mmu_oea.c revision 99038
1/*
2 * Copyright (c) 2001 The NetBSD Foundation, Inc.
3 * All rights reserved.
4 *
5 * This code is derived from software contributed to The NetBSD Foundation
6 * by Matt Thomas <matt@3am-software.com> of Allegro Networks, Inc.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 *    must display the following acknowledgement:
18 *        This product includes software developed by the NetBSD
19 *        Foundation, Inc. and its contributors.
20 * 4. Neither the name of The NetBSD Foundation nor the names of its
21 *    contributors may be used to endorse or promote products derived
22 *    from this software without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
25 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
26 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
27 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
28 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
29 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
30 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
31 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
32 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
33 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
34 * POSSIBILITY OF SUCH DAMAGE.
35 */
36/*
37 * Copyright (C) 1995, 1996 Wolfgang Solfrank.
38 * Copyright (C) 1995, 1996 TooLs GmbH.
39 * All rights reserved.
40 *
41 * Redistribution and use in source and binary forms, with or without
42 * modification, are permitted provided that the following conditions
43 * are met:
44 * 1. Redistributions of source code must retain the above copyright
45 *    notice, this list of conditions and the following disclaimer.
46 * 2. Redistributions in binary form must reproduce the above copyright
47 *    notice, this list of conditions and the following disclaimer in the
48 *    documentation and/or other materials provided with the distribution.
49 * 3. All advertising materials mentioning features or use of this software
50 *    must display the following acknowledgement:
51 *	This product includes software developed by TooLs GmbH.
52 * 4. The name of TooLs GmbH may not be used to endorse or promote products
53 *    derived from this software without specific prior written permission.
54 *
55 * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR
56 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
57 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
58 * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
59 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
60 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
61 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
62 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
63 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
64 * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
65 *
66 * $NetBSD: pmap.c,v 1.28 2000/03/26 20:42:36 kleink Exp $
67 */
68/*
69 * Copyright (C) 2001 Benno Rice.
70 * All rights reserved.
71 *
72 * Redistribution and use in source and binary forms, with or without
73 * modification, are permitted provided that the following conditions
74 * are met:
75 * 1. Redistributions of source code must retain the above copyright
76 *    notice, this list of conditions and the following disclaimer.
77 * 2. Redistributions in binary form must reproduce the above copyright
78 *    notice, this list of conditions and the following disclaimer in the
79 *    documentation and/or other materials provided with the distribution.
80 *
81 * THIS SOFTWARE IS PROVIDED BY Benno Rice ``AS IS'' AND ANY EXPRESS OR
82 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
83 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
84 * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
85 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
86 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
87 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
88 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
89 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
90 * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
91 */
92
93#ifndef lint
94static const char rcsid[] =
95  "$FreeBSD: head/sys/powerpc/aim/mmu_oea.c 99038 2002-06-29 09:45:59Z benno $";
96#endif /* not lint */
97
98/*
99 * Manages physical address maps.
100 *
101 * In addition to hardware address maps, this module is called upon to
102 * provide software-use-only maps which may or may not be stored in the
103 * same form as hardware maps.  These pseudo-maps are used to store
104 * intermediate results from copy operations to and from address spaces.
105 *
106 * Since the information managed by this module is also stored by the
107 * logical address mapping module, this module may throw away valid virtual
108 * to physical mappings at almost any time.  However, invalidations of
109 * mappings must be done as requested.
110 *
111 * In order to cope with hardware architectures which make virtual to
112 * physical map invalidates expensive, this module may delay invalidate
113 * reduced protection operations until such time as they are actually
114 * necessary.  This module is given full information as to which processors
115 * are currently using which maps, and to when physical maps must be made
116 * correct.
117 */
118
119#include <sys/param.h>
120#include <sys/kernel.h>
121#include <sys/ktr.h>
122#include <sys/lock.h>
123#include <sys/msgbuf.h>
124#include <sys/mutex.h>
125#include <sys/proc.h>
126#include <sys/sysctl.h>
127#include <sys/systm.h>
128#include <sys/vmmeter.h>
129
130#include <dev/ofw/openfirm.h>
131
132#include <vm/vm.h>
133#include <vm/vm_param.h>
134#include <vm/vm_kern.h>
135#include <vm/vm_page.h>
136#include <vm/vm_map.h>
137#include <vm/vm_object.h>
138#include <vm/vm_extern.h>
139#include <vm/vm_pageout.h>
140#include <vm/vm_pager.h>
141#include <vm/uma.h>
142
143#include <machine/powerpc.h>
144#include <machine/bat.h>
145#include <machine/frame.h>
146#include <machine/md_var.h>
147#include <machine/psl.h>
148#include <machine/pte.h>
149#include <machine/sr.h>
150
151#define	PMAP_DEBUG
152
153#define TODO	panic("%s: not implemented", __func__);
154
155#define	PMAP_LOCK(pm)
156#define	PMAP_UNLOCK(pm)
157
158#define	TLBIE(va)	__asm __volatile("tlbie %0" :: "r"(va))
159#define	TLBSYNC()	__asm __volatile("tlbsync");
160#define	SYNC()		__asm __volatile("sync");
161#define	EIEIO()		__asm __volatile("eieio");
162
163#define	VSID_MAKE(sr, hash)	((sr) | (((hash) & 0xfffff) << 4))
164#define	VSID_TO_SR(vsid)	((vsid) & 0xf)
165#define	VSID_TO_HASH(vsid)	(((vsid) >> 4) & 0xfffff)
166
167#define	PVO_PTEGIDX_MASK	0x0007		/* which PTEG slot */
168#define	PVO_PTEGIDX_VALID	0x0008		/* slot is valid */
169#define	PVO_WIRED		0x0010		/* PVO entry is wired */
170#define	PVO_MANAGED		0x0020		/* PVO entry is managed */
171#define	PVO_EXECUTABLE		0x0040		/* PVO entry is executable */
172#define	PVO_BOOTSTRAP		0x0080		/* PVO entry allocated during
173						   bootstrap */
174#define	PVO_VADDR(pvo)		((pvo)->pvo_vaddr & ~ADDR_POFF)
175#define	PVO_ISEXECUTABLE(pvo)	((pvo)->pvo_vaddr & PVO_EXECUTABLE)
176#define	PVO_PTEGIDX_GET(pvo)	((pvo)->pvo_vaddr & PVO_PTEGIDX_MASK)
177#define	PVO_PTEGIDX_ISSET(pvo)	((pvo)->pvo_vaddr & PVO_PTEGIDX_VALID)
178#define	PVO_PTEGIDX_CLR(pvo)	\
179	((void)((pvo)->pvo_vaddr &= ~(PVO_PTEGIDX_VALID|PVO_PTEGIDX_MASK)))
180#define	PVO_PTEGIDX_SET(pvo, i)	\
181	((void)((pvo)->pvo_vaddr |= (i)|PVO_PTEGIDX_VALID))
182
183#define	PMAP_PVO_CHECK(pvo)
184
185struct ofw_map {
186	vm_offset_t	om_va;
187	vm_size_t	om_len;
188	vm_offset_t	om_pa;
189	u_int		om_mode;
190};
191
192int	pmap_bootstrapped = 0;
193
194/*
195 * Virtual and physical address of message buffer.
196 */
197struct		msgbuf *msgbufp;
198vm_offset_t	msgbuf_phys;
199
200/*
201 * Physical addresses of first and last available physical page.
202 */
203vm_offset_t avail_start;
204vm_offset_t avail_end;
205
206/*
207 * Map of physical memory regions.
208 */
209vm_offset_t	phys_avail[128];
210u_int		phys_avail_count;
211static struct	mem_region *regions;
212static struct	mem_region *pregions;
213int		regions_sz, pregions_sz;
214static struct	ofw_map translations[128];
215static int	translations_size;
216
217/*
218 * First and last available kernel virtual addresses.
219 */
220vm_offset_t virtual_avail;
221vm_offset_t virtual_end;
222vm_offset_t kernel_vm_end;
223
224/*
225 * Kernel pmap.
226 */
227struct pmap kernel_pmap_store;
228extern struct pmap ofw_pmap;
229
230/*
231 * PTEG data.
232 */
233static struct	pteg *pmap_pteg_table;
234u_int		pmap_pteg_count;
235u_int		pmap_pteg_mask;
236
237/*
238 * PVO data.
239 */
240struct	pvo_head *pmap_pvo_table;		/* pvo entries by pteg index */
241struct	pvo_head pmap_pvo_kunmanaged =
242    LIST_HEAD_INITIALIZER(pmap_pvo_kunmanaged);	/* list of unmanaged pages */
243struct	pvo_head pmap_pvo_unmanaged =
244    LIST_HEAD_INITIALIZER(pmap_pvo_unmanaged);	/* list of unmanaged pages */
245
246uma_zone_t	pmap_upvo_zone;	/* zone for pvo entries for unmanaged pages */
247uma_zone_t	pmap_mpvo_zone;	/* zone for pvo entries for managed pages */
248struct		vm_object pmap_upvo_zone_obj;
249struct		vm_object pmap_mpvo_zone_obj;
250static vm_object_t	pmap_pvo_obj;
251static u_int		pmap_pvo_count;
252
253#define	BPVO_POOL_SIZE	32768
254static struct	pvo_entry *pmap_bpvo_pool;
255static int	pmap_bpvo_pool_index = 0;
256
257#define	VSID_NBPW	(sizeof(u_int32_t) * 8)
258static u_int	pmap_vsid_bitmap[NPMAPS / VSID_NBPW];
259
260static boolean_t pmap_initialized = FALSE;
261
262/*
263 * Statistics.
