct ptbl_buf *ptbl_buf_alloc(void);
233static void ptbl_buf_free(struct ptbl_buf *);
234static void ptbl_free_pmap_ptbl(pmap_t, pte_t *);
235
236static void ptbl_alloc(mmu_t, pmap_t, unsigned int);
237static void ptbl_free(mmu_t, pmap_t, unsigned int);
238static void ptbl_hold(mmu_t, pmap_t, unsigned int);
239static int ptbl_unhold(mmu_t, pmap_t, unsigned int);
240
241static vm_paddr_t pte_vatopa(mmu_t, pmap_t, vm_offset_t);
242static pte_t *pte_find(mmu_t, pmap_t, vm_offset_t);
243void pte_enter(mmu_t, pmap_t, vm_page_t, vm_offset_t, u_int32_t);
244static int pte_remove(mmu_t, pmap_t, vm_offset_t, u_int8_t);
245
246pv_entry_t pv_alloc(void);
247static void pv_free(pv_entry_t);
248static void pv_insert(pmap_t, vm_offset_t, vm_page_t);
249static void pv_remove(pmap_t, vm_offset_t, vm_page_t);
250
251/* Number of kva ptbl buffers, each covering one ptbl (PTBL_PAGES). */
252#define PTBL_BUFS		(128 * 16)
253
254struct ptbl_buf {
255	TAILQ_ENTRY(ptbl_buf) link;	/* list link */
256	vm_offset_t kva;		/* va of mapping */
257};
258
259/* ptbl free list and a lock used for access synchronization. */
260static TAILQ_HEAD(, ptbl_buf) ptbl_buf_freelist;
261static struct mtx ptbl_buf_freelist_lock;
262
263/* Base address of kva space allocated fot ptbl bufs. */
264static vm_offset_t ptbl_buf_pool_vabase;
265
266/* Pointer to ptbl_buf structures. */
267static struct ptbl_buf *ptbl_bufs;
268
269/*
270 * Kernel MMU interface
271 */
272static vm_offset_t	mmu_booke_addr_hint(mmu_t, vm_object_t, vm_offset_t, vm_size_t);
273static void		mmu_booke_change_wiring(mmu_t, pmap_t, vm_offset_t, boolean_t);
274static void		mmu_booke_clear_modify(mmu_t, vm_page_t);
275static void		mmu_booke_clear_reference(mmu_t, vm_page_t);
276static void		mmu_booke_copy(pmap_t, pmap_t, vm_offset_t, vm_size_t,
277    vm_offset_t);
278static void		mmu_booke_copy_page(mmu_t, vm_page_t, vm_page_t);
279static void		mmu_booke_enter(mmu_t, pmap_t, vm_offset_t, vm_page_t,
280    vm_prot_t, boolean_t);
281static void		mmu_booke_enter_object(mmu_t, pmap_t, vm_offset_t, vm_offset_t,
282    vm_page_t, vm_prot_t);
283static void		mmu_booke_enter_quick(mmu_t, pmap_t, vm_offset_t, vm_page_t,
284    vm_prot_t);
285static vm_paddr_t	mmu_booke_extract(mmu_t, pmap_t, vm_offset_t);
286static vm_page_t	mmu_booke_extract_and_hold(mmu_t, pmap_t, vm_offset_t,
287    vm_prot_t);
288static void		mmu_booke_init(mmu_t);
289static boolean_t	mmu_booke_is_modified(mmu_t, vm_page_t);
290static boolean_t	mmu_booke_is_prefaultable(mmu_t, pmap_t, vm_offset_t);
291static boolean_t	mmu_booke_ts_referenced(mmu_t, vm_page_t);
292static vm_offset_t	mmu_booke_map(mmu_t, vm_offset_t *, vm_offset_t, vm_offset_t,
293    int);
294static int		mmu_booke_mincore(mmu_t, pmap_t, vm_offset_t);
295static void		mmu_booke_object_init_pt(mmu_t, pmap_t, vm_offset_t,
296    vm_object_t, vm_pindex_t, vm_size_t);
297static boolean_t	mmu_booke_page_exists_quick(mmu_t, pmap_t, vm_page_t);
298static void		mmu_booke_page_init(mmu_t, vm_page_t);
299static int		mmu_booke_page_wired_mappings(mmu_t, vm_page_t);
300static void		mmu_booke_pinit(mmu_t, pmap_t);
301static void		mmu_booke_pinit0(mmu_t, pmap_t);
302static void		mmu_booke_protect(mmu_t, pmap_t, vm_offset_t, vm_offset_t,
303    vm_prot_t);
304static void		mmu_booke_qenter(mmu_t, vm_offset_t, vm_page_t *, int);
305static void		mmu_booke_qremove(mmu_t, vm_offset_t, int);
306static void		mmu_booke_release(mmu_t, pmap_t);
307static void		mmu_booke_remove(mmu_t, pmap_t, vm_offset_t, vm_offset_t);
308static void		mmu_booke_remove_all(mmu_t, vm_page_t);
309static void		mmu_booke_remove_write(mmu_t, vm_page_t);
310static void		mmu_booke_zero_page(mmu_t, vm_page_t);
311static void		mmu_booke_zero_page_area(mmu_t, vm_page_t, int, int);
312static void		mmu_booke_zero_page_idle(mmu_t, vm_page_t);
313static void		mmu_booke_activate(mmu_t, struct thread *);
314static void		mmu_booke_deactivate(mmu_t, struct thread *);
315static void		mmu_booke_bootstrap(mmu_t, vm_offset_t, vm_offset_t);
316static void		*mmu_booke_mapdev(mmu_t, vm_offset_t, vm_size_t);
317static void		mmu_booke_unmapdev(mmu_t, vm_offset_t, vm_size_t);
318static vm_offset_t	mmu_booke_kextract(mmu_t, vm_offset_t);
319static void		mmu_booke_kenter(mmu_t, vm_offset_t, vm_offset_t);
320static void		mmu_booke_kremove(mmu_t, vm_offset_t);
321static boolean_t	mmu_booke_dev_direct_mapped(mmu_t, vm_offset_t, vm_size_t);
322static boolean_t	mmu_booke_page_executable(mmu_t, vm_page_t);
323
324static mmu_method_t mmu_booke_methods[] = {
325	/* pmap dispatcher interface */
326	MMUMETHOD(mmu_addr_hint,	mmu_booke_addr_hint),
327	MMUMETHOD(mmu_change_wiring,	mmu_booke_change_wiring),
328	MMUMETHOD(mmu_clear_modify,	mmu_booke_clear_modify),
329	MMUMETHOD(mmu_clear_reference,	mmu_booke_clear_reference),
330	MMUMETHOD(mmu_copy,		mmu_booke_copy),
331	MMUMETHOD(mmu_copy_page,	mmu_booke_copy_page),
332	MMUMETHOD(mmu_enter,		mmu_booke_enter),
333	MMUMETHOD(mmu_enter_object,	mmu_booke_enter_object),
334	MMUMETHOD(mmu_enter_quick,	mmu_booke_enter_quick),
335	MMUMETHOD(mmu_extract,		mmu_booke_extract),
336	MMUMETHOD(mmu_extract_and_hold,	mmu_booke_extract_and_hold),
337	MMUMETHOD(mmu_init,		mmu_booke_init),
338	MMUMETHOD(mmu_is_modified,	mmu_booke_is_modified),
339	MMUMETHOD(mmu_is_prefaultable,	mmu_booke_is_prefaultable),
340	MMUMETHOD(mmu_ts_referenced,	mmu_booke_ts_referenced),
341	MMUMETHOD(mmu_map,		mmu_booke_map),
342	MMUMETHOD(mmu_mincore,		mmu_booke_mincore),
343	MMUMETHOD(mmu_object_init_pt,	mmu_booke_object_init_pt),
344	MMUMETHOD(mmu_page_exists_quick,mmu_booke_page_exists_quick),
345	MMUMETHOD(mmu_page_init,	mmu_booke_page_init),
346	MMUMETHOD(mmu_page_wired_mappings, mmu_booke_page_wired_mappings),
347	MMUMETHOD(mmu_pinit,		mmu_booke_pinit),
348	MMUMETHOD(mmu_pinit0,		mmu_booke_pinit0),
349	MMUMETHOD(mmu_protect,		mmu_booke_protect),
350	MMUMETHOD(mmu_qenter,		mmu_booke_qenter),
351	MMUMETHOD(mmu_qremove,		mmu_booke_qremove),
352	MMUMETHOD(mmu_release,		mmu_booke_release),
353	MMUMETHOD(mmu_remove,		mmu_booke_remove),
354	MMUMETHOD(mmu_remove_all,	mmu_booke_remove_all),
355	MMUMETHOD(mmu_remove_write,	mmu_booke_remove_write),
356	MMUMETHOD(mmu_zero_page,	mmu_booke_zero_page),
357	MMUMETHOD(mmu_zero_page_area,	mmu_booke_zero_page_area),
358	MMUMETHOD(mmu_zero_page_idle,	mmu_booke_zero_page_idle),
359	MMUMETHOD(mmu_activate,		mmu_booke_activate),
360	MMUMETHOD(mmu_deactivate,	mmu_booke_deactivate),
361
362	/* Internal interfaces */
363	MMUMETHOD(mmu_bootstrap,	mmu_booke_bootstrap),
364	MMUMETHOD(mmu_dev_direct_mapped,mmu_booke_dev_direct_mapped),
365	MMUMETHOD(mmu_mapdev,		mmu_booke_mapdev),
366	MMUMETHOD(mmu_kenter,		mmu_booke_kenter),
367	MMUMETHOD(mmu_kextract,		mmu_booke_kextract),
368/*	MMUMETHOD(mmu_kremove,		mmu_booke_kremove),	*/
369	MMUMETHOD(mmu_page_executable,	mmu_booke_page_executable),
370	MMUMETHOD(mmu_unmapdev,		mmu_booke_unmapdev),
371
372	{ 0, 0 }
373};
374
375static mmu_def_t booke_mmu = {
376	MMU_TYPE_BOOKE,
377	mmu_booke_methods,
378	0
379};
380MMU_DEF(booke_mmu);
381
382/* Return number of entries in TLB0. */
383static __inline void
384tlb0_get_tlbconf(void)
385{
386	uint32_t tlb0_cfg;
387
388	tlb0_cfg = mfspr(SPR_TLB0CFG);
389	tlb0_size = tlb0_cfg & TLBCFG_NENTRY_MASK;
390	tlb0_nways = (tlb0_cfg & TLBCFG_ASSOC_MASK) >> TLBCFG_ASSOC_SHIFT;
391	tlb0_nentries_per_way = tlb0_size/tlb0_nways;
392}
393
394/* Initialize pool of kva ptbl buffers. */
395static void
396ptbl_init(void)
397{
398	int i;
399
400	//debugf("ptbl_init: s (ptbl_bufs = 0x%08x size 0x%08x)\n",
401	//		(u_int32_t)ptbl_bufs, sizeof(struct ptbl_buf) * PTBL_BUFS);
402	//debugf("ptbl_init: s (ptbl_buf_pool_vabase = 0x%08x size = 0x%08x)\n",
403	//		ptbl_buf_pool_vabase, PTBL_BUFS * PTBL_PAGES * PAGE_SIZE);
404
405	mtx_init(&ptbl_buf_freelist_lock, "ptbl bufs lock", NULL, MTX_DEF);
406	TAILQ_INIT(&ptbl_buf_freelist);
407
408	for (i = 0; i < PTBL_BUFS; i++) {
409		ptbl_bufs[i].kva = ptbl_buf_pool_vabase + i * PTBL_PAGES * PAGE_SIZE;
410		TAILQ_INSERT_TAIL(&ptbl_buf_freelist, &ptbl_bufs[i], link);
411	}
412
413	//debugf("ptbl_init: e\n");
414}
415
416/* Get an sf_buf from the freelist. */
417static struct ptbl_buf *
418ptbl_buf_alloc(void)
419{
420	struct ptbl_buf *buf;
421
422	//debugf("ptbl_buf_alloc: s\n");
423
424	mtx_lock(&ptbl_buf_freelist_lock);
425	buf = TAILQ_FIRST(&ptbl_buf_freelist);
426	if (buf != NULL)
427		TAILQ_REMOVE(&ptbl_buf_freelist, buf, link);
428	mtx_unlock(&ptbl_buf_freelist_lock);
429
430	//debugf("ptbl_buf_alloc: e (buf = 0x%08x)\n", (u_int32_t)buf);
431	return (buf);
432}
433
434/* Return ptbl buff to free pool. */
435static void
436ptbl_buf_free(struct ptbl_buf *buf)
437{
438
439	//debugf("ptbl_buf_free: s (buf = 0x%08x)\n", (u_int32_t)buf);
440
441	mtx_lock(&ptbl_buf_freelist_lock);
442	TAILQ_INSERT_TAIL(&ptbl_buf_freelist, buf, link);
443	mtx_unlock(&ptbl_buf_freelist_lock);
444
445	//debugf("ptbl_buf_free: e\n");
446}
447
448/*
449 * Search the list of allocated ptbl bufs and find
450 * on list of allocated ptbls
451 */
452static void
453ptbl_free_pmap_ptbl(pmap_t pmap, pte_t *ptbl)
454{
455	struct ptbl_buf *pbuf;
456
457	//debugf("ptbl_free_pmap_ptbl: s (pmap = 0x%08x ptbl = 0x%08x)\n",
458	//		(u_int32_t)pmap, (u_int32_t)ptbl);
459
460	TAILQ_FOREACH(pbuf, &pmap->ptbl_list, link) {
461		if (pbuf->kva == (vm_offset_t)ptbl) {
462			/* Remove from pmap ptbl buf list. */
463			TAILQ_REMOVE(&pmap->ptbl_list, pbuf, link);
464
465			/* Free correspondig ptbl buf. */
466			ptbl_buf_free(pbuf);
467
468			break;
469		}
470	}
471
472	//debugf("ptbl_free_pmap_ptbl: e\n");
473}
474
475/* Allocate page table. */
476static void
477ptbl_alloc(mmu_t mmu, pmap_t pmap, unsigned int pdir_idx)
478{
479	vm_page_t mtbl[PTBL_PAGES];
480	vm_page_t m;
481	struct ptbl_buf *pbuf;
482	unsigned int pidx;
483	int i;
484
485	//int su = (pmap == kernel_pmap);
486	//debugf("ptbl_alloc: s (pmap = 0x%08x su = %d pdir_idx = %d)\n", (u_int32_t)pmap, su, pdir_idx);
487
488	KASSERT((pdir_idx <= (VM_MAXUSER_ADDRESS / PDIR_SIZE)),
489	    ("ptbl_alloc: invalid pdir_idx"));
490	KASSERT((pmap->pm_pdir[pdir_idx] == NULL),
491	    ("pte_alloc: valid ptbl entry exists!"));
492
493	pbuf = ptbl_buf_alloc();
494	if (pbuf == NULL)
495		panic("pte_alloc: couldn't alloc kernel virtual memory");
496	pmap->pm_pdir[pdir_idx] = (pte_t *)pbuf->kva;
497	//debugf("ptbl_alloc: kva = 0x%08x\n", (u_int32_t)pmap->pm_pdir[pdir_idx]);
498
499	/* Allocate ptbl pages, this will sleep! */
500	for (i = 0; i < PTBL_PAGES; i++) {
501		pidx = (PTBL_PAGES * pdir_idx) + i;
502		while ((m = vm_page_alloc(NULL, pidx, VM_ALLOC_NOOBJ | VM_ALLOC_WIRED)) == NULL) {
503			PMAP_UNLOCK(pmap);
504			vm_page_unlock_queues();
505			VM_WAIT;
506			vm_page_lock_queues();
507			PMAP_LOCK(pmap);
508		}
509		mtbl[i] = m;
510	}
511
512	/* Map in allocated pages into kernel_pmap. */
513	mmu_booke_qenter(mmu, (vm_offset_t)pmap->pm_pdir[pdir_idx], mtbl, PTBL_PAGES);
514
515	/* Zero whole ptbl. */
516	bzero((caddr_t)pmap->pm_pdir[pdir_idx], PTBL_PAGES * PAGE_SIZE);
517
518	/* Add pbuf to the pmap ptbl bufs list. */
519	TAILQ_INSERT_TAIL(&pmap->ptbl_list, pbuf, link);
520
521	//debugf("ptbl_alloc: e\n");
522}
523
524/* Free ptbl pages and invalidate pdir entry. */
525static void
526ptbl_free(mmu_t mmu, pmap_t pmap, unsigned int pdir_idx)
527{
528	pte_t *ptbl;
529	vm_paddr_t pa;
530	vm_offset_t va;
531	vm_page_t m;
532	int i;
533
534	//int su = (pmap == kernel_pmap);
535	//debugf("ptbl_free: s (pmap = 0x%08x su = %d pdir_idx = %d)\n", (u_int32_t)pmap, su, pdir_idx);
536
537	KASSERT((pdir_idx <= (VM_MAXUSER_ADDRESS / PDIR_SIZE)),
538	    ("ptbl_free: invalid pdir_idx"));
539
540	ptbl = pmap->pm_pdir[pdir_idx];
541
542	//debugf("ptbl_free: ptbl = 0x%08x\n", (u_int32_t)ptbl);
543	KASSERT((ptbl != NULL), ("ptbl_free: null ptbl"));
544
545	for (i = 0; i < PTBL_PAGES; i++) {
546		va = ((vm_offset_t)ptbl + (i * PAGE_SIZE));
547		pa = pte_vatopa(mmu, kernel_pmap, va);
548		m = PHYS_TO_VM_PAGE(pa);
549		vm_page_free_zero(m);
550		atomic_subtract_int(&cnt.v_wire_count, 1);
551		mmu_booke_kremove(mmu, va);
552	}
553
554	ptbl_free_pmap_ptbl(pmap, ptbl);
555	pmap->pm_pdir[pdir_idx] = NULL;
556
557	//debugf("ptbl_free: e\n");
558}
559
560/*
561 * Decrement ptbl pages hold count and attempt to free ptbl pages.
