mmu_oea.c revision 238159
1/*-
2 * Copyright (c) 2001 The NetBSD Foundation, Inc.
3 * All rights reserved.
4 *
5 * This code is derived from software contributed to The NetBSD Foundation
6 * by Matt Thomas <matt@3am-software.com> of Allegro Networks, Inc.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 *    must display the following acknowledgement:
18 *        This product includes software developed by the NetBSD
19 *        Foundation, Inc. and its contributors.
20 * 4. Neither the name of The NetBSD Foundation nor the names of its
21 *    contributors may be used to endorse or promote products derived
22 *    from this software without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
25 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
26 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
27 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
28 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
29 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
30 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
31 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
32 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
33 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
34 * POSSIBILITY OF SUCH DAMAGE.
35 */
36/*-
37 * Copyright (C) 1995, 1996 Wolfgang Solfrank.
38 * Copyright (C) 1995, 1996 TooLs GmbH.
39 * All rights reserved.
40 *
41 * Redistribution and use in source and binary forms, with or without
42 * modification, are permitted provided that the following conditions
43 * are met:
44 * 1. Redistributions of source code must retain the above copyright
45 *    notice, this list of conditions and the following disclaimer.
46 * 2. Redistributions in binary form must reproduce the above copyright
47 *    notice, this list of conditions and the following disclaimer in the
48 *    documentation and/or other materials provided with the distribution.
49 * 3. All advertising materials mentioning features or use of this software
50 *    must display the following acknowledgement:
51 *	This product includes software developed by TooLs GmbH.
52 * 4. The name of TooLs GmbH may not be used to endorse or promote products
53 *    derived from this software without specific prior written permission.
54 *
55 * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR
56 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
57 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
58 * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
59 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
60 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
61 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
62 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
63 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
64 * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
65 *
66 * $NetBSD: pmap.c,v 1.28 2000/03/26 20:42:36 kleink Exp $
67 */
68/*-
69 * Copyright (C) 2001 Benno Rice.
70 * All rights reserved.
71 *
72 * Redistribution and use in source and binary forms, with or without
73 * modification, are permitted provided that the following conditions
74 * are met:
75 * 1. Redistributions of source code must retain the above copyright
76 *    notice, this list of conditions and the following disclaimer.
77 * 2. Redistributions in binary form must reproduce the above copyright
78 *    notice, this list of conditions and the following disclaimer in the
79 *    documentation and/or other materials provided with the distribution.
80 *
81 * THIS SOFTWARE IS PROVIDED BY Benno Rice ``AS IS'' AND ANY EXPRESS OR
82 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
83 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
84 * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
85 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
86 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
87 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
88 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
89 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
90 * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
91 */
92
93#include <sys/cdefs.h>
94__FBSDID("$FreeBSD: head/sys/powerpc/aim/mmu_oea.c 238159 2012-07-06 02:18:49Z alc $");
95
96/*
97 * Manages physical address maps.
98 *
99 * In addition to hardware address maps, this module is called upon to
100 * provide software-use-only maps which may or may not be stored in the
101 * same form as hardware maps.  These pseudo-maps are used to store
102 * intermediate results from copy operations to and from address spaces.
103 *
104 * Since the information managed by this module is also stored by the
105 * logical address mapping module, this module may throw away valid virtual
106 * to physical mappings at almost any time.  However, invalidations of
107 * mappings must be done as requested.
108 *
109 * In order to cope with hardware architectures which make virtual to
110 * physical map invalidates expensive, this module may delay invalidate
111 * reduced protection operations until such time as they are actually
112 * necessary.  This module is given full information as to which processors
113 * are currently using which maps, and to when physical maps must be made
114 * correct.
115 */
116
117#include "opt_kstack_pages.h"
118
119#include <sys/param.h>
120#include <sys/kernel.h>
121#include <sys/queue.h>
122#include <sys/cpuset.h>
123#include <sys/ktr.h>
124#include <sys/lock.h>
125#include <sys/msgbuf.h>
126#include <sys/mutex.h>
127#include <sys/proc.h>
128#include <sys/rwlock.h>
129#include <sys/sched.h>
130#include <sys/sysctl.h>
131#include <sys/systm.h>
132#include <sys/vmmeter.h>
133
134#include <dev/ofw/openfirm.h>
135
136#include <vm/vm.h>
137#include <vm/vm_param.h>
138#include <vm/vm_kern.h>
139#include <vm/vm_page.h>
140#include <vm/vm_map.h>
141#include <vm/vm_object.h>
142#include <vm/vm_extern.h>
143#include <vm/vm_pageout.h>
144#include <vm/vm_pager.h>
145#include <vm/uma.h>
146
147#include <machine/cpu.h>
148#include <machine/platform.h>
149#include <machine/bat.h>
150#include <machine/frame.h>
151#include <machine/md_var.h>
152#include <machine/psl.h>
153#include <machine/pte.h>
154#include <machine/smp.h>
155#include <machine/sr.h>
156#include <machine/mmuvar.h>
157#include <machine/trap_aim.h>
158
159#include "mmu_if.h"
160
161#define	MOEA_DEBUG
162
163#define TODO	panic("%s: not implemented", __func__);
164
165#define	VSID_MAKE(sr, hash)	((sr) | (((hash) & 0xfffff) << 4))
166#define	VSID_TO_SR(vsid)	((vsid) & 0xf)
167#define	VSID_TO_HASH(vsid)	(((vsid) >> 4) & 0xfffff)
168
169struct ofw_map {
170	vm_offset_t	om_va;
171	vm_size_t	om_len;
172	vm_offset_t	om_pa;
173	u_int		om_mode;
174};
175
176/*
177 * Map of physical memory regions.
178 */
179static struct	mem_region *regions;
180static struct	mem_region *pregions;
181static u_int    phys_avail_count;
182static int	regions_sz, pregions_sz;
183static struct	ofw_map *translations;
184
185/*
186 * Lock for the pteg and pvo tables.
187 */
188struct mtx	moea_table_mutex;
189struct mtx	moea_vsid_mutex;
190
191/* tlbie instruction synchronization */
192static struct mtx tlbie_mtx;
193
194/*
195 * PTEG data.
196 */
197static struct	pteg *moea_pteg_table;
198u_int		moea_pteg_count;
199u_int		moea_pteg_mask;
200
201/*
202 * PVO data.