264 */
265u_int	pmap_pte_valid = 0;
266u_int	pmap_pte_overflow = 0;
267u_int	pmap_pte_replacements = 0;
268u_int	pmap_pvo_entries = 0;
269u_int	pmap_pvo_enter_calls = 0;
270u_int	pmap_pvo_remove_calls = 0;
271u_int	pmap_pte_spills = 0;
272SYSCTL_INT(_machdep, OID_AUTO, pmap_pte_valid, CTLFLAG_RD, &pmap_pte_valid,
273    0, "");
274SYSCTL_INT(_machdep, OID_AUTO, pmap_pte_overflow, CTLFLAG_RD,
275    &pmap_pte_overflow, 0, "");
276SYSCTL_INT(_machdep, OID_AUTO, pmap_pte_replacements, CTLFLAG_RD,
277    &pmap_pte_replacements, 0, "");
278SYSCTL_INT(_machdep, OID_AUTO, pmap_pvo_entries, CTLFLAG_RD, &pmap_pvo_entries,
279    0, "");
280SYSCTL_INT(_machdep, OID_AUTO, pmap_pvo_enter_calls, CTLFLAG_RD,
281    &pmap_pvo_enter_calls, 0, "");
282SYSCTL_INT(_machdep, OID_AUTO, pmap_pvo_remove_calls, CTLFLAG_RD,
283    &pmap_pvo_remove_calls, 0, "");
284SYSCTL_INT(_machdep, OID_AUTO, pmap_pte_spills, CTLFLAG_RD,
285    &pmap_pte_spills, 0, "");
286
287struct	pvo_entry *pmap_pvo_zeropage;
288
289vm_offset_t	pmap_rkva_start = VM_MIN_KERNEL_ADDRESS;
290u_int		pmap_rkva_count = 4;
291
292/*
293 * Allocate physical memory for use in pmap_bootstrap.
294 */
295static vm_offset_t	pmap_bootstrap_alloc(vm_size_t, u_int);
296
297/*
298 * PTE calls.
299 */
300static int		pmap_pte_insert(u_int, struct pte *);
301
302/*
303 * PVO calls.
304 */
305static int	pmap_pvo_enter(pmap_t, uma_zone_t, struct pvo_head *,
306		    vm_offset_t, vm_offset_t, u_int, int);
307static void	pmap_pvo_remove(struct pvo_entry *, int);
308static struct	pvo_entry *pmap_pvo_find_va(pmap_t, vm_offset_t, int *);
309static struct	pte *pmap_pvo_to_pte(const struct pvo_entry *, int);
310
311/*
312 * Utility routines.
313 */
314static void *		pmap_pvo_allocf(uma_zone_t, int, u_int8_t *, int);
315static struct		pvo_entry *pmap_rkva_alloc(void);
316static void		pmap_pa_map(struct pvo_entry *, vm_offset_t,
317			    struct pte *, int *);
318static void		pmap_pa_unmap(struct pvo_entry *, struct pte *, int *);
319static void		pmap_syncicache(vm_offset_t, vm_size_t);
320static boolean_t	pmap_query_bit(vm_page_t, int);
321static boolean_t	pmap_clear_bit(vm_page_t, int);
322static void		tlbia(void);
323
324static __inline int
325va_to_sr(u_int *sr, vm_offset_t va)
326{
327	return (sr[(uintptr_t)va >> ADDR_SR_SHFT]);
328}
329
330static __inline u_int
331va_to_pteg(u_int sr, vm_offset_t addr)
332{
333	u_int hash;
334
335	hash = (sr & SR_VSID_MASK) ^ (((u_int)addr & ADDR_PIDX) >>
336	    ADDR_PIDX_SHFT);
337	return (hash & pmap_pteg_mask);
338}
339
340static __inline struct pvo_head *
341pa_to_pvoh(vm_offset_t pa, vm_page_t *pg_p)
342{
343	struct	vm_page *pg;
344
345	pg = PHYS_TO_VM_PAGE(pa);
346
347	if (pg_p != NULL)
348		*pg_p = pg;
349
350	if (pg == NULL)
351		return (&pmap_pvo_unmanaged);
352
353	return (&pg->md.mdpg_pvoh);
354}
355
356static __inline struct pvo_head *
357vm_page_to_pvoh(vm_page_t m)
358{
359
360	return (&m->md.mdpg_pvoh);
361}
362
363static __inline void
364pmap_attr_clear(vm_page_t m, int ptebit)
365{
366
367	m->md.mdpg_attrs &= ~ptebit;
368}
369
370static __inline int
371pmap_attr_fetch(vm_page_t m)
372{
373
374	return (m->md.mdpg_attrs);
375}
376
377static __inline void
378pmap_attr_save(vm_page_t m, int ptebit)
379{
380
381	m->md.mdpg_attrs |= ptebit;
382}
383
384static __inline int
385pmap_pte_compare(const struct pte *pt, const struct pte *pvo_pt)
386{
387	if (pt->pte_hi == pvo_pt->pte_hi)
388		return (1);
389
390	return (0);
391}
392
393static __inline int
394pmap_pte_match(struct pte *pt, u_int sr, vm_offset_t va, int which)
395{
396	return (pt->pte_hi & ~PTE_VALID) ==
397	    (((sr & SR_VSID_MASK) << PTE_VSID_SHFT) |
398	    ((va >> ADDR_API_SHFT) & PTE_API) | which);
399}
400
401static __inline void
402pmap_pte_create(struct pte *pt, u_int sr, vm_offset_t va, u_int pte_lo)
403{
404	/*
405	 * Construct a PTE.  Default to IMB initially.  Valid bit only gets
406	 * set when the real pte is set in memory.
407	 *
408	 * Note: Don't set the valid bit for correct operation of tlb update.
409	 */
410	pt->pte_hi = ((sr & SR_VSID_MASK) << PTE_VSID_SHFT) |
411	    (((va & ADDR_PIDX) >> ADDR_API_SHFT) & PTE_API);
412	pt->pte_lo = pte_lo;
413}
414
415static __inline void
416pmap_pte_synch(struct pte *pt, struct pte *pvo_pt)
417{
418
419	pvo_pt->pte_lo |= pt->pte_lo & (PTE_REF | PTE_CHG);
420}
421
422static __inline void
423pmap_pte_clear(struct pte *pt, vm_offset_t va, int ptebit)
424{
425
426	/*
427	 * As shown in Section 7.6.3.2.3
428	 */
429	pt->pte_lo &= ~ptebit;
430	TLBIE(va);
431	EIEIO();
432	TLBSYNC();
433	SYNC();
434}
435
436static __inline void
437pmap_pte_set(struct pte *pt, struct pte *pvo_pt)
438{
439
440	pvo_pt->pte_hi |= PTE_VALID;
441
442	/*
443	 * Update the PTE as defined in section 7.6.3.1.
444	 * Note that the REF/CHG bits are from pvo_pt and thus should havce
445	 * been saved so this routine can restore them (if desired).
446	 */
447	pt->pte_lo = pvo_pt->pte_lo;
448	EIEIO();
449	pt->pte_hi = pvo_pt->pte_hi;
450	SYNC();
451	pmap_pte_valid++;
452}
453
454static __inline void
455pmap_pte_unset(struct pte *pt, struct pte *pvo_pt, vm_offset_t va)
456{
457
458	pvo_pt->pte_hi &= ~PTE_VALID;
459
460	/*
461	 * Force the reg & chg bits back into the PTEs.
462	 */
463	SYNC();
464
465	/*
466	 * Invalidate the pte.
467	 */
468	pt->pte_hi &= ~PTE_VALID;
469
470	SYNC();
471	TLBIE(va);
472	EIEIO();
473	TLBSYNC();
474	SYNC();
475
476	/*
477	 * Save the reg & chg bits.
478	 */
479	pmap_pte_synch(pt, pvo_pt);
480	pmap_pte_valid--;
481}
482
483static __inline void
484pmap_pte_change(struct pte *pt, struct pte *pvo_pt, vm_offset_t va)
485{
486
487	/*
488	 * Invalidate the PTE
489	 */
490	pmap_pte_unset(pt, pvo_pt, va);
491	pmap_pte_set(pt, pvo_pt);
492}
493
494/*
495 * Quick sort callout for comparing memory regions.
496 */
497static int	mr_cmp(const void *a, const void *b);
498static int	om_cmp(const void *a, const void *b);
499
500static int
501mr_cmp(const void *a, const void *b)
502{
503	const struct	mem_region *regiona;
504	const struct	mem_region *regionb;
505
506	regiona = a;
507	regionb = b;
508	if (regiona->mr_start < regionb->mr_start)
509		return (-1);
510	else if (regiona->mr_start > regionb->mr_start)
511		return (1);
512	else
513		return (0);
514}
515
516static int
517om_cmp(const void *a, const void *b)
518{
519	const struct	ofw_map *mapa;
520	const struct	ofw_map *mapb;
521
522	mapa = a;
523	mapb = b;
524	if (mapa->om_pa < mapb->om_pa)
525		return (-1);
526	else if (mapa->om_pa > mapb->om_pa)
527		return (1);
528	else
529		return (0);
530}
531
532void
533pmap_bootstrap(vm_offset_t kernelstart, vm_offset_t kernelend)
534{
535	ihandle_t	mmui;
536	phandle_t	chosen, mmu;
537	int		sz;
538	int		i, j;
539	vm_size_t	size, physsz;
540	vm_offset_t	pa, va, off;
541	u_int		batl, batu;
542
543        /*
544         * Set up BAT0 to only map the lowest 256 MB area
545         */
546        battable[0x0].batl = BATL(0x00000000, BAT_M, BAT_PP_RW);
547        battable[0x0].batu = BATU(0x00000000, BAT_BL_256M, BAT_Vs);
548
549        /*
550         * Map PCI memory space.
551         */
552        battable[0x8].batl = BATL(0x80000000, BAT_I|BAT_G, BAT_PP_RW);
553        battable[0x8].batu = BATU(0x80000000, BAT_BL_256M, BAT_Vs);
554
555        battable[0x9].batl = BATL(0x90000000, BAT_I|BAT_G, BAT_PP_RW);
556        battable[0x9].batu = BATU(0x90000000, BAT_BL_256M, BAT_Vs);
557
558        battable[0xa].batl = BATL(0xa0000000, BAT_I|BAT_G, BAT_PP_RW);
559        battable[0xa].batu = BATU(0xa0000000, BAT_BL_256M, BAT_Vs);
560
561        battable[0xb].batl = BATL(0xb0000000, BAT_I|BAT_G, BAT_PP_RW);
562        battable[0xb].batu = BATU(0xb0000000, BAT_BL_256M, BAT_Vs);
563
564        /*
565         * Map obio devices.
566         */
567        battable[0xf].batl = BATL(0xf0000000, BAT_I|BAT_G, BAT_PP_RW);
568        battable[0xf].batu = BATU(0xf0000000, BAT_BL_256M, BAT_Vs);
569
570	/*
571	 * Use an IBAT and a DBAT to map the bottom segment of memory
572	 * where we are.