562 * Called when removing pte entry from ptbl.
563 *
564 * Return 1 if ptbl pages were freed.
565 */
566static int
567ptbl_unhold(mmu_t mmu, pmap_t pmap, unsigned int pdir_idx)
568{
569	pte_t *ptbl;
570	vm_paddr_t pa;
571	vm_page_t m;
572	int i;
573
574	//int su = (pmap == kernel_pmap);
575	//debugf("ptbl_unhold: s (pmap = %08x su = %d pdir_idx = %d)\n",
576	//		(u_int32_t)pmap, su, pdir_idx);
577
578	KASSERT((pdir_idx <= (VM_MAXUSER_ADDRESS / PDIR_SIZE)),
579	    ("ptbl_unhold: invalid pdir_idx"));
580	KASSERT((pmap != kernel_pmap),
581	    ("ptbl_unhold: unholding kernel ptbl!"));
582
583	ptbl = pmap->pm_pdir[pdir_idx];
584
585	//debugf("ptbl_unhold: ptbl = 0x%08x\n", (u_int32_t)ptbl);
586	KASSERT(((vm_offset_t)ptbl >= VM_MIN_KERNEL_ADDRESS),
587	    ("ptbl_unhold: non kva ptbl"));
588
589	/* decrement hold count */
590	for (i = 0; i < PTBL_PAGES; i++) {
591		pa = pte_vatopa(mmu, kernel_pmap, (vm_offset_t)ptbl + (i * PAGE_SIZE));
592		m = PHYS_TO_VM_PAGE(pa);
593		m->wire_count--;
594	}
595
596	/*
597	 * Free ptbl pages if there are no pte etries in this ptbl.
598	 * wire_count has the same value for all ptbl pages, so check
599	 * the last page.
600	 */
601	if (m->wire_count == 0) {
602		ptbl_free(mmu, pmap, pdir_idx);
603
604		//debugf("ptbl_unhold: e (freed ptbl)\n");
605		return (1);
606	}
607
608	//debugf("ptbl_unhold: e\n");
609	return (0);
610}
611
612/*
613 * Increment hold count for ptbl pages. This routine is used when
614 * new pte entry is being inserted into ptbl.
615 */
616static void
617ptbl_hold(mmu_t mmu, pmap_t pmap, unsigned int pdir_idx)
618{
619	vm_paddr_t pa;
620	pte_t *ptbl;
621	vm_page_t m;
622	int i;
623
624	//debugf("ptbl_hold: s (pmap = 0x%08x pdir_idx = %d)\n", (u_int32_t)pmap, pdir_idx);
625
626	KASSERT((pdir_idx <= (VM_MAXUSER_ADDRESS / PDIR_SIZE)),
627	    ("ptbl_hold: invalid pdir_idx"));
628	KASSERT((pmap != kernel_pmap),
629	    ("ptbl_hold: holding kernel ptbl!"));
630
631	ptbl = pmap->pm_pdir[pdir_idx];
632
633	KASSERT((ptbl != NULL), ("ptbl_hold: null ptbl"));
634
635	for (i = 0; i < PTBL_PAGES; i++) {
636		pa = pte_vatopa(mmu, kernel_pmap, (vm_offset_t)ptbl + (i * PAGE_SIZE));
637		m = PHYS_TO_VM_PAGE(pa);
638		m->wire_count++;
639	}
640
641	//debugf("ptbl_hold: e\n");
642}
643
644/* Allocate pv_entry structure. */
645pv_entry_t
646pv_alloc(void)
647{
648	pv_entry_t pv;
649
650	debugf("pv_alloc: s\n");
651
652	pv_entry_count++;
653	if ((pv_entry_count > pv_entry_high_water) && (pagedaemon_waken == 0)) {
654		pagedaemon_waken = 1;
655		wakeup (&vm_pages_needed);
656	}
657	pv = uma_zalloc(pvzone, M_NOWAIT);
658
659	debugf("pv_alloc: e\n");
660	return (pv);
661}
662
663/* Free pv_entry structure. */
664static __inline void
665pv_free(pv_entry_t pve)
666{
667	//debugf("pv_free: s\n");
668
669	pv_entry_count--;
670	uma_zfree(pvzone, pve);
671
672	//debugf("pv_free: e\n");
673}
674
675
676/* Allocate and initialize pv_entry structure. */
677static void
678pv_insert(pmap_t pmap, vm_offset_t va, vm_page_t m)
679{
680	pv_entry_t pve;
681
682	//int su = (pmap == kernel_pmap);
683	//debugf("pv_insert: s (su = %d pmap = 0x%08x va = 0x%08x m = 0x%08x)\n", su,
684	//	(u_int32_t)pmap, va, (u_int32_t)m);
685
686	pve = pv_alloc();
687	if (pve == NULL)
688		panic("pv_insert: no pv entries!");
689
690	pve->pv_pmap = pmap;
691	pve->pv_va = va;
692
693	/* add to pv_list */
694	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
695	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
696
697	TAILQ_INSERT_TAIL(&m->md.pv_list, pve, pv_link);
698
699	//debugf("pv_insert: e\n");
700}
701
702/* Destroy pv entry. */
703static void
704pv_remove(pmap_t pmap, vm_offset_t va, vm_page_t m)
705{
706	pv_entry_t pve;
707
708	//int su = (pmap == kernel_pmap);
709	//debugf("pv_remove: s (su = %d pmap = 0x%08x va = 0x%08x)\n", su, (u_int32_t)pmap, va);
710
711	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
712	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
713
714	/* find pv entry */
715	TAILQ_FOREACH(pve, &m->md.pv_list, pv_link) {
716		if ((pmap == pve->pv_pmap) && (va == pve->pv_va)) {
717			/* remove from pv_list */
718			TAILQ_REMOVE(&m->md.pv_list, pve, pv_link);
719			if (TAILQ_EMPTY(&m->md.pv_list))
720				vm_page_flag_clear(m, PG_WRITEABLE);
721
722			/* free pv entry struct */
723			pv_free(pve);
724
725			break;
726		}
727	}
728
729	//debugf("pv_remove: e\n");
730}
731
732/*
733 * Clean pte entry, try to free page table page if requested.
734 *
735 * Return 1 if ptbl pages were freed, otherwise return 0.
736 */
737static int
738pte_remove(mmu_t mmu, pmap_t pmap, vm_offset_t va, u_int8_t flags)
739{
740	unsigned int pdir_idx = PDIR_IDX(va);
741	unsigned int ptbl_idx = PTBL_IDX(va);
742	vm_page_t m;
743	pte_t *ptbl;
744	pte_t *pte;
745
746	//int su = (pmap == kernel_pmap);
747	//debugf("pte_remove: s (su = %d pmap = 0x%08x va = 0x%08x flags = %d)\n",
748	//		su, (u_int32_t)pmap, va, flags);
749
750	ptbl = pmap->pm_pdir[pdir_idx];
751	KASSERT(ptbl, ("pte_remove: null ptbl"));
752
753	pte = &ptbl[ptbl_idx];
754
755	if (pte == NULL || !PTE_ISVALID(pte))
756		return (0);
757
758	/* Get vm_page_t for mapped pte. */
759	m = PHYS_TO_VM_PAGE(PTE_PA(pte));
760
761	if (PTE_ISWIRED(pte))
762		pmap->pm_stats.wired_count--;
763
764	if (!PTE_ISFAKE(pte)) {
765		/* Handle managed entry. */
766		if (PTE_ISMANAGED(pte)) {
767
768			/* Handle modified pages. */
769			if (PTE_ISMODIFIED(pte))
770				vm_page_dirty(m);
771
772			/* Referenced pages. */
773			if (PTE_ISREFERENCED(pte))
774				vm_page_flag_set(m, PG_REFERENCED);
775
776			/* Remove pv_entry from pv_list. */
777			pv_remove(pmap, va, m);
778		}
779	}
780
781	pte->flags = 0;
782	pte->rpn = 0;
783	pmap->pm_stats.resident_count--;
784
785	if (flags & PTBL_UNHOLD) {
786		//debugf("pte_remove: e (unhold)\n");
787		return (ptbl_unhold(mmu, pmap, pdir_idx));
788	}
789
790	//debugf("pte_remove: e\n");
791	return (0);
792}
793
794/*
795 * Insert PTE for a given page and virtual address.
796 */
797void
798pte_enter(mmu_t mmu, pmap_t pmap, vm_page_t m, vm_offset_t va, u_int32_t flags)
799{
800	unsigned int pdir_idx = PDIR_IDX(va);
801	unsigned int ptbl_idx = PTBL_IDX(va);
802	pte_t *ptbl;
803	pte_t *pte;
804
805	//int su = (pmap == kernel_pmap);
806	//debugf("pte_enter: s (su = %d pmap = 0x%08x va = 0x%08x)\n", su, (u_int32_t)pmap, va);
807
808	/* Get the page table pointer. */
809	ptbl = pmap->pm_pdir[pdir_idx];
810
811	if (ptbl) {
812		/*
813		 * Check if there is valid mapping for requested
814		 * va, if there is, remove it.
815		 */
816		pte = &pmap->pm_pdir[pdir_idx][ptbl_idx];
817		if (PTE_ISVALID(pte)) {
818			pte_remove(mmu, pmap, va, PTBL_HOLD);
819		} else {
820			/*
821			 * pte is not used, increment hold count
822			 * for ptbl pages.
823			 */
824			if (pmap != kernel_pmap)
825				ptbl_hold(mmu, pmap, pdir_idx);
826		}
827	} else {
828		/* Allocate page table pages. */
829		ptbl_alloc(mmu, pmap, pdir_idx);
830	}
831
832	/* Flush entry from TLB. */
833	tlb0_flush_entry(pmap, va);
834
835	pte = &(pmap->pm_pdir[pdir_idx][ptbl_idx]);
836
837	/*
838	 * Insert pv_entry into pv_list for mapped page
839	 * if part of managed memory.
