mmu_oea.c revision 96353
190075Sobrien/*
290075Sobrien * Copyright (c) 2001 The NetBSD Foundation, Inc.
3169689Skan * All rights reserved.
490075Sobrien *
590075Sobrien * This code is derived from software contributed to The NetBSD Foundation
690075Sobrien * by Matt Thomas <matt@3am-software.com> of Allegro Networks, Inc.
790075Sobrien *
890075Sobrien * Redistribution and use in source and binary forms, with or without
990075Sobrien * modification, are permitted provided that the following conditions
1090075Sobrien * are met:
1190075Sobrien * 1. Redistributions of source code must retain the above copyright
1290075Sobrien *    notice, this list of conditions and the following disclaimer.
1390075Sobrien * 2. Redistributions in binary form must reproduce the above copyright
1490075Sobrien *    notice, this list of conditions and the following disclaimer in the
1590075Sobrien *    documentation and/or other materials provided with the distribution.
1690075Sobrien * 3. All advertising materials mentioning features or use of this software
1790075Sobrien *    must display the following acknowledgement:
1890075Sobrien *        This product includes software developed by the NetBSD
19169689Skan *        Foundation, Inc. and its contributors.
20169689Skan * 4. Neither the name of The NetBSD Foundation nor the names of its
2190075Sobrien *    contributors may be used to endorse or promote products derived
2290075Sobrien *    from this software without specific prior written permission.
2390075Sobrien *
2490075Sobrien * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
25132718Skan * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
26132718Skan * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
2790075Sobrien * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
28169689Skan * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
2990075Sobrien * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
3090075Sobrien * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
3196263Sobrien * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
3296263Sobrien * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
3390075Sobrien * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
3496263Sobrien * POSSIBILITY OF SUCH DAMAGE.
35169689Skan */
3690075Sobrien/*
3790075Sobrien * Copyright (C) 1995, 1996 Wolfgang Solfrank.
3890075Sobrien * Copyright (C) 1995, 1996 TooLs GmbH.
3990075Sobrien * All rights reserved.
4090075Sobrien *
4190075Sobrien * Redistribution and use in source and binary forms, with or without
4290075Sobrien * modification, are permitted provided that the following conditions
4390075Sobrien * are met:
4490075Sobrien * 1. Redistributions of source code must retain the above copyright
4590075Sobrien *    notice, this list of conditions and the following disclaimer.
4690075Sobrien * 2. Redistributions in binary form must reproduce the above copyright
4790075Sobrien *    notice, this list of conditions and the following disclaimer in the
4890075Sobrien *    documentation and/or other materials provided with the distribution.
4990075Sobrien * 3. All advertising materials mentioning features or use of this software
5090075Sobrien *    must display the following acknowledgement:
51132718Skan *	This product includes software developed by TooLs GmbH.
52132718Skan * 4. The name of TooLs GmbH may not be used to endorse or promote products
53132718Skan *    derived from this software without specific prior written permission.
54169689Skan *
55169689Skan * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR
56132718Skan * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
57132718Skan * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
5890075Sobrien * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
59107590Sobrien * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
60107590Sobrien * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
61107590Sobrien * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
62107590Sobrien * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
63132718Skan * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
64107590Sobrien * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
65107590Sobrien *
66107590Sobrien * $NetBSD: pmap.c,v 1.28 2000/03/26 20:42:36 kleink Exp $
67107590Sobrien */
68132718Skan/*
69117395Skan * Copyright (C) 2001 Benno Rice.
70107590Sobrien * All rights reserved.
71107590Sobrien *
72169689Skan * Redistribution and use in source and binary forms, with or without
73107590Sobrien * modification, are permitted provided that the following conditions
74169689Skan * are met:
75107590Sobrien * 1. Redistributions of source code must retain the above copyright
76107590Sobrien *    notice, this list of conditions and the following disclaimer.
77107590Sobrien * 2. Redistributions in binary form must reproduce the above copyright
78107590Sobrien *    notice, this list of conditions and the following disclaimer in the
79107590Sobrien *    documentation and/or other materials provided with the distribution.
80107590Sobrien *
8190075Sobrien * THIS SOFTWARE IS PROVIDED BY Benno Rice ``AS IS'' AND ANY EXPRESS OR
8290075Sobrien * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
8390075Sobrien * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
8490075Sobrien * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
85132718Skan * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
8690075Sobrien * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
8790075Sobrien * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
8890075Sobrien * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
8990075Sobrien * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
90169689Skan * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
9190075Sobrien */
9290075Sobrien
93132718Skan#ifndef lint
94107590Sobrienstatic const char rcsid[] =
9590075Sobrien  "$FreeBSD: head/sys/powerpc/aim/mmu_oea.c 96353 2002-05-10 14:21:48Z benno $";
9690075Sobrien#endif /* not lint */
9790075Sobrien
98169689Skan/*
99107590Sobrien * Manages physical address maps.
10090075Sobrien *
10190075Sobrien * In addition to hardware address maps, this module is called upon to
10290075Sobrien * provide software-use-only maps which may or may not be stored in the
10390075Sobrien * same form as hardware maps.  These pseudo-maps are used to store
10490075Sobrien * intermediate results from copy operations to and from address spaces.
105132718Skan *
10690075Sobrien * Since the information managed by this module is also stored by the
107132718Skan * logical address mapping module, this module may throw away valid virtual
108169689Skan * to physical mappings at almost any time.  However, invalidations of
109169689Skan * mappings must be done as requested.
110169689Skan *
11190075Sobrien * In order to cope with hardware architectures which make virtual to
112169689Skan * physical map invalidates expensive, this module may delay invalidate
113169689Skan * reduced protection operations until such time as they are actually
114117395Skan * necessary.  This module is given full information as to which processors
115117395Skan * are currently using which maps, and to when physical maps must be made
116169689Skan * correct.
117169689Skan */
118169689Skan
119169689Skan#include <sys/param.h>
120117395Skan#include <sys/kernel.h>
121169689Skan#include <sys/ktr.h>
122132718Skan#include <sys/lock.h>
12390075Sobrien#include <sys/msgbuf.h>
12490075Sobrien#include <sys/mutex.h>
12590075Sobrien#include <sys/proc.h>
12690075Sobrien#include <sys/sysctl.h>
12790075Sobrien#include <sys/systm.h>
128169689Skan#include <sys/vmmeter.h>
129169689Skan
130169689Skan#include <dev/ofw/openfirm.h>
131169689Skan
132169689Skan#include <vm/vm.h>
133169689Skan#include <vm/vm_param.h>
134169689Skan#include <vm/vm_kern.h>
135169689Skan#include <vm/vm_page.h>
136169689Skan#include <vm/vm_map.h>
137169689Skan#include <vm/vm_object.h>
138169689Skan#include <vm/vm_extern.h>
139169689Skan#include <vm/vm_pageout.h>
140169689Skan#include <vm/vm_pager.h>
141169689Skan#include <vm/uma.h>
142169689Skan
143169689Skan#include <machine/bat.h>
144169689Skan#include <machine/frame.h>
145169689Skan#include <machine/md_var.h>
14690075Sobrien#include <machine/psl.h>
14790075Sobrien#include <machine/pte.h>
148117395Skan#include <machine/sr.h>
14990075Sobrien
15090075Sobrien#define	PMAP_DEBUG
15190075Sobrien
15290075Sobrien#define TODO	panic("%s: not implemented", __func__);
15390075Sobrien
15490075Sobrien#define	PMAP_LOCK(pm)
155169689Skan#define	PMAP_UNLOCK(pm)
15690075Sobrien
15790075Sobrien#define	TLBIE(va)	__asm __volatile("tlbie %0" :: "r"(va))
158132718Skan#define	TLBSYNC()	__asm __volatile("tlbsync");
15990075Sobrien#define	SYNC()		__asm __volatile("sync");
160169689Skan#define	EIEIO()		__asm __volatile("eieio");
16190075Sobrien
16290075Sobrien#define	VSID_MAKE(sr, hash)	((sr) | (((hash) & 0xfffff) << 4))
16390075Sobrien#define	VSID_TO_SR(vsid)	((vsid) & 0xf)
16490075Sobrien#define	VSID_TO_HASH(vsid)	(((vsid) >> 4) & 0xfffff)
16590075Sobrien
16690075Sobrien#define	PVO_PTEGIDX_MASK	0x0007		/* which PTEG slot */
16790075Sobrien#define	PVO_PTEGIDX_VALID	0x0008		/* slot is valid */
16890075Sobrien#define	PVO_WIRED		0x0010		/* PVO entry is wired */
16990075Sobrien#define	PVO_MANAGED		0x0020		/* PVO entry is managed */
170169689Skan#define	PVO_EXECUTABLE		0x0040		/* PVO entry is executable */
171169689Skan#define	PVO_BOOTSTRAP		0x0080		/* PVO entry allocated during
17290075Sobrien						   bootstrap */
17390075Sobrien#define	PVO_VADDR(pvo)		((pvo)->pvo_vaddr & ~ADDR_POFF)
174169689Skan#define	PVO_ISEXECUTABLE(pvo)	((pvo)->pvo_vaddr & PVO_EXECUTABLE)
17590075Sobrien#define	PVO_PTEGIDX_GET(pvo)	((pvo)->pvo_vaddr & PVO_PTEGIDX_MASK)
17690075Sobrien#define	PVO_PTEGIDX_ISSET(pvo)	((pvo)->pvo_vaddr & PVO_PTEGIDX_VALID)
17790075Sobrien#define	PVO_PTEGIDX_CLR(pvo)	\
178117395Skan	((void)((pvo)->pvo_vaddr &= ~(PVO_PTEGIDX_VALID|PVO_PTEGIDX_MASK)))
17990075Sobrien#define	PVO_PTEGIDX_SET(pvo, i)	\
18090075Sobrien	((void)((pvo)->pvo_vaddr |= (i)|PVO_PTEGIDX_VALID))
18190075Sobrien
18290075Sobrien#define	PMAP_PVO_CHECK(pvo)
18390075Sobrien
184169689Skanstruct mem_region {
18590075Sobrien	vm_offset_t	mr_start;
18690075Sobrien	vm_offset_t	mr_size;
18790075Sobrien};
188169689Skan
18990075Sobrienstruct ofw_map {
19090075Sobrien	vm_offset_t	om_va;
19190075Sobrien	vm_size_t	om_len;
19290075Sobrien	vm_offset_t	om_pa;
193169689Skan	u_int		om_mode;
194169689Skan};
195169689Skan
196169689Skanint	pmap_bootstrapped = 0;
19790075Sobrien
19890075Sobrien/*
19990075Sobrien * Virtual and physical address of message buffer.
20090075Sobrien */
20190075Sobrienstruct		msgbuf *msgbufp;
20290075Sobrienvm_offset_t	msgbuf_phys;
20390075Sobrien
20490075Sobrien/*
205169689Skan * Physical addresses of first and last available physical page.
20690075Sobrien */
20790075Sobrienvm_offset_t avail_start;
20890075Sobrienvm_offset_t avail_end;
209169689Skan
21090075Sobrien/*
21190075Sobrien * Map of physical memory regions.
21290075Sobrien */
21390075Sobrienvm_offset_t	phys_avail[128];
21490075Sobrienu_int		phys_avail_count;
21590075Sobrienstatic struct	mem_region regions[128];
21690075Sobrienstatic struct	ofw_map translations[128];
21790075Sobrienstatic int	translations_size;
21890075Sobrien
219169689Skan/*
22090075Sobrien * First and last available kernel virtual addresses.
221169689Skan */
22290075Sobrienvm_offset_t virtual_avail;
22390075Sobrienvm_offset_t virtual_end;
224169689Skanvm_offset_t kernel_vm_end;
225169689Skan
22690075Sobrien/*
22790075Sobrien * Kernel pmap.
22890075Sobrien */
22990075Sobrienstruct pmap kernel_pmap_store;
23090075Sobrienextern struct pmap ofw_pmap;
23190075Sobrien
23290075Sobrien/*
23390075Sobrien * PTEG data.