203 */
204struct	pvo_head *moea_pvo_table;		/* pvo entries by pteg index */
205struct	pvo_head moea_pvo_kunmanaged =
206    LIST_HEAD_INITIALIZER(moea_pvo_kunmanaged);	/* list of unmanaged pages */
207
208/*
209 * Isolate the global pv list lock from data and other locks to prevent false
210 * sharing within the cache.
211 */
212static struct {
213	struct rwlock	lock;
214	char		padding[CACHE_LINE_SIZE - sizeof(struct rwlock)];
215} pvh_global __aligned(CACHE_LINE_SIZE);
216
217#define	pvh_global_lock	pvh_global.lock
218
219uma_zone_t	moea_upvo_zone;	/* zone for pvo entries for unmanaged pages */
220uma_zone_t	moea_mpvo_zone;	/* zone for pvo entries for managed pages */
221
222#define	BPVO_POOL_SIZE	32768
223static struct	pvo_entry *moea_bpvo_pool;
224static int	moea_bpvo_pool_index = 0;
225
226#define	VSID_NBPW	(sizeof(u_int32_t) * 8)
227static u_int	moea_vsid_bitmap[NPMAPS / VSID_NBPW];
228
229static boolean_t moea_initialized = FALSE;
230
231/*
232 * Statistics.
233 */
234u_int	moea_pte_valid = 0;
235u_int	moea_pte_overflow = 0;
236u_int	moea_pte_replacements = 0;
237u_int	moea_pvo_entries = 0;
238u_int	moea_pvo_enter_calls = 0;
239u_int	moea_pvo_remove_calls = 0;
240u_int	moea_pte_spills = 0;
241SYSCTL_INT(_machdep, OID_AUTO, moea_pte_valid, CTLFLAG_RD, &moea_pte_valid,
242    0, "");
243SYSCTL_INT(_machdep, OID_AUTO, moea_pte_overflow, CTLFLAG_RD,
244    &moea_pte_overflow, 0, "");
245SYSCTL_INT(_machdep, OID_AUTO, moea_pte_replacements, CTLFLAG_RD,
246    &moea_pte_replacements, 0, "");
247SYSCTL_INT(_machdep, OID_AUTO, moea_pvo_entries, CTLFLAG_RD, &moea_pvo_entries,
248    0, "");
249SYSCTL_INT(_machdep, OID_AUTO, moea_pvo_enter_calls, CTLFLAG_RD,
250    &moea_pvo_enter_calls, 0, "");
251SYSCTL_INT(_machdep, OID_AUTO, moea_pvo_remove_calls, CTLFLAG_RD,
252    &moea_pvo_remove_calls, 0, "");
253SYSCTL_INT(_machdep, OID_AUTO, moea_pte_spills, CTLFLAG_RD,
254    &moea_pte_spills, 0, "");
255
256/*
257 * Allocate physical memory for use in moea_bootstrap.
258 */
259static vm_offset_t	moea_bootstrap_alloc(vm_size_t, u_int);
260
261/*
262 * PTE calls.
263 */
264static int		moea_pte_insert(u_int, struct pte *);
265
266/*
267 * PVO calls.
268 */
269static int	moea_pvo_enter(pmap_t, uma_zone_t, struct pvo_head *,
270		    vm_offset_t, vm_offset_t, u_int, int);
271static void	moea_pvo_remove(struct pvo_entry *, int);
272static struct	pvo_entry *moea_pvo_find_va(pmap_t, vm_offset_t, int *);
273static struct	pte *moea_pvo_to_pte(const struct pvo_entry *, int);
274
275/*
276 * Utility routines.
277 */
278static void		moea_enter_locked(pmap_t, vm_offset_t, vm_page_t,
279			    vm_prot_t, boolean_t);
280static void		moea_syncicache(vm_offset_t, vm_size_t);
281static boolean_t	moea_query_bit(vm_page_t, int);
282static u_int		moea_clear_bit(vm_page_t, int);
283static void		moea_kremove(mmu_t, vm_offset_t);
284int		moea_pte_spill(vm_offset_t);
285
286/*
287 * Kernel MMU interface
288 */
289void moea_change_wiring(mmu_t, pmap_t, vm_offset_t, boolean_t);
290void moea_clear_modify(mmu_t, vm_page_t);
291void moea_clear_reference(mmu_t, vm_page_t);
292void moea_copy_page(mmu_t, vm_page_t, vm_page_t);
293void moea_enter(mmu_t, pmap_t, vm_offset_t, vm_page_t, vm_prot_t, boolean_t);
294void moea_enter_object(mmu_t, pmap_t, vm_offset_t, vm_offset_t, vm_page_t,
295    vm_prot_t);
296void moea_enter_quick(mmu_t, pmap_t, vm_offset_t, vm_page_t, vm_prot_t);
297vm_paddr_t moea_extract(mmu_t, pmap_t, vm_offset_t);
298vm_page_t moea_extract_and_hold(mmu_t, pmap_t, vm_offset_t, vm_prot_t);
299void moea_init(mmu_t);
300boolean_t moea_is_modified(mmu_t, vm_page_t);
301boolean_t moea_is_prefaultable(mmu_t, pmap_t, vm_offset_t);
302boolean_t moea_is_referenced(mmu_t, vm_page_t);
303boolean_t moea_ts_referenced(mmu_t, vm_page_t);
304vm_offset_t moea_map(mmu_t, vm_offset_t *, vm_paddr_t, vm_paddr_t, int);
305boolean_t moea_page_exists_quick(mmu_t, pmap_t, vm_page_t);
306int moea_page_wired_mappings(mmu_t, vm_page_t);
307void moea_pinit(mmu_t, pmap_t);
308void moea_pinit0(mmu_t, pmap_t);