840	 */
841        if ((m->flags & PG_FICTITIOUS) == 0) {
842		if ((m->flags & PG_UNMANAGED) == 0) {
843			pte->flags |= PTE_MANAGED;
844
845			/* Create and insert pv entry. */
846			pv_insert(pmap, va, m);
847		}
848        } else {
849		pte->flags |= PTE_FAKE;
850	}
851
852	pmap->pm_stats.resident_count++;
853	pte->rpn = VM_PAGE_TO_PHYS(m) & ~PTE_PA_MASK;
854	pte->flags |= (PTE_VALID | flags);
855
856	//debugf("pte_enter: e\n");
857}
858
859/* Return the pa for the given pmap/va. */
860static vm_paddr_t
861pte_vatopa(mmu_t mmu, pmap_t pmap, vm_offset_t va)
862{
863	vm_paddr_t pa = 0;
864	pte_t *pte;
865
866	pte = pte_find(mmu, pmap, va);
867	if ((pte != NULL) && PTE_ISVALID(pte))
868		pa = (PTE_PA(pte) | (va & PTE_PA_MASK));
869	return (pa);
870}
871
872/* Get a pointer to a PTE in a page table. */
873static pte_t *
874pte_find(mmu_t mmu, pmap_t pmap, vm_offset_t va)
875{
876	unsigned int pdir_idx = PDIR_IDX(va);
877	unsigned int ptbl_idx = PTBL_IDX(va);
878
879	KASSERT((pmap != NULL), ("pte_find: invalid pmap"));
880
881	if (pmap->pm_pdir[pdir_idx])
882		return (&(pmap->pm_pdir[pdir_idx][ptbl_idx]));
883
884	return (NULL);
885}
886
887/**************************************************************************/
888/* PMAP related */
889/**************************************************************************/
890
891/*
892 * This is called during e500_init, before the system is really initialized.
893 */
894static void
895mmu_booke_bootstrap(mmu_t mmu, vm_offset_t kernelstart, vm_offset_t kernelend)
896{
897	vm_offset_t phys_kernelend;
898	struct mem_region *mp, *mp1;
899	int cnt, i, j;
900	u_int s, e, sz;
901	u_int phys_avail_count;
902	vm_size_t physsz, hwphyssz;
903	vm_offset_t kernel_pdir;
904
905	debugf("mmu_booke_bootstrap: entered\n");
906
907	/* Align kernel start and end address (kernel image). */
908	kernelstart = trunc_page(kernelstart);
909	kernelend = round_page(kernelend);
910
911	/* Allocate space for the message buffer. */
912	msgbufp = (struct msgbuf *)kernelend;
913	kernelend += MSGBUF_SIZE;
914	debugf(" msgbufp at 0x%08x end = 0x%08x\n", (u_int32_t)msgbufp,
915	    kernelend);
916
917	kernelend = round_page(kernelend);
918
919	/* Allocate space for tlb0 table. */
920	tlb0_get_tlbconf(); /* Read TLB0 size and associativity. */
921	tlb0 = (tlb_entry_t *)kernelend;
922	kernelend += sizeof(tlb_entry_t) * tlb0_size;
923	memset((void *)tlb0, 0, sizeof(tlb_entry_t) * tlb0_size);
924	debugf(" tlb0 at 0x%08x end = 0x%08x\n", (u_int32_t)tlb0, kernelend);
925
926	kernelend = round_page(kernelend);
927
928	/* Allocate space for ptbl_bufs. */
929	ptbl_bufs = (struct ptbl_buf *)kernelend;
930	kernelend += sizeof(struct ptbl_buf) * PTBL_BUFS;
931	memset((void *)ptbl_bufs, 0, sizeof(struct ptbl_buf) * PTBL_SIZE);
932	debugf(" ptbl_bufs at 0x%08x end = 0x%08x\n", (u_int32_t)ptbl_bufs,
933	    kernelend);
934
935	kernelend = round_page(kernelend);
936
937	/* Allocate PTE tables for kernel KVA. */
938	kernel_pdir = kernelend;
939	kernel_ptbls = (VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS +
940	    PDIR_SIZE - 1) / PDIR_SIZE;
941	kernelend += kernel_ptbls * PTBL_PAGES * PAGE_SIZE;
942	memset((void *)kernel_pdir, 0, kernel_ptbls * PTBL_PAGES * PAGE_SIZE);
943	debugf(" kernel ptbls: %d\n", kernel_ptbls);
944	debugf(" kernel pdir at 0x%08x\n", kernel_pdir);
945
946	if (kernelend - kernelstart > 0x1000000) {
947		kernelend = (kernelend + 0x3fffff) & ~0x3fffff;
948		tlb1_mapin_region(kernelstart + 0x1000000,
949		    kernload + 0x1000000, kernelend - kernelstart - 0x1000000);
950	} else
951		kernelend = (kernelend + 0xffffff) & ~0xffffff;
952
953	/*******************************************************/
954	/* Set the start and end of kva. */
955	/*******************************************************/
956	virtual_avail = kernelend;
957	virtual_end = VM_MAX_KERNEL_ADDRESS;
958
959	/* Allocate KVA space for page zero/copy operations. */
960	zero_page_va = virtual_avail;
961	virtual_avail += PAGE_SIZE;
962	zero_page_idle_va = virtual_avail;
963	virtual_avail += PAGE_SIZE;
964	copy_page_src_va = virtual_avail;
965	virtual_avail += PAGE_SIZE;
966	copy_page_dst_va = virtual_avail;
967	virtual_avail += PAGE_SIZE;
968
969	/* Initialize page zero/copy mutexes. */
970	mtx_init(&zero_page_mutex, "mmu_booke_zero_page", NULL, MTX_DEF);
971	mtx_init(&copy_page_mutex, "mmu_booke_copy_page", NULL, MTX_DEF);
972
973	/* Initialize tlb0 table mutex. */
974	mtx_init(&tlb0_mutex, "tlb0", NULL, MTX_SPIN | MTX_RECURSE);
975
976	/* Allocate KVA space for ptbl bufs. */
977	ptbl_buf_pool_vabase = virtual_avail;
978	virtual_avail += PTBL_BUFS * PTBL_PAGES * PAGE_SIZE;
979
980	debugf("ptbl_buf_pool_vabase = 0x%08x\n", ptbl_buf_pool_vabase);
981	debugf("virtual_avail = %08x\n", virtual_avail);
982	debugf("virtual_end   = %08x\n", virtual_end);
983
984	/* Calculate corresponding physical addresses for the kernel region. */
985	phys_kernelend = kernload + (kernelend - kernelstart);
986
987	debugf("kernel image and allocated data:\n");
988	debugf(" kernload    = 0x%08x\n", kernload);
989	debugf(" kernelstart = 0x%08x\n", kernelstart);
990	debugf(" kernelend   = 0x%08x\n", kernelend);
991	debugf(" kernel size = 0x%08x\n", kernelend - kernelstart);
992
993	if (sizeof(phys_avail) / sizeof(phys_avail[0]) < availmem_regions_sz)
994		panic("mmu_booke_bootstrap: phys_avail too small");
995
996	/*
997	 * Removed kernel physical address range from avail
998	 * regions list. Page align all regions.
999	 * Non-page aligned memory isn't very interesting to us.
1000	 * Also, sort the entries for ascending addresses.
1001	 */
1002	sz = 0;
1003	cnt = availmem_regions_sz;
1004	debugf("processing avail regions:\n");
1005	for (mp = availmem_regions; mp->mr_size; mp++) {
1006		s = mp->mr_start;
1007		e = mp->mr_start + mp->mr_size;
1008		debugf(" %08x-%08x -> ", s, e);
1009		/* Check whether this region holds all of the kernel. */
1010		if (s < kernload && e > phys_kernelend) {
1011			availmem_regions[cnt].mr_start = phys_kernelend;
1012			availmem_regions[cnt++].mr_size = e - phys_kernelend;
1013			e = kernload;
1014		}
1015		/* Look whether this regions starts within the kernel. */
1016		if (s >= kernload && s < phys_kernelend) {
1017			if (e <= phys_kernelend)
1018				goto empty;
1019			s = phys_kernelend;
1020		}
1021		/* Now look whether this region ends within the kernel. */
1022		if (e > kernload && e <= phys_kernelend) {
1023			if (s >= kernload)
1024				goto empty;
1025			e = kernload;
1026		}
1027		/* Now page align the start and size of the region. */
1028		s = round_page(s);
1029		e = trunc_page(e);
1030		if (e < s)
1031			e = s;
1032		sz = e - s;
1033		debugf("%08x-%08x = %x\n", s, e, sz);
1034
1035		/* Check whether some memory is left here. */
1036		if (sz == 0) {
1037		empty:
1038			memmove(mp, mp + 1,
1039			    (cnt - (mp - availmem_regions)) * sizeof(*mp));
1040			cnt--;
1041			mp--;
1042			continue;
1043		}
1044
1045		/* Do an insertion sort. */
1046		for (mp1 = availmem_regions; mp1 < mp; mp1++)
1047			if (s < mp1->mr_start)
1048				break;
1049		if (mp1 < mp) {
1050			memmove(mp1 + 1, mp1, (char *)mp - (char *)mp1);
1051			mp1->mr_start = s;
1052			mp1->mr_size = sz;
1053		} else {
1054			mp->mr_start = s;
1055			mp->mr_size = sz;
1056		}
1057	}
1058	availmem_regions_sz = cnt;
1059
1060	/*******************************************************/
1061	/* Fill in phys_avail table, based on availmem_regions */
1062	/*******************************************************/
1063	phys_avail_count = 0;
1064	physsz = 0;
1065	hwphyssz = 0;
1066	TUNABLE_ULONG_FETCH("hw.physmem", (u_long *) &hwphyssz);
1067
1068	debugf("fill in phys_avail:\n");
1069	for (i = 0, j = 0; i < availmem_regions_sz; i++, j += 2) {
1070
1071		debugf(" region: 0x%08x - 0x%08x (0x%08x)\n",
1072		    availmem_regions[i].mr_start,
1073		    availmem_regions[i].mr_start + availmem_regions[i].mr_size,
1074		    availmem_regions[i].mr_size);
1075
1076		if (hwphyssz != 0 && (physsz + availmem_regions[i].mr_size) >= hwphyssz) {
1077			debugf(" hw.physmem adjust\n");
1078			if (physsz < hwphyssz) {
1079				phys_avail[j] = availmem_regions[i].mr_start;
1080				phys_avail[j + 1] = availmem_regions[i].mr_start +
1081				    hwphyssz - physsz;
1082				physsz = hwphyssz;
1083				phys_avail_count++;
1084			}
1085			break;
1086		}
1087
1088		phys_avail[j] = availmem_regions[i].mr_start;
1089		phys_avail[j + 1] = availmem_regions[i].mr_start +
1090		    availmem_regions[i].mr_size;
1091		phys_avail_count++;
1092		physsz += availmem_regions[i].mr_size;
1093	}
1094	physmem = btoc(physsz);
1095
1096	/* Calculate the last available physical address. */
1097	for (i = 0; phys_avail[i + 2] != 0; i += 2)
1098		;
1099	Maxmem = powerpc_btop(phys_avail[i + 1]);
1100
1101	debugf("Maxmem = 0x%08lx\n", Maxmem);
1102	debugf("phys_avail_count = %d\n", phys_avail_count);
1103	debugf("physsz = 0x%08x physmem = %ld (0x%08lx)\n", physsz, physmem, physmem);
1104
1105	/*******************************************************/
1106	/* Initialize (statically allocated) kernel pmap. */
1107	/*******************************************************/
1108	PMAP_LOCK_INIT(kernel_pmap);
1109	kptbl_min = VM_MIN_KERNEL_ADDRESS / PDIR_SIZE;
1110
1111	debugf("kernel_pmap = 0x%08x\n", (u_int32_t)kernel_pmap);
1112	debugf("kptbl_min = %d, kernel_kptbls = %d\n", kptbl_min, kernel_ptbls);
1113	debugf("kernel pdir range: 0x%08x - 0x%08x\n",
1114	    kptbl_min * PDIR_SIZE, (kptbl_min + kernel_ptbls) * PDIR_SIZE - 1);
1115
1116	/* Initialize kernel pdir */
1117	for (i = 0; i < kernel_ptbls; i++)
1118		kernel_pmap->pm_pdir[kptbl_min + i] =
1119		    (pte_t *)(kernel_pdir + (i * PAGE_SIZE * PTBL_PAGES));
1120
1121	kernel_pmap->pm_tid = KERNEL_TID;
1122	kernel_pmap->pm_active = ~0;
1123
1124	/* Initialize tidbusy with kenel_pmap entry. */
1125	tidbusy[0] = kernel_pmap;
1126
1127	/*******************************************************/
1128	/* Final setup */
1129	/*******************************************************/
1130	/* Initialize TLB0 handling. */
1131	tlb0_init();
1132
1133	debugf("mmu_booke_bootstrap: exit\n");
1134}
1135
1136/*
1137 * Get the physical page address for the given pmap/virtual address.
1138 */
1139static vm_paddr_t
1140mmu_booke_extract(mmu_t mmu, pmap_t pmap, vm_offset_t va)
1141{
1142	vm_paddr_t pa;
1143
1144	PMAP_LOCK(pmap);
1145	pa = pte_vatopa(mmu, pmap, va);
1146	PMAP_UNLOCK(pmap);
1147
1148	return (pa);
1149}
1150
1151/*
1152 * Extract the physical page address associated with the given
1153 * kernel virtual address.
1154 */
1155static vm_paddr_t
1156mmu_booke_kextract(mmu_t mmu, vm_offset_t va)
1157{
1158
1159	return (pte_vatopa(mmu, kernel_pmap, va));
1160}
1161
1162/*
1163 * Initialize the pmap module.
1164 * Called by vm_init, to initialize any structures that the pmap
1165 * system needs to map virtual memory.