573	 */
574	batu = BATU(0x00000000, BAT_BL_256M, BAT_Vs);
575	batl = BATL(0x00000000, BAT_M, BAT_PP_RW);
576	__asm ("mtibatu 0,%0; mtibatl 0,%1; mtdbatu 0,%0; mtdbatl 0,%1"
577	    :: "r"(batu), "r"(batl));
578
579#if 0
580	/* map frame buffer */
581	batu = BATU(0x90000000, BAT_BL_256M, BAT_Vs);
582	batl = BATL(0x90000000, BAT_I|BAT_G, BAT_PP_RW);
583	__asm ("mtdbatu 1,%0; mtdbatl 1,%1"
584	    :: "r"(batu), "r"(batl));
585#endif
586
587#if 1
588	/* map pci space */
589	batu = BATU(0x80000000, BAT_BL_256M, BAT_Vs);
590	batl = BATL(0x80000000, BAT_I|BAT_G, BAT_PP_RW);
591	__asm ("mtdbatu 1,%0; mtdbatl 1,%1"
592	    :: "r"(batu), "r"(batl));
593#endif
594
595	/*
596	 * Set the start and end of kva.
597	 */
598	virtual_avail = VM_MIN_KERNEL_ADDRESS;
599	virtual_end = VM_MAX_KERNEL_ADDRESS;
600
601	mem_regions(&pregions, &pregions_sz, &regions, &regions_sz);
602	CTR0(KTR_PMAP, "pmap_bootstrap: physical memory");
603
604	qsort(pregions, pregions_sz, sizeof(*pregions), mr_cmp);
605	for (i = 0; i < pregions_sz; i++) {
606		CTR3(KTR_PMAP, "physregion: %#x - %#x (%#x)",
607			pregions[i].mr_start,
608			pregions[i].mr_start + pregions[i].mr_size,
609			pregions[i].mr_size);
610	}
611
612	if (sizeof(phys_avail)/sizeof(phys_avail[0]) < regions_sz)
613		panic("pmap_bootstrap: phys_avail too small");
614	qsort(regions, regions_sz, sizeof(*regions), mr_cmp);
615	phys_avail_count = 0;
616	physsz = 0;
617	for (i = 0, j = 0; i < regions_sz; i++, j += 2) {
618		CTR3(KTR_PMAP, "region: %#x - %#x (%#x)", regions[i].mr_start,
619		    regions[i].mr_start + regions[i].mr_size,
620		    regions[i].mr_size);
621		phys_avail[j] = regions[i].mr_start;
622		phys_avail[j + 1] = regions[i].mr_start + regions[i].mr_size;
623		phys_avail_count++;
624		physsz += regions[i].mr_size;
625	}
626	physmem = btoc(physsz);
627
628	/*
629	 * Allocate PTEG table.
630	 */
631#ifdef PTEGCOUNT
632	pmap_pteg_count = PTEGCOUNT;
633#else
634	pmap_pteg_count = 0x1000;
635
636	while (pmap_pteg_count < physmem)
637		pmap_pteg_count <<= 1;
638
639	pmap_pteg_count >>= 1;
640#endif /* PTEGCOUNT */
641
642	size = pmap_pteg_count * sizeof(struct pteg);
643	CTR2(KTR_PMAP, "pmap_bootstrap: %d PTEGs, %d bytes", pmap_pteg_count,
644	    size);
645	pmap_pteg_table = (struct pteg *)pmap_bootstrap_alloc(size, size);
646	CTR1(KTR_PMAP, "pmap_bootstrap: PTEG table at %p", pmap_pteg_table);
647	bzero((void *)pmap_pteg_table, pmap_pteg_count * sizeof(struct pteg));
648	pmap_pteg_mask = pmap_pteg_count - 1;
649
650	/*
651	 * Allocate pv/overflow lists.
652	 */
653	size = sizeof(struct pvo_head) * pmap_pteg_count;
654	pmap_pvo_table = (struct pvo_head *)pmap_bootstrap_alloc(size,
655	    PAGE_SIZE);
656	CTR1(KTR_PMAP, "pmap_bootstrap: PVO table at %p", pmap_pvo_table);
657	for (i = 0; i < pmap_pteg_count; i++)
658		LIST_INIT(&pmap_pvo_table[i]);
659
660	/*
661	 * Allocate the message buffer.
662	 */
663	msgbuf_phys = pmap_bootstrap_alloc(MSGBUF_SIZE, 0);
664
665	/*
666	 * Initialise the unmanaged pvo pool.
667	 */
668	pmap_bpvo_pool = (struct pvo_entry *)pmap_bootstrap_alloc(
669		BPVO_POOL_SIZE*sizeof(struct pvo_entry), 0);
670	pmap_bpvo_pool_index = 0;
671
672	/*
673	 * Make sure kernel vsid is allocated as well as VSID 0.
674	 */
675	pmap_vsid_bitmap[(KERNEL_VSIDBITS & (NPMAPS - 1)) / VSID_NBPW]
676		|= 1 << (KERNEL_VSIDBITS % VSID_NBPW);
677	pmap_vsid_bitmap[0] |= 1;
678
679	/*
680	 * Set up the OpenFirmware pmap and add it's mappings.
681	 */
682	pmap_pinit(&ofw_pmap);
683	ofw_pmap.pm_sr[KERNEL_SR] = KERNEL_SEGMENT;
684	if ((chosen = OF_finddevice("/chosen")) == -1)
685		panic("pmap_bootstrap: can't find /chosen");
686	OF_getprop(chosen, "mmu", &mmui, 4);
687	if ((mmu = OF_instance_to_package(mmui)) == -1)
688		panic("pmap_bootstrap: can't get mmu package");
689	if ((sz = OF_getproplen(mmu, "translations")) == -1)
690		panic("pmap_bootstrap: can't get ofw translation count");
691	if (sizeof(translations) < sz)
692		panic("pmap_bootstrap: translations too small");
693	bzero(translations, sz);
694	if (OF_getprop(mmu, "translations", translations, sz) == -1)
695		panic("pmap_bootstrap: can't get ofw translations");
696	CTR0(KTR_PMAP, "pmap_bootstrap: translations");
697	sz /= sizeof(*translations);
698	qsort(translations, sz, sizeof (*translations), om_cmp);
699	for (i = 0; i < sz; i++) {
700		CTR3(KTR_PMAP, "translation: pa=%#x va=%#x len=%#x",
701		    translations[i].om_pa, translations[i].om_va,
702		    translations[i].om_len);
703
704		/* Drop stuff below something? */
705
706		/* Enter the pages? */
707		for (off = 0; off < translations[i].om_len; off += PAGE_SIZE) {
708			struct	vm_page m;
709
710			m.phys_addr = translations[i].om_pa + off;
711			pmap_enter(&ofw_pmap, translations[i].om_va + off, &m,
712			    VM_PROT_ALL, 1);
713		}
714	}
715#ifdef SMP
716	TLBSYNC();
717#endif
718
719	/*
720	 * Initialize the kernel pmap (which is statically allocated).
721	 */
722	for (i = 0; i < 16; i++) {
723		kernel_pmap->pm_sr[i] = EMPTY_SEGMENT;
724	}
725	kernel_pmap->pm_sr[KERNEL_SR] = KERNEL_SEGMENT;
726	kernel_pmap->pm_active = ~0;
727
728	/*
729	 * Allocate a kernel stack with a guard page for thread0 and map it
730	 * into the kernel page map.
731	 */
732	pa = pmap_bootstrap_alloc(KSTACK_PAGES * PAGE_SIZE, 0);
733	kstack0_phys = pa;
734	kstack0 = virtual_avail + (KSTACK_GUARD_PAGES * PAGE_SIZE);
735	CTR2(KTR_PMAP, "pmap_bootstrap: kstack0 at %#x (%#x)", kstack0_phys,
736	    kstack0);
737	virtual_avail += (KSTACK_PAGES + KSTACK_GUARD_PAGES) * PAGE_SIZE;
738	for (i = 0; i < KSTACK_PAGES; i++) {
739		pa = kstack0_phys + i * PAGE_SIZE;
740		va = kstack0 + i * PAGE_SIZE;
741		pmap_kenter(va, pa);
742		TLBIE(va);
743	}
744
745	/*
746	 * Calculate the first and last available physical addresses.
747	 */
748	avail_start = phys_avail[0];
749	for (i = 0; phys_avail[i + 2] != 0; i += 2)
750		;
751	avail_end = phys_avail[i + 1];
752	Maxmem = powerpc_btop(avail_end);
753
754	/*
755	 * Allocate virtual address space for the message buffer.
756	 */
757	msgbufp = (struct msgbuf *)virtual_avail;
758	virtual_avail += round_page(MSGBUF_SIZE);
759
760	/*
761	 * Initialize hardware.
762	 */
763	for (i = 0; i < 16; i++) {
764		mtsrin(i << ADDR_SR_SHFT, EMPTY_SEGMENT);
765	}
766	__asm __volatile ("mtsr %0,%1"
767	    :: "n"(KERNEL_SR), "r"(KERNEL_SEGMENT));
768	__asm __volatile ("sync; mtsdr1 %0; isync"
769	    :: "r"((u_int)pmap_pteg_table | (pmap_pteg_mask >> 10)));
770	tlbia();
771
772	pmap_bootstrapped++;
773}
774
775/*
776 * Activate a user pmap.  The pmap must be activated before it's address
777 * space can be accessed in any way.
778 */
779void
780pmap_activate(struct thread *td)
781{
782	pmap_t	pm, pmr;
783
784	/*
785	 * Load all the data we need up front to encourasge the compiler to
786	 * not issue any loads while we have interrupts disabled below.
787	 */
788	pm = &td->td_proc->p_vmspace->vm_pmap;
789
790	KASSERT(pm->pm_active == 0, ("pmap_activate: pmap already active?"));
791
792	if ((pmr = (pmap_t)pmap_kextract((vm_offset_t)pm)) == NULL)
793		pmr = pm;
794
795	pm->pm_active |= PCPU_GET(cpumask);
796	PCPU_SET(curpmap, pmr);
797}
798
799void
800pmap_deactivate(struct thread *td)
801{
802	pmap_t	pm;
803
804	pm = &td->td_proc->p_vmspace->vm_pmap;
805	pm->pm_active &= ~(PCPU_GET(cpumask));
806	PCPU_SET(curpmap, NULL);
807}
808
809vm_offset_t
810pmap_addr_hint(vm_object_t object, vm_offset_t va, vm_size_t size)
811{
812
813	return (va);
814}
815
816void
817pmap_change_wiring(pmap_t pm, vm_offset_t va, boolean_t wired)
818{
819	struct	pvo_entry *pvo;
820
821	pvo = pmap_pvo_find_va(pm, va & ~ADDR_POFF, NULL);
822
823	if (pvo != NULL) {
824		if (wired) {
825			if ((pvo->pvo_vaddr & PVO_WIRED) == 0)
826				pm->pm_stats.wired_count++;
827			pvo->pvo_vaddr |= PVO_WIRED;
828		} else {
829			if ((pvo->pvo_vaddr & PVO_WIRED) != 0)
830				pm->pm_stats.wired_count--;
831			pvo->pvo_vaddr &= ~PVO_WIRED;
832		}
833	}
834}
835
836void
837pmap_clear_modify(vm_page_t m)
838{
839
840	if (m->flags * PG_FICTITIOUS)
841		return;
842	pmap_clear_bit(m, PTE_CHG);
843}
844
845void
846pmap_collect(void)
847{
848	TODO;
849}
850
851void
852pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr,
853	  vm_size_t len, vm_offset_t src_addr)
854{
855
856	/*
857	 * This is not needed as it's mainly an optimisation.