309void moea_protect(mmu_t, pmap_t, vm_offset_t, vm_offset_t, vm_prot_t);
310void moea_qenter(mmu_t, vm_offset_t, vm_page_t *, int);
311void moea_qremove(mmu_t, vm_offset_t, int);
312void moea_release(mmu_t, pmap_t);
313void moea_remove(mmu_t, pmap_t, vm_offset_t, vm_offset_t);
314void moea_remove_all(mmu_t, vm_page_t);
315void moea_remove_write(mmu_t, vm_page_t);
316void moea_zero_page(mmu_t, vm_page_t);
317void moea_zero_page_area(mmu_t, vm_page_t, int, int);
318void moea_zero_page_idle(mmu_t, vm_page_t);
319void moea_activate(mmu_t, struct thread *);
320void moea_deactivate(mmu_t, struct thread *);
321void moea_cpu_bootstrap(mmu_t, int);
322void moea_bootstrap(mmu_t, vm_offset_t, vm_offset_t);
323void *moea_mapdev(mmu_t, vm_paddr_t, vm_size_t);
324void *moea_mapdev_attr(mmu_t, vm_offset_t, vm_size_t, vm_memattr_t);
325void moea_unmapdev(mmu_t, vm_offset_t, vm_size_t);
326vm_paddr_t moea_kextract(mmu_t, vm_offset_t);
327void moea_kenter_attr(mmu_t, vm_offset_t, vm_offset_t, vm_memattr_t);
328void moea_kenter(mmu_t, vm_offset_t, vm_paddr_t);
329void moea_page_set_memattr(mmu_t mmu, vm_page_t m, vm_memattr_t ma);
330boolean_t moea_dev_direct_mapped(mmu_t, vm_paddr_t, vm_size_t);
331static void moea_sync_icache(mmu_t, pmap_t, vm_offset_t, vm_size_t);
332
333static mmu_method_t moea_methods[] = {
334	MMUMETHOD(mmu_change_wiring,	moea_change_wiring),
335	MMUMETHOD(mmu_clear_modify,	moea_clear_modify),
336	MMUMETHOD(mmu_clear_reference,	moea_clear_reference),
337	MMUMETHOD(mmu_copy_page,	moea_copy_page),
338	MMUMETHOD(mmu_enter,		moea_enter),
339	MMUMETHOD(mmu_enter_object,	moea_enter_object),
340	MMUMETHOD(mmu_enter_quick,	moea_enter_quick),
341	MMUMETHOD(mmu_extract,		moea_extract),
342	MMUMETHOD(mmu_extract_and_hold,	moea_extract_and_hold),
343	MMUMETHOD(mmu_init,		moea_init),
344	MMUMETHOD(mmu_is_modified,	moea_is_modified),
345	MMUMETHOD(mmu_is_prefaultable,	moea_is_prefaultable),
346	MMUMETHOD(mmu_is_referenced,	moea_is_referenced),
347	MMUMETHOD(mmu_ts_referenced,	moea_ts_referenced),
348	MMUMETHOD(mmu_map,     		moea_map),
349	MMUMETHOD(mmu_page_exists_quick,moea_page_exists_quick),
350	MMUMETHOD(mmu_page_wired_mappings,moea_page_wired_mappings),
351	MMUMETHOD(mmu_pinit,		moea_pinit),
352	MMUMETHOD(mmu_pinit0,		moea_pinit0),
353	MMUMETHOD(mmu_protect,		moea_protect),
354	MMUMETHOD(mmu_qenter,		moea_qenter),
355	MMUMETHOD(mmu_qremove,		moea_qremove),
356	MMUMETHOD(mmu_release,		moea_release),
357	MMUMETHOD(mmu_remove,		moea_remove),
358	MMUMETHOD(mmu_remove_all,      	moea_remove_all),
359	MMUMETHOD(mmu_remove_write,	moea_remove_write),
360	MMUMETHOD(mmu_sync_icache,	moea_sync_icache),
361	MMUMETHOD(mmu_zero_page,       	moea_zero_page),
362	MMUMETHOD(mmu_zero_page_area,	moea_zero_page_area),
363	MMUMETHOD(mmu_zero_page_idle,	moea_zero_page_idle),
364	MMUMETHOD(mmu_activate,		moea_activate),
365	MMUMETHOD(mmu_deactivate,      	moea_deactivate),
366	MMUMETHOD(mmu_page_set_memattr,	moea_page_set_memattr),
367
368	/* Internal interfaces */
369	MMUMETHOD(mmu_bootstrap,       	moea_bootstrap),
370	MMUMETHOD(mmu_cpu_bootstrap,   	moea_cpu_bootstrap),
371	MMUMETHOD(mmu_mapdev_attr,	moea_mapdev_attr),
372	MMUMETHOD(mmu_mapdev,		moea_mapdev),
373	MMUMETHOD(mmu_unmapdev,		moea_unmapdev),
374	MMUMETHOD(mmu_kextract,		moea_kextract),
375	MMUMETHOD(mmu_kenter,		moea_kenter),
376	MMUMETHOD(mmu_kenter_attr,	moea_kenter_attr),
377	MMUMETHOD(mmu_dev_direct_mapped,moea_dev_direct_mapped),
378
379	{ 0, 0 }
380};
381
382MMU_DEF(oea_mmu, MMU_TYPE_OEA, moea_methods, 0);
383
384static __inline uint32_t
385moea_calc_wimg(vm_offset_t pa, vm_memattr_t ma)
386{
387	uint32_t pte_lo;
388	int i;
389
390	if (ma != VM_MEMATTR_DEFAULT) {
391		switch (ma) {
392		case VM_MEMATTR_UNCACHEABLE:
393			return (PTE_I | PTE_G);
394		case VM_MEMATTR_WRITE_COMBINING:
395		case VM_MEMATTR_WRITE_BACK:
396		case VM_MEMATTR_PREFETCHABLE:
397			return (PTE_I);
398		case VM_MEMATTR_WRITE_THROUGH:
399			return (PTE_W | PTE_M);
400		}
401	}
402
403	/*
404	 * Assume the page is cache inhibited and access is guarded unless
405	 * it's in our available memory array.