23490075Sobrien */
23590075Sobrienstatic struct	pteg *pmap_pteg_table;
23690075Sobrienu_int		pmap_pteg_count;
23790075Sobrienu_int		pmap_pteg_mask;
23890075Sobrien
239117395Skan/*
240117395Skan * PVO data.
241117395Skan */
242132718Skanstruct	pvo_head *pmap_pvo_table;		/* pvo entries by pteg index */
243117395Skanstruct	pvo_head pmap_pvo_kunmanaged =
244117395Skan    LIST_HEAD_INITIALIZER(pmap_pvo_kunmanaged);	/* list of unmanaged pages */
245117395Skanstruct	pvo_head pmap_pvo_unmanaged =
246117395Skan    LIST_HEAD_INITIALIZER(pmap_pvo_unmanaged);	/* list of unmanaged pages */
247117395Skan
248117395Skanuma_zone_t	pmap_upvo_zone;	/* zone for pvo entries for unmanaged pages */
249169689Skanuma_zone_t	pmap_mpvo_zone;	/* zone for pvo entries for managed pages */
250117395Skanstruct		vm_object pmap_upvo_zone_obj;
251169689Skanstruct		vm_object pmap_mpvo_zone_obj;
252117395Skanstatic vm_object_t	pmap_pvo_obj;
253117395Skanstatic u_int		pmap_pvo_count;
254117395Skan
255117395Skan#define	PMAP_PVO_SIZE	1024
256117395Skanstatic struct	pvo_entry *pmap_bpvo_pool;
257117395Skanstatic int	pmap_bpvo_pool_index;
258117395Skanstatic int	pmap_bpvo_pool_count;
259117395Skan
260132718Skan#define	VSID_NBPW	(sizeof(u_int32_t) * 8)
261117395Skanstatic u_int	pmap_vsid_bitmap[NPMAPS / VSID_NBPW];
262169689Skan
263117395Skanstatic boolean_t pmap_initialized = FALSE;
264132718Skan
265117395Skan/*
266132718Skan * Statistics.
267117395Skan */
268132718Skanu_int	pmap_pte_valid = 0;
269169689Skanu_int	pmap_pte_overflow = 0;
270169689Skanu_int	pmap_pte_replacements = 0;
271117395Skanu_int	pmap_pvo_entries = 0;
272117395Skanu_int	pmap_pvo_enter_calls = 0;
273117395Skanu_int	pmap_pvo_remove_calls = 0;
27490075Sobrienu_int	pmap_pte_spills = 0;
275117395SkanSYSCTL_INT(_machdep, OID_AUTO, pmap_pte_valid, CTLFLAG_RD, &pmap_pte_valid,
27690075Sobrien    0, "");
27790075SobrienSYSCTL_INT(_machdep, OID_AUTO, pmap_pte_overflow, CTLFLAG_RD,
27890075Sobrien    &pmap_pte_overflow, 0, "");
279132718SkanSYSCTL_INT(_machdep, OID_AUTO, pmap_pte_replacements, CTLFLAG_RD,
28090075Sobrien    &pmap_pte_replacements, 0, "");
28190075SobrienSYSCTL_INT(_machdep, OID_AUTO, pmap_pvo_entries, CTLFLAG_RD, &pmap_pvo_entries,
282169689Skan    0, "");
283117395SkanSYSCTL_INT(_machdep, OID_AUTO, pmap_pvo_enter_calls, CTLFLAG_RD,
28490075Sobrien    &pmap_pvo_enter_calls, 0, "");
285169689SkanSYSCTL_INT(_machdep, OID_AUTO, pmap_pvo_remove_calls, CTLFLAG_RD,
28690075Sobrien    &pmap_pvo_remove_calls, 0, "");
28790075SobrienSYSCTL_INT(_machdep, OID_AUTO, pmap_pte_spills, CTLFLAG_RD,
28890075Sobrien    &pmap_pte_spills, 0, "");
289117395Skan
290117395Skanstruct	pvo_entry *pmap_pvo_zeropage;
29190075Sobrien
29290075Sobrienvm_offset_t	pmap_rkva_start = VM_MIN_KERNEL_ADDRESS;
29390075Sobrienu_int		pmap_rkva_count = 4;
29490075Sobrien
29590075Sobrien/*
296169689Skan * Allocate physical memory for use in pmap_bootstrap.
29790075Sobrien */
29890075Sobrienstatic vm_offset_t	pmap_bootstrap_alloc(vm_size_t, u_int);
29990075Sobrien
30090075Sobrien/*
30190075Sobrien * PTE calls.
30290075Sobrien */
30390075Sobrienstatic int		pmap_pte_insert(u_int, struct pte *);
30490075Sobrien
30590075Sobrien/*
30690075Sobrien * PVO calls.
30790075Sobrien */
30890075Sobrienstatic int	pmap_pvo_enter(pmap_t, uma_zone_t, struct pvo_head *,
30990075Sobrien		    vm_offset_t, vm_offset_t, u_int, int);
310169689Skanstatic void	pmap_pvo_remove(struct pvo_entry *, int);
311169689Skanstatic struct	pvo_entry *pmap_pvo_find_va(pmap_t, vm_offset_t, int *);
312169689Skanstatic struct	pte *pmap_pvo_to_pte(const struct pvo_entry *, int);
313169689Skan
314169689Skan/*
315169689Skan * Utility routines.
316169689Skan */
317169689Skanstatic void *		pmap_pvo_allocf(uma_zone_t, int, u_int8_t *, int);
318169689Skanstatic struct		pvo_entry *pmap_rkva_alloc(void);
319169689Skanstatic void		pmap_pa_map(struct pvo_entry *, vm_offset_t,
32090075Sobrien			    struct pte *, int *);
32190075Sobrienstatic void		pmap_pa_unmap(struct pvo_entry *, struct pte *, int *);
32290075Sobrienstatic void		pmap_syncicache(vm_offset_t, vm_size_t);
32390075Sobrienstatic boolean_t	pmap_query_bit(vm_page_t, int);
32490075Sobrienstatic boolean_t	pmap_clear_bit(vm_page_t, int);
32590075Sobrienstatic void		tlbia(void);
32690075Sobrien
32790075Sobrienstatic __inline int
32890075Sobrienva_to_sr(u_int *sr, vm_offset_t va)
32990075Sobrien{
33090075Sobrien	return (sr[(uintptr_t)va >> ADDR_SR_SHFT]);
33190075Sobrien}
33290075Sobrien
33390075Sobrienstatic __inline u_int
33490075Sobrienva_to_pteg(u_int sr, vm_offset_t addr)
33590075Sobrien{
33690075Sobrien	u_int hash;
33790075Sobrien
33890075Sobrien	hash = (sr & SR_VSID_MASK) ^ (((u_int)addr & ADDR_PIDX) >>
339132718Skan	    ADDR_PIDX_SHFT);
34090075Sobrien	return (hash & pmap_pteg_mask);
34190075Sobrien}
34290075Sobrien
34390075Sobrienstatic __inline struct pvo_head *
34490075Sobrienpa_to_pvoh(vm_offset_t pa, vm_page_t *pg_p)
345117395Skan{
346169689Skan	struct	vm_page *pg;
34790075Sobrien
348169689Skan	pg = PHYS_TO_VM_PAGE(pa);
34990075Sobrien
35090075Sobrien	if (pg_p != NULL)
35190075Sobrien		*pg_p = pg;
35290075Sobrien
35390075Sobrien	if (pg == NULL)
354117395Skan		return (&pmap_pvo_unmanaged);
35590075Sobrien
356169689Skan	return (&pg->md.mdpg_pvoh);
35790075Sobrien}
35890075Sobrien
359169689Skanstatic __inline struct pvo_head *
36090075Sobrienvm_page_to_pvoh(vm_page_t m)
36190075Sobrien{
362169689Skan
36390075Sobrien	return (&m->md.mdpg_pvoh);
36490075Sobrien}
36590075Sobrien
366117395Skanstatic __inline void
367117395Skanpmap_attr_clear(vm_page_t m, int ptebit)
368169689Skan{
369117395Skan
37090075Sobrien	m->md.mdpg_attrs &= ~ptebit;
37190075Sobrien}
37290075Sobrien
37390075Sobrienstatic __inline int
37490075Sobrienpmap_attr_fetch(vm_page_t m)
37590075Sobrien{
37690075Sobrien
377132718Skan	return (m->md.mdpg_attrs);
37890075Sobrien}
37990075Sobrien
38090075Sobrienstatic __inline void
38190075Sobrienpmap_attr_save(vm_page_t m, int ptebit)
38290075Sobrien{
38390075Sobrien
38490075Sobrien	m->md.mdpg_attrs |= ptebit;
38590075Sobrien}
38690075Sobrien
38790075Sobrienstatic __inline int
38890075Sobrienpmap_pte_compare(const struct pte *pt, const struct pte *pvo_pt)
389132718Skan{
39090075Sobrien	if (pt->pte_hi == pvo_pt->pte_hi)
39190075Sobrien		return (1);
39290075Sobrien
39390075Sobrien	return (0);
394169689Skan}
39590075Sobrien
39690075Sobrienstatic __inline int
39790075Sobrienpmap_pte_match(struct pte *pt, u_int sr, vm_offset_t va, int which)
39890075Sobrien{
39990075Sobrien	return (pt->pte_hi & ~PTE_VALID) ==
40090075Sobrien	    (((sr & SR_VSID_MASK) << PTE_VSID_SHFT) |
40190075Sobrien	    ((va >> ADDR_API_SHFT) & PTE_API) | which);
40290075Sobrien}
40390075Sobrien
40490075Sobrienstatic __inline void
40590075Sobrienpmap_pte_create(struct pte *pt, u_int sr, vm_offset_t va, u_int pte_lo)
40690075Sobrien{
40790075Sobrien	/*
40890075Sobrien	 * Construct a PTE.  Default to IMB initially.  Valid bit only gets
40990075Sobrien	 * set when the real pte is set in memory.
41090075Sobrien	 *
41190075Sobrien	 * Note: Don't set the valid bit for correct operation of tlb update.
41290075Sobrien	 */
41390075Sobrien	pt->pte_hi = ((sr & SR_VSID_MASK) << PTE_VSID_SHFT) |
41490075Sobrien	    (((va & ADDR_PIDX) >> ADDR_API_SHFT) & PTE_API);
41590075Sobrien	pt->pte_lo = pte_lo;
416132718Skan}
41790075Sobrien
418117395Skanstatic __inline void
41990075Sobrienpmap_pte_synch(struct pte *pt, struct pte *pvo_pt)
420117395Skan{
421169689Skan
42290075Sobrien	pvo_pt->pte_lo |= pt->pte_lo & (PTE_REF | PTE_CHG);
423117395Skan}
42490075Sobrien
425169689Skanstatic __inline void
42690075Sobrienpmap_pte_clear(struct pte *pt, vm_offset_t va, int ptebit)
42790075Sobrien{
42890075Sobrien
42990075Sobrien	/*
43090075Sobrien	 * As shown in Section 7.6.3.2.3
43190075Sobrien	 */
43290075Sobrien	pt->pte_lo &= ~ptebit;
43390075Sobrien	TLBIE(va);
43490075Sobrien	EIEIO();
43590075Sobrien	TLBSYNC();
43690075Sobrien	SYNC();
43790075Sobrien}
43890075Sobrien
43990075Sobrienstatic __inline void
44090075Sobrienpmap_pte_set(struct pte *pt, struct pte *pvo_pt)
44190075Sobrien{
44290075Sobrien
44390075Sobrien	pvo_pt->pte_hi |= PTE_VALID;
44490075Sobrien
445117395Skan	/*
44690075Sobrien	 * Update the PTE as defined in section 7.6.3.1.
44790075Sobrien	 * Note that the REF/CHG bits are from pvo_pt and thus should havce
448117395Skan	 * been saved so this routine can restore them (if desired).