858	 * It may want to be implemented later though.
859	 */
860}
861
862void
863pmap_copy_page(vm_page_t msrc, vm_page_t mdst)
864{
865	vm_offset_t	dst;
866	vm_offset_t	src;
867
868	dst = VM_PAGE_TO_PHYS(mdst);
869	src = VM_PAGE_TO_PHYS(msrc);
870
871	kcopy((void *)src, (void *)dst, PAGE_SIZE);
872}
873
874/*
875 * Zero a page of physical memory by temporarily mapping it into the tlb.
876 */
877void
878pmap_zero_page(vm_page_t m)
879{
880	vm_offset_t pa = VM_PAGE_TO_PHYS(m);
881	caddr_t	va;
882	int	i;
883
884	if (pa < SEGMENT_LENGTH) {
885		va = (caddr_t) pa;
886	} else if (pmap_initialized) {
887		if (pmap_pvo_zeropage == NULL)
888			pmap_pvo_zeropage = pmap_rkva_alloc();
889		pmap_pa_map(pmap_pvo_zeropage, pa, NULL, NULL);
890		va = (caddr_t)PVO_VADDR(pmap_pvo_zeropage);
891	} else {
892		panic("pmap_zero_page: can't zero pa %#x", pa);
893	}
894
895	bzero(va, PAGE_SIZE);
896
897	for (i = PAGE_SIZE / CACHELINESIZE; i > 0; i--) {
898		__asm __volatile("dcbz 0,%0" :: "r"(va));
899		va += CACHELINESIZE;
900	}
901
902	if (pa >= SEGMENT_LENGTH)
903		pmap_pa_unmap(pmap_pvo_zeropage, NULL, NULL);
904}
905
906void
907pmap_zero_page_area(vm_page_t m, int off, int size)
908{
909	TODO;
910}
911
912/*
913 * Map the given physical page at the specified virtual address in the
914 * target pmap with the protection requested.  If specified the page
915 * will be wired down.
916 */
917void
918pmap_enter(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
919	   boolean_t wired)
920{
921	struct		pvo_head *pvo_head;
922	uma_zone_t	zone;
923	vm_page_t	pg;
924	u_int		pte_lo, pvo_flags, was_exec, i;
925	int		error;
926
927	if (!pmap_initialized) {
928		pvo_head = &pmap_pvo_kunmanaged;
929		zone = pmap_upvo_zone;
930		pvo_flags = 0;
931		pg = NULL;
932		was_exec = PTE_EXEC;
933	} else {
934		pvo_head = pa_to_pvoh(VM_PAGE_TO_PHYS(m), &pg);
935		zone = pmap_mpvo_zone;
936		pvo_flags = PVO_MANAGED;
937		was_exec = 0;
938	}
939
940	/*
941	 * If this is a managed page, and it's the first reference to the page,
942	 * clear the execness of the page.  Otherwise fetch the execness.
943	 */
944	if (pg != NULL) {
945		if (LIST_EMPTY(pvo_head)) {
946			pmap_attr_clear(pg, PTE_EXEC);
947		} else {
948			was_exec = pmap_attr_fetch(pg) & PTE_EXEC;
949		}
950	}
951
952
953	/*
954	 * Assume the page is cache inhibited and access is guarded unless
955	 * it's in our available memory array.
956	 */
957	pte_lo = PTE_I | PTE_G;
958	for (i = 0; i < pregions_sz; i++) {
959		if ((VM_PAGE_TO_PHYS(m) >= pregions[i].mr_start) &&
960		    (VM_PAGE_TO_PHYS(m) <
961			(pregions[i].mr_start + pregions[i].mr_size))) {
962			pte_lo &= ~(PTE_I | PTE_G);
963			break;
964		}
965	}
966
967	if (prot & VM_PROT_WRITE)
968		pte_lo |= PTE_BW;
969	else
970		pte_lo |= PTE_BR;
971
972	pvo_flags |= (prot & VM_PROT_EXECUTE);
973
974	if (wired)
975		pvo_flags |= PVO_WIRED;
976
977	error = pmap_pvo_enter(pmap, zone, pvo_head, va, VM_PAGE_TO_PHYS(m),
978	    pte_lo, pvo_flags);
979
980	/*
981	 * Flush the real page from the instruction cache if this page is
982	 * mapped executable and cacheable and was not previously mapped (or
983	 * was not mapped executable).
984	 */
985	if (error == 0 && (pvo_flags & PVO_EXECUTABLE) &&
986	    (pte_lo & PTE_I) == 0 && was_exec == 0) {
987		/*
988		 * Flush the real memory from the cache.
989		 */
990		pmap_syncicache(VM_PAGE_TO_PHYS(m), PAGE_SIZE);
991		if (pg != NULL)
992			pmap_attr_save(pg, PTE_EXEC);
993	}
994}
995
996vm_offset_t
997pmap_extract(pmap_t pm, vm_offset_t va)
998{
999	struct	pvo_entry *pvo;
1000
1001	pvo = pmap_pvo_find_va(pm, va & ~ADDR_POFF, NULL);
1002
1003	if (pvo != NULL) {
1004		return ((pvo->pvo_pte.pte_lo & PTE_RPGN) | (va & ADDR_POFF));
1005	}
1006
1007	return (0);
1008}
1009
1010/*
1011 * Grow the number of kernel page table entries.  Unneeded.
1012 */
1013void
1014pmap_growkernel(vm_offset_t addr)
1015{
1016}
1017
1018void
1019pmap_init(vm_offset_t phys_start, vm_offset_t phys_end)
1020{
1021
1022	CTR0(KTR_PMAP, "pmap_init");
1023
1024	pmap_pvo_obj = vm_object_allocate(OBJT_PHYS, 16);
1025	pmap_pvo_count = 0;
1026	pmap_upvo_zone = uma_zcreate("UPVO entry", sizeof (struct pvo_entry),
1027	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_VM);
1028	uma_zone_set_allocf(pmap_upvo_zone, pmap_pvo_allocf);
1029	pmap_mpvo_zone = uma_zcreate("MPVO entry", sizeof(struct pvo_entry),
1030	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_VM);
1031	uma_zone_set_allocf(pmap_mpvo_zone, pmap_pvo_allocf);
1032	pmap_initialized = TRUE;
1033}
1034
1035void
1036pmap_init2(void)
1037{
1038
1039	CTR0(KTR_PMAP, "pmap_init2");
1040}
1041
1042boolean_t
1043pmap_is_modified(vm_page_t m)
1044{
1045
1046	if (m->flags & PG_FICTITIOUS)
1047		return (FALSE);
1048
1049	return (pmap_query_bit(m, PTE_CHG));
1050}
1051
1052void
1053pmap_clear_reference(vm_page_t m)
1054{
1055	TODO;
1056}
1057
1058/*
1059 *	pmap_ts_referenced:
1060 *
1061 *	Return a count of reference bits for a page, clearing those bits.
1062 *	It is not necessary for every reference bit to be cleared, but it
1063 *	is necessary that 0 only be returned when there are truly no
1064 *	reference bits set.
1065 *
1066 *	XXX: The exact number of bits to check and clear is a matter that
1067 *	should be tested and standardized at some point in the future for
1068 *	optimal aging of shared pages.
1069 */
1070
1071int
1072pmap_ts_referenced(vm_page_t m)
1073{
1074	TODO;
1075	return (0);
1076}
1077
1078/*
1079 * Map a wired page into kernel virtual address space.
1080 */
1081void
1082pmap_kenter(vm_offset_t va, vm_offset_t pa)
1083{
1084	u_int		pte_lo;
1085	int		error;
1086	int		i;
1087
1088#if 0
1089	if (va < VM_MIN_KERNEL_ADDRESS)
1090		panic("pmap_kenter: attempt to enter non-kernel address %#x",
1091		    va);
1092#endif
1093
1094	pte_lo = PTE_I | PTE_G | PTE_BW;
1095	for (i = 0; phys_avail[i + 2] != 0; i += 2) {
1096		if (pa >= phys_avail[i] && pa < phys_avail[i + 1]) {
1097			pte_lo &= ~(PTE_I | PTE_G);
1098			break;
1099		}
1100	}
1101
1102	error = pmap_pvo_enter(kernel_pmap, pmap_upvo_zone,
1103	    &pmap_pvo_kunmanaged, va, pa, pte_lo, PVO_WIRED);
1104
1105	if (error != 0 && error != ENOENT)
1106		panic("pmap_kenter: failed to enter va %#x pa %#x: %d", va,
1107		    pa, error);
1108
1109	/*
1110	 * Flush the real memory from the instruction cache.
1111	 */
1112	if ((pte_lo & (PTE_I | PTE_G)) == 0) {
1113		pmap_syncicache(pa, PAGE_SIZE);
1114	}
1115}
1116
1117/*
1118 * Extract the physical page address associated with the given kernel virtual
1119 * address.
1120 */
1121vm_offset_t
1122pmap_kextract(vm_offset_t va)
1123{
1124	struct		pvo_entry *pvo;
1125
1126	pvo = pmap_pvo_find_va(kernel_pmap, va & ~ADDR_POFF, NULL);
1127	if (pvo == NULL) {
1128		return (0);
1129	}
1130
1131	return ((pvo->pvo_pte.pte_lo & PTE_RPGN) | (va & ADDR_POFF));
1132}
1133
1134/*
1135 * Remove a wired page from kernel virtual address space.
1136 */
1137void
1138pmap_kremove(vm_offset_t va)
1139{
1140
1141	pmap_remove(kernel_pmap, va, roundup(va, PAGE_SIZE));
1142}
1143
1144/*
1145 * Map a range of physical addresses into kernel virtual address space.
1146 *
1147 * The value passed in *virt is a suggested virtual address for the mapping.