406	 */
407	pte_lo = PTE_I | PTE_G;
408	for (i = 0; i < pregions_sz; i++) {
409		if ((pa >= pregions[i].mr_start) &&
410		    (pa < (pregions[i].mr_start + pregions[i].mr_size))) {
411			pte_lo = PTE_M;
412			break;
413		}
414	}
415
416	return pte_lo;
417}
418
419static void
420tlbie(vm_offset_t va)
421{
422
423	mtx_lock_spin(&tlbie_mtx);
424	__asm __volatile("ptesync");
425	__asm __volatile("tlbie %0" :: "r"(va));
426	__asm __volatile("eieio; tlbsync; ptesync");
427	mtx_unlock_spin(&tlbie_mtx);
428}
429
430static void
431tlbia(void)
432{
433	vm_offset_t va;
434
435	for (va = 0; va < 0x00040000; va += 0x00001000) {
436		__asm __volatile("tlbie %0" :: "r"(va));
437		powerpc_sync();
438	}
439	__asm __volatile("tlbsync");
440	powerpc_sync();
441}
442
443static __inline int
444va_to_sr(u_int *sr, vm_offset_t va)
445{
446	return (sr[(uintptr_t)va >> ADDR_SR_SHFT]);
447}
448
449static __inline u_int
450va_to_pteg(u_int sr, vm_offset_t addr)
451{
452	u_int hash;
453
454	hash = (sr & SR_VSID_MASK) ^ (((u_int)addr & ADDR_PIDX) >>
455	    ADDR_PIDX_SHFT);
456	return (hash & moea_pteg_mask);
457}
458
459static __inline struct pvo_head *
460vm_page_to_pvoh(vm_page_t m)
461{
462
463	return (&m->md.mdpg_pvoh);
464}
465
466static __inline void
467moea_attr_clear(vm_page_t m, int ptebit)
468{
469
470	rw_assert(&pvh_global_lock, RA_WLOCKED);
471	m->md.mdpg_attrs &= ~ptebit;
472}
473
474static __inline int
475moea_attr_fetch(vm_page_t m)
476{
477
478	return (m->md.mdpg_attrs);
479}
480
481static __inline void
482moea_attr_save(vm_page_t m, int ptebit)
483{
484
485	rw_assert(&pvh_global_lock, RA_WLOCKED);
486	m->md.mdpg_attrs |= ptebit;
487}
488
489static __inline int
490moea_pte_compare(const struct pte *pt, const struct pte *pvo_pt)
491{
492	if (pt->pte_hi == pvo_pt->pte_hi)
493		return (1);
494
495	return (0);
496}
497
498static __inline int
499moea_pte_match(struct pte *pt, u_int sr, vm_offset_t va, int which)
500{
501	return (pt->pte_hi & ~PTE_VALID) ==
502	    (((sr & SR_VSID_MASK) << PTE_VSID_SHFT) |
503	    ((va >> ADDR_API_SHFT) & PTE_API) | which);
504}
505
506static __inline void
507moea_pte_create(struct pte *pt, u_int sr, vm_offset_t va, u_int pte_lo)
508{
509
510	mtx_assert(&moea_table_mutex, MA_OWNED);
511
512	/*
513	 * Construct a PTE.  Default to IMB initially.  Valid bit only gets
514	 * set when the real pte is set in memory.
515	 *
516	 * Note: Don't set the valid bit for correct operation of tlb update.
517	 */
518	pt->pte_hi = ((sr & SR_VSID_MASK) << PTE_VSID_SHFT) |
519	    (((va & ADDR_PIDX) >> ADDR_API_SHFT) & PTE_API);
520	pt->pte_lo = pte_lo;
521}
522
523static __inline void
524moea_pte_synch(struct pte *pt, struct pte *pvo_pt)
525{
526
527	mtx_assert(&moea_table_mutex, MA_OWNED);
528	pvo_pt->pte_lo |= pt->pte_lo & (PTE_REF | PTE_CHG);
529}
530
531static __inline void
532moea_pte_clear(struct pte *pt, vm_offset_t va, int ptebit)
533{
534
535	mtx_assert(&moea_table_mutex, MA_OWNED);
536
537	/*
538	 * As shown in Section 7.6.3.2.3
539	 */
540	pt->pte_lo &= ~ptebit;
541	tlbie(va);
542}
543
544static __inline void
545moea_pte_set(struct pte *pt, struct pte *pvo_pt)
546{
547
548	mtx_assert(&moea_table_mutex, MA_OWNED);
549	pvo_pt->pte_hi |= PTE_VALID;
550
551	/*
552	 * Update the PTE as defined in section 7.6.3.1.
553	 * Note that the REF/CHG bits are from pvo_pt and thus should havce
554	 * been saved so this routine can restore them (if desired).
555	 */
556	pt->pte_lo = pvo_pt->pte_lo;
557	powerpc_sync();
558	pt->pte_hi = pvo_pt->pte_hi;
559	powerpc_sync();
560	moea_pte_valid++;
561}
562
563static __inline void
564moea_pte_unset(struct pte *pt, struct pte *pvo_pt, vm_offset_t va)
565{
566
567	mtx_assert(&moea_table_mutex, MA_OWNED);
568	pvo_pt->pte_hi &= ~PTE_VALID;
569
570	/*
571	 * Force the reg & chg bits back into the PTEs.
572	 */
573	powerpc_sync();
574
575	/*
576	 * Invalidate the pte.
577	 */
578	pt->pte_hi &= ~PTE_VALID;
579
580	tlbie(va);
581
582	/*
583	 * Save the reg & chg bits.
584	 */
585	moea_pte_synch(pt, pvo_pt);
586	moea_pte_valid--;
587}
588
589static __inline void
590moea_pte_change(struct pte *pt, struct pte *pvo_pt, vm_offset_t va)
591{
592
593	/*
594	 * Invalidate the PTE
595	 */
596	moea_pte_unset(pt, pvo_pt, va);
597	moea_pte_set(pt, pvo_pt);
598}
599
600/*
601 * Quick sort callout for comparing memory regions.
602 */
603static int	om_cmp(const void *a, const void *b);
604
605static int
606om_cmp(const void *a, const void *b)
607{
608	const struct	ofw_map *mapa;
609	const struct	ofw_map *mapb;
610
611	mapa = a;
612	mapb = b;
613	if (mapa->om_pa < mapb->om_pa)
614		return (-1);
615	else if (mapa->om_pa > mapb->om_pa)
616		return (1);
617	else
618		return (0);
619}
620
621void
622moea_cpu_bootstrap(mmu_t mmup, int ap)
623{
624	u_int sdr;
625	int i;
626
627	if (ap) {
628		powerpc_sync();
629		__asm __volatile("mtdbatu 0,%0" :: "r"(battable[0].batu));
630		__asm __volatile("mtdbatl 0,%0" :: "r"(battable[0].batl));
631		isync();
632		__asm __volatile("mtibatu 0,%0" :: "r"(battable[0].batu));
633		__asm __volatile("mtibatl 0,%0" :: "r"(battable[0].batl));
634		isync();
635	}
636
637	__asm __volatile("mtdbatu 1,%0" :: "r"(battable[8].batu));
638	__asm __volatile("mtdbatl 1,%0" :: "r"(battable[8].batl));
639	isync();
640
641	__asm __volatile("mtibatu 1,%0" :: "r"(0));
642	__asm __volatile("mtdbatu 2,%0" :: "r"(0));
643	__asm __volatile("mtibatu 2,%0" :: "r"(0));
644	__asm __volatile("mtdbatu 3,%0" :: "r"(0));
645	__asm __volatile("mtibatu 3,%0" :: "r"(0));
646	isync();
647
648	for (i = 0; i < 16; i++)
649		mtsrin(i << ADDR_SR_SHFT, kernel_pmap->pm_sr[i]);
650	powerpc_sync();
651
652	sdr = (u_int)moea_pteg_table | (moea_pteg_mask >> 10);
653	__asm __volatile("mtsdr1 %0" :: "r"(sdr));
654	isync();
655
656	tlbia();
657}
658
659void
660moea_bootstrap(mmu_t mmup, vm_offset_t kernelstart, vm_offset_t kernelend)
661{
662	ihandle_t	mmui;
663	phandle_t	chosen, mmu;
664	int		sz;
665	int		i, j;
666	vm_size_t	size, physsz, hwphyssz;
667	vm_offset_t	pa, va, off;
668	void		*dpcpu;
669	register_t	msr;
670
671        /*
672         * Set up BAT0 to map the lowest 256 MB area
673         */
674        battable[0x0].batl = BATL(0x00000000, BAT_M, BAT_PP_RW);
675        battable[0x0].batu = BATU(0x00000000, BAT_BL_256M, BAT_Vs);
676
677        /*
678         * Map PCI memory space.