449117395Skan	 */
45090075Sobrien	pt->pte_lo = pvo_pt->pte_lo;
45190075Sobrien	EIEIO();
45290075Sobrien	pt->pte_hi = pvo_pt->pte_hi;
453169689Skan	SYNC();
45490075Sobrien	pmap_pte_valid++;
45590075Sobrien}
45690075Sobrien
45790075Sobrienstatic __inline void
45890075Sobrienpmap_pte_unset(struct pte *pt, struct pte *pvo_pt, vm_offset_t va)
45990075Sobrien{
460169689Skan
46190075Sobrien	pvo_pt->pte_hi &= ~PTE_VALID;
46290075Sobrien
46390075Sobrien	/*
46490075Sobrien	 * Force the reg & chg bits back into the PTEs.
46590075Sobrien	 */
46690075Sobrien	SYNC();
467117395Skan
46890075Sobrien	/*
46990075Sobrien	 * Invalidate the pte.
470117395Skan	 */
471117395Skan	pt->pte_hi &= ~PTE_VALID;
47290075Sobrien
47390075Sobrien	SYNC();
474117395Skan	TLBIE(va);
47590075Sobrien	EIEIO();
47690075Sobrien	TLBSYNC();
47790075Sobrien	SYNC();
478169689Skan
479169689Skan	/*
480169689Skan	 * Save the reg & chg bits.
481169689Skan	 */
482169689Skan	pmap_pte_synch(pt, pvo_pt);
483169689Skan	pmap_pte_valid--;
484169689Skan}
485169689Skan
486169689Skanstatic __inline void
487169689Skanpmap_pte_change(struct pte *pt, struct pte *pvo_pt, vm_offset_t va)
488169689Skan{
489169689Skan
490169689Skan	/*
491169689Skan	 * Invalidate the PTE
492169689Skan	 */
493169689Skan	pmap_pte_unset(pt, pvo_pt, va);
494169689Skan	pmap_pte_set(pt, pvo_pt);
495169689Skan}
496169689Skan
497169689Skan/*
498169689Skan * Quick sort callout for comparing memory regions.
499169689Skan */
500169689Skanstatic int	mr_cmp(const void *a, const void *b);
501169689Skanstatic int	om_cmp(const void *a, const void *b);
502169689Skan
50390075Sobrienstatic int
50490075Sobrienmr_cmp(const void *a, const void *b)
50590075Sobrien{
50690075Sobrien	const struct	mem_region *regiona;
507132718Skan	const struct	mem_region *regionb;
50890075Sobrien
50990075Sobrien	regiona = a;
51090075Sobrien	regionb = b;
51190075Sobrien	if (regiona->mr_start < regionb->mr_start)
51290075Sobrien		return (-1);
51390075Sobrien	else if (regiona->mr_start > regionb->mr_start)
51490075Sobrien		return (1);
51590075Sobrien	else
51690075Sobrien		return (0);
51790075Sobrien}
51890075Sobrien
51990075Sobrienstatic int
52090075Sobrienom_cmp(const void *a, const void *b)
52190075Sobrien{
522132718Skan	const struct	ofw_map *mapa;
52390075Sobrien	const struct	ofw_map *mapb;
524169689Skan
525169689Skan	mapa = a;
52690075Sobrien	mapb = b;
52790075Sobrien	if (mapa->om_pa < mapb->om_pa)
52890075Sobrien		return (-1);
52990075Sobrien	else if (mapa->om_pa > mapb->om_pa)
53090075Sobrien		return (1);
531169689Skan	else
532169689Skan		return (0);
53390075Sobrien}
53490075Sobrien
53590075Sobrienvoid
53690075Sobrienpmap_bootstrap(vm_offset_t kernelstart, vm_offset_t kernelend)
53790075Sobrien{
53890075Sobrien	ihandle_t	pmem, mmui;
539132718Skan	phandle_t	chosen, mmu;
54090075Sobrien	int		sz;
54190075Sobrien	int		i, j;
54290075Sobrien	vm_size_t	size, physsz;
54390075Sobrien	vm_offset_t	pa, va, off;
54490075Sobrien	u_int		batl, batu;
54590075Sobrien
54690075Sobrien	/*
54790075Sobrien	 * Use an IBAT and a DBAT to map the bottom segment of memory
54890075Sobrien	 * where we are.
54990075Sobrien	 */
55090075Sobrien	batu = BATU(0x00000000, BAT_BL_256M, BAT_Vs);
55190075Sobrien	batl = BATL(0x00000000, BAT_M, BAT_PP_RW);
55290075Sobrien	__asm ("mtibatu 0,%0; mtibatl 0,%1; mtdbatu 0,%0; mtdbatl 0,%1"
55390075Sobrien	    :: "r"(batu), "r"(batl));
55490075Sobrien#if 0
555169689Skan	batu = BATU(0x80000000, BAT_BL_256M, BAT_Vs);
556169689Skan	batl = BATL(0x80000000, BAT_M, BAT_PP_RW);
55790075Sobrien	__asm ("mtibatu 1,%0; mtibatl 1,%1; mtdbatu 1,%0; mtdbatl 1,%1"
55890075Sobrien	    :: "r"(batu), "r"(batl));
55990075Sobrien#endif
560169689Skan
56190075Sobrien	/*
56290075Sobrien	 * Set the start and end of kva.
563169689Skan	 */
56490075Sobrien	virtual_avail = VM_MIN_KERNEL_ADDRESS;
565169689Skan	virtual_end = VM_MAX_KERNEL_ADDRESS;
56690075Sobrien
567169689Skan	if ((pmem = OF_finddevice("/memory")) == -1)
568169689Skan		panic("pmap_bootstrap: can't locate memory device");
569169689Skan	if ((sz = OF_getproplen(pmem, "available")) == -1)
570169689Skan		panic("pmap_bootstrap: can't get length of available memory");
57190075Sobrien	if (sizeof(phys_avail) < sz)
57290075Sobrien		panic("pmap_bootstrap: phys_avail too small");
57390075Sobrien	if (sizeof(regions) < sz)
57490075Sobrien		panic("pmap_bootstrap: regions too small");
57590075Sobrien	bzero(regions, sz);
57690075Sobrien	if (OF_getprop(pmem, "available", regions, sz) == -1)
57790075Sobrien		panic("pmap_bootstrap: can't get available memory");
57890075Sobrien	sz /= sizeof(*regions);
579132718Skan	CTR0(KTR_PMAP, "pmap_bootstrap: physical memory");
58090075Sobrien	qsort(regions, sz, sizeof(*regions), mr_cmp);
581117395Skan	phys_avail_count = 0;
58290075Sobrien	physsz = 0;
583169689Skan	for (i = 0, j = 0; i < sz; i++, j += 2) {
584169689Skan		CTR3(KTR_PMAP, "region: %#x - %#x (%#x)", regions[i].mr_start,
58590075Sobrien		    regions[i].mr_start + regions[i].mr_size,
58690075Sobrien		    regions[i].mr_size);
587169689Skan		phys_avail[j] = regions[i].mr_start;
588169689Skan		phys_avail[j + 1] = regions[i].mr_start + regions[i].mr_size;
589169689Skan		phys_avail_count++;
590169689Skan		physsz += regions[i].mr_size;
591169689Skan	}
592169689Skan	physmem = btoc(physsz);
593169689Skan
594169689Skan	/*
595169689Skan	 * Allocate PTEG table.
59690075Sobrien	 */
59790075Sobrien#ifdef PTEGCOUNT
59890075Sobrien	pmap_pteg_count = PTEGCOUNT;
59990075Sobrien#else
60090075Sobrien	pmap_pteg_count = 0x1000;
601132718Skan
60290075Sobrien	while (pmap_pteg_count < physmem)
603117395Skan		pmap_pteg_count <<= 1;
60490075Sobrien
605117395Skan	pmap_pteg_count >>= 1;
606169689Skan#endif /* PTEGCOUNT */
607117395Skan
60890075Sobrien	size = pmap_pteg_count * sizeof(struct pteg);
60990075Sobrien	CTR2(KTR_PMAP, "pmap_bootstrap: %d PTEGs, %d bytes", pmap_pteg_count,
61090075Sobrien	    size);
61190075Sobrien	pmap_pteg_table = (struct pteg *)pmap_bootstrap_alloc(size, size);
61290075Sobrien	CTR1(KTR_PMAP, "pmap_bootstrap: PTEG table at %p", pmap_pteg_table);
61390075Sobrien	bzero((void *)pmap_pteg_table, pmap_pteg_count * sizeof(struct pteg));
61490075Sobrien	pmap_pteg_mask = pmap_pteg_count - 1;
61590075Sobrien
61690075Sobrien	/*
61790075Sobrien	 * Allocate pv/overflow lists.
61890075Sobrien	 */
61990075Sobrien	size = sizeof(struct pvo_head) * pmap_pteg_count;
62090075Sobrien	pmap_pvo_table = (struct pvo_head *)pmap_bootstrap_alloc(size,
62190075Sobrien	    PAGE_SIZE);
622132718Skan	CTR1(KTR_PMAP, "pmap_bootstrap: PVO table at %p", pmap_pvo_table);
62390075Sobrien	for (i = 0; i < pmap_pteg_count; i++)
624169689Skan		LIST_INIT(&pmap_pvo_table[i]);
62590075Sobrien
62690075Sobrien	/*
62790075Sobrien	 * Allocate the message buffer.
62890075Sobrien	 */
62990075Sobrien	msgbuf_phys = pmap_bootstrap_alloc(MSGBUF_SIZE, 0);
63090075Sobrien
63190075Sobrien	/*
63290075Sobrien	 * Initialise the unmanaged pvo pool.
63390075Sobrien	 */
63490075Sobrien	pmap_bpvo_pool = (struct pvo_entry *)pmap_bootstrap_alloc(PAGE_SIZE, 0);
635169689Skan	pmap_bpvo_pool_index = 0;
636169689Skan	pmap_bpvo_pool_count = (int)PAGE_SIZE / sizeof(struct pvo_entry);
63790075Sobrien
63890075Sobrien	/*
63990075Sobrien	 * Make sure kernel vsid is allocated as well as VSID 0.
64090075Sobrien	 */
64190075Sobrien	pmap_vsid_bitmap[(KERNEL_VSIDBITS & (NPMAPS - 1)) / VSID_NBPW]
64290075Sobrien		|= 1 << (KERNEL_VSIDBITS % VSID_NBPW);
64390075Sobrien	pmap_vsid_bitmap[0] |= 1;
64490075Sobrien
64590075Sobrien	/*
64690075Sobrien	 * Set up the OpenFirmware pmap and add it's mappings.
64790075Sobrien	 */
648169689Skan	pmap_pinit(&ofw_pmap);
649169689Skan	ofw_pmap.pm_sr[KERNEL_SR] = KERNEL_SEGMENT;
65090075Sobrien	if ((chosen = OF_finddevice("/chosen")) == -1)
651169689Skan		panic("pmap_bootstrap: can't find /chosen");
652169689Skan	OF_getprop(chosen, "mmu", &mmui, 4);
65390075Sobrien	if ((mmu = OF_instance_to_package(mmui)) == -1)
654169689Skan		panic("pmap_bootstrap: can't get mmu package");
65590075Sobrien	if ((sz = OF_getproplen(mmu, "translations")) == -1)
656169689Skan		panic("pmap_bootstrap: can't get ofw translation count");
65790075Sobrien	if (sizeof(translations) < sz)
65890075Sobrien		panic("pmap_bootstrap: translations too small");
659169689Skan	bzero(translations, sz);
660169689Skan	if (OF_getprop(mmu, "translations", translations, sz) == -1)
661169689Skan		panic("pmap_bootstrap: can't get ofw translations");
66290075Sobrien	CTR0(KTR_PMAP, "pmap_bootstrap: translations");
663169689Skan	qsort(translations, sz, sizeof (*translations), om_cmp);
66490075Sobrien	for (i = 0; i < sz; i++) {
66590075Sobrien		CTR3(KTR_PMAP, "translation: pa=%#x va=%#x len=%#x",
66690075Sobrien		    translations[i].om_pa, translations[i].om_va,
667117395Skan		    translations[i].om_len);
66890075Sobrien
66990075Sobrien		/* Drop stuff below something? */
67090075Sobrien
67190075Sobrien		/* Enter the pages? */
67290075Sobrien		for (off = 0; off < translations[i].om_len; off += PAGE_SIZE) {
673169689Skan			struct	vm_page m;
67490075Sobrien
67590075Sobrien			m.phys_addr = translations[i].om_pa + off;
67690075Sobrien			pmap_enter(&ofw_pmap, translations[i].om_va + off, &m,
677169689Skan			    VM_PROT_ALL, 1);
67890075Sobrien		}
67990075Sobrien	}
68090075Sobrien#ifdef SMP
68190075Sobrien	TLBSYNC();
682169689Skan#endif
683169689Skan
684169689Skan	/*
68590075Sobrien	 * Initialize the kernel pmap (which is statically allocated).