1148 * Architectures which can support a direct-mapped physical to virtual region
1149 * can return the appropriate address within that region, leaving '*virt'
1150 * unchanged.  We cannot and therefore do not; *virt is updated with the
1151 * first usable address after the mapped region.
1152 */
1153vm_offset_t
1154pmap_map(vm_offset_t *virt, vm_offset_t pa_start, vm_offset_t pa_end, int prot)
1155{
1156	vm_offset_t	sva, va;
1157
1158	sva = *virt;
1159	va = sva;
1160	for (; pa_start < pa_end; pa_start += PAGE_SIZE, va += PAGE_SIZE)
1161		pmap_kenter(va, pa_start);
1162	*virt = va;
1163	return (sva);
1164}
1165
1166int
1167pmap_mincore(pmap_t pmap, vm_offset_t addr)
1168{
1169	TODO;
1170	return (0);
1171}
1172
1173/*
1174 * Create the uarea for a new process.
1175 * This routine directly affects the fork perf for a process.
1176 */
1177void
1178pmap_new_proc(struct proc *p)
1179{
1180	vm_object_t	upobj;
1181	vm_offset_t	up;
1182	vm_page_t	m;
1183	u_int		i;
1184
1185	/*
1186	 * Allocate the object for the upages.
1187	 */
1188	upobj = p->p_upages_obj;
1189	if (upobj == NULL) {
1190		upobj = vm_object_allocate(OBJT_DEFAULT, UAREA_PAGES);
1191		p->p_upages_obj = upobj;
1192	}
1193
1194	/*
1195	 * Get a kernel virtual address for the uarea for this process.
1196	 */
1197	up = (vm_offset_t)p->p_uarea;
1198	if (up == 0) {
1199		up = kmem_alloc_nofault(kernel_map, UAREA_PAGES * PAGE_SIZE);
1200		if (up == 0)
1201			panic("pmap_new_proc: upage allocation failed");
1202		p->p_uarea = (struct user *)up;
1203	}
1204
1205	for (i = 0; i < UAREA_PAGES; i++) {
1206		/*
1207		 * Get a uarea page.
1208		 */
1209		m = vm_page_grab(upobj, i, VM_ALLOC_NORMAL | VM_ALLOC_RETRY);
1210
1211		/*
1212		 * Wire the page.
1213		 */
1214		m->wire_count++;
1215
1216		/*
1217		 * Enter the page into the kernel address space.
1218		 */
1219		pmap_kenter(up + i * PAGE_SIZE, VM_PAGE_TO_PHYS(m));
1220
1221		vm_page_wakeup(m);
1222		vm_page_flag_clear(m, PG_ZERO);
1223		vm_page_flag_set(m, PG_MAPPED | PG_WRITEABLE);
1224		m->valid = VM_PAGE_BITS_ALL;
1225	}
1226}
1227
1228void
1229pmap_object_init_pt(pmap_t pm, vm_offset_t addr, vm_object_t object,
1230		    vm_pindex_t pindex, vm_size_t size, int limit)
1231{
1232
1233	KASSERT(pm == &curproc->p_vmspace->vm_pmap || pm == kernel_pmap,
1234	    ("pmap_remove_pages: non current pmap"));
1235	/* XXX */
1236}
1237
1238/*
1239 * Lower the permission for all mappings to a given page.
1240 */
1241void
1242pmap_page_protect(vm_page_t m, vm_prot_t prot)
1243{
1244	struct	pvo_head *pvo_head;
1245	struct	pvo_entry *pvo, *next_pvo;
1246	struct	pte *pt;
1247
1248	/*
1249	 * Since the routine only downgrades protection, if the
1250	 * maximal protection is desired, there isn't any change
1251	 * to be made.
1252	 */
1253	if ((prot & (VM_PROT_READ|VM_PROT_WRITE)) ==
1254	    (VM_PROT_READ|VM_PROT_WRITE))
1255		return;
1256
1257	pvo_head = vm_page_to_pvoh(m);
1258	for (pvo = LIST_FIRST(pvo_head); pvo != NULL; pvo = next_pvo) {
1259		next_pvo = LIST_NEXT(pvo, pvo_vlink);
1260		PMAP_PVO_CHECK(pvo);	/* sanity check */
1261
1262		/*
1263		 * Downgrading to no mapping at all, we just remove the entry.
1264		 */
1265		if ((prot & VM_PROT_READ) == 0) {
1266			pmap_pvo_remove(pvo, -1);
1267			continue;
1268		}
1269
1270		/*
1271		 * If EXEC permission is being revoked, just clear the flag
1272		 * in the PVO.
1273		 */
1274		if ((prot & VM_PROT_EXECUTE) == 0)
1275			pvo->pvo_vaddr &= ~PVO_EXECUTABLE;
1276
1277		/*
1278		 * If this entry is already RO, don't diddle with the page
1279		 * table.
1280		 */
1281		if ((pvo->pvo_pte.pte_lo & PTE_PP) == PTE_BR) {
1282			PMAP_PVO_CHECK(pvo);
1283			continue;
1284		}
1285
1286		/*
1287		 * Grab the PTE before we diddle the bits so pvo_to_pte can
1288		 * verify the pte contents are as expected.
1289		 */
1290		pt = pmap_pvo_to_pte(pvo, -1);
1291		pvo->pvo_pte.pte_lo &= ~PTE_PP;
1292		pvo->pvo_pte.pte_lo |= PTE_BR;
1293		if (pt != NULL)
1294			pmap_pte_change(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
1295		PMAP_PVO_CHECK(pvo);	/* sanity check */
1296	}
1297}
1298
1299/*
1300 * Make the specified page pageable (or not).  Unneeded.
1301 */
1302void
1303pmap_pageable(pmap_t pmap, vm_offset_t sva, vm_offset_t eva,
1304	      boolean_t pageable)
1305{
1306}
1307
1308/*
1309 * Returns true if the pmap's pv is one of the first
1310 * 16 pvs linked to from this page.  This count may
1311 * be changed upwards or downwards in the future; it
1312 * is only necessary that true be returned for a small
1313 * subset of pmaps for proper page aging.
1314 */
1315boolean_t
1316pmap_page_exists_quick(pmap_t pmap, vm_page_t m)
1317{
1318	TODO;
1319	return (0);
1320}
1321
1322static u_int	pmap_vsidcontext;
1323
1324void
1325pmap_pinit(pmap_t pmap)
1326{
1327	int	i, mask;
1328	u_int	entropy;
1329
1330	entropy = 0;
1331	__asm __volatile("mftb %0" : "=r"(entropy));
1332
1333	/*
1334	 * Allocate some segment registers for this pmap.
1335	 */
1336	for (i = 0; i < NPMAPS; i += VSID_NBPW) {
1337		u_int	hash, n;
1338
1339		/*
1340		 * Create a new value by mutiplying by a prime and adding in
1341		 * entropy from the timebase register.  This is to make the
1342		 * VSID more random so that the PT hash function collides
1343		 * less often.  (Note that the prime casues gcc to do shifts
1344		 * instead of a multiply.)
1345		 */
1346		pmap_vsidcontext = (pmap_vsidcontext * 0x1105) + entropy;
1347		hash = pmap_vsidcontext & (NPMAPS - 1);
1348		if (hash == 0)		/* 0 is special, avoid it */
1349			continue;
1350		n = hash >> 5;
1351		mask = 1 << (hash & (VSID_NBPW - 1));
1352		hash = (pmap_vsidcontext & 0xfffff);
1353		if (pmap_vsid_bitmap[n] & mask) {	/* collision? */
1354			/* anything free in this bucket? */
1355			if (pmap_vsid_bitmap[n] == 0xffffffff) {
1356				entropy = (pmap_vsidcontext >> 20);
1357				continue;
1358			}
1359			i = ffs(~pmap_vsid_bitmap[i]) - 1;
1360			mask = 1 << i;
1361			hash &= 0xfffff & ~(VSID_NBPW - 1);
1362			hash |= i;
1363		}
1364		pmap_vsid_bitmap[n] |= mask;
1365		for (i = 0; i < 16; i++)
1366			pmap->pm_sr[i] = VSID_MAKE(i, hash);
1367		return;
1368	}
1369
1370	panic("pmap_pinit: out of segments");
1371}
1372
1373/*
1374 * Initialize the pmap associated with process 0.
1375 */
1376void
1377pmap_pinit0(pmap_t pm)
1378{
1379
1380	pmap_pinit(pm);
1381	bzero(&pm->pm_stats, sizeof(pm->pm_stats));
1382}
1383
1384void
1385pmap_pinit2(pmap_t pmap)
1386{
1387	/* XXX: Remove this stub when no longer called */
1388}
1389
1390void
1391pmap_prefault(pmap_t pm, vm_offset_t va, vm_map_entry_t entry)
1392{
1393	KASSERT(pm == &curproc->p_vmspace->vm_pmap || pm == kernel_pmap,
1394	    ("pmap_prefault: non current pmap"));
1395	/* XXX */
1396}
1397
1398/*
1399 * Set the physical protection on the specified range of this map as requested.
1400 */
1401void
1402pmap_protect(pmap_t pm, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot)
1403{
1404	struct	pvo_entry *pvo;
1405	struct	pte *pt;
1406	int	pteidx;
1407
1408	CTR4(KTR_PMAP, "pmap_protect: pm=%p sva=%#x eva=%#x prot=%#x", pm, sva,
1409	    eva, prot);
1410
1411
1412	KASSERT(pm == &curproc->p_vmspace->vm_pmap || pm == kernel_pmap,
1413	    ("pmap_protect: non current pmap"));
1414
1415	if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
1416		pmap_remove(pm, sva, eva);
1417		return;
1418	}
1419
1420	for (; sva < eva; sva += PAGE_SIZE) {
1421		pvo = pmap_pvo_find_va(pm, sva, &pteidx);
1422		if (pvo == NULL)
1423			continue;
1424
1425		if ((prot & VM_PROT_EXECUTE) == 0)
1426			pvo->pvo_vaddr &= ~PVO_EXECUTABLE;
1427
1428		/*
1429		 * Grab the PTE pointer before we diddle with the cached PTE
1430		 * copy.
1431		 */
1432		pt = pmap_pvo_to_pte(pvo, pteidx);
1433		/*
1434		 * Change the protection of the page.
1435		 */
1436		pvo->pvo_pte.pte_lo &= ~PTE_PP;
1437		pvo->pvo_pte.pte_lo |= PTE_BR;
1438
1439		/*
1440		 * If the PVO is in the page table, update that pte as well.