679         */
680        battable[0x8].batl = BATL(0x80000000, BAT_I|BAT_G, BAT_PP_RW);
681        battable[0x8].batu = BATU(0x80000000, BAT_BL_256M, BAT_Vs);
682
683        battable[0x9].batl = BATL(0x90000000, BAT_I|BAT_G, BAT_PP_RW);
684        battable[0x9].batu = BATU(0x90000000, BAT_BL_256M, BAT_Vs);
685
686        battable[0xa].batl = BATL(0xa0000000, BAT_I|BAT_G, BAT_PP_RW);
687        battable[0xa].batu = BATU(0xa0000000, BAT_BL_256M, BAT_Vs);
688
689        battable[0xb].batl = BATL(0xb0000000, BAT_I|BAT_G, BAT_PP_RW);
690        battable[0xb].batu = BATU(0xb0000000, BAT_BL_256M, BAT_Vs);
691
692        /*
693         * Map obio devices.
694         */
695        battable[0xf].batl = BATL(0xf0000000, BAT_I|BAT_G, BAT_PP_RW);
696        battable[0xf].batu = BATU(0xf0000000, BAT_BL_256M, BAT_Vs);
697
698	/*
699	 * Use an IBAT and a DBAT to map the bottom segment of memory
700	 * where we are. Turn off instruction relocation temporarily
701	 * to prevent faults while reprogramming the IBAT.
702	 */
703	msr = mfmsr();
704	mtmsr(msr & ~PSL_IR);
705	__asm (".balign 32; \n"
706	       "mtibatu 0,%0; mtibatl 0,%1; isync; \n"
707	       "mtdbatu 0,%0; mtdbatl 0,%1; isync"
708	    :: "r"(battable[0].batu), "r"(battable[0].batl));
709	mtmsr(msr);
710
711	/* map pci space */
712	__asm __volatile("mtdbatu 1,%0" :: "r"(battable[8].batu));
713	__asm __volatile("mtdbatl 1,%0" :: "r"(battable[8].batl));
714	isync();
715
716	/* set global direct map flag */
717	hw_direct_map = 1;
718
719	mem_regions(&pregions, &pregions_sz, &regions, &regions_sz);
720	CTR0(KTR_PMAP, "moea_bootstrap: physical memory");
721
722	for (i = 0; i < pregions_sz; i++) {
723		vm_offset_t pa;
724		vm_offset_t end;
725
726		CTR3(KTR_PMAP, "physregion: %#x - %#x (%#x)",
727			pregions[i].mr_start,
728			pregions[i].mr_start + pregions[i].mr_size,
729			pregions[i].mr_size);
730		/*
731		 * Install entries into the BAT table to allow all
732		 * of physmem to be convered by on-demand BAT entries.
733		 * The loop will sometimes set the same battable element
734		 * twice, but that's fine since they won't be used for
735		 * a while yet.
736		 */
737		pa = pregions[i].mr_start & 0xf0000000;
738		end = pregions[i].mr_start + pregions[i].mr_size;
739		do {
740                        u_int n = pa >> ADDR_SR_SHFT;
741
742			battable[n].batl = BATL(pa, BAT_M, BAT_PP_RW);
743			battable[n].batu = BATU(pa, BAT_BL_256M, BAT_Vs);
744			pa += SEGMENT_LENGTH;
745		} while (pa < end);
746	}
747
748	if (sizeof(phys_avail)/sizeof(phys_avail[0]) < regions_sz)
749		panic("moea_bootstrap: phys_avail too small");
750
751	phys_avail_count = 0;
752	physsz = 0;
753	hwphyssz = 0;
754	TUNABLE_ULONG_FETCH("hw.physmem", (u_long *) &hwphyssz);
755	for (i = 0, j = 0; i < regions_sz; i++, j += 2) {
756		CTR3(KTR_PMAP, "region: %#x - %#x (%#x)", regions[i].mr_start,
757		    regions[i].mr_start + regions[i].mr_size,
758		    regions[i].mr_size);
759		if (hwphyssz != 0 &&
760		    (physsz + regions[i].mr_size) >= hwphyssz) {
761			if (physsz < hwphyssz) {
762				phys_avail[j] = regions[i].mr_start;
763				phys_avail[j + 1] = regions[i].mr_start +
764				    hwphyssz - physsz;
765				physsz = hwphyssz;
766				phys_avail_count++;
767			}
768			break;
769		}
770		phys_avail[j] = regions[i].mr_start;
771		phys_avail[j + 1] = regions[i].mr_start + regions[i].mr_size;
772		phys_avail_count++;
773		physsz += regions[i].mr_size;
774	}
775
776	/* Check for overlap with the kernel and exception vectors */
777	for (j = 0; j < 2*phys_avail_count; j+=2) {
778		if (phys_avail[j] < EXC_LAST)
779			phys_avail[j] += EXC_LAST;
780
781		if (kernelstart >= phys_avail[j] &&
782		    kernelstart < phys_avail[j+1]) {
783			if (kernelend < phys_avail[j+1]) {
784				phys_avail[2*phys_avail_count] =
785				    (kernelend & ~PAGE_MASK) + PAGE_SIZE;
786				phys_avail[2*phys_avail_count + 1] =
787				    phys_avail[j+1];
788				phys_avail_count++;
789			}
790
791			phys_avail[j+1] = kernelstart & ~PAGE_MASK;
792		}
793
794		if (kernelend >= phys_avail[j] &&
795		    kernelend < phys_avail[j+1]) {
796			if (kernelstart > phys_avail[j]) {
797				phys_avail[2*phys_avail_count] = phys_avail[j];
798				phys_avail[2*phys_avail_count + 1] =
799				    kernelstart & ~PAGE_MASK;
800				phys_avail_count++;
801			}
802
803			phys_avail[j] = (kernelend & ~PAGE_MASK) + PAGE_SIZE;
804		}
805	}
806
807	physmem = btoc(physsz);
808
809	/*
810	 * Allocate PTEG table.