1166 */
1167static void
1168mmu_booke_init(mmu_t mmu)
1169{
1170	int shpgperproc = PMAP_SHPGPERPROC;
1171
1172	//debugf("mmu_booke_init: s\n");
1173
1174	/*
1175	 * Initialize the address space (zone) for the pv entries.  Set a
1176	 * high water mark so that the system can recover from excessive
1177	 * numbers of pv entries.
1178	 */
1179	pvzone = uma_zcreate("PV ENTRY", sizeof(struct pv_entry), NULL, NULL,
1180	    NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_VM | UMA_ZONE_NOFREE);
1181
1182	TUNABLE_INT_FETCH("vm.pmap.shpgperproc", &shpgperproc);
1183	pv_entry_max = shpgperproc * maxproc + cnt.v_page_count;
1184
1185	TUNABLE_INT_FETCH("vm.pmap.pv_entries", &pv_entry_max);
1186	pv_entry_high_water = 9 * (pv_entry_max / 10);
1187
1188	uma_zone_set_obj(pvzone, &pvzone_obj, pv_entry_max);
1189
1190	/* Pre-fill pvzone with initial number of pv entries. */
1191	uma_prealloc(pvzone, PV_ENTRY_ZONE_MIN);
1192
1193	/* Initialize ptbl allocation. */
1194	ptbl_init();
1195
1196	//debugf("mmu_booke_init: e\n");
1197}
1198
1199/*
1200 * Map a list of wired pages into kernel virtual address space.  This is
1201 * intended for temporary mappings which do not need page modification or
1202 * references recorded.  Existing mappings in the region are overwritten.
1203 */
1204static void
1205mmu_booke_qenter(mmu_t mmu, vm_offset_t sva, vm_page_t *m, int count)
1206{
1207	vm_offset_t va;
1208
1209	//debugf("mmu_booke_qenter: s (sva = 0x%08x count = %d)\n", sva, count);
1210
1211	va = sva;
1212	while (count-- > 0) {
1213		mmu_booke_kenter(mmu, va, VM_PAGE_TO_PHYS(*m));
1214		va += PAGE_SIZE;
1215		m++;
1216	}
1217
1218	//debugf("mmu_booke_qenter: e\n");
1219}
1220
1221/*
1222 * Remove page mappings from kernel virtual address space.  Intended for
1223 * temporary mappings entered by mmu_booke_qenter.
1224 */
1225static void
1226mmu_booke_qremove(mmu_t mmu, vm_offset_t sva, int count)
1227{
1228	vm_offset_t va;
1229
1230	//debugf("mmu_booke_qremove: s (sva = 0x%08x count = %d)\n", sva, count);
1231
1232	va = sva;
1233	while (count-- > 0) {
1234		mmu_booke_kremove(mmu, va);
1235		va += PAGE_SIZE;
1236	}
1237
1238	//debugf("mmu_booke_qremove: e\n");
1239}
1240
1241/*
1242 * Map a wired page into kernel virtual address space.
1243 */
1244static void
1245mmu_booke_kenter(mmu_t mmu, vm_offset_t va, vm_offset_t pa)
1246{
1247	unsigned int pdir_idx = PDIR_IDX(va);
1248	unsigned int ptbl_idx = PTBL_IDX(va);
1249	u_int32_t flags;
1250	pte_t *pte;
1251
1252	//debugf("mmu_booke_kenter: s (pdir_idx = %d ptbl_idx = %d va=0x%08x pa=0x%08x)\n",
1253	//		pdir_idx, ptbl_idx, va, pa);
1254
1255	KASSERT(((va >= VM_MIN_KERNEL_ADDRESS) && (va <= VM_MAX_KERNEL_ADDRESS)),
1256			("mmu_booke_kenter: invalid va"));
1257
1258#if 0
1259	/* assume IO mapping, set I, G bits */
1260	flags = (PTE_G | PTE_I | PTE_FAKE);
1261
1262	/* if mapping is within system memory, do not set I, G bits */
1263	for (i = 0; i < totalmem_regions_sz; i++) {
1264		if ((pa >= totalmem_regions[i].mr_start) &&
1265				(pa < (totalmem_regions[i].mr_start +
1266				       totalmem_regions[i].mr_size))) {
1267			flags &= ~(PTE_I | PTE_G | PTE_FAKE);
1268			break;
1269		}
1270	}
1271#else
1272	flags = 0;
1273#endif
1274
1275	flags |= (PTE_SR | PTE_SW | PTE_SX | PTE_WIRED | PTE_VALID);
1276
1277	pte = &(kernel_pmap->pm_pdir[pdir_idx][ptbl_idx]);
1278
1279	if (PTE_ISVALID(pte)) {
1280		//debugf("mmu_booke_kenter: replacing entry!\n");
1281
1282		/* Flush entry from TLB0 */
1283		tlb0_flush_entry(kernel_pmap, va);
1284	}
1285
1286	pte->rpn = pa & ~PTE_PA_MASK;
1287	pte->flags = flags;
1288
1289	//debugf("mmu_booke_kenter: pdir_idx = %d ptbl_idx = %d va=0x%08x "
1290	//		"pa=0x%08x rpn=0x%08x flags=0x%08x\n",
1291	//		pdir_idx, ptbl_idx, va, pa, pte->rpn, pte->flags);
1292
1293	/* Flush the real memory from the instruction cache. */
1294	if ((flags & (PTE_I | PTE_G)) == 0) {
1295		__syncicache((void *)va, PAGE_SIZE);
1296	}
1297
1298	//debugf("mmu_booke_kenter: e\n");
1299}
1300
1301/*
1302 * Remove a page from kernel page table.
1303 */
1304static void
1305mmu_booke_kremove(mmu_t mmu, vm_offset_t va)
1306{
1307	unsigned int pdir_idx = PDIR_IDX(va);
1308	unsigned int ptbl_idx = PTBL_IDX(va);
1309	pte_t *pte;
1310
1311	//debugf("mmu_booke_kremove: s (va = 0x%08x)\n", va);
1312
1313	KASSERT(((va >= VM_MIN_KERNEL_ADDRESS) && (va <= VM_MAX_KERNEL_ADDRESS)),
1314	    ("mmu_booke_kremove: invalid va"));
1315
1316	pte = &(kernel_pmap->pm_pdir[pdir_idx][ptbl_idx]);
1317
1318	if (!PTE_ISVALID(pte)) {
1319		//debugf("mmu_booke_kremove: e (invalid pte)\n");
1320		return;
1321	}
1322
1323	/* Invalidate entry in TLB0. */
1324	tlb0_flush_entry(kernel_pmap, va);
1325
1326	pte->flags = 0;
1327	pte->rpn = 0;
1328
1329	//debugf("mmu_booke_kremove: e\n");
1330}
1331
1332/*
1333 * Initialize pmap associated with process 0.
1334 */
1335static void
1336mmu_booke_pinit0(mmu_t mmu, pmap_t pmap)
1337{
1338	//debugf("mmu_booke_pinit0: s (pmap = 0x%08x)\n", (u_int32_t)pmap);
1339	mmu_booke_pinit(mmu, pmap);
1340	PCPU_SET(curpmap, pmap);
1341	//debugf("mmu_booke_pinit0: e\n");
1342}
1343
1344/*
1345 * Initialize a preallocated and zeroed pmap structure,
1346 * such as one in a vmspace structure.
1347 */
1348static void
1349mmu_booke_pinit(mmu_t mmu, pmap_t pmap)
1350{
1351
1352	//struct thread *td;
1353	//struct proc *p;
1354
1355	//td = PCPU_GET(curthread);
1356	//p = td->td_proc;
1357	//debugf("mmu_booke_pinit: s (pmap = 0x%08x)\n", (u_int32_t)pmap);
1358	//printf("mmu_booke_pinit: proc %d '%s'\n", p->p_pid, p->p_comm);
1359
1360	KASSERT((pmap != kernel_pmap), ("mmu_booke_pinit: initializing kernel_pmap"));
1361
1362	PMAP_LOCK_INIT(pmap);
1363	pmap->pm_tid = 0;
1364	pmap->pm_active = 0;
1365	bzero(&pmap->pm_stats, sizeof(pmap->pm_stats));
1366	bzero(&pmap->pm_pdir, sizeof(pte_t *) * PDIR_NENTRIES);
1367
1368	TAILQ_INIT(&pmap->ptbl_list);
1369
1370	//debugf("mmu_booke_pinit: e\n");
1371}
1372
1373/*
1374 * Release any resources held by the given physical map.
1375 * Called when a pmap initialized by mmu_booke_pinit is being released.
1376 * Should only be called if the map contains no valid mappings.
1377 */
1378static void
1379mmu_booke_release(mmu_t mmu, pmap_t pmap)
1380{
1381
1382	//debugf("mmu_booke_release: s\n");
1383
1384	PMAP_LOCK_DESTROY(pmap);
1385
1386	//debugf("mmu_booke_release: e\n");
1387}
1388
1389#if 0
1390/* Not needed, kernel page tables are statically allocated. */
1391void
1392mmu_booke_growkernel(vm_offset_t maxkvaddr)
1393{
1394}
1395#endif
1396
1397/*
1398 * Insert the given physical page at the specified virtual address in the
1399 * target physical map with the protection requested. If specified the page
1400 * will be wired down.
1401 */
1402static void
1403mmu_booke_enter(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_page_t m,
1404    vm_prot_t prot, boolean_t wired)
1405{
1406	vm_page_lock_queues();
1407	PMAP_LOCK(pmap);
1408	mmu_booke_enter_locked(mmu, pmap, va, m, prot, wired);
1409	vm_page_unlock_queues();
1410	PMAP_UNLOCK(pmap);
1411}
1412
1413static void
1414mmu_booke_enter_locked(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_page_t m,
1415    vm_prot_t prot, boolean_t wired)
1416{
1417	pte_t *pte;
1418	vm_paddr_t pa;
1419	u_int32_t flags;
1420	int su, sync;
1421
1422	pa = VM_PAGE_TO_PHYS(m);
1423	su = (pmap == kernel_pmap);
1424	sync = 0;
1425
1426	//debugf("mmu_booke_enter_locked: s (pmap=0x%08x su=%d tid=%d m=0x%08x va=0x%08x "
1427	//		"pa=0x%08x prot=0x%08x wired=%d)\n",
1428	//		(u_int32_t)pmap, su, pmap->pm_tid,
1429	//		(u_int32_t)m, va, pa, prot, wired);
1430
1431	if (su) {
1432		KASSERT(((va >= virtual_avail) && (va <= VM_MAX_KERNEL_ADDRESS)),
1433				("mmu_booke_enter_locked: kernel pmap, non kernel va"));
1434	} else {
1435		KASSERT((va <= VM_MAXUSER_ADDRESS),
1436				("mmu_booke_enter_locked: user pmap, non user va"));
1437	}
1438
1439	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1440
1441	/*
1442	 * If there is an existing mapping, and the physical address has not
1443	 * changed, must be protection or wiring change.
1444	 */
1445	if (((pte = pte_find(mmu, pmap, va)) != NULL) &&
1446	    (PTE_ISVALID(pte)) && (PTE_PA(pte) == pa)) {
1447
1448		//debugf("mmu_booke_enter_locked: update\n");
1449
1450		/* Wiring change, just update stats. */
1451		if (wired) {
1452			if (!PTE_ISWIRED(pte)) {
1453				pte->flags |= PTE_WIRED;
1454				pmap->pm_stats.wired_count++;
1455			}
1456		} else {
1457			if (PTE_ISWIRED(pte)) {
1458				pte->flags &= ~PTE_WIRED;
1459				pmap->pm_stats.wired_count--;
1460			}
1461		}
1462
1463		/* Save the old bits and clear the ones we're interested in. */
1464		flags = pte->flags;
1465		pte->flags &= ~(PTE_UW | PTE_UX | PTE_SW | PTE_SX | PTE_MODIFIED);
1466
1467		if (prot & VM_PROT_WRITE) {
1468			/* Add write permissions. */
1469			pte->flags |= PTE_SW;
1470			if (!su)
1471				pte->flags |= PTE_UW;
1472		} else {
1473			/* Handle modified pages, sense modify status. */
1474			if (PTE_ISMODIFIED(pte))
1475				vm_page_dirty(m);
1476		}
1477
1478		/* If we're turning on execute permissions, flush the icache. */
1479		if (prot & VM_PROT_EXECUTE) {
1480			pte->flags |= PTE_SX;
1481			if (!su)
1482				pte->flags |= PTE_UX;
1483
1484			if ((flags & (PTE_UX | PTE_SX)) == 0)
1485				sync++;
1486		}
1487
1488		/* Flush the old mapping from TLB0. */
1489		pte->flags &= ~PTE_REFERENCED;
1490		tlb0_flush_entry(pmap, va);
1491	} else {
1492		/*
1493		 * If there is an existing mapping, but its for a different
1494		 * physical address, pte_enter() will delete the old mapping.
1495		 */
1496		//if ((pte != NULL) && PTE_ISVALID(pte))
1497		//	debugf("mmu_booke_enter_locked: replace\n");
1498		//else
1499		//	debugf("mmu_booke_enter_locked: new\n");
1500
1501		/* Now set up the flags and install the new mapping. */
1502		flags = (PTE_SR | PTE_VALID);
1503
1504		if (!su)
1505			flags |= PTE_UR;
1506
1507		if (prot & VM_PROT_WRITE) {
1508			flags |= PTE_SW;
1509			if (!su)
1510				flags |= PTE_UW;
1511		}
1512
1513		if (prot & VM_PROT_EXECUTE) {
1514			flags |= PTE_SX;
1515			if (!su)
1516				flags |= PTE_UX;
1517		}
1518
1519		/* If its wired update stats. */
1520		if (wired) {
1521			pmap->pm_stats.wired_count++;
1522			flags |= PTE_WIRED;
1523		}
1524
1525		pte_enter(mmu, pmap, m, va, flags);
1526
1527		/* Flush the real memory from the instruction cache. */
1528		if (prot & VM_PROT_EXECUTE)
1529			sync++;
1530	}
1531
1532	if (sync && (su || pmap == PCPU_GET(curpmap))) {
1533		__syncicache((void *)va, PAGE_SIZE);
1534		sync = 0;
1535	}
1536
1537	if (sync) {
1538		/* Create a temporary mapping. */
1539		pmap = PCPU_GET(curpmap);
1540
1541		va = 0;
1542		pte = pte_find(mmu, pmap, va);
1543		KASSERT(pte == NULL, ("%s:%d", __func__, __LINE__));
1544
1545		flags = PTE_SR | PTE_VALID | PTE_UR;
1546		pte_enter(mmu, pmap, m, va, flags);
1547		__syncicache((void *)va, PAGE_SIZE);
1548		pte_remove(mmu, pmap, va, PTBL_UNHOLD);
1549	}
1550
1551	//debugf("mmu_booke_enter_locked: e\n");
1552}
1553
1554/*
1555 * Maps a sequence of resident pages belonging to the same object.