1441		 */
1442		if (pt != NULL)
1443			pmap_pte_change(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
1444	}
1445}
1446
1447vm_offset_t
1448pmap_phys_address(int ppn)
1449{
1450	TODO;
1451	return (0);
1452}
1453
1454/*
1455 * Map a list of wired pages into kernel virtual address space.  This is
1456 * intended for temporary mappings which do not need page modification or
1457 * references recorded.  Existing mappings in the region are overwritten.
1458 */
1459void
1460pmap_qenter(vm_offset_t va, vm_page_t *m, int count)
1461{
1462	int	i;
1463
1464	for (i = 0; i < count; i++, va += PAGE_SIZE)
1465		pmap_kenter(va, VM_PAGE_TO_PHYS(m[i]));
1466}
1467
1468/*
1469 * Remove page mappings from kernel virtual address space.  Intended for
1470 * temporary mappings entered by pmap_qenter.
1471 */
1472void
1473pmap_qremove(vm_offset_t va, int count)
1474{
1475	int	i;
1476
1477	for (i = 0; i < count; i++, va += PAGE_SIZE)
1478		pmap_kremove(va);
1479}
1480
1481void
1482pmap_release(pmap_t pmap)
1483{
1484	TODO;
1485}
1486
1487/*
1488 * Remove the given range of addresses from the specified map.
1489 */
1490void
1491pmap_remove(pmap_t pm, vm_offset_t sva, vm_offset_t eva)
1492{
1493	struct	pvo_entry *pvo;
1494	int	pteidx;
1495
1496	for (; sva < eva; sva += PAGE_SIZE) {
1497		pvo = pmap_pvo_find_va(pm, sva, &pteidx);
1498		if (pvo != NULL) {
1499			pmap_pvo_remove(pvo, pteidx);
1500		}
1501	}
1502}
1503
1504/*
1505 * Remove all pages from specified address space, this aids process exit
1506 * speeds.  This is much faster than pmap_remove in the case of running down
1507 * an entire address space.  Only works for the current pmap.
1508 */
1509void
1510pmap_remove_pages(pmap_t pm, vm_offset_t sva, vm_offset_t eva)
1511{
1512
1513	KASSERT(pm == &curproc->p_vmspace->vm_pmap || pm == kernel_pmap,
1514	    ("pmap_remove_pages: non current pmap"));
1515	pmap_remove(pm, sva, eva);
1516}
1517
1518void
1519pmap_swapin_proc(struct proc *p)
1520{
1521	TODO;
1522}
1523
1524void
1525pmap_swapout_proc(struct proc *p)
1526{
1527	TODO;
1528}
1529
1530/*
1531 * Create the kernel stack and pcb for a new thread.
1532 * This routine directly affects the fork perf for a process and
1533 * create performance for a thread.
1534 */
1535void
1536pmap_new_thread(struct thread *td)
1537{
1538	vm_object_t	ksobj;
1539	vm_offset_t	ks;
1540	vm_page_t	m;
1541	u_int		i;
1542
1543	/*
1544	 * Allocate object for the kstack.
1545	 */
1546	ksobj = td->td_kstack_obj;
1547	if (ksobj == NULL) {
1548		ksobj = vm_object_allocate(OBJT_DEFAULT, KSTACK_PAGES);
1549		td->td_kstack_obj = ksobj;
1550	}
1551
1552	/*
1553	 * Get a kernel virtual address for the kstack for this thread.
1554	 */
1555	ks = td->td_kstack;
1556	if (ks == 0) {
1557		ks = kmem_alloc_nofault(kernel_map,
1558		    (KSTACK_PAGES + KSTACK_GUARD_PAGES) * PAGE_SIZE);
1559		if (ks == 0)
1560			panic("pmap_new_thread: kstack allocation failed");
1561		TLBIE(ks);
1562		ks += KSTACK_GUARD_PAGES * PAGE_SIZE;
1563		td->td_kstack = ks;
1564	}
1565
1566	for (i = 0; i < KSTACK_PAGES; i++) {
1567		/*
1568		 * Get a kernel stack page.
1569		 */
1570		m = vm_page_grab(ksobj, i, VM_ALLOC_NORMAL | VM_ALLOC_RETRY);
1571
1572		/*
1573		 * Wire the page.
1574		 */
1575		m->wire_count++;
1576
1577		/*
1578		 * Enter the page into the kernel address space.
1579		 */
1580		pmap_kenter(ks + i * PAGE_SIZE, VM_PAGE_TO_PHYS(m));
1581
1582		vm_page_wakeup(m);
1583		vm_page_flag_clear(m, PG_ZERO);
1584		vm_page_flag_set(m, PG_MAPPED | PG_WRITEABLE);
1585		m->valid = VM_PAGE_BITS_ALL;
1586	}
1587}
1588
1589void
1590pmap_dispose_proc(struct proc *p)
1591{
1592	TODO;
1593}
1594
1595void
1596pmap_dispose_thread(struct thread *td)
1597{
1598	TODO;
1599}
1600
1601void
1602pmap_swapin_thread(struct thread *td)
1603{
1604	TODO;
1605}
1606
1607void
1608pmap_swapout_thread(struct thread *td)
1609{
1610	TODO;
1611}
1612
1613/*
1614 * Allocate a physical page of memory directly from the phys_avail map.
1615 * Can only be called from pmap_bootstrap before avail start and end are
1616 * calculated.
1617 */
1618static vm_offset_t
1619pmap_bootstrap_alloc(vm_size_t size, u_int align)
1620{
1621	vm_offset_t	s, e;
1622	int		i, j;
1623
1624	size = round_page(size);
1625	for (i = 0; phys_avail[i + 1] != 0; i += 2) {
1626		if (align != 0)
1627			s = (phys_avail[i] + align - 1) & ~(align - 1);
1628		else
1629			s = phys_avail[i];
1630		e = s + size;
1631
1632		if (s < phys_avail[i] || e > phys_avail[i + 1])
1633			continue;
1634
1635		if (s == phys_avail[i]) {
1636			phys_avail[i] += size;
1637		} else if (e == phys_avail[i + 1]) {
1638			phys_avail[i + 1] -= size;
1639		} else {
1640			for (j = phys_avail_count * 2; j > i; j -= 2) {
1641				phys_avail[j] = phys_avail[j - 2];
1642				phys_avail[j + 1] = phys_avail[j - 1];
1643			}
1644
1645			phys_avail[i + 3] = phys_avail[i + 1];
1646			phys_avail[i + 1] = s;
1647			phys_avail[i + 2] = e;
1648			phys_avail_count++;
1649		}
1650
1651		return (s);
1652	}
1653	panic("pmap_bootstrap_alloc: could not allocate memory");
1654}
1655
1656/*
1657 * Return an unmapped pvo for a kernel virtual address.
1658 * Used by pmap functions that operate on physical pages.
1659 */
1660static struct pvo_entry *
1661pmap_rkva_alloc(void)
1662{
1663	struct		pvo_entry *pvo;
1664	struct		pte *pt;
1665	vm_offset_t	kva;
1666	int		pteidx;
1667
1668	if (pmap_rkva_count == 0)
1669		panic("pmap_rkva_alloc: no more reserved KVAs");
1670
1671	kva = pmap_rkva_start + (PAGE_SIZE * --pmap_rkva_count);
1672	pmap_kenter(kva, 0);
1673
1674	pvo = pmap_pvo_find_va(kernel_pmap, kva, &pteidx);
1675
1676	if (pvo == NULL)
1677		panic("pmap_kva_alloc: pmap_pvo_find_va failed");
1678
1679	pt = pmap_pvo_to_pte(pvo, pteidx);
1680
1681	if (pt == NULL)
1682		panic("pmap_kva_alloc: pmap_pvo_to_pte failed");
1683
1684	pmap_pte_unset(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
1685	PVO_PTEGIDX_CLR(pvo);
1686
1687	pmap_pte_overflow++;
1688
1689	return (pvo);
1690}
1691
1692static void
1693pmap_pa_map(struct pvo_entry *pvo, vm_offset_t pa, struct pte *saved_pt,
1694    int *depth_p)
1695{
1696	struct	pte *pt;
1697
1698	/*
1699	 * If this pvo already has a valid pte, we need to save it so it can
1700	 * be restored later.  We then just reload the new PTE over the old
1701	 * slot.
1702	 */
1703	if (saved_pt != NULL) {
1704		pt = pmap_pvo_to_pte(pvo, -1);
1705
1706		if (pt != NULL) {
1707			pmap_pte_unset(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
1708			PVO_PTEGIDX_CLR(pvo);
1709			pmap_pte_overflow++;
1710		}
1711
1712		*saved_pt = pvo->pvo_pte;
1713
1714		pvo->pvo_pte.pte_lo &= ~PTE_RPGN;
1715	}
1716
1717	pvo->pvo_pte.pte_lo |= pa;
1718
1719	if (!pmap_pte_spill(pvo->pvo_vaddr))
1720		panic("pmap_pa_map: could not spill pvo %p", pvo);
1721
1722	if (depth_p != NULL)
1723		(*depth_p)++;
1724}
1725
1726static void
1727pmap_pa_unmap(struct pvo_entry *pvo, struct pte *saved_pt, int *depth_p)
1728{
1729	struct	pte *pt;
1730
1731	pt = pmap_pvo_to_pte(pvo, -1);
1732
1733	if (pt != NULL) {
1734		pmap_pte_unset(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
1735		PVO_PTEGIDX_CLR(pvo);
1736		pmap_pte_overflow++;
1737	}
1738
1739	pvo->pvo_pte.pte_lo &= ~PTE_RPGN;
1740
1741	/*
1742	 * If there is a saved PTE and it's valid, restore it and return.
1743	 */
1744	if (saved_pt != NULL && (saved_pt->pte_lo & PTE_RPGN) != 0) {
1745		if (depth_p != NULL && --(*depth_p) == 0)
1746			panic("pmap_pa_unmap: restoring but depth == 0");
1747
1748		pvo->pvo_pte = *saved_pt;
1749
1750		if (!pmap_pte_spill(pvo->pvo_vaddr))
1751			panic("pmap_pa_unmap: could not spill pvo %p", pvo);
1752	}
1753}
1754
1755static void
1756pmap_syncicache(vm_offset_t pa, vm_size_t len)
1757{
1758	__syncicache((void *)pa, len);
1759}
1760
1761static void
1762tlbia(void)
1763{
1764	caddr_t	i;
1765
1766	SYNC();
1767	for (i = 0; i < (caddr_t)0x00040000; i += 0x00001000) {
1768		TLBIE(i);
1769		EIEIO();
1770	}
1771	TLBSYNC();
1772	SYNC();
1773}
1774
1775static int
1776pmap_pvo_enter(pmap_t pm, uma_zone_t zone, struct pvo_head *pvo_head,
1777    vm_offset_t va, vm_offset_t pa, u_int pte_lo, int flags)
1778{
1779	struct	pvo_entry *pvo;
1780	u_int	sr;
1781	int	first;
1782	u_int	ptegidx;
1783	int	i;
1784
1785	pmap_pvo_enter_calls++;
1786	first = 0;
1787
1788	/*
1789	 * Compute the PTE Group index.