811	 */
812#ifdef PTEGCOUNT
813	moea_pteg_count = PTEGCOUNT;
814#else
815	moea_pteg_count = 0x1000;
816
817	while (moea_pteg_count < physmem)
818		moea_pteg_count <<= 1;
819
820	moea_pteg_count >>= 1;
821#endif /* PTEGCOUNT */
822
823	size = moea_pteg_count * sizeof(struct pteg);
824	CTR2(KTR_PMAP, "moea_bootstrap: %d PTEGs, %d bytes", moea_pteg_count,
825	    size);
826	moea_pteg_table = (struct pteg *)moea_bootstrap_alloc(size, size);
827	CTR1(KTR_PMAP, "moea_bootstrap: PTEG table at %p", moea_pteg_table);
828	bzero((void *)moea_pteg_table, moea_pteg_count * sizeof(struct pteg));
829	moea_pteg_mask = moea_pteg_count - 1;
830
831	/*
832	 * Allocate pv/overflow lists.
833	 */
834	size = sizeof(struct pvo_head) * moea_pteg_count;
835	moea_pvo_table = (struct pvo_head *)moea_bootstrap_alloc(size,
836	    PAGE_SIZE);
837	CTR1(KTR_PMAP, "moea_bootstrap: PVO table at %p", moea_pvo_table);
838	for (i = 0; i < moea_pteg_count; i++)
839		LIST_INIT(&moea_pvo_table[i]);
840
841	/*
842	 * Initialize the lock that synchronizes access to the pteg and pvo
843	 * tables.
844	 */
845	mtx_init(&moea_table_mutex, "pmap table", NULL, MTX_DEF |
846	    MTX_RECURSE);
847	mtx_init(&moea_vsid_mutex, "VSID table", NULL, MTX_DEF);
848
849	mtx_init(&tlbie_mtx, "tlbie", NULL, MTX_SPIN);
850
851	/*
852	 * Initialise the unmanaged pvo pool.
853	 */
854	moea_bpvo_pool = (struct pvo_entry *)moea_bootstrap_alloc(
855		BPVO_POOL_SIZE*sizeof(struct pvo_entry), 0);
856	moea_bpvo_pool_index = 0;
857
858	/*
859	 * Make sure kernel vsid is allocated as well as VSID 0.
860	 */
861	moea_vsid_bitmap[(KERNEL_VSIDBITS & (NPMAPS - 1)) / VSID_NBPW]
862		|= 1 << (KERNEL_VSIDBITS % VSID_NBPW);
863	moea_vsid_bitmap[0] |= 1;
864
865	/*
866	 * Initialize the kernel pmap (which is statically allocated).
867	 */
868	PMAP_LOCK_INIT(kernel_pmap);
869	for (i = 0; i < 16; i++)
870		kernel_pmap->pm_sr[i] = EMPTY_SEGMENT + i;
871	CPU_FILL(&kernel_pmap->pm_active);
872	RB_INIT(&kernel_pmap->pmap_pvo);
873
874 	/*
875	 * Initialize the global pv list lock.
876	 */
877	rw_init(&pvh_global_lock, "pmap pv global");
878
879	/*
880	 * Set up the Open Firmware mappings
881	 */
882	chosen = OF_finddevice("/chosen");
883	if (chosen != -1 && OF_getprop(chosen, "mmu", &mmui, 4) != -1 &&
884	    (mmu = OF_instance_to_package(mmui)) != -1 &&
885	    (sz = OF_getproplen(mmu, "translations")) != -1) {
886		translations = NULL;
887		for (i = 0; phys_avail[i] != 0; i += 2) {
888			if (phys_avail[i + 1] >= sz) {
889				translations = (struct ofw_map *)phys_avail[i];
890				break;
891			}
892		}
893		if (translations == NULL)
894			panic("moea_bootstrap: no space to copy translations");
895		bzero(translations, sz);
896		if (OF_getprop(mmu, "translations", translations, sz) == -1)
897			panic("moea_bootstrap: can't get ofw translations");
898		CTR0(KTR_PMAP, "moea_bootstrap: translations");
899		sz /= sizeof(*translations);
900		qsort(translations, sz, sizeof (*translations), om_cmp);
901		for (i = 0; i < sz; i++) {
902			CTR3(KTR_PMAP, "translation: pa=%#x va=%#x len=%#x",
903			    translations[i].om_pa, translations[i].om_va,
904			    translations[i].om_len);
905
906			/*
907			 * If the mapping is 1:1, let the RAM and device
908			 * on-demand BAT tables take care of the translation.
909			 */
910			if (translations[i].om_va == translations[i].om_pa)
911				continue;
912
913			/* Enter the pages */
914			for (off = 0; off < translations[i].om_len;
915			    off += PAGE_SIZE)
916				moea_kenter(mmup, translations[i].om_va + off,
917					    translations[i].om_pa + off);
918		}
919	}
920
921	/*
922	 * Calculate the last available physical address.
923	 */
924	for (i = 0; phys_avail[i + 2] != 0; i += 2)
925		;
926	Maxmem = powerpc_btop(phys_avail[i + 1]);
927
928	moea_cpu_bootstrap(mmup,0);
929
930	pmap_bootstrapped++;
931
932	/*
933	 * Set the start and end of kva.
934	 */
935	virtual_avail = VM_MIN_KERNEL_ADDRESS;
936	virtual_end = VM_MAX_SAFE_KERNEL_ADDRESS;
937
938	/*
939	 * Allocate a kernel stack with a guard page for thread0 and map it
940	 * into the kernel page map.