1556 * The sequence begins with the given page m_start.  This page is
1557 * mapped at the given virtual address start.  Each subsequent page is
1558 * mapped at a virtual address that is offset from start by the same
1559 * amount as the page is offset from m_start within the object.  The
1560 * last page in the sequence is the page with the largest offset from
1561 * m_start that can be mapped at a virtual address less than the given
1562 * virtual address end.  Not every virtual page between start and end
1563 * is mapped; only those for which a resident page exists with the
1564 * corresponding offset from m_start are mapped.
1565 */
1566static void
1567mmu_booke_enter_object(mmu_t mmu, pmap_t pmap, vm_offset_t start,
1568    vm_offset_t end, vm_page_t m_start, vm_prot_t prot)
1569{
1570	vm_page_t m;
1571	vm_pindex_t diff, psize;
1572
1573	psize = atop(end - start);
1574	m = m_start;
1575	PMAP_LOCK(pmap);
1576	while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) {
1577		mmu_booke_enter_locked(mmu, pmap, start + ptoa(diff), m, prot &
1578		    (VM_PROT_READ | VM_PROT_EXECUTE), FALSE);
1579		m = TAILQ_NEXT(m, listq);
1580	}
1581	PMAP_UNLOCK(pmap);
1582}
1583
1584static void
1585mmu_booke_enter_quick(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_page_t m,
1586    vm_prot_t prot)
1587{
1588
1589	//debugf("mmu_booke_enter_quick: s\n");
1590
1591	PMAP_LOCK(pmap);
1592	mmu_booke_enter_locked(mmu, pmap, va, m,
1593	    prot & (VM_PROT_READ | VM_PROT_EXECUTE), FALSE);
1594	PMAP_UNLOCK(pmap);
1595
1596	//debugf("mmu_booke_enter_quick e\n");
1597}
1598
1599/*
1600 * Remove the given range of addresses from the specified map.
1601 *
1602 * It is assumed that the start and end are properly rounded to the page size.
1603 */
1604static void
1605mmu_booke_remove(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_offset_t endva)
1606{
1607	pte_t *pte;
1608	u_int8_t hold_flag;
1609
1610	int su = (pmap == kernel_pmap);
1611
1612	//debugf("mmu_booke_remove: s (su = %d pmap=0x%08x tid=%d va=0x%08x endva=0x%08x)\n",
1613	//		su, (u_int32_t)pmap, pmap->pm_tid, va, endva);
1614
1615	if (su) {
1616		KASSERT(((va >= virtual_avail) && (va <= VM_MAX_KERNEL_ADDRESS)),
1617		    ("mmu_booke_enter: kernel pmap, non kernel va"));
1618	} else {
1619		KASSERT((va <= VM_MAXUSER_ADDRESS),
1620		    ("mmu_booke_enter: user pmap, non user va"));
1621	}
1622
1623	if (PMAP_REMOVE_DONE(pmap)) {
1624		//debugf("mmu_booke_remove: e (empty)\n");
1625		return;
1626	}
1627
1628	hold_flag = PTBL_HOLD_FLAG(pmap);
1629	//debugf("mmu_booke_remove: hold_flag = %d\n", hold_flag);
1630
1631	vm_page_lock_queues();
1632	PMAP_LOCK(pmap);
1633	for (; va < endva; va += PAGE_SIZE) {
1634		pte = pte_find(mmu, pmap, va);
1635		if ((pte != NULL) && PTE_ISVALID(pte)) {
1636			pte_remove(mmu, pmap, va, hold_flag);
1637
1638			/* Flush mapping from TLB0. */
1639			tlb0_flush_entry(pmap, va);
1640		}
1641	}
1642	PMAP_UNLOCK(pmap);
1643	vm_page_unlock_queues();
1644
1645	//debugf("mmu_booke_remove: e\n");
1646}
1647
1648/*
1649 * Remove physical page from all pmaps in which it resides.
1650 */
1651static void
1652mmu_booke_remove_all(mmu_t mmu, vm_page_t m)
1653{
1654	pv_entry_t pv, pvn;
1655	u_int8_t hold_flag;
1656
1657	//debugf("mmu_booke_remove_all: s\n");
1658
1659	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1660
1661	for (pv = TAILQ_FIRST(&m->md.pv_list); pv != NULL; pv = pvn) {
1662		pvn = TAILQ_NEXT(pv, pv_link);
1663
1664		PMAP_LOCK(pv->pv_pmap);
1665		hold_flag = PTBL_HOLD_FLAG(pv->pv_pmap);
1666		pte_remove(mmu, pv->pv_pmap, pv->pv_va, hold_flag);
1667
1668		/* Flush mapping from TLB0. */
1669		tlb0_flush_entry(pv->pv_pmap, pv->pv_va);
1670		PMAP_UNLOCK(pv->pv_pmap);
1671	}
1672	vm_page_flag_clear(m, PG_WRITEABLE);
1673
1674	//debugf("mmu_booke_remove_all: e\n");
1675}
1676
1677/*
1678 * Map a range of physical addresses into kernel virtual address space.
1679 *
1680 * The value passed in *virt is a suggested virtual address for the mapping.
1681 * Architectures which can support a direct-mapped physical to virtual region
1682 * can return the appropriate address within that region, leaving '*virt'
1683 * unchanged.  We cannot and therefore do not; *virt is updated with the
1684 * first usable address after the mapped region.
1685 */
1686static vm_offset_t
1687mmu_booke_map(mmu_t mmu, vm_offset_t *virt, vm_offset_t pa_start,
1688    vm_offset_t pa_end, int prot)
1689{
1690	vm_offset_t sva = *virt;
1691	vm_offset_t va = sva;
1692
1693	//debugf("mmu_booke_map: s (sva = 0x%08x pa_start = 0x%08x pa_end = 0x%08x)\n",
1694	//		sva, pa_start, pa_end);
1695
1696	while (pa_start < pa_end) {
1697		mmu_booke_kenter(mmu, va, pa_start);
1698		va += PAGE_SIZE;
1699		pa_start += PAGE_SIZE;
1700	}
1701	*virt = va;
1702
1703	//debugf("mmu_booke_map: e (va = 0x%08x)\n", va);
1704	return (sva);
1705}
1706
1707/*
1708 * The pmap must be activated before it's address space can be accessed in any
1709 * way.
1710 */
1711static void
1712mmu_booke_activate(mmu_t mmu, struct thread *td)
1713{
1714	pmap_t pmap;
1715
1716	pmap = &td->td_proc->p_vmspace->vm_pmap;
1717
1718	//debugf("mmu_booke_activate: s (proc = '%s', id = %d, pmap = 0x%08x)\n",
1719	//		td->td_proc->p_comm, td->td_proc->p_pid, pmap);
1720
1721	KASSERT((pmap != kernel_pmap), ("mmu_booke_activate: kernel_pmap!"));
1722
1723	mtx_lock_spin(&sched_lock);
1724
1725	pmap->pm_active |= PCPU_GET(cpumask);
1726	PCPU_SET(curpmap, pmap);
1727
1728	if (!pmap->pm_tid)
1729		tid_alloc(pmap);
1730
1731	/* Load PID0 register with pmap tid value. */
1732	load_pid0(pmap->pm_tid);
1733
1734	mtx_unlock_spin(&sched_lock);
1735
1736	//debugf("mmu_booke_activate: e (tid = %d for '%s')\n", pmap->pm_tid,
1737	//		td->td_proc->p_comm);
1738}
1739
1740/*
1741 * Deactivate the specified process's address space.
1742 */
1743static void
1744mmu_booke_deactivate(mmu_t mmu, struct thread *td)
1745{
1746	pmap_t pmap;
1747
1748	pmap = &td->td_proc->p_vmspace->vm_pmap;
1749	pmap->pm_active &= ~(PCPU_GET(cpumask));
1750	PCPU_SET(curpmap, NULL);
1751}
1752
1753/*
1754 * Copy the range specified by src_addr/len
1755 * from the source map to the range dst_addr/len
1756 * in the destination map.
1757 *
1758 * This routine is only advisory and need not do anything.
1759 */
1760static void
1761mmu_booke_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr,
1762    vm_size_t len, vm_offset_t src_addr)
1763{
1764
1765}
1766
1767/*
1768 * Set the physical protection on the specified range of this map as requested.
1769 */
1770static void
1771mmu_booke_protect(mmu_t mmu, pmap_t pmap, vm_offset_t sva, vm_offset_t eva,
1772    vm_prot_t prot)
1773{
1774	vm_offset_t va;
1775	vm_page_t m;
1776	pte_t *pte;
1777
1778	if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
1779		mmu_booke_remove(mmu, pmap, sva, eva);
1780		return;
1781	}
1782
1783	if (prot & VM_PROT_WRITE)
1784		return;
1785
1786	vm_page_lock_queues();
1787	PMAP_LOCK(pmap);
1788	for (va = sva; va < eva; va += PAGE_SIZE) {
1789		if ((pte = pte_find(mmu, pmap, va)) != NULL) {
1790			if (PTE_ISVALID(pte)) {
1791				m = PHYS_TO_VM_PAGE(PTE_PA(pte));
1792
1793				/* Handle modified pages. */
1794				if (PTE_ISMODIFIED(pte))
1795					vm_page_dirty(m);
1796
1797				/* Referenced pages. */
1798				if (PTE_ISREFERENCED(pte))
1799					vm_page_flag_set(m, PG_REFERENCED);
1800
1801				/* Flush mapping from TLB0. */
1802				pte->flags &= ~(PTE_UW | PTE_SW | PTE_MODIFIED |
1803				    PTE_REFERENCED);
1804				tlb0_flush_entry(pmap, va);
1805			}
1806		}
1807	}
1808	PMAP_UNLOCK(pmap);
1809	vm_page_unlock_queues();
1810}
1811
1812/*
1813 * Clear the write and modified bits in each of the given page's mappings.
1814 */
1815static void
1816mmu_booke_remove_write(mmu_t mmu, vm_page_t m)
1817{
1818	pv_entry_t pv;
1819	pte_t *pte;
1820
1821	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1822	if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) != 0 ||
1823	    (m->flags & PG_WRITEABLE) == 0)
1824		return;
1825
1826	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
1827		PMAP_LOCK(pv->pv_pmap);
1828		if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL) {
1829			if (PTE_ISVALID(pte)) {
1830				m = PHYS_TO_VM_PAGE(PTE_PA(pte));
1831
1832				/* Handle modified pages. */
1833				if (PTE_ISMODIFIED(pte))
1834					vm_page_dirty(m);
1835
1836				/* Referenced pages. */
1837				if (PTE_ISREFERENCED(pte))
1838					vm_page_flag_set(m, PG_REFERENCED);
1839
1840				/* Flush mapping from TLB0. */
1841				pte->flags &= ~(PTE_UW | PTE_SW | PTE_MODIFIED |
1842				    PTE_REFERENCED);
1843				tlb0_flush_entry(pv->pv_pmap, pv->pv_va);
1844			}
1845		}
1846		PMAP_UNLOCK(pv->pv_pmap);
1847	}
1848	vm_page_flag_clear(m, PG_WRITEABLE);
1849}
1850
1851static boolean_t
1852mmu_booke_page_executable(mmu_t mmu, vm_page_t m)
1853{
1854	pv_entry_t pv;
1855	pte_t *pte;
1856	boolean_t executable;
1857
1858	executable = FALSE;
1859	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
1860		PMAP_LOCK(pv->pv_pmap);
1861		pte = pte_find(mmu, pv->pv_pmap, pv->pv_va);
1862		if (pte != NULL && PTE_ISVALID(pte) && (pte->flags & PTE_UX))
1863			executable = TRUE;
1864		PMAP_UNLOCK(pv->pv_pmap);
1865		if (executable)
1866			break;
1867	}
1868
1869	return (executable);
1870}
1871
1872/*
1873 * Atomically extract and hold the physical page with the given
1874 * pmap and virtual address pair if that mapping permits the given
1875 * protection.
1876 */
1877static vm_page_t
1878mmu_booke_extract_and_hold(mmu_t mmu, pmap_t pmap, vm_offset_t va,
1879    vm_prot_t prot)
1880{
1881	pte_t *pte;
1882	vm_page_t m;
1883	u_int32_t pte_wbit;
1884
1885	m = NULL;
1886	vm_page_lock_queues();
1887	PMAP_LOCK(pmap);
1888	pte = pte_find(mmu, pmap, va);
1889
1890	if ((pte != NULL) && PTE_ISVALID(pte)) {
1891		if (pmap == kernel_pmap)
1892			pte_wbit = PTE_SW;
1893		else
1894			pte_wbit = PTE_UW;
1895
1896		if ((pte->flags & pte_wbit) || ((prot & VM_PROT_WRITE) == 0)) {
1897			m = PHYS_TO_VM_PAGE(PTE_PA(pte));
1898			vm_page_hold(m);
1899		}
1900	}
1901
1902	vm_page_unlock_queues();
1903	PMAP_UNLOCK(pmap);
1904	return (m);
1905}
1906
1907/*
1908 * Initialize a vm_page's machine-dependent fields.