68690075Sobrien	 */
68790075Sobrien	for (i = 0; i < 16; i++) {
68890075Sobrien		kernel_pmap->pm_sr[i] = EMPTY_SEGMENT;
68990075Sobrien	}
69090075Sobrien	kernel_pmap->pm_sr[KERNEL_SR] = KERNEL_SEGMENT;
69190075Sobrien	kernel_pmap->pm_active = ~0;
692169689Skan
69390075Sobrien	/*
69490075Sobrien	 * Allocate a kernel stack with a guard page for thread0 and map it
695169689Skan	 * into the kernel page map.
69690075Sobrien	 */
697169689Skan	pa = pmap_bootstrap_alloc(KSTACK_PAGES * PAGE_SIZE, 0);
69890075Sobrien	kstack0_phys = pa;
69990075Sobrien	kstack0 = virtual_avail + (KSTACK_GUARD_PAGES * PAGE_SIZE);
70090075Sobrien	CTR2(KTR_PMAP, "pmap_bootstrap: kstack0 at %#x (%#x)", kstack0_phys,
701169689Skan	    kstack0);
702169689Skan	virtual_avail += (KSTACK_PAGES + KSTACK_GUARD_PAGES) * PAGE_SIZE;
70390075Sobrien	for (i = 0; i < KSTACK_PAGES; i++) {
704169689Skan		pa = kstack0_phys + i * PAGE_SIZE;
705169689Skan		va = kstack0 + i * PAGE_SIZE;
70690075Sobrien		pmap_kenter(va, pa);
70790075Sobrien		TLBIE(va);
70890075Sobrien	}
70990075Sobrien
71090075Sobrien	/*
711169689Skan	 * Calculate the first and last available physical addresses.
712169689Skan	 */
713169689Skan	avail_start = phys_avail[0];
71490075Sobrien	for (i = 0; phys_avail[i + 2] != 0; i += 2)
71590075Sobrien		;
716169689Skan	avail_end = phys_avail[i + 1];
71790075Sobrien	Maxmem = powerpc_btop(avail_end);
71890075Sobrien
71990075Sobrien	/*
720169689Skan	 * Allocate virtual address space for the message buffer.
721169689Skan	 */
72290075Sobrien	msgbufp = (struct msgbuf *)virtual_avail;
72390075Sobrien	virtual_avail += round_page(MSGBUF_SIZE);
724169689Skan
72590075Sobrien	/*
726169689Skan	 * Initialize hardware.
727169689Skan	 */
728169689Skan	for (i = 0; i < 16; i++) {
729169689Skan		mtsrin(i << ADDR_SR_SHFT, EMPTY_SEGMENT);
73090075Sobrien	}
731169689Skan	__asm __volatile ("mtsr %0,%1"
732169689Skan	    :: "n"(KERNEL_SR), "r"(KERNEL_SEGMENT));
73390075Sobrien	__asm __volatile ("sync; mtsdr1 %0; isync"
734169689Skan	    :: "r"((u_int)pmap_pteg_table | (pmap_pteg_mask >> 10)));
73590075Sobrien	tlbia();
736169689Skan
737169689Skan	pmap_bootstrapped++;
73890075Sobrien}
73990075Sobrien
74090075Sobrien/*
741169689Skan * Activate a user pmap.  The pmap must be activated before it's address
74290075Sobrien * space can be accessed in any way.
74390075Sobrien */
744169689Skanvoid
745169689Skanpmap_activate(struct thread *td)
746169689Skan{
747169689Skan	pmap_t	pm, pmr;
748169689Skan
749169689Skan	/*
750169689Skan	 * Load all the data we need up front to encourasge the compiler to
751169689Skan	 * not issue any loads while we have interrupts disabled below.
752169689Skan	 */
753169689Skan	pm = &td->td_proc->p_vmspace->vm_pmap;
754169689Skan
75590075Sobrien	KASSERT(pm->pm_active == 0, ("pmap_activate: pmap already active?"));
756117395Skan
75790075Sobrien	if ((pmr = (pmap_t)pmap_kextract((vm_offset_t)pm)) == NULL)
75890075Sobrien		pmr = pm;
75990075Sobrien
76090075Sobrien	pm->pm_active |= PCPU_GET(cpumask);
76190075Sobrien	PCPU_SET(curpmap, pmr);
762169689Skan}
76390075Sobrien
76490075Sobrienvoid
76590075Sobrienpmap_deactivate(struct thread *td)
766169689Skan{
76790075Sobrien	pmap_t	pm;
76890075Sobrien
76990075Sobrien	pm = &td->td_proc->p_vmspace->vm_pmap;
77090075Sobrien	pm->pm_active &= ~(PCPU_GET(cpumask));
771169689Skan	PCPU_SET(curpmap, NULL);
772169689Skan}
773169689Skan
77490075Sobrienvm_offset_t
77590075Sobrienpmap_addr_hint(vm_object_t object, vm_offset_t va, vm_size_t size)
77690075Sobrien{
77790075Sobrien
77890075Sobrien	return (va);
77990075Sobrien}
78090075Sobrien
781169689Skanvoid
782169689Skanpmap_change_wiring(pmap_t pm, vm_offset_t va, boolean_t wired)
78390075Sobrien{
784169689Skan	struct	pvo_entry *pvo;
78590075Sobrien
786169689Skan	pvo = pmap_pvo_find_va(pm, va & ~ADDR_POFF, NULL);
78790075Sobrien
78890075Sobrien	if (pvo != NULL) {
789169689Skan		if (wired) {
790169689Skan			if ((pvo->pvo_vaddr & PVO_WIRED) == 0)
79190075Sobrien				pm->pm_stats.wired_count++;
79290075Sobrien			pvo->pvo_vaddr |= PVO_WIRED;
793169689Skan		} else {
79490075Sobrien			if ((pvo->pvo_vaddr & PVO_WIRED) != 0)
79590075Sobrien				pm->pm_stats.wired_count--;
79690075Sobrien			pvo->pvo_vaddr &= ~PVO_WIRED;
797169689Skan		}
798169689Skan	}
79990075Sobrien}
80090075Sobrien
801169689Skanvoid
80290075Sobrienpmap_clear_modify(vm_page_t m)
803169689Skan{
804169689Skan
80590075Sobrien	if (m->flags * PG_FICTITIOUS)
80690075Sobrien		return;
80790075Sobrien	pmap_clear_bit(m, PTE_CHG);
80890075Sobrien}
80990075Sobrien
81090075Sobrienvoid
81190075Sobrienpmap_collect(void)
81290075Sobrien{
813169689Skan	TODO;
81490075Sobrien}
815169689Skan
816169689Skanvoid
817169689Skanpmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr,
818169689Skan	  vm_size_t len, vm_offset_t src_addr)
819169689Skan{
820169689Skan	TODO;
821169689Skan}
82290075Sobrien
823169689Skanvoid
824169689Skanpmap_copy_page(vm_page_t src, vm_page_t dst)
825169689Skan{
826169689Skan	TODO;
82790075Sobrien}
828169689Skan
82990075Sobrien/*
83090075Sobrien * Zero a page of physical memory by temporarily mapping it into the tlb.
83190075Sobrien */
83290075Sobrienvoid
83390075Sobrienpmap_zero_page(vm_page_t m)
83490075Sobrien{
83590075Sobrien	vm_offset_t pa = VM_PAGE_TO_PHYS(m);
83690075Sobrien	caddr_t	va;
83790075Sobrien	int	i;
83890075Sobrien
83990075Sobrien	if (pa < SEGMENT_LENGTH) {
84090075Sobrien		va = (caddr_t) pa;
84190075Sobrien	} else if (pmap_initialized) {
84290075Sobrien		if (pmap_pvo_zeropage == NULL)
84390075Sobrien			pmap_pvo_zeropage = pmap_rkva_alloc();
84490075Sobrien		pmap_pa_map(pmap_pvo_zeropage, pa, NULL, NULL);
84590075Sobrien		va = (caddr_t)PVO_VADDR(pmap_pvo_zeropage);
84690075Sobrien	} else {
84790075Sobrien		panic("pmap_zero_page: can't zero pa %#x", pa);
84890075Sobrien	}
84990075Sobrien
85090075Sobrien	bzero(va, PAGE_SIZE);
85190075Sobrien
85290075Sobrien	for (i = PAGE_SIZE / CACHELINESIZE; i > 0; i--) {
85390075Sobrien		__asm __volatile("dcbz 0,%0" :: "r"(va));
85490075Sobrien		va += CACHELINESIZE;
85590075Sobrien	}
85690075Sobrien
85790075Sobrien	if (pa >= SEGMENT_LENGTH)
858117395Skan		pmap_pa_unmap(pmap_pvo_zeropage, NULL, NULL);
85990075Sobrien}
86090075Sobrien
86190075Sobrienvoid
862132718Skanpmap_zero_page_area(vm_page_t m, int off, int size)
86390075Sobrien{
86490075Sobrien	TODO;
865169689Skan}
86690075Sobrien
86790075Sobrien/*
86890075Sobrien * Map the given physical page at the specified virtual address in the
869169689Skan * target pmap with the protection requested.  If specified the page
87090075Sobrien * will be wired down.
87190075Sobrien */
87290075Sobrienvoid
87390075Sobrienpmap_enter(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
87490075Sobrien	   boolean_t wired)
87590075Sobrien{
87690075Sobrien	struct		pvo_head *pvo_head;
87790075Sobrien	uma_zone_t	zone;
87890075Sobrien	vm_page_t	pg;
87990075Sobrien	u_int		pte_lo, pvo_flags, was_exec, i;
88090075Sobrien	int		error;
88190075Sobrien
882132718Skan	if (!pmap_initialized) {
88390075Sobrien		pvo_head = &pmap_pvo_kunmanaged;
88490075Sobrien		zone = pmap_upvo_zone;
885169689Skan		pvo_flags = 0;
88690075Sobrien		pg = NULL;
88790075Sobrien		was_exec = PTE_EXEC;
88890075Sobrien	} else {
88990075Sobrien		pvo_head = pa_to_pvoh(VM_PAGE_TO_PHYS(m), &pg);
89090075Sobrien		zone = pmap_mpvo_zone;
89190075Sobrien		pvo_flags = PVO_MANAGED;
89290075Sobrien		was_exec = 0;
89390075Sobrien	}
894169689Skan
895169689Skan	/*
89690075Sobrien	 * If this is a managed page, and it's the first reference to the page,
89790075Sobrien	 * clear the execness of the page.  Otherwise fetch the execness.
89890075Sobrien	 */
899169689Skan	if (pg != NULL) {
90090075Sobrien		if (LIST_EMPTY(pvo_head)) {
90190075Sobrien			pmap_attr_clear(pg, PTE_EXEC);
90290075Sobrien		} else {
90390075Sobrien			was_exec = pmap_attr_fetch(pg) & PTE_EXEC;
90490075Sobrien		}
90590075Sobrien	}
906169689Skan
907169689Skan
90890075Sobrien	/*
90990075Sobrien	 * Assume the page is cache inhibited and access is guarded unless
91090075Sobrien	 * it's in our available memory array.