1790	 */
1791	va &= ~ADDR_POFF;
1792	sr = va_to_sr(pm->pm_sr, va);
1793	ptegidx = va_to_pteg(sr, va);
1794
1795	/*
1796	 * Remove any existing mapping for this page.  Reuse the pvo entry if
1797	 * there is a mapping.
1798	 */
1799	LIST_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
1800		if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) {
1801			if ((pvo->pvo_pte.pte_lo & PTE_RPGN) == pa &&
1802			    (pvo->pvo_pte.pte_lo & PTE_PP) ==
1803			    (pte_lo & PTE_PP)) {
1804				return (0);
1805			}
1806			pmap_pvo_remove(pvo, -1);
1807			break;
1808		}
1809	}
1810
1811	/*
1812	 * If we aren't overwriting a mapping, try to allocate.
1813	 */
1814	if (pmap_initialized) {
1815		pvo = uma_zalloc(zone, M_NOWAIT);
1816	} else {
1817		if (pmap_bpvo_pool_index >= BPVO_POOL_SIZE) {
1818			panic("pmap_enter: bpvo pool exhausted, %d, %d, %d",
1819			      pmap_bpvo_pool_index, BPVO_POOL_SIZE,
1820			      BPVO_POOL_SIZE * sizeof(struct pvo_entry));
1821		}
1822		pvo = &pmap_bpvo_pool[pmap_bpvo_pool_index];
1823		pmap_bpvo_pool_index++;
1824		pvo->pvo_vaddr |= PVO_BOOTSTRAP;
1825	}
1826
1827	if (pvo == NULL) {
1828		return (ENOMEM);
1829	}
1830
1831	pmap_pvo_entries++;
1832	pvo->pvo_vaddr = va;
1833	pvo->pvo_pmap = pm;
1834	LIST_INSERT_HEAD(&pmap_pvo_table[ptegidx], pvo, pvo_olink);
1835	pvo->pvo_vaddr &= ~ADDR_POFF;
1836	if (flags & VM_PROT_EXECUTE)
1837		pvo->pvo_vaddr |= PVO_EXECUTABLE;
1838	if (flags & PVO_WIRED)
1839		pvo->pvo_vaddr |= PVO_WIRED;
1840	if (pvo_head != &pmap_pvo_kunmanaged)
1841		pvo->pvo_vaddr |= PVO_MANAGED;
1842	pmap_pte_create(&pvo->pvo_pte, sr, va, pa | pte_lo);
1843
1844	/*
1845	 * Remember if the list was empty and therefore will be the first
1846	 * item.
1847	 */
1848	if (LIST_FIRST(pvo_head) == NULL)
1849		first = 1;
1850
1851	LIST_INSERT_HEAD(pvo_head, pvo, pvo_vlink);
1852	if (pvo->pvo_pte.pte_lo & PVO_WIRED)
1853		pvo->pvo_pmap->pm_stats.wired_count++;
1854	pvo->pvo_pmap->pm_stats.resident_count++;
1855
1856	/*
1857	 * We hope this succeeds but it isn't required.
1858	 */
1859	i = pmap_pte_insert(ptegidx, &pvo->pvo_pte);
1860	if (i >= 0) {
1861		PVO_PTEGIDX_SET(pvo, i);
1862	} else {
1863		panic("pmap_pvo_enter: overflow");
1864		pmap_pte_overflow++;
1865	}
1866
1867	return (first ? ENOENT : 0);
1868}
1869
1870static void
1871pmap_pvo_remove(struct pvo_entry *pvo, int pteidx)
1872{
1873	struct	pte *pt;
1874
1875	/*
1876	 * If there is an active pte entry, we need to deactivate it (and
1877	 * save the ref & cfg bits).
1878	 */
1879	pt = pmap_pvo_to_pte(pvo, pteidx);
1880	if (pt != NULL) {
1881		pmap_pte_unset(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
1882		PVO_PTEGIDX_CLR(pvo);
1883	} else {
1884		pmap_pte_overflow--;
1885	}
1886
1887	/*
1888	 * Update our statistics.
1889	 */
1890	pvo->pvo_pmap->pm_stats.resident_count--;
1891	if (pvo->pvo_pte.pte_lo & PVO_WIRED)
1892		pvo->pvo_pmap->pm_stats.wired_count--;
1893
1894	/*
1895	 * Save the REF/CHG bits into their cache if the page is managed.
1896	 */
1897	if (pvo->pvo_vaddr & PVO_MANAGED) {
1898		struct	vm_page *pg;
1899
1900		pg = PHYS_TO_VM_PAGE(pvo->pvo_pte.pte_lo & PTE_RPGN);
1901		if (pg != NULL) {
1902			pmap_attr_save(pg, pvo->pvo_pte.pte_lo &
1903			    (PTE_REF | PTE_CHG));
1904		}
1905	}
1906
1907	/*
1908	 * Remove this PVO from the PV list.
1909	 */
1910	LIST_REMOVE(pvo, pvo_vlink);
1911
1912	/*
1913	 * Remove this from the overflow list and return it to the pool
1914	 * if we aren't going to reuse it.
1915	 */
1916	LIST_REMOVE(pvo, pvo_olink);
1917	if (!(pvo->pvo_vaddr & PVO_BOOTSTRAP))
1918		uma_zfree(pvo->pvo_vaddr & PVO_MANAGED ? pmap_mpvo_zone :
1919		    pmap_upvo_zone, pvo);
1920	pmap_pvo_entries--;
1921	pmap_pvo_remove_calls++;
1922}
1923
1924static __inline int
1925pmap_pvo_pte_index(const struct pvo_entry *pvo, int ptegidx)
1926{
1927	int	pteidx;
1928
1929	/*
1930	 * We can find the actual pte entry without searching by grabbing
1931	 * the PTEG index from 3 unused bits in pte_lo[11:9] and by
1932	 * noticing the HID bit.
1933	 */
1934	pteidx = ptegidx * 8 + PVO_PTEGIDX_GET(pvo);
1935	if (pvo->pvo_pte.pte_hi & PTE_HID)
1936		pteidx ^= pmap_pteg_mask * 8;
1937
1938	return (pteidx);
1939}
1940
1941static struct pvo_entry *
1942pmap_pvo_find_va(pmap_t pm, vm_offset_t va, int *pteidx_p)
1943{
1944	struct	pvo_entry *pvo;
1945	int	ptegidx;
1946	u_int	sr;
1947
1948	va &= ~ADDR_POFF;
1949	sr = va_to_sr(pm->pm_sr, va);
1950	ptegidx = va_to_pteg(sr, va);
1951
1952	LIST_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
1953		if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) {
1954			if (pteidx_p)
1955				*pteidx_p = pmap_pvo_pte_index(pvo, ptegidx);
1956			return (pvo);
1957		}
1958	}
1959
1960	return (NULL);
1961}
1962
1963static struct pte *
1964pmap_pvo_to_pte(const struct pvo_entry *pvo, int pteidx)
1965{
1966	struct	pte *pt;
1967
1968	/*
1969	 * If we haven't been supplied the ptegidx, calculate it.
1970	 */
1971	if (pteidx == -1) {
1972		int	ptegidx;
1973		u_int	sr;
1974
1975		sr = va_to_sr(pvo->pvo_pmap->pm_sr, pvo->pvo_vaddr);
1976		ptegidx = va_to_pteg(sr, pvo->pvo_vaddr);
1977		pteidx = pmap_pvo_pte_index(pvo, ptegidx);
1978	}
1979
1980	pt = &pmap_pteg_table[pteidx >> 3].pt[pteidx & 7];
1981
1982	if ((pvo->pvo_pte.pte_hi & PTE_VALID) && !PVO_PTEGIDX_ISSET(pvo)) {
1983		panic("pmap_pvo_to_pte: pvo %p has valid pte in pvo but no "
1984		    "valid pte index", pvo);
1985	}
1986
1987	if ((pvo->pvo_pte.pte_hi & PTE_VALID) == 0 && PVO_PTEGIDX_ISSET(pvo)) {
1988		panic("pmap_pvo_to_pte: pvo %p has valid pte index in pvo "
1989		    "pvo but no valid pte", pvo);
1990	}
1991
1992	if ((pt->pte_hi ^ (pvo->pvo_pte.pte_hi & ~PTE_VALID)) == PTE_VALID) {
1993		if ((pvo->pvo_pte.pte_hi & PTE_VALID) == 0) {
1994			panic("pmap_pvo_to_pte: pvo %p has valid pte in "
1995			    "pmap_pteg_table %p but invalid in pvo", pvo, pt);
1996		}
1997
1998		if (((pt->pte_lo ^ pvo->pvo_pte.pte_lo) & ~(PTE_CHG|PTE_REF))
1999		    != 0) {
2000			panic("pmap_pvo_to_pte: pvo %p pte does not match "
2001			    "pte %p in pmap_pteg_table", pvo, pt);
2002		}
2003
2004		return (pt);
2005	}
2006
2007	if (pvo->pvo_pte.pte_hi & PTE_VALID) {
2008		panic("pmap_pvo_to_pte: pvo %p has invalid pte %p in "
2009		    "pmap_pteg_table but valid in pvo", pvo, pt);
2010	}
2011
2012	return (NULL);
2013}
2014
2015static void *
2016pmap_pvo_allocf(uma_zone_t zone, int bytes, u_int8_t *flags, int wait)
2017{
2018	vm_page_t	m;
2019
2020	if (bytes != PAGE_SIZE)
2021		panic("pmap_pvo_allocf: benno was shortsighted.  hit him.");
2022
2023	*flags = UMA_SLAB_PRIV;
2024	m = vm_page_alloc(pmap_pvo_obj, pmap_pvo_count, VM_ALLOC_SYSTEM);
2025	if (m == NULL)
2026		return (NULL);
2027	pmap_pvo_count++;
2028	return ((void *)VM_PAGE_TO_PHYS(m));
2029}
2030
2031/*
2032 * XXX: THIS STUFF SHOULD BE IN pte.c?