1909 */
1910static void
1911mmu_booke_page_init(mmu_t mmu, vm_page_t m)
1912{
1913
1914	TAILQ_INIT(&m->md.pv_list);
1915}
1916
1917/*
1918 * mmu_booke_zero_page_area zeros the specified hardware page by
1919 * mapping it into virtual memory and using bzero to clear
1920 * its contents.
1921 *
1922 * off and size must reside within a single page.
1923 */
1924static void
1925mmu_booke_zero_page_area(mmu_t mmu, vm_page_t m, int off, int size)
1926{
1927	vm_offset_t va;
1928
1929	//debugf("mmu_booke_zero_page_area: s\n");
1930
1931	mtx_lock(&zero_page_mutex);
1932	va = zero_page_va;
1933
1934	mmu_booke_kenter(mmu, va, VM_PAGE_TO_PHYS(m));
1935	bzero((caddr_t)va + off, size);
1936	mmu_booke_kremove(mmu, va);
1937
1938	mtx_unlock(&zero_page_mutex);
1939
1940	//debugf("mmu_booke_zero_page_area: e\n");
1941}
1942
1943/*
1944 * mmu_booke_zero_page zeros the specified hardware page.
1945 */
1946static void
1947mmu_booke_zero_page(mmu_t mmu, vm_page_t m)
1948{
1949
1950	//debugf("mmu_booke_zero_page: s\n");
1951	mmu_booke_zero_page_area(mmu, m, 0, PAGE_SIZE);
1952	//debugf("mmu_booke_zero_page: e\n");
1953}
1954
1955/*
1956 * mmu_booke_copy_page copies the specified (machine independent) page by
1957 * mapping the page into virtual memory and using memcopy to copy the page,
1958 * one machine dependent page at a time.
1959 */
1960static void
1961mmu_booke_copy_page(mmu_t mmu, vm_page_t sm, vm_page_t dm)
1962{
1963	vm_offset_t sva, dva;
1964
1965	//debugf("mmu_booke_copy_page: s\n");
1966
1967	mtx_lock(&copy_page_mutex);
1968	sva = copy_page_src_va;
1969	dva = copy_page_dst_va;
1970
1971	mmu_booke_kenter(mmu, sva, VM_PAGE_TO_PHYS(sm));
1972	mmu_booke_kenter(mmu, dva, VM_PAGE_TO_PHYS(dm));
1973	memcpy((caddr_t)dva, (caddr_t)sva, PAGE_SIZE);
1974	mmu_booke_kremove(mmu, dva);
1975	mmu_booke_kremove(mmu, sva);
1976
1977	mtx_unlock(&copy_page_mutex);
1978
1979	//debugf("mmu_booke_copy_page: e\n");
1980}
1981
1982#if 0
1983/*
1984 * Remove all pages from specified address space, this aids process exit
1985 * speeds. This is much faster than mmu_booke_remove in the case of running
1986 * down an entire address space. Only works for the current pmap.
1987 */
1988void
1989mmu_booke_remove_pages(pmap_t pmap)
1990{
1991}
1992#endif
1993
1994/*
1995 * mmu_booke_zero_page_idle zeros the specified hardware page by mapping it
1996 * into virtual memory and using bzero to clear its contents. This is intended
1997 * to be called from the vm_pagezero process only and outside of Giant. No
1998 * lock is required.
1999 */
2000static void
2001mmu_booke_zero_page_idle(mmu_t mmu, vm_page_t m)
2002{
2003	vm_offset_t va;
2004
2005	//debugf("mmu_booke_zero_page_idle: s\n");
2006
2007	va = zero_page_idle_va;
2008	mmu_booke_kenter(mmu, va, VM_PAGE_TO_PHYS(m));
2009	bzero((caddr_t)va, PAGE_SIZE);
2010	mmu_booke_kremove(mmu, va);
2011
2012	//debugf("mmu_booke_zero_page_idle: e\n");
2013}
2014
2015/*
2016 * Return whether or not the specified physical page was modified
2017 * in any of physical maps.
2018 */
2019static boolean_t
2020mmu_booke_is_modified(mmu_t mmu, vm_page_t m)
2021{
2022	pte_t *pte;
2023	pv_entry_t pv;
2024
2025	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2026	if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) != 0)
2027		return (FALSE);
2028
2029	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
2030		PMAP_LOCK(pv->pv_pmap);
2031		if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL) {
2032			if (!PTE_ISVALID(pte))
2033				goto make_sure_to_unlock;
2034
2035			if (PTE_ISMODIFIED(pte)) {
2036				PMAP_UNLOCK(pv->pv_pmap);
2037				return (TRUE);
2038			}
2039		}
2040make_sure_to_unlock:
2041		PMAP_UNLOCK(pv->pv_pmap);
2042	}
2043	return (FALSE);
2044}
2045
2046/*
2047 * Return whether or not the specified virtual address is elgible
2048 * for prefault.
2049 */
2050static boolean_t
2051mmu_booke_is_prefaultable(mmu_t mmu, pmap_t pmap, vm_offset_t addr)
2052{
2053
2054	return (FALSE);
2055}
2056
2057/*
2058 * Clear the modify bits on the specified physical page.
2059 */
2060static void
2061mmu_booke_clear_modify(mmu_t mmu, vm_page_t m)
2062{
2063	pte_t *pte;
2064	pv_entry_t pv;
2065
2066	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2067	if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) != 0)
2068		return;
2069
2070	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
2071		PMAP_LOCK(pv->pv_pmap);
2072		if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL) {
2073			if (!PTE_ISVALID(pte))
2074				goto make_sure_to_unlock;
2075
2076			if (pte->flags & (PTE_SW | PTE_UW | PTE_MODIFIED)) {
2077				pte->flags &= ~(PTE_SW | PTE_UW | PTE_MODIFIED |
2078				    PTE_REFERENCED);
2079				tlb0_flush_entry(pv->pv_pmap, pv->pv_va);
2080			}
2081		}
2082make_sure_to_unlock:
2083		PMAP_UNLOCK(pv->pv_pmap);
2084	}
2085}
2086
2087/*
2088 * Return a count of reference bits for a page, clearing those bits.
2089 * It is not necessary for every reference bit to be cleared, but it
2090 * is necessary that 0 only be returned when there are truly no
2091 * reference bits set.
2092 *
2093 * XXX: The exact number of bits to check and clear is a matter that
2094 * should be tested and standardized at some point in the future for
2095 * optimal aging of shared pages.
2096 */
2097static int
2098mmu_booke_ts_referenced(mmu_t mmu, vm_page_t m)
2099{
2100	pte_t *pte;
2101	pv_entry_t pv;
2102	int count;
2103
2104	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2105	if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) != 0)
2106		return (0);
2107
2108	count = 0;
2109	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
2110		PMAP_LOCK(pv->pv_pmap);
2111		if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL) {
2112			if (!PTE_ISVALID(pte))
2113				goto make_sure_to_unlock;
2114
2115			if (PTE_ISREFERENCED(pte)) {
2116				pte->flags &= ~PTE_REFERENCED;
2117				tlb0_flush_entry(pv->pv_pmap, pv->pv_va);
2118
2119				if (++count > 4) {
2120					PMAP_UNLOCK(pv->pv_pmap);
2121					break;
2122				}
2123			}
2124		}
2125make_sure_to_unlock:
2126		PMAP_UNLOCK(pv->pv_pmap);
2127	}
2128	return (count);
2129}
2130
2131/*
2132 * Clear the reference bit on the specified physical page.
2133 */
2134static void
2135mmu_booke_clear_reference(mmu_t mmu, vm_page_t m)
2136{
2137	pte_t *pte;
2138	pv_entry_t pv;
2139
2140	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2141	if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) != 0)
2142		return;
2143
2144	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
2145		PMAP_LOCK(pv->pv_pmap);
2146		if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL) {
2147			if (!PTE_ISVALID(pte))
2148				goto make_sure_to_unlock;
2149
2150			if (PTE_ISREFERENCED(pte)) {
2151				pte->flags &= ~PTE_REFERENCED;
2152				tlb0_flush_entry(pv->pv_pmap, pv->pv_va);
2153			}
2154		}
2155make_sure_to_unlock:
2156		PMAP_UNLOCK(pv->pv_pmap);
2157	}
2158}
2159
2160/*
2161 * Change wiring attribute for a map/virtual-address pair.
2162 */
2163static void
2164mmu_booke_change_wiring(mmu_t mmu, pmap_t pmap, vm_offset_t va, boolean_t wired)
2165{
2166	pte_t *pte;;
2167
2168	PMAP_LOCK(pmap);
2169	if ((pte = pte_find(mmu, pmap, va)) != NULL) {
2170		if (wired) {
2171			if (!PTE_ISWIRED(pte)) {
2172				pte->flags |= PTE_WIRED;
2173				pmap->pm_stats.wired_count++;
2174			}
2175		} else {
2176			if (PTE_ISWIRED(pte)) {
2177				pte->flags &= ~PTE_WIRED;
2178				pmap->pm_stats.wired_count--;
2179			}
2180		}
2181	}
2182	PMAP_UNLOCK(pmap);
2183}
2184
2185/*
2186 * Return true if the pmap's pv is one of the first 16 pvs linked to from this
2187 * page.  This count may be changed upwards or downwards in the future; it is
2188 * only necessary that true be returned for a small subset of pmaps for proper
2189 * page aging.
2190 */
2191static boolean_t
2192mmu_booke_page_exists_quick(mmu_t mmu, pmap_t pmap, vm_page_t m)
2193{
2194	pv_entry_t pv;
2195	int loops;
2196
2197	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2198	if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) != 0)
2199		return (FALSE);
2200
2201	loops = 0;
2202	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
2203
2204		if (pv->pv_pmap == pmap)
2205			return (TRUE);
2206
2207		if (++loops >= 16)
2208			break;
2209	}
2210	return (FALSE);
2211}
2212
2213/*
2214 * Return the number of managed mappings to the given physical page that are
2215 * wired.
2216 */
2217static int
2218mmu_booke_page_wired_mappings(mmu_t mmu, vm_page_t m)
2219{
2220	pv_entry_t pv;
2221	pte_t *pte;
2222	int count = 0;
2223
2224	if ((m->flags & PG_FICTITIOUS) != 0)
2225		return (count);
2226	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2227
2228	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
2229		PMAP_LOCK(pv->pv_pmap);
2230		if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL)
2231			if (PTE_ISVALID(pte) && PTE_ISWIRED(pte))
2232				count++;
2233		PMAP_UNLOCK(pv->pv_pmap);
2234	}
2235
2236	return (count);
2237}
2238
2239static int
2240mmu_booke_dev_direct_mapped(mmu_t mmu, vm_offset_t pa, vm_size_t size)
2241{
2242	int i;
2243	vm_offset_t va;
2244
2245	/*
2246	 * This currently does not work for entries that
2247	 * overlap TLB1 entries.
2248	 */
2249	for (i = 0; i < tlb1_idx; i ++) {
2250		if (tlb1_iomapped(i, pa, size, &va) == 0)
2251			return (0);
2252	}
2253
2254	return (EFAULT);
2255}
2256
2257/*
2258 * Map a set of physical memory pages into the kernel virtual address space.
2259 * Return a pointer to where it is mapped. This routine is intended to be used
2260 * for mapping device memory, NOT real memory.
2261 */
2262static void *
2263mmu_booke_mapdev(mmu_t mmu, vm_offset_t pa, vm_size_t size)
2264{
2265	uintptr_t va;
2266
2267	va = (pa >= 0x80000000) ? pa : (0xe2000000 + pa);
2268	if (bootverbose)
2269		printf("Wiring VA=%x to PA=%x (size=%x), using TLB1[%d]\n",
2270		    va, pa, size, tlb1_idx);
2271	tlb1_set_entry(va, pa, size, _TLB_ENTRY_IO);
2272	return ((void *)va);
2273}
2274
2275/*
2276 * 'Unmap' a range mapped by mmu_booke_mapdev().
2277 */
2278static void
2279mmu_booke_unmapdev(mmu_t mmu, vm_offset_t va, vm_size_t size)
2280{
2281	vm_offset_t base, offset;
2282
2283	//debugf("mmu_booke_unmapdev: s (va = 0x%08x)\n", va);
2284
2285	/*
2286	 * Unmap only if this is inside kernel virtual space.
2287	 */
2288	if ((va >= VM_MIN_KERNEL_ADDRESS) && (va <= VM_MAX_KERNEL_ADDRESS)) {
2289		base = trunc_page(va);
2290		offset = va & PAGE_MASK;
2291		size = roundup(offset + size, PAGE_SIZE);
2292		kmem_free(kernel_map, base, size);
2293	}
2294
2295	//debugf("mmu_booke_unmapdev: e\n");
2296}
2297
2298/*
2299 * mmu_booke_object_init_pt preloads the ptes for a given object
2300 * into the specified pmap. This eliminates the blast of soft
2301 * faults on process startup and immediately after an mmap.
2302 */
2303static void
2304mmu_booke_object_init_pt(mmu_t mmu, pmap_t pmap, vm_offset_t addr,
2305    vm_object_t object, vm_pindex_t pindex, vm_size_t size)
2306{
2307	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
2308	KASSERT(object->type == OBJT_DEVICE,
2309	    ("mmu_booke_object_init_pt: non-device object"));
2310}
2311
2312/*
2313 * Perform the pmap work for mincore.
2314 */
2315static int
2316mmu_booke_mincore(mmu_t mmu, pmap_t pmap, vm_offset_t addr)
2317{
2318
2319	TODO;
2320	return (0);
2321}
2322
2323static vm_offset_t
2324mmu_booke_addr_hint(mmu_t mmu, vm_object_t object, vm_offset_t va,
2325    vm_size_t size)
2326{
2327
2328	return (va);
2329}
2330
2331/**************************************************************************/
2332/* TID handling */
2333/**************************************************************************/
2334/*
2335 * Flush all entries from TLB0 matching given tid.