91190075Sobrien	 */
912169689Skan	pte_lo = PTE_I | PTE_G;
913169689Skan	for (i = 0; i < (phys_avail_count * 2); i += 2) {
914117395Skan		if (VM_PAGE_TO_PHYS(m) >= phys_avail[i] &&
91590075Sobrien		    VM_PAGE_TO_PHYS(m) <= phys_avail[i + 1]) {
91690075Sobrien			pte_lo &= ~(PTE_I | PTE_G);
91790075Sobrien			break;
91890075Sobrien		}
91990075Sobrien	}
92090075Sobrien
92190075Sobrien	if (prot & VM_PROT_WRITE)
92290075Sobrien		pte_lo |= PTE_BW;
923132718Skan	else
92490075Sobrien		pte_lo |= PTE_BR;
92590075Sobrien
92690075Sobrien	pvo_flags |= (prot & VM_PROT_EXECUTE);
92790075Sobrien
928117395Skan	if (wired)
929117395Skan		pvo_flags |= PVO_WIRED;
930117395Skan
931117395Skan	error = pmap_pvo_enter(pmap, zone, pvo_head, va, VM_PAGE_TO_PHYS(m),
932117395Skan	    pte_lo, pvo_flags);
933132718Skan
934132718Skan	/*
935132718Skan	 * Flush the real page from the instruction cache if this page is
936117395Skan	 * mapped executable and cacheable and was not previously mapped (or
937117395Skan	 * was not mapped executable).
938117395Skan	 */
939169689Skan	if (error == 0 && (pvo_flags & PVO_EXECUTABLE) &&
940117395Skan	    (pte_lo & PTE_I) == 0 && was_exec == 0) {
941169689Skan		/*
942169689Skan		 * Flush the real memory from the cache.
943169689Skan		 */
944169689Skan		pmap_syncicache(VM_PAGE_TO_PHYS(m), PAGE_SIZE);
945169689Skan		if (pg != NULL)
946169689Skan			pmap_attr_save(pg, PTE_EXEC);
947169689Skan	}
948169689Skan}
949169689Skan
950169689Skanvm_offset_t
951169689Skanpmap_extract(pmap_t pm, vm_offset_t va)
952169689Skan{
953169689Skan	struct	pvo_entry *pvo;
954169689Skan
955169689Skan	pvo = pmap_pvo_find_va(pm, va & ~ADDR_POFF, NULL);
956169689Skan
957169689Skan	if (pvo != NULL) {
958169689Skan		return ((pvo->pvo_pte.pte_lo & PTE_RPGN) | (va & ADDR_POFF));
959169689Skan	}
960169689Skan
961169689Skan	return (0);
962169689Skan}
963169689Skan
964169689Skan/*
965169689Skan * Grow the number of kernel page table entries.  Unneeded.
966169689Skan */
967169689Skanvoid
968169689Skanpmap_growkernel(vm_offset_t addr)
969169689Skan{
970169689Skan}
971169689Skan
972169689Skanvoid
973169689Skanpmap_init(vm_offset_t phys_start, vm_offset_t phys_end)
974169689Skan{
975169689Skan
976117395Skan	CTR0(KTR_PMAP, "pmap_init");
977169689Skan}
978117395Skan
979117395Skanvoid
980117395Skanpmap_init2(void)
981169689Skan{
982117395Skan
983117395Skan	CTR0(KTR_PMAP, "pmap_init2");
984169689Skan
985169689Skan	pmap_pvo_obj = vm_object_allocate(OBJT_PHYS, 16);
986169689Skan	pmap_pvo_count = 0;
987117395Skan	pmap_upvo_zone = uma_zcreate("UPVO entry", sizeof (struct pvo_entry),
988169689Skan	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
989169689Skan	uma_zone_set_allocf(pmap_upvo_zone, pmap_pvo_allocf);
990169689Skan	pmap_mpvo_zone = uma_zcreate("MPVO entry", sizeof(struct pvo_entry),
991117395Skan	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
992169689Skan	uma_zone_set_allocf(pmap_mpvo_zone, pmap_pvo_allocf);
993117395Skan	pmap_initialized = TRUE;
994169689Skan}
995169689Skan
996169689Skanboolean_t
997117395Skanpmap_is_modified(vm_page_t m)
998169689Skan{
999169689Skan
1000169689Skan	if (m->flags & PG_FICTITIOUS)
1001117395Skan		return (FALSE);
1002117395Skan
1003117395Skan	return (pmap_query_bit(m, PTE_CHG));
1004117395Skan}
1005117395Skan
1006169689Skanvoid
1007117395Skanpmap_clear_reference(vm_page_t m)
1008169689Skan{
1009169689Skan	TODO;
1010169689Skan}
1011117395Skan
1012169689Skan/*
1013169689Skan *	pmap_ts_referenced:
1014169689Skan *
1015169689Skan *	Return a count of reference bits for a page, clearing those bits.
1016169689Skan *	It is not necessary for every reference bit to be cleared, but it
1017169689Skan *	is necessary that 0 only be returned when there are truly no
1018169689Skan *	reference bits set.
1019169689Skan *
1020169689Skan *	XXX: The exact number of bits to check and clear is a matter that
1021169689Skan *	should be tested and standardized at some point in the future for
1022169689Skan *	optimal aging of shared pages.
1023169689Skan */
1024169689Skan
1025169689Skanint
1026169689Skanpmap_ts_referenced(vm_page_t m)
1027169689Skan{
1028169689Skan	TODO;
1029169689Skan	return (0);
1030169689Skan}
1031169689Skan
1032169689Skan/*
1033169689Skan * Map a wired page into kernel virtual address space.
1034169689Skan */
1035169689Skanvoid
1036169689Skanpmap_kenter(vm_offset_t va, vm_offset_t pa)
1037169689Skan{
1038169689Skan	u_int		pte_lo;
1039169689Skan	int		error;
1040169689Skan	int		i;
1041169689Skan
1042169689Skan#if 0
1043169689Skan	if (va < VM_MIN_KERNEL_ADDRESS)
1044169689Skan		panic("pmap_kenter: attempt to enter non-kernel address %#x",
1045169689Skan		    va);
1046169689Skan#endif
1047169689Skan
1048169689Skan	pte_lo = PTE_I | PTE_G | PTE_BW;
1049169689Skan	for (i = 0; phys_avail[i + 2] != 0; i += 2) {
1050169689Skan		if (pa >= phys_avail[i] && pa < phys_avail[i + 1]) {
1051169689Skan			pte_lo &= ~(PTE_I | PTE_G);
1052169689Skan			break;
1053169689Skan		}
1054169689Skan	}
1055169689Skan
1056169689Skan	error = pmap_pvo_enter(kernel_pmap, pmap_upvo_zone,
1057169689Skan	    &pmap_pvo_kunmanaged, va, pa, pte_lo, PVO_WIRED);
1058169689Skan
1059169689Skan	if (error != 0 && error != ENOENT)
1060169689Skan		panic("pmap_kenter: failed to enter va %#x pa %#x: %d", va,
1061169689Skan		    pa, error);
1062169689Skan
1063169689Skan	/*
1064169689Skan	 * Flush the real memory from the instruction cache.
1065169689Skan	 */
1066169689Skan	if ((pte_lo & (PTE_I | PTE_G)) == 0) {
1067169689Skan		pmap_syncicache(pa, PAGE_SIZE);
1068169689Skan	}
1069169689Skan}
1070169689Skan
1071169689Skan/*
1072169689Skan * Extract the physical page address associated with the given kernel virtual
1073169689Skan * address.
1074169689Skan */
1075169689Skanvm_offset_t
1076169689Skanpmap_kextract(vm_offset_t va)
1077169689Skan{
1078169689Skan	struct		pvo_entry *pvo;
1079169689Skan
1080	pvo = pmap_pvo_find_va(kernel_pmap, va & ~ADDR_POFF, NULL);
1081	if (pvo == NULL) {
1082		return (0);
1083	}
1084
1085	return ((pvo->pvo_pte.pte_lo & PTE_RPGN) | (va & ADDR_POFF));
1086}
1087
1088/*
1089 * Remove a wired page from kernel virtual address space.
1090 */
1091void
1092pmap_kremove(vm_offset_t va)
1093{
1094
1095	pmap_remove(kernel_pmap, va, roundup(va, PAGE_SIZE));
1096}
1097
1098/*
1099 * Map a range of physical addresses into kernel virtual address space.
1100 *
1101 * The value passed in *virt is a suggested virtual address for the mapping.
1102 * Architectures which can support a direct-mapped physical to virtual region
1103 * can return the appropriate address within that region, leaving '*virt'
1104 * unchanged.  We cannot and therefore do not; *virt is updated with the
1105 * first usable address after the mapped region.
1106 */
1107vm_offset_t
1108pmap_map(vm_offset_t *virt, vm_offset_t pa_start, vm_offset_t pa_end, int prot)
1109{
1110	vm_offset_t	sva, va;
1111
1112	sva = *virt;
1113	va = sva;
1114	for (; pa_start < pa_end; pa_start += PAGE_SIZE, va += PAGE_SIZE)
1115		pmap_kenter(va, pa_start);
1116	*virt = va;
1117	return (sva);
1118}
1119
1120int
1121pmap_mincore(pmap_t pmap, vm_offset_t addr)
1122{
1123	TODO;
1124	return (0);
1125}
1126
1127/*
1128 * Create the uarea for a new process.
1129 * This routine directly affects the fork perf for a process.
1130 */
1131void
1132pmap_new_proc(struct proc *p)
1133{
1134	vm_object_t	upobj;
1135	vm_offset_t	up;
1136	vm_page_t	m;
1137	u_int		i;
1138
1139	/*
1140	 * Allocate the object for the upages.
1141	 */
1142	upobj = p->p_upages_obj;
1143	if (upobj == NULL) {
1144		upobj = vm_object_allocate(OBJT_DEFAULT, UAREA_PAGES);
1145		p->p_upages_obj = upobj;
1146	}
1147
1148	/*
1149	 * Get a kernel virtual address for the uarea for this process.
1150	 */
1151	up = (vm_offset_t)p->p_uarea;
1152	if (up == 0) {
1153		up = kmem_alloc_nofault(kernel_map, UAREA_PAGES * PAGE_SIZE);
1154		if (up == 0)
1155			panic("pmap_new_proc: upage allocation failed");
1156		p->p_uarea = (struct user *)up;
1157	}
1158
1159	for (i = 0; i < UAREA_PAGES; i++) {
1160		/*
1161		 * Get a uarea page.
1162		 */
1163		m = vm_page_grab(upobj, i, VM_ALLOC_NORMAL | VM_ALLOC_RETRY);
1164
1165		/*
1166		 * Wire the page.
1167		 */
1168		m->wire_count++;
1169
1170		/*
1171		 * Enter the page into the kernel address space.
1172		 */
1173		pmap_kenter(up + i * PAGE_SIZE, VM_PAGE_TO_PHYS(m));
1174
1175		vm_page_wakeup(m);
1176		vm_page_flag_clear(m, PG_ZERO);
1177		vm_page_flag_set(m, PG_MAPPED | PG_WRITEABLE);
1178		m->valid = VM_PAGE_BITS_ALL;
1179	}
1180}
1181
1182void
1183pmap_object_init_pt(pmap_t pm, vm_offset_t addr, vm_object_t object,
1184		    vm_pindex_t pindex, vm_size_t size, int limit)
1185{
1186
1187	KASSERT(pm == &curproc->p_vmspace->vm_pmap || pm == kernel_pmap,
1188	    ("pmap_remove_pages: non current pmap"));
1189	/* XXX */
1190}
1191
1192/*
1193 * Lower the permission for all mappings to a given page.
1194 */
1195void
1196pmap_page_protect(vm_page_t m, vm_prot_t prot)
1197{
1198	struct	pvo_head *pvo_head;
1199	struct	pvo_entry *pvo, *next_pvo;
1200	struct	pte *pt;
1201
1202	/*
1203	 * Since the routine only downgrades protection, if the
1204	 * maximal protection is desired, there isn't any change
1205	 * to be made.
1206	 */
1207	if ((prot & (VM_PROT_READ|VM_PROT_WRITE)) ==
1208	    (VM_PROT_READ|VM_PROT_WRITE))
1209		return;
1210
1211	pvo_head = vm_page_to_pvoh(m);
1212	for (pvo = LIST_FIRST(pvo_head); pvo != NULL; pvo = next_pvo) {
1213		next_pvo = LIST_NEXT(pvo, pvo_vlink);
1214		PMAP_PVO_CHECK(pvo);	/* sanity check */
1215
1216		/*
1217		 * Downgrading to no mapping at all, we just remove the entry.