941	 */
942	pa = moea_bootstrap_alloc(KSTACK_PAGES * PAGE_SIZE, PAGE_SIZE);
943	va = virtual_avail + KSTACK_GUARD_PAGES * PAGE_SIZE;
944	virtual_avail = va + KSTACK_PAGES * PAGE_SIZE;
945	CTR2(KTR_PMAP, "moea_bootstrap: kstack0 at %#x (%#x)", pa, va);
946	thread0.td_kstack = va;
947	thread0.td_kstack_pages = KSTACK_PAGES;
948	for (i = 0; i < KSTACK_PAGES; i++) {
949		moea_kenter(mmup, va, pa);
950		pa += PAGE_SIZE;
951		va += PAGE_SIZE;
952	}
953
954	/*
955	 * Allocate virtual address space for the message buffer.
956	 */
957	pa = msgbuf_phys = moea_bootstrap_alloc(msgbufsize, PAGE_SIZE);
958	msgbufp = (struct msgbuf *)virtual_avail;
959	va = virtual_avail;
960	virtual_avail += round_page(msgbufsize);
961	while (va < virtual_avail) {
962		moea_kenter(mmup, va, pa);
963		pa += PAGE_SIZE;
964		va += PAGE_SIZE;
965	}
966
967	/*
968	 * Allocate virtual address space for the dynamic percpu area.
969	 */
970	pa = moea_bootstrap_alloc(DPCPU_SIZE, PAGE_SIZE);
971	dpcpu = (void *)virtual_avail;
972	va = virtual_avail;
973	virtual_avail += DPCPU_SIZE;
974	while (va < virtual_avail) {
975		moea_kenter(mmup, va, pa);
976		pa += PAGE_SIZE;
977		va += PAGE_SIZE;
978	}
979	dpcpu_init(dpcpu, 0);
980}
981
982/*
983 * Activate a user pmap.  The pmap must be activated before it's address
984 * space can be accessed in any way.
985 */
986void
987moea_activate(mmu_t mmu, struct thread *td)
988{
989	pmap_t	pm, pmr;
990
991	/*
992	 * Load all the data we need up front to encourage the compiler to
993	 * not issue any loads while we have interrupts disabled below.
994	 */
995	pm = &td->td_proc->p_vmspace->vm_pmap;
996	pmr = pm->pmap_phys;
997
998	CPU_SET(PCPU_GET(cpuid), &pm->pm_active);
999	PCPU_SET(curpmap, pmr);
1000}
1001
1002void
1003moea_deactivate(mmu_t mmu, struct thread *td)
1004{
1005	pmap_t	pm;
1006
1007	pm = &td->td_proc->p_vmspace->vm_pmap;
1008	CPU_CLR(PCPU_GET(cpuid), &pm->pm_active);
1009	PCPU_SET(curpmap, NULL);
1010}
1011
1012void
1013moea_change_wiring(mmu_t mmu, pmap_t pm, vm_offset_t va, boolean_t wired)
1014{
1015	struct	pvo_entry *pvo;
1016
1017	PMAP_LOCK(pm);
1018	pvo = moea_pvo_find_va(pm, va & ~ADDR_POFF, NULL);
1019
1020	if (pvo != NULL) {
1021		if (wired) {
1022			if ((pvo->pvo_vaddr & PVO_WIRED) == 0)
1023				pm->pm_stats.wired_count++;
1024			pvo->pvo_vaddr |= PVO_WIRED;
1025		} else {
1026			if ((pvo->pvo_vaddr & PVO_WIRED) != 0)
1027				pm->pm_stats.wired_count--;
1028			pvo->pvo_vaddr &= ~PVO_WIRED;
1029		}
1030	}
1031	PMAP_UNLOCK(pm);
1032}
1033
1034void
1035moea_copy_page(mmu_t mmu, vm_page_t msrc, vm_page_t mdst)
1036{
1037	vm_offset_t	dst;
1038	vm_offset_t	src;
1039
1040	dst = VM_PAGE_TO_PHYS(mdst);
1041	src = VM_PAGE_TO_PHYS(msrc);
1042
1043	bcopy((void *)src, (void *)dst, PAGE_SIZE);
1044}
1045
1046/*
1047 * Zero a page of physical memory by temporarily mapping it into the tlb.
1048 */
1049void
1050moea_zero_page(mmu_t mmu, vm_page_t m)
1051{
1052	vm_offset_t pa = VM_PAGE_TO_PHYS(m);
1053	void *va = (void *)pa;
1054
1055	bzero(va, PAGE_SIZE);
1056}
1057
1058void
1059moea_zero_page_area(mmu_t mmu, vm_page_t m, int off, int size)
1060{
1061	vm_offset_t pa = VM_PAGE_TO_PHYS(m);
1062	void *va = (void *)(pa + off);
1063
1064	bzero(va, size);
1065}
1066
1067void
1068moea_zero_page_idle(mmu_t mmu, vm_page_t m)
1069{
1070	vm_offset_t pa = VM_PAGE_TO_PHYS(m);
1071	void *va = (void *)pa;
1072
1073	bzero(va, PAGE_SIZE);
1074}
1075
1076/*
1077 * Map the given physical page at the specified virtual address in the
1078 * target pmap with the protection requested.  If specified the page
1079 * will be wired down.
1080 */
1081void
1082moea_enter(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
1083	   boolean_t wired)
1084{
1085
1086	rw_wlock(&pvh_global_lock);
1087	PMAP_LOCK(pmap);
1088	moea_enter_locked(pmap, va, m, prot, wired);
1089	rw_wunlock(&pvh_global_lock);
1090	PMAP_UNLOCK(pmap);
1091}
1092
1093/*
1094 * Map the given physical page at the specified virtual address in the
1095 * target pmap with the protection requested.  If specified the page
1096 * will be wired down.
1097 *
1098 * The page queues and pmap must be locked.