2336 */
2337static void
2338tid_flush(tlbtid_t tid)
2339{
2340	int i, entryidx, way;
2341
2342	//debugf("tid_flush: s (tid = %d)\n", tid);
2343
2344	mtx_lock_spin(&tlb0_mutex);
2345
2346	for (i = 0; i < TLB0_SIZE; i++) {
2347		if (MAS1_GETTID(tlb0[i].mas1) == tid) {
2348			way = i / TLB0_ENTRIES_PER_WAY;
2349			entryidx = i - (way * TLB0_ENTRIES_PER_WAY);
2350
2351			//debugf("tid_flush: inval tlb0 entry %d\n", i);
2352			tlb0_inval_entry(entryidx << MAS2_TLB0_ENTRY_IDX_SHIFT, way);
2353		}
2354	}
2355
2356	mtx_unlock_spin(&tlb0_mutex);
2357
2358	//debugf("tid_flush: e\n");
2359}
2360
2361/*
2362 * Allocate a TID. If necessary, steal one from someone else.
2363 * The new TID is flushed from the TLB before returning.
2364 */
2365static tlbtid_t
2366tid_alloc(pmap_t pmap)
2367{
2368	tlbtid_t tid;
2369	static tlbtid_t next_tid = TID_MIN;
2370
2371	//struct thread *td;
2372	//struct proc *p;
2373
2374	//td = PCPU_GET(curthread);
2375	//p = td->td_proc;
2376	//debugf("tid_alloc: s (pmap = 0x%08x)\n", (u_int32_t)pmap);
2377	//printf("tid_alloc: proc %d '%s'\n", p->p_pid, p->p_comm);
2378
2379	KASSERT((pmap != kernel_pmap), ("tid_alloc: kernel pmap"));
2380
2381	/*
2382	 * Find a likely TID, allocate unused if possible,
2383	 * skip reserved entries.
2384	 */
2385	tid = next_tid;
2386	while (tidbusy[tid] != NULL) {
2387		if (tid == next_tid)
2388			break;
2389
2390		if (tid == TID_MAX)
2391			tid = TID_MIN;
2392		else
2393			tid++;
2394
2395	}
2396
2397	/* Now clean it out */
2398	tid_flush(tid);
2399
2400	/* If we are stealing pmap then clear its tid */
2401	if (tidbusy[tid]) {
2402		//debugf("warning: stealing tid %d\n", tid);
2403		tidbusy[tid]->pm_tid = 0;
2404	}
2405
2406	/* Calculate next tid */
2407	if (tid == TID_MAX)
2408		next_tid = TID_MIN;
2409	else
2410		next_tid = tid + 1;
2411
2412	tidbusy[tid] = pmap;
2413	pmap->pm_tid = tid;
2414
2415	//debugf("tid_alloc: e (%02d next = %02d)\n", tid, next_tid);
2416	return (tid);
2417}
2418
2419#if 0
2420/*
2421 * Free this pmap's TID.
2422 */
2423static void
2424tid_free(pmap_t pmap)
2425{
2426	tlbtid_t oldtid;
2427
2428	oldtid = pmap->pm_tid;
2429
2430	if (oldtid == 0) {
2431		panic("tid_free: freeing kernel tid");
2432	}
2433
2434#ifdef DEBUG
2435	if (tidbusy[oldtid] == 0)
2436		debugf("tid_free: freeing free tid %d\n", oldtid);
2437	if (tidbusy[oldtid] != pmap) {
2438		debugf("tid_free: freeing someone esle's tid\n "
2439		       "tidbusy[%d] = 0x%08x pmap = 0x%08x\n",
2440		       oldtid, (u_int32_t)tidbusy[oldtid], (u_int32_t)pmap);
2441	}
2442#endif
2443
2444	tidbusy[oldtid] = NULL;
2445	tid_flush(oldtid);
2446}
2447#endif
2448
2449#if 0
2450#if DEBUG
2451static void
2452tid_print_busy(void)
2453{
2454	int i;
2455
2456	for (i = 0; i < TID_MAX; i++) {
2457		debugf("tid %d = pmap 0x%08x", i, (u_int32_t)tidbusy[i]);
2458		if (tidbusy[i])
2459			debugf(" pmap->tid = %d", tidbusy[i]->pm_tid);
2460		debugf("\n");
2461	}
2462
2463}
2464#endif /* DEBUG */
2465#endif
2466
2467/**************************************************************************/
2468/* TLB0 handling */
2469/**************************************************************************/
2470
2471static void
2472tlb_print_entry(int i, u_int32_t mas1, u_int32_t mas2, u_int32_t mas3, u_int32_t mas7)
2473{
2474	int as;
2475	char desc[3];
2476	tlbtid_t tid;
2477	vm_size_t size;
2478	unsigned int tsize;
2479
2480	desc[2] = '\0';
2481	if (mas1 & MAS1_VALID)
2482		desc[0] = 'V';
2483	else
2484		desc[0] = ' ';
2485
2486	if (mas1 & MAS1_IPROT)
2487		desc[1] = 'P';
2488	else
2489		desc[1] = ' ';
2490
2491	as = (mas1 & MAS1_TS) ? 1 : 0;
2492	tid = MAS1_GETTID(mas1);
2493
2494	tsize = (mas1 & MAS1_TSIZE_MASK) >> MAS1_TSIZE_SHIFT;
2495	size = 0;
2496	if (tsize)
2497		size = tsize2size(tsize);
2498
2499	debugf("%3d: (%s) [AS=%d] "
2500	    "sz = 0x%08x tsz = %d tid = %d mas1 = 0x%08x "
2501	    "mas2(va) = 0x%08x mas3(pa) = 0x%08x mas7 = 0x%08x\n",
2502	    i, desc, as, size, tsize, tid, mas1, mas2, mas3, mas7);
2503}
2504
2505/* Convert TLB0 va and way number to tlb0[] table index. */
2506static inline unsigned int
2507tlb0_tableidx(vm_offset_t va, unsigned int way)
2508{
2509	unsigned int idx;
2510
2511	idx = (way * TLB0_ENTRIES_PER_WAY);
2512	idx += (va & MAS2_TLB0_ENTRY_IDX_MASK) >> MAS2_TLB0_ENTRY_IDX_SHIFT;
2513	return (idx);
2514}
2515
2516/*
2517 * Write given entry to TLB0 hardware.
2518 * Use 32 bit pa, clear 4 high-order bits of RPN (mas7).
2519 */
2520static void
2521tlb0_write_entry(unsigned int idx, unsigned int way)
2522{
2523	u_int32_t mas0, mas7, nv;
2524
2525	/* Clear high order RPN bits. */
2526	mas7 = 0;
2527
2528	/* Preserve NV. */
2529	mas0 = mfspr(SPR_MAS0);
2530	nv = mas0 & (TLB0_NWAYS - 1);
2531
2532	/* Select entry. */
2533	mas0 = MAS0_TLBSEL(0) | MAS0_ESEL(way) | nv;
2534
2535	//debugf("tlb0_write_entry: s (idx=%d way=%d mas0=0x%08x "
2536	//		"mas1=0x%08x mas2=0x%08x mas3=0x%08x)\n",
2537	//		idx, way, mas0, tlb0[idx].mas1,
2538	//		tlb0[idx].mas2, tlb0[idx].mas3);
2539
2540	mtspr(SPR_MAS0, mas0);
2541	__asm volatile("isync");
2542	mtspr(SPR_MAS1, tlb0[idx].mas1);
2543	__asm volatile("isync");
2544	mtspr(SPR_MAS2, tlb0[idx].mas2);
2545	__asm volatile("isync");
2546	mtspr(SPR_MAS3, tlb0[idx].mas3);
2547	__asm volatile("isync");
2548	mtspr(SPR_MAS7, mas7);
2549	__asm volatile("isync; tlbwe; isync; msync");
2550
2551	//debugf("tlb0_write_entry: e\n");
2552}
2553
2554/*
2555 * Invalidate TLB0 entry, clear correspondig tlb0 table element.
2556 */
2557static void
2558tlb0_inval_entry(vm_offset_t va, unsigned int way)
2559{
2560	int idx = tlb0_tableidx(va, way);
2561
2562	//debugf("tlb0_inval_entry: s (va=0x%08x way=%d idx=%d)\n",
2563	//		va, way, idx);
2564
2565	tlb0[idx].mas1 = 1 << MAS1_TSIZE_SHIFT;	/* !MAS1_VALID */
2566	tlb0[idx].mas2 = va & MAS2_EPN;
2567	tlb0[idx].mas3 = 0;
2568
2569	tlb0_write_entry(idx, way);
2570
2571	//debugf("tlb0_inval_entry: e\n");
2572}
2573
2574/*
2575 * Invalidate TLB0 entry that corresponds to pmap/va.
2576 */
2577static void
2578tlb0_flush_entry(pmap_t pmap, vm_offset_t va)
2579{
2580	int idx, way;
2581
2582	//debugf("tlb0_flush_entry: s (pmap=0x%08x va=0x%08x)\n",
2583	//		(u_int32_t)pmap, va);
2584
2585	mtx_lock_spin(&tlb0_mutex);
2586
2587	/* Check all TLB0 ways. */
2588	for (way = 0; way < TLB0_NWAYS; way ++) {
2589		idx = tlb0_tableidx(va, way);
2590
2591		/* Invalidate only if entry matches va and pmap tid. */
2592		if (((MAS1_GETTID(tlb0[idx].mas1) == pmap->pm_tid) &&
2593				((tlb0[idx].mas2 & MAS2_EPN) == va))) {
2594			tlb0_inval_entry(va, way);
2595		}
2596	}
2597
2598	mtx_unlock_spin(&tlb0_mutex);
2599
2600	//debugf("tlb0_flush_entry: e\n");
2601}
2602
2603/* Clean TLB0 hardware and tlb0[] table. */
2604static void
2605tlb0_init(void)
2606{
2607	int entryidx, way;
2608
2609	debugf("tlb0_init: TLB0_SIZE = %d TLB0_NWAYS = %d\n",
2610	    TLB0_SIZE, TLB0_NWAYS);
2611
2612	mtx_lock_spin(&tlb0_mutex);
2613
2614	for (way = 0; way < TLB0_NWAYS; way ++) {
2615		for (entryidx = 0; entryidx < TLB0_ENTRIES_PER_WAY; entryidx++) {
2616			tlb0_inval_entry(entryidx << MAS2_TLB0_ENTRY_IDX_SHIFT, way);
2617		}
2618	}
2619
2620	mtx_unlock_spin(&tlb0_mutex);
2621}
2622
2623#if 0
2624#if DEBUG
2625/* Print out tlb0 entries for given va. */
2626static void
2627tlb0_print_tlbentries_va(vm_offset_t va)
2628{
2629	u_int32_t mas0, mas1, mas2, mas3, mas7;
2630	int way, idx;
2631
2632	debugf("TLB0 entries for va = 0x%08x:\n", va);
2633	for (way = 0; way < TLB0_NWAYS; way ++) {
2634		mas0 = MAS0_TLBSEL(0) | MAS0_ESEL(way);
2635		mtspr(SPR_MAS0, mas0);
2636		__asm volatile("isync");
2637
2638		mas2 = va & MAS2_EPN;
2639		mtspr(SPR_MAS2, mas2);
2640		__asm volatile("isync; tlbre");
2641
2642		mas1 = mfspr(SPR_MAS1);
2643		mas2 = mfspr(SPR_MAS2);
2644		mas3 = mfspr(SPR_MAS3);
2645		mas7 = mfspr(SPR_MAS7);
2646
2647		idx = tlb0_tableidx(va, way);
2648		tlb_print_entry(idx, mas1, mas2, mas3, mas7);
2649	}
2650}
2651
2652/* Print out contents of the MAS registers for each TLB0 entry */
2653static void
2654tlb0_print_tlbentries(void)
2655{
2656	u_int32_t mas0, mas1, mas2, mas3, mas7;
2657	int entryidx, way, idx;
2658
2659	debugf("TLB0 entries:\n");
2660	for (way = 0; way < TLB0_NWAYS; way ++) {
2661		for (entryidx = 0; entryidx < TLB0_ENTRIES_PER_WAY; entryidx++) {
2662
2663			mas0 = MAS0_TLBSEL(0) | MAS0_ESEL(way);
2664			mtspr(SPR_MAS0, mas0);
2665			__asm volatile("isync");
2666
2667			mas2 = entryidx << MAS2_TLB0_ENTRY_IDX_SHIFT;
2668			mtspr(SPR_MAS2, mas2);
2669
2670			__asm volatile("isync; tlbre");
2671
2672			mas1 = mfspr(SPR_MAS1);
2673			mas2 = mfspr(SPR_MAS2);
2674			mas3 = mfspr(SPR_MAS3);
2675			mas7 = mfspr(SPR_MAS7);
2676
2677			idx = tlb0_tableidx(mas2, way);
2678			tlb_print_entry(idx, mas1, mas2, mas3, mas7);
2679		}
2680	}
2681}
2682
2683/* Print out kernel tlb0[] table. */
2684static void
2685tlb0_print_entries(void)
2686{
2687	int i;
2688
2689	debugf("tlb0[] table entries:\n");
2690	for (i = 0; i < TLB0_SIZE; i++) {
2691		tlb_print_entry(i, tlb0[i].mas1,
2692				tlb0[i].mas2, tlb0[i].mas3, 0);
2693	}
2694}
2695#endif /* DEBUG */
2696#endif
2697
2698/**************************************************************************/
2699/* TLB1 handling */
2700/**************************************************************************/
2701/*
2702 * Write given entry to TLB1 hardware.
2703 * Use 32 bit pa, clear 4 high-order bits of RPN (mas7).