1218		 */
1219		if ((prot & VM_PROT_READ) == 0) {
1220			pmap_pvo_remove(pvo, -1);
1221			continue;
1222		}
1223
1224		/*
1225		 * If EXEC permission is being revoked, just clear the flag
1226		 * in the PVO.
1227		 */
1228		if ((prot & VM_PROT_EXECUTE) == 0)
1229			pvo->pvo_vaddr &= ~PVO_EXECUTABLE;
1230
1231		/*
1232		 * If this entry is already RO, don't diddle with the page
1233		 * table.
1234		 */
1235		if ((pvo->pvo_pte.pte_lo & PTE_PP) == PTE_BR) {
1236			PMAP_PVO_CHECK(pvo);
1237			continue;
1238		}
1239
1240		/*
1241		 * Grab the PTE before we diddle the bits so pvo_to_pte can
1242		 * verify the pte contents are as expected.
1243		 */
1244		pt = pmap_pvo_to_pte(pvo, -1);
1245		pvo->pvo_pte.pte_lo &= ~PTE_PP;
1246		pvo->pvo_pte.pte_lo |= PTE_BR;
1247		if (pt != NULL)
1248			pmap_pte_change(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
1249		PMAP_PVO_CHECK(pvo);	/* sanity check */
1250	}
1251}
1252
1253/*
1254 * Make the specified page pageable (or not).  Unneeded.
1255 */
1256void
1257pmap_pageable(pmap_t pmap, vm_offset_t sva, vm_offset_t eva,
1258	      boolean_t pageable)
1259{
1260}
1261
1262/*
1263 * Returns true if the pmap's pv is one of the first
1264 * 16 pvs linked to from this page.  This count may
1265 * be changed upwards or downwards in the future; it
1266 * is only necessary that true be returned for a small
1267 * subset of pmaps for proper page aging.
1268 */
1269boolean_t
1270pmap_page_exists_quick(pmap_t pmap, vm_page_t m)
1271{
1272	TODO;
1273	return (0);
1274}
1275
1276static u_int	pmap_vsidcontext;
1277
1278void
1279pmap_pinit(pmap_t pmap)
1280{
1281	int	i, mask;
1282	u_int	entropy;
1283
1284	entropy = 0;
1285	__asm __volatile("mftb %0" : "=r"(entropy));
1286
1287	/*
1288	 * Allocate some segment registers for this pmap.
1289	 */
1290	for (i = 0; i < NPMAPS; i += VSID_NBPW) {
1291		u_int	hash, n;
1292
1293		/*
1294		 * Create a new value by mutiplying by a prime and adding in
1295		 * entropy from the timebase register.  This is to make the
1296		 * VSID more random so that the PT hash function collides
1297		 * less often.  (Note that the prime casues gcc to do shifts
1298		 * instead of a multiply.)
1299		 */
1300		pmap_vsidcontext = (pmap_vsidcontext * 0x1105) + entropy;
1301		hash = pmap_vsidcontext & (NPMAPS - 1);
1302		if (hash == 0)		/* 0 is special, avoid it */
1303			continue;
1304		n = hash >> 5;
1305		mask = 1 << (hash & (VSID_NBPW - 1));
1306		hash = (pmap_vsidcontext & 0xfffff);
1307		if (pmap_vsid_bitmap[n] & mask) {	/* collision? */
1308			/* anything free in this bucket? */
1309			if (pmap_vsid_bitmap[n] == 0xffffffff) {
1310				entropy = (pmap_vsidcontext >> 20);
1311				continue;
1312			}
1313			i = ffs(~pmap_vsid_bitmap[i]) - 1;
1314			mask = 1 << i;
1315			hash &= 0xfffff & ~(VSID_NBPW - 1);
1316			hash |= i;
1317		}
1318		pmap_vsid_bitmap[n] |= mask;
1319		for (i = 0; i < 16; i++)
1320			pmap->pm_sr[i] = VSID_MAKE(i, hash);
1321		return;
1322	}
1323
1324	panic("pmap_pinit: out of segments");
1325}
1326
1327/*
1328 * Initialize the pmap associated with process 0.
1329 */
1330void
1331pmap_pinit0(pmap_t pm)
1332{
1333
1334	pmap_pinit(pm);
1335	bzero(&pm->pm_stats, sizeof(pm->pm_stats));
1336}
1337
1338void
1339pmap_pinit2(pmap_t pmap)
1340{
1341	/* XXX: Remove this stub when no longer called */
1342}
1343
1344void
1345pmap_prefault(pmap_t pm, vm_offset_t va, vm_map_entry_t entry)
1346{
1347	KASSERT(pm == &curproc->p_vmspace->vm_pmap || pm == kernel_pmap,
1348	    ("pmap_prefault: non current pmap"));
1349	/* XXX */
1350}
1351
1352/*
1353 * Set the physical protection on the specified range of this map as requested.
1354 */
1355void
1356pmap_protect(pmap_t pm, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot)
1357{
1358	struct	pvo_entry *pvo;
1359	struct	pte *pt;
1360	int	pteidx;
1361
1362	CTR4(KTR_PMAP, "pmap_protect: pm=%p sva=%#x eva=%#x prot=%#x", pm, sva,
1363	    eva, prot);
1364
1365
1366	KASSERT(pm == &curproc->p_vmspace->vm_pmap || pm == kernel_pmap,
1367	    ("pmap_protect: non current pmap"));
1368
1369	if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
1370		pmap_remove(pm, sva, eva);
1371		return;
1372	}
1373
1374	for (; sva < eva; sva += PAGE_SIZE) {
1375		pvo = pmap_pvo_find_va(pm, sva, &pteidx);
1376		if (pvo == NULL)
1377			continue;
1378
1379		if ((prot & VM_PROT_EXECUTE) == 0)
1380			pvo->pvo_vaddr &= ~PVO_EXECUTABLE;
1381
1382		/*
1383		 * Grab the PTE pointer before we diddle with the cached PTE
1384		 * copy.
1385		 */
1386		pt = pmap_pvo_to_pte(pvo, pteidx);
1387		/*
1388		 * Change the protection of the page.
1389		 */
1390		pvo->pvo_pte.pte_lo &= ~PTE_PP;
1391		pvo->pvo_pte.pte_lo |= PTE_BR;
1392
1393		/*
1394		 * If the PVO is in the page table, update that pte as well.
1395		 */
1396		if (pt != NULL)
1397			pmap_pte_change(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
1398	}
1399}
1400
1401vm_offset_t
1402pmap_phys_address(int ppn)
1403{
1404	TODO;
1405	return (0);
1406}
1407
1408/*
1409 * Map a list of wired pages into kernel virtual address space.  This is
1410 * intended for temporary mappings which do not need page modification or
1411 * references recorded.  Existing mappings in the region are overwritten.
1412 */
1413void
1414pmap_qenter(vm_offset_t va, vm_page_t *m, int count)
1415{
1416	int	i;
1417
1418	for (i = 0; i < count; i++, va += PAGE_SIZE)
1419		pmap_kenter(va, VM_PAGE_TO_PHYS(m[i]));
1420}
1421
1422/*
1423 * Remove page mappings from kernel virtual address space.  Intended for
1424 * temporary mappings entered by pmap_qenter.
1425 */
1426void
1427pmap_qremove(vm_offset_t va, int count)
1428{
1429	int	i;
1430
1431	for (i = 0; i < count; i++, va += PAGE_SIZE)
1432		pmap_kremove(va);
1433}
1434
1435void
1436pmap_release(pmap_t pmap)
1437{
1438	TODO;
1439}
1440
1441/*
1442 * Remove the given range of addresses from the specified map.
1443 */
1444void
1445pmap_remove(pmap_t pm, vm_offset_t sva, vm_offset_t eva)
1446{
1447	struct	pvo_entry *pvo;
1448	int	pteidx;
1449
1450	for (; sva < eva; sva += PAGE_SIZE) {
1451		pvo = pmap_pvo_find_va(pm, sva, &pteidx);
1452		if (pvo != NULL) {
1453			pmap_pvo_remove(pvo, pteidx);
1454		}
1455	}
1456}
1457
1458/*
1459 * Remove all pages from specified address space, this aids process exit
1460 * speeds.  This is much faster than pmap_remove in the case of running down
1461 * an entire address space.  Only works for the current pmap.
1462 */
1463void
1464pmap_remove_pages(pmap_t pm, vm_offset_t sva, vm_offset_t eva)
1465{
1466
1467	KASSERT(pm == &curproc->p_vmspace->vm_pmap || pm == kernel_pmap,
1468	    ("pmap_remove_pages: non current pmap"));
1469	pmap_remove(pm, sva, eva);
1470}
1471
1472void
1473pmap_swapin_proc(struct proc *p)
1474{
1475	TODO;
1476}
1477
1478void
1479pmap_swapout_proc(struct proc *p)
1480{
1481	TODO;
1482}
1483
1484/*
1485 * Create the kernel stack and pcb for a new thread.
1486 * This routine directly affects the fork perf for a process and
1487 * create performance for a thread.
1488 */
1489void
1490pmap_new_thread(struct thread *td)
1491{
1492	vm_object_t	ksobj;
1493	vm_offset_t	ks;
1494	vm_page_t	m;
1495	u_int		i;
1496
1497	/*
1498	 * Allocate object for the kstack.
1499	 */
1500	ksobj = td->td_kstack_obj;
1501	if (ksobj == NULL) {
1502		ksobj = vm_object_allocate(OBJT_DEFAULT, KSTACK_PAGES);
1503		td->td_kstack_obj = ksobj;
1504	}
1505
1506	/*
1507	 * Get a kernel virtual address for the kstack for this thread.
1508	 */
1509	ks = td->td_kstack;
1510	if (ks == 0) {
1511		ks = kmem_alloc_nofault(kernel_map,
1512		    (KSTACK_PAGES + KSTACK_GUARD_PAGES) * PAGE_SIZE);
1513		if (ks == 0)
1514			panic("pmap_new_thread: kstack allocation failed");
1515		TLBIE(ks);
1516		ks += KSTACK_GUARD_PAGES * PAGE_SIZE;
1517		td->td_kstack = ks;
1518	}
1519
1520	for (i = 0; i < KSTACK_PAGES; i++) {
1521		/*
1522		 * Get a kernel stack page.
1523		 */
1524		m = vm_page_grab(ksobj, i, VM_ALLOC_NORMAL | VM_ALLOC_RETRY);
1525
1526		/*
1527		 * Wire the page.
1528		 */
1529		m->wire_count++;
1530
1531		/*
1532		 * Enter the page into the kernel address space.
1533		 */
1534		pmap_kenter(ks + i * PAGE_SIZE, VM_PAGE_TO_PHYS(m));
1535
1536		vm_page_wakeup(m);
1537		vm_page_flag_clear(m, PG_ZERO);
1538		vm_page_flag_set(m, PG_MAPPED | PG_WRITEABLE);
1539		m->valid = VM_PAGE_BITS_ALL;
1540	}
1541}
1542
1543void
1544pmap_dispose_proc(struct proc *p)
1545{
1546	TODO;
1547}
1548
1549void
1550pmap_dispose_thread(struct thread *td)
1551{
1552	TODO;
1553}
1554
1555void
1556pmap_swapin_thread(struct thread *td)
1557{
1558	TODO;
1559}
1560
1561void
1562pmap_swapout_thread(struct thread *td)
1563{
1564	TODO;
1565}
1566
1567/*
1568 * Allocate a physical page of memory directly from the phys_avail map.
1569 * Can only be called from pmap_bootstrap before avail start and end are
1570 * calculated.