2033 */
2034int
2035pmap_pte_spill(vm_offset_t addr)
2036{
2037	struct	pvo_entry *source_pvo, *victim_pvo;
2038	struct	pvo_entry *pvo;
2039	int	ptegidx, i, j;
2040	u_int	sr;
2041	struct	pteg *pteg;
2042	struct	pte *pt;
2043
2044	pmap_pte_spills++;
2045
2046	sr = mfsrin(addr);
2047	ptegidx = va_to_pteg(sr, addr);
2048
2049	/*
2050	 * Have to substitute some entry.  Use the primary hash for this.
2051	 * Use low bits of timebase as random generator.
2052	 */
2053	pteg = &pmap_pteg_table[ptegidx];
2054	__asm __volatile("mftb %0" : "=r"(i));
2055	i &= 7;
2056	pt = &pteg->pt[i];
2057
2058	source_pvo = NULL;
2059	victim_pvo = NULL;
2060	LIST_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
2061		/*
2062		 * We need to find a pvo entry for this address.
2063		 */
2064		PMAP_PVO_CHECK(pvo);
2065		if (source_pvo == NULL &&
2066		    pmap_pte_match(&pvo->pvo_pte, sr, addr,
2067		    pvo->pvo_pte.pte_hi & PTE_HID)) {
2068			/*
2069			 * Now found an entry to be spilled into the pteg.
2070			 * The PTE is now valid, so we know it's active.
2071			 */
2072			j = pmap_pte_insert(ptegidx, &pvo->pvo_pte);
2073
2074			if (j >= 0) {
2075				PVO_PTEGIDX_SET(pvo, j);
2076				pmap_pte_overflow--;
2077				PMAP_PVO_CHECK(pvo);
2078				return (1);
2079			}
2080
2081			source_pvo = pvo;
2082
2083			if (victim_pvo != NULL)
2084				break;
2085		}
2086
2087		/*
2088		 * We also need the pvo entry of the victim we are replacing
2089		 * so save the R & C bits of the PTE.
2090		 */
2091		if ((pt->pte_hi & PTE_HID) == 0 && victim_pvo == NULL &&
2092		    pmap_pte_compare(pt, &pvo->pvo_pte)) {
2093			victim_pvo = pvo;
2094			if (source_pvo != NULL)
2095				break;
2096		}
2097	}
2098
2099	if (source_pvo == NULL)
2100		return (0);
2101
2102	if (victim_pvo == NULL) {
2103		if ((pt->pte_hi & PTE_HID) == 0)
2104			panic("pmap_pte_spill: victim p-pte (%p) has no pvo"
2105			    "entry", pt);
2106
2107		/*
2108		 * If this is a secondary PTE, we need to search it's primary
2109		 * pvo bucket for the matching PVO.
2110		 */
2111		LIST_FOREACH(pvo, &pmap_pvo_table[ptegidx ^ pmap_pteg_mask],
2112		    pvo_olink) {
2113			PMAP_PVO_CHECK(pvo);
2114			/*
2115			 * We also need the pvo entry of the victim we are
2116			 * replacing so save the R & C bits of the PTE.
2117			 */
2118			if (pmap_pte_compare(pt, &pvo->pvo_pte)) {
2119				victim_pvo = pvo;
2120				break;
2121			}
2122		}
2123
2124		if (victim_pvo == NULL)
2125			panic("pmap_pte_spill: victim s-pte (%p) has no pvo"
2126			    "entry", pt);
2127	}
2128
2129	/*
2130	 * We are invalidating the TLB entry for the EA we are replacing even
2131	 * though it's valid.  If we don't, we lose any ref/chg bit changes
2132	 * contained in the TLB entry.
2133	 */
2134	source_pvo->pvo_pte.pte_hi &= ~PTE_HID;
2135
2136	pmap_pte_unset(pt, &victim_pvo->pvo_pte, victim_pvo->pvo_vaddr);
2137	pmap_pte_set(pt, &source_pvo->pvo_pte);
2138
2139	PVO_PTEGIDX_CLR(victim_pvo);
2140	PVO_PTEGIDX_SET(source_pvo, i);
2141	pmap_pte_replacements++;
2142
2143	PMAP_PVO_CHECK(victim_pvo);
2144	PMAP_PVO_CHECK(source_pvo);
2145
2146	return (1);
2147}
2148
2149static int
2150pmap_pte_insert(u_int ptegidx, struct pte *pvo_pt)
2151{
2152	struct	pte *pt;
2153	int	i;
2154
2155	/*
2156	 * First try primary hash.
2157	 */
2158	for (pt = pmap_pteg_table[ptegidx].pt, i = 0; i < 8; i++, pt++) {
2159		if ((pt->pte_hi & PTE_VALID) == 0) {
2160			pvo_pt->pte_hi &= ~PTE_HID;
2161			pmap_pte_set(pt, pvo_pt);
2162			return (i);
2163		}
2164	}
2165
2166	/*
2167	 * Now try secondary hash.
2168	 */
2169	ptegidx ^= pmap_pteg_mask;
2170	ptegidx++;
2171	for (pt = pmap_pteg_table[ptegidx].pt, i = 0; i < 8; i++, pt++) {
2172		if ((pt->pte_hi & PTE_VALID) == 0) {
2173			pvo_pt->pte_hi |= PTE_HID;
2174			pmap_pte_set(pt, pvo_pt);
2175			return (i);
2176		}
2177	}
2178
2179	panic("pmap_pte_insert: overflow");
2180	return (-1);
2181}
2182
2183static boolean_t
2184pmap_query_bit(vm_page_t m, int ptebit)
2185{
2186	struct	pvo_entry *pvo;
2187	struct	pte *pt;
2188
2189	if (pmap_attr_fetch(m) & ptebit)
2190		return (TRUE);
2191
2192	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
2193		PMAP_PVO_CHECK(pvo);	/* sanity check */
2194
2195		/*
2196		 * See if we saved the bit off.  If so, cache it and return
2197		 * success.
2198		 */
2199		if (pvo->pvo_pte.pte_lo & ptebit) {
2200			pmap_attr_save(m, ptebit);
2201			PMAP_PVO_CHECK(pvo);	/* sanity check */
2202			return (TRUE);
2203		}
2204	}
2205
2206	/*
2207	 * No luck, now go through the hard part of looking at the PTEs
2208	 * themselves.  Sync so that any pending REF/CHG bits are flushed to
2209	 * the PTEs.
2210	 */
2211	SYNC();
2212	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
2213		PMAP_PVO_CHECK(pvo);	/* sanity check */
2214
2215		/*
2216		 * See if this pvo has a valid PTE.  if so, fetch the
2217		 * REF/CHG bits from the valid PTE.  If the appropriate
2218		 * ptebit is set, cache it and return success.
2219		 */
2220		pt = pmap_pvo_to_pte(pvo, -1);
2221		if (pt != NULL) {
2222			pmap_pte_synch(pt, &pvo->pvo_pte);
2223			if (pvo->pvo_pte.pte_lo & ptebit) {
2224				pmap_attr_save(m, ptebit);
2225				PMAP_PVO_CHECK(pvo);	/* sanity check */
2226				return (TRUE);
2227			}
2228		}
2229	}
2230
2231	return (TRUE);
2232}
2233
2234static boolean_t
2235pmap_clear_bit(vm_page_t m, int ptebit)
2236{
2237	struct	pvo_entry *pvo;
2238	struct	pte *pt;
2239	int	rv;
2240
2241	/*
2242	 * Clear the cached value.
2243	 */
2244	rv = pmap_attr_fetch(m);
2245	pmap_attr_clear(m, ptebit);
2246
2247	/*
2248	 * Sync so that any pending REF/CHG bits are flushed to the PTEs (so
2249	 * we can reset the right ones).  note that since the pvo entries and
2250	 * list heads are accessed via BAT0 and are never placed in the page
2251	 * table, we don't have to worry about further accesses setting the
2252	 * REF/CHG bits.
2253	 */
2254	SYNC();
2255
2256	/*
2257	 * For each pvo entry, clear the pvo's ptebit.  If this pvo has a
2258	 * valid pte clear the ptebit from the valid pte.
2259	 */
2260	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
2261		PMAP_PVO_CHECK(pvo);	/* sanity check */
2262		pt = pmap_pvo_to_pte(pvo, -1);
2263		if (pt != NULL) {
2264			pmap_pte_synch(pt, &pvo->pvo_pte);
2265			if (pvo->pvo_pte.pte_lo & ptebit)
2266				pmap_pte_clear(pt, PVO_VADDR(pvo), ptebit);
2267		}
2268		rv |= pvo->pvo_pte.pte_lo;
2269		pvo->pvo_pte.pte_lo &= ~ptebit;
2270		PMAP_PVO_CHECK(pvo);	/* sanity check */
2271	}
2272
2273	return ((rv & ptebit) != 0);
2274}
2275
2276/*
2277 * Map a set of physical memory pages into the kernel virtual
2278 * address space. Return a pointer to where it is mapped. This
2279 * routine is intended to be used for mapping device memory,
2280 * NOT real memory.
2281 */
2282void *
2283pmap_mapdev(vm_offset_t pa, vm_size_t size)
2284{
2285	vm_offset_t va, tmpva, offset;
2286
2287	pa = trunc_page(pa);
2288	offset = pa & PAGE_MASK;
2289	size = roundup(offset + size, PAGE_SIZE);
2290
2291	GIANT_REQUIRED;
2292
2293	va = kmem_alloc_pageable(kernel_map, size);
2294	if (!va)
2295		panic("pmap_mapdev: Couldn't alloc kernel virtual memory");
2296
2297	for (tmpva = va; size > 0;) {
2298		pmap_kenter(tmpva, pa);
2299		TLBIE(tmpva); /* XXX or should it be invalidate-all ? */
2300		size -= PAGE_SIZE;
2301		tmpva += PAGE_SIZE;
2302		pa += PAGE_SIZE;
2303	}
2304
2305	return ((void *)(va + offset));
2306}
2307
2308void
2309pmap_unmapdev(vm_offset_t va, vm_size_t size)
2310{
2311	vm_offset_t base, offset;
2312
2313	base = trunc_page(va);
2314	offset = va & PAGE_MASK;
2315	size = roundup(offset + size, PAGE_SIZE);
2316	kmem_free(kernel_map, base, size);
2317}
2318