2704 */
2705static void
2706tlb1_write_entry(unsigned int idx)
2707{
2708	u_int32_t mas0, mas7;
2709
2710	//debugf("tlb1_write_entry: s\n");
2711
2712	/* Clear high order RPN bits */
2713	mas7 = 0;
2714
2715	/* Select entry */
2716	mas0 = MAS0_TLBSEL(1) | MAS0_ESEL(idx);
2717	//debugf("tlb1_write_entry: mas0 = 0x%08x\n", mas0);
2718
2719	mtspr(SPR_MAS0, mas0);
2720	__asm volatile("isync");
2721	mtspr(SPR_MAS1, tlb1[idx].mas1);
2722	__asm volatile("isync");
2723	mtspr(SPR_MAS2, tlb1[idx].mas2);
2724	__asm volatile("isync");
2725	mtspr(SPR_MAS3, tlb1[idx].mas3);
2726	__asm volatile("isync");
2727	mtspr(SPR_MAS7, mas7);
2728	__asm volatile("isync; tlbwe; isync; msync");
2729
2730	//debugf("tlb1_write_entry: e\n");;
2731}
2732
2733/*
2734 * Return the largest uint value log such that 2^log <= num.
2735 */
2736static unsigned int
2737ilog2(unsigned int num)
2738{
2739	int lz;
2740
2741	__asm ("cntlzw %0, %1" : "=r" (lz) : "r" (num));
2742	return (31 - lz);
2743}
2744
2745/*
2746 * Convert TLB TSIZE value to mapped region size.
2747 */
2748static vm_size_t
2749tsize2size(unsigned int tsize)
2750{
2751
2752	/*
2753	 * size = 4^tsize KB
2754	 * size = 4^tsize * 2^10 = 2^(2 * tsize - 10)
2755	 */
2756
2757	return ((1 << (2 * tsize)) * 1024);
2758}
2759
2760/*
2761 * Convert region size (must be power of 4) to TLB TSIZE value.
2762 */
2763static unsigned int
2764size2tsize(vm_size_t size)
2765{
2766
2767	/*
2768	 * tsize = log2(size) / 2 - 5
2769	 */
2770
2771	return (ilog2(size) / 2 - 5);
2772}
2773
2774/*
2775 * Setup entry in a sw tlb1 table, write entry to TLB1 hardware.
2776 * This routine is used for low level operations on the TLB1,
2777 * for creating temporaray as well as permanent mappings (tlb_set_entry).
2778 *
2779 * We assume kernel mappings only, thus all entries created have supervisor
2780 * permission bits set nad user permission bits cleared.
2781 *
2782 * Provided mapping size must be a power of 4.
2783 * Mapping flags must be a combination of MAS2_[WIMG].
2784 * Entry TID is set to _tid which must not exceed 8 bit value.
2785 * Entry TS is set to either 0 or MAS1_TS based on provided _ts.
2786 */
2787static void
2788__tlb1_set_entry(unsigned int idx, vm_offset_t va, vm_offset_t pa,
2789    vm_size_t size, u_int32_t flags, unsigned int _tid, unsigned int _ts)
2790{
2791	int tsize;
2792	u_int32_t ts, tid;
2793
2794	//debugf("__tlb1_set_entry: s (idx = %d va = 0x%08x pa = 0x%08x "
2795	//		"size = 0x%08x flags = 0x%08x _tid = %d _ts = %d\n",
2796	//		idx, va, pa, size, flags, _tid, _ts);
2797
2798	/* Convert size to TSIZE */
2799	tsize = size2tsize(size);
2800	//debugf("__tlb1_set_entry: tsize = %d\n", tsize);
2801
2802	tid = (_tid <<  MAS1_TID_SHIFT) & MAS1_TID_MASK;
2803	ts = (_ts) ? MAS1_TS : 0;
2804	tlb1[idx].mas1 = MAS1_VALID | MAS1_IPROT | ts | tid;
2805	tlb1[idx].mas1 |= ((tsize << MAS1_TSIZE_SHIFT) & MAS1_TSIZE_MASK);
2806
2807	tlb1[idx].mas2 = (va & MAS2_EPN) | flags;
2808
2809	/* Set supervisor rwx permission bits */
2810	tlb1[idx].mas3 = (pa & MAS3_RPN) | MAS3_SR | MAS3_SW | MAS3_SX;
2811
2812	//debugf("__tlb1_set_entry: mas1 = %08x mas2 = %08x mas3 = 0x%08x\n",
2813	//		tlb1[idx].mas1, tlb1[idx].mas2, tlb1[idx].mas3);
2814
2815	tlb1_write_entry(idx);
2816	//debugf("__tlb1_set_entry: e\n");
2817}
2818
2819/*
2820 * Register permanent kernel mapping in TLB1.
2821 *
2822 * Entries are created starting from index 0 (current free entry is
2823 * kept in tlb1_idx) and are not supposed to be invalidated.
2824 */
2825static int
2826tlb1_set_entry(vm_offset_t va, vm_offset_t pa, vm_size_t size, u_int32_t flags)
2827{
2828	//debugf("tlb1_set_entry: s (tlb1_idx = %d va = 0x%08x pa = 0x%08x "
2829	//		"size = 0x%08x flags = 0x%08x\n",
2830	//		tlb1_idx, va, pa, size, flags);
2831
2832	if (tlb1_idx >= TLB1_SIZE) {
2833		//debugf("tlb1_set_entry: e (tlb1 full!)\n");
2834		return (-1);
2835	}
2836
2837	/* TS = 0, TID = 0 */
2838	__tlb1_set_entry(tlb1_idx++, va, pa, size, flags, KERNEL_TID, 0);
2839	//debugf("tlb1_set_entry: e\n");
2840	return (0);
2841}
2842
2843/*
2844 * Invalidate TLB1 entry, clear correspondig tlb1 table element.
2845 * This routine is used to clear temporary entries created
2846 * early in a locore.S or through the use of __tlb1_set_entry().
2847 */
2848void
2849tlb1_inval_entry(unsigned int idx)
2850{
2851	vm_offset_t va;
2852
2853	va = tlb1[idx].mas2 & MAS2_EPN;
2854
2855	tlb1[idx].mas1 = 0; /* !MAS1_VALID */
2856	tlb1[idx].mas2 = 0;
2857	tlb1[idx].mas3 = 0;
2858
2859	tlb1_write_entry(idx);
2860}
2861
2862static int
2863tlb1_entry_size_cmp(const void *a, const void *b)
2864{
2865	const vm_size_t *sza;
2866	const vm_size_t *szb;
2867
2868	sza = a;
2869	szb = b;
2870	if (*sza > *szb)
2871		return (-1);
2872	else if (*sza < *szb)
2873		return (1);
2874	else
2875		return (0);
2876}
2877
2878/*
2879 * Mapin contiguous RAM region into the TLB1 using maximum of
2880 * KERNEL_REGION_MAX_TLB_ENTRIES entries.
2881 *
2882 * If necessarry round up last entry size and return total size
2883 * used by all allocated entries.
2884 */
2885vm_size_t
2886tlb1_mapin_region(vm_offset_t va, vm_offset_t pa, vm_size_t size)
2887{
2888	vm_size_t entry_size[KERNEL_REGION_MAX_TLB_ENTRIES];
2889	vm_size_t mapped_size, sz, esz;
2890	unsigned int log;
2891	int i;
2892
2893	debugf("tlb1_mapin_region:\n");
2894	debugf(" region size = 0x%08x va = 0x%08x pa = 0x%08x\n", size, va, pa);
2895
2896	mapped_size = 0;
2897	sz = size;
2898	memset(entry_size, 0, sizeof(entry_size));
2899
2900	/* Calculate entry sizes. */
2901	for (i = 0; i < KERNEL_REGION_MAX_TLB_ENTRIES && sz > 0; i++) {
2902
2903		/* Largest region that is power of 4 and fits within size */
2904		log = ilog2(sz)/2;
2905		esz = 1 << (2 * log);
2906
2907		/* Minimum region size is 4KB */
2908		if (esz < (1 << 12))
2909			esz = 1 << 12;
2910
2911		/* If this is last entry cover remaining size. */
2912		if (i ==  KERNEL_REGION_MAX_TLB_ENTRIES - 1) {
2913			while (esz < sz)
2914				esz = esz << 2;
2915		}
2916
2917		entry_size[i] = esz;
2918		mapped_size += esz;
2919		if (esz < sz)
2920			sz -= esz;
2921		else
2922			sz = 0;
2923	}
2924
2925	/* Sort entry sizes, required to get proper entry address alignment. */
2926	qsort(entry_size, KERNEL_REGION_MAX_TLB_ENTRIES,
2927	    sizeof(vm_size_t), tlb1_entry_size_cmp);
2928
2929	/* Load TLB1 entries. */
2930	for (i = 0; i < KERNEL_REGION_MAX_TLB_ENTRIES; i++) {
2931		esz = entry_size[i];
2932		if (!esz)
2933			break;
2934		debugf("  entry %d: sz  = 0x%08x (va = 0x%08x pa = 0x%08x)\n",
2935		    tlb1_idx, esz, va, pa);
2936		tlb1_set_entry(va, pa, esz, _TLB_ENTRY_MEM);
2937
2938		va += esz;
2939		pa += esz;
2940	}
2941
2942	debugf(" mapped size 0x%08x (wasted space 0x%08x)\n",
2943	    mapped_size, mapped_size - size);
2944
2945	return (mapped_size);
2946}
2947
2948/*
2949 * TLB1 initialization routine, to be called after the very first
2950 * assembler level setup done in locore.S.
2951 */
2952void
2953tlb1_init(vm_offset_t ccsrbar)
2954{
2955	uint32_t mas0;
2956
2957	/* TBL1[1] is used to map the kernel. Save that entry. */
2958	mas0 = MAS0_TLBSEL(1) | MAS0_ESEL(1);
2959	mtspr(SPR_MAS0, mas0);
2960	__asm __volatile("isync; tlbre");
2961
2962	tlb1[1].mas1 = mfspr(SPR_MAS1);
2963	tlb1[1].mas2 = mfspr(SPR_MAS2);
2964	tlb1[1].mas3 = mfspr(SPR_MAS3);
2965
2966	/* Mapin CCSRBAR in TLB1[0] */
2967	__tlb1_set_entry(0, CCSRBAR_VA, ccsrbar, CCSRBAR_SIZE,
2968	    _TLB_ENTRY_IO, KERNEL_TID, 0);
2969
2970	/* Setup TLB miss defaults */
2971	set_mas4_defaults();
2972
2973	/* Reset next available TLB1 entry index. */
2974	tlb1_idx = 2;
2975}
2976
2977/*
2978 * Setup MAS4 defaults.
2979 * These values are loaded to MAS0-2 on a TLB miss.
2980 */
2981static void
2982set_mas4_defaults(void)
2983{
2984	u_int32_t mas4;
2985
2986	/* Defaults: TLB0, PID0, TSIZED=4K */
2987	mas4 = MAS4_TLBSELD0;
2988	mas4 |= (TLB_SIZE_4K << MAS4_TSIZED_SHIFT) & MAS4_TSIZED_MASK;
2989
2990	mtspr(SPR_MAS4, mas4);
2991	__asm volatile("isync");
2992}
2993
2994/*
2995 * Print out contents of the MAS registers for each TLB1 entry
2996 */
2997void
2998tlb1_print_tlbentries(void)
2999{
3000	u_int32_t mas0, mas1, mas2, mas3, mas7;
3001	int i;
3002
3003	debugf("TLB1 entries:\n");
3004	for (i = 0; i < TLB1_SIZE; i++) {
3005
3006		mas0 = MAS0_TLBSEL(1) | MAS0_ESEL(i);
3007		mtspr(SPR_MAS0, mas0);
3008
3009		__asm volatile("isync; tlbre");
3010
3011		mas1 = mfspr(SPR_MAS1);
3012		mas2 = mfspr(SPR_MAS2);
3013		mas3 = mfspr(SPR_MAS3);
3014		mas7 = mfspr(SPR_MAS7);
3015
3016		tlb_print_entry(i, mas1, mas2, mas3, mas7);
3017	}
3018}
3019
3020/*
3021 * Print out contents of the in-ram tlb1 table.
3022 */
3023void
3024tlb1_print_entries(void)
3025{
3026	int i;
3027
3028	debugf("tlb1[] table entries:\n");
3029	for (i = 0; i < TLB1_SIZE; i++)
3030		tlb_print_entry(i, tlb1[i].mas1, tlb1[i].mas2, tlb1[i].mas3, 0);
3031}
3032
3033/*
3034 * Return 0 if the physical IO range is encompassed by one of the
3035 * the TLB1 entries, otherwise return related error code.
3036 */
3037static int
3038tlb1_iomapped(int i, vm_paddr_t pa, vm_size_t size, vm_offset_t *va)
3039{
3040	u_int32_t prot;
3041	vm_paddr_t pa_start;
3042	vm_paddr_t pa_end;
3043	unsigned int entry_tsize;
3044	vm_size_t entry_size;
3045
3046	*va = (vm_offset_t)NULL;
3047
3048	/* Skip invalid entries */
3049	if (!(tlb1[i].mas1 & MAS1_VALID))
3050		return (EINVAL);
3051
3052	/*
3053	 * The entry must be cache-inhibited, guarded, and r/w
3054	 * so it can function as an i/o page
3055	 */
3056	prot = tlb1[i].mas2 & (MAS2_I | MAS2_G);
3057	if (prot != (MAS2_I | MAS2_G))
3058		return (EPERM);
3059
3060	prot = tlb1[i].mas3 & (MAS3_SR | MAS3_SW);
3061	if (prot != (MAS3_SR | MAS3_SW))
3062		return (EPERM);
3063
3064	/* The address should be within the entry range. */
3065	entry_tsize = (tlb1[i].mas1 & MAS1_TSIZE_MASK) >> MAS1_TSIZE_SHIFT;
3066	KASSERT((entry_tsize), ("tlb1_iomapped: invalid entry tsize"));
3067
3068	entry_size = tsize2size(entry_tsize);
3069	pa_start = tlb1[i].mas3 & MAS3_RPN;
3070	pa_end = pa_start + entry_size - 1;
3071
3072	if ((pa < pa_start) || ((pa + size) > pa_end))
3073		return (ERANGE);
3074
3075	/* Return virtual address of this mapping. */
3076	*va = (tlb1[i].mas2 & MAS2_EPN) + (pa - pa_start);
3077	return (0);
3078}
3079