1571 */
1572static vm_offset_t
1573pmap_bootstrap_alloc(vm_size_t size, u_int align)
1574{
1575	vm_offset_t	s, e;
1576	int		i, j;
1577
1578	size = round_page(size);
1579	for (i = 0; phys_avail[i + 1] != 0; i += 2) {
1580		if (align != 0)
1581			s = (phys_avail[i] + align - 1) & ~(align - 1);
1582		else
1583			s = phys_avail[i];
1584		e = s + size;
1585
1586		if (s < phys_avail[i] || e > phys_avail[i + 1])
1587			continue;
1588
1589		if (s == phys_avail[i]) {
1590			phys_avail[i] += size;
1591		} else if (e == phys_avail[i + 1]) {
1592			phys_avail[i + 1] -= size;
1593		} else {
1594			for (j = phys_avail_count * 2; j > i; j -= 2) {
1595				phys_avail[j] = phys_avail[j - 2];
1596				phys_avail[j + 1] = phys_avail[j - 1];
1597			}
1598
1599			phys_avail[i + 3] = phys_avail[i + 1];
1600			phys_avail[i + 1] = s;
1601			phys_avail[i + 2] = e;
1602			phys_avail_count++;
1603		}
1604
1605		return (s);
1606	}
1607	panic("pmap_bootstrap_alloc: could not allocate memory");
1608}
1609
1610/*
1611 * Return an unmapped pvo for a kernel virtual address.
1612 * Used by pmap functions that operate on physical pages.
1613 */
1614static struct pvo_entry *
1615pmap_rkva_alloc(void)
1616{
1617	struct		pvo_entry *pvo;
1618	struct		pte *pt;
1619	vm_offset_t	kva;
1620	int		pteidx;
1621
1622	if (pmap_rkva_count == 0)
1623		panic("pmap_rkva_alloc: no more reserved KVAs");
1624
1625	kva = pmap_rkva_start + (PAGE_SIZE * --pmap_rkva_count);
1626	pmap_kenter(kva, 0);
1627
1628	pvo = pmap_pvo_find_va(kernel_pmap, kva, &pteidx);
1629
1630	if (pvo == NULL)
1631		panic("pmap_kva_alloc: pmap_pvo_find_va failed");
1632
1633	pt = pmap_pvo_to_pte(pvo, pteidx);
1634
1635	if (pt == NULL)
1636		panic("pmap_kva_alloc: pmap_pvo_to_pte failed");
1637
1638	pmap_pte_unset(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
1639	PVO_PTEGIDX_CLR(pvo);
1640
1641	pmap_pte_overflow++;
1642
1643	return (pvo);
1644}
1645
1646static void
1647pmap_pa_map(struct pvo_entry *pvo, vm_offset_t pa, struct pte *saved_pt,
1648    int *depth_p)
1649{
1650	struct	pte *pt;
1651
1652	/*
1653	 * If this pvo already has a valid pte, we need to save it so it can
1654	 * be restored later.  We then just reload the new PTE over the old
1655	 * slot.
1656	 */
1657	if (saved_pt != NULL) {
1658		pt = pmap_pvo_to_pte(pvo, -1);
1659
1660		if (pt != NULL) {
1661			pmap_pte_unset(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
1662			PVO_PTEGIDX_CLR(pvo);
1663			pmap_pte_overflow++;
1664		}
1665
1666		*saved_pt = pvo->pvo_pte;
1667
1668		pvo->pvo_pte.pte_lo &= ~PTE_RPGN;
1669	}
1670
1671	pvo->pvo_pte.pte_lo |= pa;
1672
1673	if (!pmap_pte_spill(pvo->pvo_vaddr))
1674		panic("pmap_pa_map: could not spill pvo %p", pvo);
1675
1676	if (depth_p != NULL)
1677		(*depth_p)++;
1678}
1679
1680static void
1681pmap_pa_unmap(struct pvo_entry *pvo, struct pte *saved_pt, int *depth_p)
1682{
1683	struct	pte *pt;
1684
1685	pt = pmap_pvo_to_pte(pvo, -1);
1686
1687	if (pt != NULL) {
1688		pmap_pte_unset(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
1689		PVO_PTEGIDX_CLR(pvo);
1690		pmap_pte_overflow++;
1691	}
1692
1693	pvo->pvo_pte.pte_lo &= ~PTE_RPGN;
1694
1695	/*
1696	 * If there is a saved PTE and it's valid, restore it and return.
1697	 */
1698	if (saved_pt != NULL && (saved_pt->pte_lo & PTE_RPGN) != 0) {
1699		if (depth_p != NULL && --(*depth_p) == 0)
1700			panic("pmap_pa_unmap: restoring but depth == 0");
1701
1702		pvo->pvo_pte = *saved_pt;
1703
1704		if (!pmap_pte_spill(pvo->pvo_vaddr))
1705			panic("pmap_pa_unmap: could not spill pvo %p", pvo);
1706	}
1707}
1708
1709static void
1710pmap_syncicache(vm_offset_t pa, vm_size_t len)
1711{
1712	__syncicache((void *)pa, len);
1713}
1714
1715static void
1716tlbia(void)
1717{
1718	caddr_t	i;
1719
1720	SYNC();
1721	for (i = 0; i < (caddr_t)0x00040000; i += 0x00001000) {
1722		TLBIE(i);
1723		EIEIO();
1724	}
1725	TLBSYNC();
1726	SYNC();
1727}
1728
1729static int
1730pmap_pvo_enter(pmap_t pm, uma_zone_t zone, struct pvo_head *pvo_head,
1731    vm_offset_t va, vm_offset_t pa, u_int pte_lo, int flags)
1732{
1733	struct	pvo_entry *pvo;
1734	u_int	sr;
1735	int	first;
1736	u_int	ptegidx;
1737	int	i;
1738
1739	pmap_pvo_enter_calls++;
1740	first = 0;
1741
1742	/*
1743	 * Compute the PTE Group index.
1744	 */
1745	va &= ~ADDR_POFF;
1746	sr = va_to_sr(pm->pm_sr, va);
1747	ptegidx = va_to_pteg(sr, va);
1748
1749	/*
1750	 * Remove any existing mapping for this page.  Reuse the pvo entry if
1751	 * there is a mapping.
1752	 */
1753	LIST_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
1754		if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) {
1755			if ((pvo->pvo_pte.pte_lo & PTE_RPGN) == pa &&
1756			    (pvo->pvo_pte.pte_lo & PTE_PP) ==
1757			    (pte_lo & PTE_PP)) {
1758				return (0);
1759			}
1760			pmap_pvo_remove(pvo, -1);
1761			break;
1762		}
1763	}
1764
1765	/*
1766	 * If we aren't overwriting a mapping, try to allocate.
1767	 */
1768	if (pmap_initialized) {
1769		pvo = uma_zalloc(zone, M_NOWAIT);
1770	} else {
1771		if (pmap_bpvo_pool_index >= pmap_bpvo_pool_count) {
1772			pmap_bpvo_pool = (struct pvo_entry *)
1773			    pmap_bootstrap_alloc(PAGE_SIZE, 0);
1774			pmap_bpvo_pool_index = 0;
1775		}
1776		pvo = &pmap_bpvo_pool[pmap_bpvo_pool_index];
1777		pmap_bpvo_pool_index++;
1778		pvo->pvo_vaddr |= PVO_BOOTSTRAP;
1779	}
1780
1781	if (pvo == NULL) {
1782		return (ENOMEM);
1783	}
1784
1785	pmap_pvo_entries++;
1786	pvo->pvo_vaddr = va;
1787	pvo->pvo_pmap = pm;
1788	LIST_INSERT_HEAD(&pmap_pvo_table[ptegidx], pvo, pvo_olink);
1789	pvo->pvo_vaddr &= ~ADDR_POFF;
1790	if (flags & VM_PROT_EXECUTE)
1791		pvo->pvo_vaddr |= PVO_EXECUTABLE;
1792	if (flags & PVO_WIRED)
1793		pvo->pvo_vaddr |= PVO_WIRED;
1794	if (pvo_head != &pmap_pvo_kunmanaged)
1795		pvo->pvo_vaddr |= PVO_MANAGED;
1796	pmap_pte_create(&pvo->pvo_pte, sr, va, pa | pte_lo);
1797
1798	/*
1799	 * Remember if the list was empty and therefore will be the first
1800	 * item.
1801	 */
1802	if (LIST_FIRST(pvo_head) == NULL)
1803		first = 1;
1804
1805	LIST_INSERT_HEAD(pvo_head, pvo, pvo_vlink);
1806	if (pvo->pvo_pte.pte_lo & PVO_WIRED)
1807		pvo->pvo_pmap->pm_stats.wired_count++;
1808	pvo->pvo_pmap->pm_stats.resident_count++;
1809
1810	/*
1811	 * We hope this succeeds but it isn't required.
1812	 */
1813	i = pmap_pte_insert(ptegidx, &pvo->pvo_pte);
1814	if (i >= 0) {
1815		PVO_PTEGIDX_SET(pvo, i);
1816	} else {
1817		panic("pmap_pvo_enter: overflow");
1818		pmap_pte_overflow++;
1819	}
1820
1821	return (first ? ENOENT : 0);
1822}
1823
1824static void
1825pmap_pvo_remove(struct pvo_entry *pvo, int pteidx)
1826{
1827	struct	pte *pt;
1828
1829	/*
1830	 * If there is an active pte entry, we need to deactivate it (and
1831	 * save the ref & cfg bits).
1832	 */
1833	pt = pmap_pvo_to_pte(pvo, pteidx);
1834	if (pt != NULL) {
1835		pmap_pte_unset(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
1836		PVO_PTEGIDX_CLR(pvo);
1837	} else {
1838		pmap_pte_overflow--;
1839	}
1840
1841	/*
1842	 * Update our statistics.
1843	 */
1844	pvo->pvo_pmap->pm_stats.resident_count--;
1845	if (pvo->pvo_pte.pte_lo & PVO_WIRED)
1846		pvo->pvo_pmap->pm_stats.wired_count--;
1847
1848	/*
1849	 * Save the REF/CHG bits into their cache if the page is managed.
1850	 */
1851	if (pvo->pvo_vaddr & PVO_MANAGED) {
1852		struct	vm_page *pg;
1853
1854		pg = PHYS_TO_VM_PAGE(pvo->pvo_pte.pte_lo & PTE_RPGN);
1855		if (pg != NULL) {
1856			pmap_attr_save(pg, pvo->pvo_pte.pte_lo &
1857			    (PTE_REF | PTE_CHG));
1858		}
1859	}
1860
1861	/*
1862	 * Remove this PVO from the PV list.
1863	 */
1864	LIST_REMOVE(pvo, pvo_vlink);
1865
1866	/*
1867	 * Remove this from the overflow list and return it to the pool
1868	 * if we aren't going to reuse it.
1869	 */
1870	LIST_REMOVE(pvo, pvo_olink);
1871	if (!(pvo->pvo_vaddr & PVO_BOOTSTRAP))
1872		uma_zfree(pvo->pvo_vaddr & PVO_MANAGED ? pmap_mpvo_zone :
1873		    pmap_upvo_zone, pvo);
1874	pmap_pvo_entries--;
1875	pmap_pvo_remove_calls++;
1876}
1877
1878static __inline int
1879pmap_pvo_pte_index(const struct pvo_entry *pvo, int ptegidx)
1880{
1881	int	pteidx;
1882
1883	/*
1884	 * We can find the actual pte entry without searching by grabbing
1885	 * the PTEG index from 3 unused bits in pte_lo[11:9] and by
1886	 * noticing the HID bit.
1887	 */
1888	pteidx = ptegidx * 8 + PVO_PTEGIDX_GET(pvo);
1889	if (pvo->pvo_pte.pte_hi & PTE_HID)
1890		pteidx ^= pmap_pteg_mask * 8;
1891
1892	return (pteidx);
1893}
1894
1895static struct pvo_entry *
1896pmap_pvo_find_va(pmap_t pm, vm_offset_t va, int *pteidx_p)
1897{
1898	struct	pvo_entry *pvo;
1899	int	ptegidx;
1900	u_int	sr;
1901
1902	va &= ~ADDR_POFF;
1903	sr = va_to_sr(pm->pm_sr, va);
1904	ptegidx = va_to_pteg(sr, va);
1905
1906	LIST_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
1907		if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) {
1908			if (pteidx_p)
1909				*pteidx_p = pmap_pvo_pte_index(pvo, ptegidx);
1910			return (pvo);
1911		}
1912	}
1913
1914	return (NULL);
1915}
1916
1917static struct pte *
1918pmap_pvo_to_pte(const struct pvo_entry *pvo, int pteidx)
1919{
1920	struct	pte *pt;
1921
1922	/*
1923	 * If we haven't been supplied the ptegidx, calculate it.
1924	 */
1925	if (pteidx == -1) {
1926		int	ptegidx;
1927		u_int	sr;
1928
1929		sr = va_to_sr(pvo->pvo_pmap->pm_sr, pvo->pvo_vaddr);
1930		ptegidx = va_to_pteg(sr, pvo->pvo_vaddr);
1931		pteidx = pmap_pvo_pte_index(pvo, ptegidx);
1932	}
1933
1934	pt = &pmap_pteg_table[pteidx >> 3].pt[pteidx & 7];
1935
1936	if ((pvo->pvo_pte.pte_hi & PTE_VALID) && !PVO_PTEGIDX_ISSET(pvo)) {
1937		panic("pmap_pvo_to_pte: pvo %p has valid pte in pvo but no "
1938		    "valid pte index", pvo);
1939	}
1940
1941	if ((pvo->pvo_pte.pte_hi & PTE_VALID) == 0 && PVO_PTEGIDX_ISSET(pvo)) {
1942		panic("pmap_pvo_to_pte: pvo %p has valid pte index in pvo "
1943		    "pvo but no valid pte", pvo);
1944	}
1945
1946	if ((pt->pte_hi ^ (pvo->pvo_pte.pte_hi & ~PTE_VALID)) == PTE_VALID) {
1947		if ((pvo->pvo_pte.pte_hi & PTE_VALID) == 0) {
1948			panic("pmap_pvo_to_pte: pvo %p has valid pte in "
1949			    "pmap_pteg_table %p but invalid in pvo", pvo, pt);
1950		}
1951
1952		if (((pt->pte_lo ^ pvo->pvo_pte.pte_lo) & ~(PTE_CHG|PTE_REF))
1953		    != 0) {
1954			panic("pmap_pvo_to_pte: pvo %p pte does not match "
1955			    "pte %p in pmap_pteg_table", pvo, pt);
1956		}
1957
1958		return (pt);
1959	}
1960
1961	if (pvo->pvo_pte.pte_hi & PTE_VALID) {
1962		panic("pmap_pvo_to_pte: pvo %p has invalid pte %p in "
1963		    "pmap_pteg_table but valid in pvo", pvo, pt);
1964	}
1965
1966	return (NULL);
1967}
1968
1969static void *
1970pmap_pvo_allocf(uma_zone_t zone, int bytes, u_int8_t *flags, int wait)
1971{
1972	vm_page_t	m;
1973
1974	if (bytes != PAGE_SIZE)
1975		panic("pmap_pvo_allocf: benno was shortsighted.  hit him.");
1976
1977	*flags = UMA_SLAB_PRIV;
1978	m = vm_page_alloc(pmap_pvo_obj, pmap_pvo_count, VM_ALLOC_SYSTEM);
1979	if (m == NULL)
1980		return (NULL);
1981	pmap_pvo_count++;
1982	return ((void *)VM_PAGE_TO_PHYS(m));
1983}
1984
1985/*
1986 * XXX: THIS STUFF SHOULD BE IN pte.c?
1987 */
1988int
1989pmap_pte_spill(vm_offset_t addr)
1990{
1991	struct	pvo_entry *source_pvo, *victim_pvo;
1992	struct	pvo_entry *pvo;
1993	int	ptegidx, i, j;
1994	u_int	sr;
1995	struct	pteg *pteg;
1996	struct	pte *pt;
1997
1998	pmap_pte_spills++;
1999
2000	sr = mfsrin(addr);
2001	ptegidx = va_to_pteg(sr, addr);
2002
2003	/*
2004	 * Have to substitute some entry.  Use the primary hash for this.
2005	 * Use low bits of timebase as random generator.
2006	 */
2007	pteg = &pmap_pteg_table[ptegidx];
2008	__asm __volatile("mftb %0" : "=r"(i));
2009	i &= 7;
2010	pt = &pteg->pt[i];
2011
2012	source_pvo = NULL;
2013	victim_pvo = NULL;
2014	LIST_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
2015		/*
2016		 * We need to find a pvo entry for this address.
2017		 */
2018		PMAP_PVO_CHECK(pvo);
2019		if (source_pvo == NULL &&
2020		    pmap_pte_match(&pvo->pvo_pte, sr, addr,
2021		    pvo->pvo_pte.pte_hi & PTE_HID)) {
2022			/*
2023			 * Now found an entry to be spilled into the pteg.
2024			 * The PTE is now valid, so we know it's active.
2025			 */
2026			j = pmap_pte_insert(ptegidx, &pvo->pvo_pte);
2027
2028			if (j >= 0) {
2029				PVO_PTEGIDX_SET(pvo, j);
2030				pmap_pte_overflow--;
2031				PMAP_PVO_CHECK(pvo);
2032				return (1);
2033			}
2034
2035			source_pvo = pvo;
2036
2037			if (victim_pvo != NULL)
2038				break;
2039		}
2040
2041		/*
2042		 * We also need the pvo entry of the victim we are replacing
2043		 * so save the R & C bits of the PTE.
2044		 */
2045		if ((pt->pte_hi & PTE_HID) == 0 && victim_pvo == NULL &&
2046		    pmap_pte_compare(pt, &pvo->pvo_pte)) {
2047			victim_pvo = pvo;
2048			if (source_pvo != NULL)
2049				break;
2050		}
2051	}
2052
2053	if (source_pvo == NULL)
2054		return (0);
2055
2056	if (victim_pvo == NULL) {
2057		if ((pt->pte_hi & PTE_HID) == 0)
2058			panic("pmap_pte_spill: victim p-pte (%p) has no pvo"
2059			    "entry", pt);
2060
2061		/*
2062		 * If this is a secondary PTE, we need to search it's primary
2063		 * pvo bucket for the matching PVO.
2064		 */
2065		LIST_FOREACH(pvo, &pmap_pvo_table[ptegidx ^ pmap_pteg_mask],
2066		    pvo_olink) {
2067			PMAP_PVO_CHECK(pvo);
2068			/*
2069			 * We also need the pvo entry of the victim we are
2070			 * replacing so save the R & C bits of the PTE.
2071			 */
2072			if (pmap_pte_compare(pt, &pvo->pvo_pte)) {
2073				victim_pvo = pvo;
2074				break;
2075			}
2076		}
2077
2078		if (victim_pvo == NULL)
2079			panic("pmap_pte_spill: victim s-pte (%p) has no pvo"
2080			    "entry", pt);
2081	}
2082
2083	/*
2084	 * We are invalidating the TLB entry for the EA we are replacing even
2085	 * though it's valid.  If we don't, we lose any ref/chg bit changes
2086	 * contained in the TLB entry.
2087	 */
2088	source_pvo->pvo_pte.pte_hi &= ~PTE_HID;
2089
2090	pmap_pte_unset(pt, &victim_pvo->pvo_pte, victim_pvo->pvo_vaddr);
2091	pmap_pte_set(pt, &source_pvo->pvo_pte);
2092
2093	PVO_PTEGIDX_CLR(victim_pvo);
2094	PVO_PTEGIDX_SET(source_pvo, i);
2095	pmap_pte_replacements++;
2096
2097	PMAP_PVO_CHECK(victim_pvo);
2098	PMAP_PVO_CHECK(source_pvo);
2099
2100	return (1);
2101}
2102
2103static int
2104pmap_pte_insert(u_int ptegidx, struct pte *pvo_pt)
2105{
2106	struct	pte *pt;
2107	int	i;
2108
2109	/*
2110	 * First try primary hash.
2111	 */
2112	for (pt = pmap_pteg_table[ptegidx].pt, i = 0; i < 8; i++, pt++) {
2113		if ((pt->pte_hi & PTE_VALID) == 0) {
2114			pvo_pt->pte_hi &= ~PTE_HID;
2115			pmap_pte_set(pt, pvo_pt);
2116			return (i);
2117		}
2118	}
2119
2120	/*
2121	 * Now try secondary hash.
2122	 */
2123	ptegidx ^= pmap_pteg_mask;
2124	ptegidx++;
2125	for (pt = pmap_pteg_table[ptegidx].pt, i = 0; i < 8; i++, pt++) {
2126		if ((pt->pte_hi & PTE_VALID) == 0) {
2127			pvo_pt->pte_hi |= PTE_HID;
2128			pmap_pte_set(pt, pvo_pt);
2129			return (i);
2130		}
2131	}
2132
2133	panic("pmap_pte_insert: overflow");
2134	return (-1);
2135}
2136
2137static boolean_t
2138pmap_query_bit(vm_page_t m, int ptebit)
2139{
2140	struct	pvo_entry *pvo;
2141	struct	pte *pt;
2142
2143	if (pmap_attr_fetch(m) & ptebit)
2144		return (TRUE);
2145
2146	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
2147		PMAP_PVO_CHECK(pvo);	/* sanity check */
2148
2149		/*
2150		 * See if we saved the bit off.  If so, cache it and return
2151		 * success.
2152		 */
2153		if (pvo->pvo_pte.pte_lo & ptebit) {
2154			pmap_attr_save(m, ptebit);
2155			PMAP_PVO_CHECK(pvo);	/* sanity check */
2156			return (TRUE);
2157		}
2158	}
2159
2160	/*
2161	 * No luck, now go through the hard part of looking at the PTEs
2162	 * themselves.  Sync so that any pending REF/CHG bits are flushed to
2163	 * the PTEs.
2164	 */
2165	SYNC();
2166	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
2167		PMAP_PVO_CHECK(pvo);	/* sanity check */
2168
2169		/*
2170		 * See if this pvo has a valid PTE.  if so, fetch the
2171		 * REF/CHG bits from the valid PTE.  If the appropriate
2172		 * ptebit is set, cache it and return success.
2173		 */
2174		pt = pmap_pvo_to_pte(pvo, -1);
2175		if (pt != NULL) {
2176			pmap_pte_synch(pt, &pvo->pvo_pte);
2177			if (pvo->pvo_pte.pte_lo & ptebit) {
2178				pmap_attr_save(m, ptebit);
2179				PMAP_PVO_CHECK(pvo);	/* sanity check */
2180				return (TRUE);
2181			}
2182		}
2183	}
2184
2185	return (TRUE);
2186}
2187
2188static boolean_t
2189pmap_clear_bit(vm_page_t m, int ptebit)
2190{
2191	struct	pvo_entry *pvo;
2192	struct	pte *pt;
2193	int	rv;
2194
2195	/*
2196	 * Clear the cached value.
2197	 */
2198	rv = pmap_attr_fetch(m);
2199	pmap_attr_clear(m, ptebit);
2200
2201	/*
2202	 * Sync so that any pending REF/CHG bits are flushed to the PTEs (so
2203	 * we can reset the right ones).  note that since the pvo entries and
2204	 * list heads are accessed via BAT0 and are never placed in the page
2205	 * table, we don't have to worry about further accesses setting the
2206	 * REF/CHG bits.
2207	 */
2208	SYNC();
2209
2210	/*
2211	 * For each pvo entry, clear the pvo's ptebit.  If this pvo has a
2212	 * valid pte clear the ptebit from the valid pte.
2213	 */
2214	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
2215		PMAP_PVO_CHECK(pvo);	/* sanity check */
2216		pt = pmap_pvo_to_pte(pvo, -1);
2217		if (pt != NULL) {
2218			pmap_pte_synch(pt, &pvo->pvo_pte);
2219			if (pvo->pvo_pte.pte_lo & ptebit)
2220				pmap_pte_clear(pt, PVO_VADDR(pvo), ptebit);
2221		}
2222		rv |= pvo->pvo_pte.pte_lo;
2223		pvo->pvo_pte.pte_lo &= ~ptebit;
2224		PMAP_PVO_CHECK(pvo);	/* sanity check */
2225	}
2226
2227	return ((rv & ptebit) != 0);
2228}
2229