1099 */
1100static void
1101moea_enter_locked(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
1102    boolean_t wired)
1103{
1104	struct		pvo_head *pvo_head;
1105	uma_zone_t	zone;
1106	vm_page_t	pg;
1107	u_int		pte_lo, pvo_flags;
1108	int		error;
1109
1110	if (!moea_initialized) {
1111		pvo_head = &moea_pvo_kunmanaged;
1112		zone = moea_upvo_zone;
1113		pvo_flags = 0;
1114		pg = NULL;
1115	} else {
1116		pvo_head = vm_page_to_pvoh(m);
1117		pg = m;
1118		zone = moea_mpvo_zone;
1119		pvo_flags = PVO_MANAGED;
1120	}
1121	if (pmap_bootstrapped)
1122		rw_assert(&pvh_global_lock, RA_WLOCKED);
1123	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1124	KASSERT((m->oflags & (VPO_UNMANAGED | VPO_BUSY)) != 0 ||
1125	    VM_OBJECT_LOCKED(m->object),
1126	    ("moea_enter_locked: page %p is not busy", m));
1127
1128	/* XXX change the pvo head for fake pages */
1129	if ((m->oflags & VPO_UNMANAGED) != 0) {
1130		pvo_flags &= ~PVO_MANAGED;
1131		pvo_head = &moea_pvo_kunmanaged;
1132		zone = moea_upvo_zone;
1133	}
1134
1135	pte_lo = moea_calc_wimg(VM_PAGE_TO_PHYS(m), pmap_page_get_memattr(m));
1136
1137	if (prot & VM_PROT_WRITE) {
1138		pte_lo |= PTE_BW;
1139		if (pmap_bootstrapped &&
1140		    (m->oflags & VPO_UNMANAGED) == 0)
1141			vm_page_aflag_set(m, PGA_WRITEABLE);
1142	} else
1143		pte_lo |= PTE_BR;
1144
1145	if (prot & VM_PROT_EXECUTE)
1146		pvo_flags |= PVO_EXECUTABLE;
1147
1148	if (wired)
1149		pvo_flags |= PVO_WIRED;
1150
1151	error = moea_pvo_enter(pmap, zone, pvo_head, va, VM_PAGE_TO_PHYS(m),
1152	    pte_lo, pvo_flags);
1153
1154	/*
1155	 * Flush the real page from the instruction cache. This has be done
1156	 * for all user mappings to prevent information leakage via the
1157	 * instruction cache. moea_pvo_enter() returns ENOENT for the first
1158	 * mapping for a page.
1159	 */
1160	if (pmap != kernel_pmap && error == ENOENT &&
1161	    (pte_lo & (PTE_I | PTE_G)) == 0)
1162		moea_syncicache(VM_PAGE_TO_PHYS(m), PAGE_SIZE);
1163}
1164
1165/*
1166 * Maps a sequence of resident pages belonging to the same object.
1167 * The sequence begins with the given page m_start.  This page is
1168 * mapped at the given virtual address start.  Each subsequent page is
1169 * mapped at a virtual address that is offset from start by the same
1170 * amount as the page is offset from m_start within the object.  The
1171 * last page in the sequence is the page with the largest offset from
1172 * m_start that can be mapped at a virtual address less than the given
1173 * virtual address end.  Not every virtual page between start and end
1174 * is mapped; only those for which a resident page exists with the
1175 * corresponding offset from m_start are mapped.
1176 */
1177void
1178moea_enter_object(mmu_t mmu, pmap_t pm, vm_offset_t start, vm_offset_t end,
1179    vm_page_t m_start, vm_prot_t prot)
1180{
1181	vm_page_t m;
1182	vm_pindex_t diff, psize;
1183
1184	psize = atop(end - start);
1185	m = m_start;
1186	rw_wlock(&pvh_global_lock);
1187	PMAP_LOCK(pm);
1188	while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) {
1189		moea_enter_locked(pm, start + ptoa(diff), m, prot &
1190		    (VM_PROT_READ | VM_PROT_EXECUTE), FALSE);
1191		m = TAILQ_NEXT(m, listq);
1192	}
1193	rw_wunlock(&pvh_global_lock);
1194	PMAP_UNLOCK(pm);
1195}
1196
1197void
1198moea_enter_quick(mmu_t mmu, pmap_t pm, vm_offset_t va, vm_page_t m,
1199    vm_prot_t prot)
1200{
1201
1202	rw_wlock(&pvh_global_lock);
1203	PMAP_LOCK(pm);
1204	moea_enter_locked(pm, va, m, prot & (VM_PROT_READ | VM_PROT_EXECUTE),
1205	    FALSE);
1206	rw_wunlock(&pvh_global_lock);
1207	PMAP_UNLOCK(pm);
1208}
1209
1210vm_paddr_t
1211moea_extract(mmu_t mmu, pmap_t pm, vm_offset_t va)
1212{
1213	struct	pvo_entry *pvo;
1214	vm_paddr_t pa;
1215
1216	PMAP_LOCK(pm);
1217	pvo = moea_pvo_find_va(pm, va & ~ADDR_POFF, NULL);
1218	if (pvo == NULL)
1219		pa = 0;
1220	else
1221		pa = (pvo->pvo_pte.pte.pte_lo & PTE_RPGN) | (va & ADDR_POFF);
1222	PMAP_UNLOCK(pm);
1223	return (pa);
1224}
1225
1226/*
1227 * Atomically extract and hold the physical page with the given
1228 * pmap and virtual address pair if that mapping permits the given
1229 * protection.
1230 */
1231vm_page_t
1232moea_extract_and_hold(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_prot_t prot)
1233{
1234	struct	pvo_entry *pvo;
1235	vm_page_t m;
1236        vm_paddr_t pa;
1237
1238	m = NULL;
1239	pa = 0;
1240	PMAP_LOCK(pmap);
1241retry:
1242	pvo = moea_pvo_find_va(pmap, va & ~ADDR_POFF, NULL);
1243	if (pvo != NULL && (pvo->pvo_pte.pte.pte_hi & PTE_VALID) &&
1244	    ((pvo->pvo_pte.pte.pte_lo & PTE_PP) == PTE_RW ||
1245	     (prot & VM_PROT_WRITE) == 0)) {
1246		if (vm_page_pa_tryrelock(pmap, pvo->pvo_pte.pte.pte_lo & PTE_RPGN, &pa))
1247			goto retry;
1248		m = PHYS_TO_VM_PAGE(pvo->pvo_pte.pte.pte_lo & PTE_RPGN);
1249		vm_page_hold(m);
1250	}
1251	PA_UNLOCK_COND(pa);
1252	PMAP_UNLOCK(pmap);
1253	return (m);
1254}
1255
1256void
1257moea_init(mmu_t mmu)
1258{
1259
1260	moea_upvo_zone = uma_zcreate("UPVO entry", sizeof (struct pvo_entry),
1261	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
1262	    UMA_ZONE_VM | UMA_ZONE_NOFREE);
1263	moea_mpvo_zone = uma_zcreate("MPVO entry", sizeof(struct pvo_entry),
1264	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
1265	    UMA_ZONE_VM | UMA_ZONE_NOFREE);
1266	moea_initialized = TRUE;
1267}
1268
1269boolean_t
1270moea_is_referenced(mmu_t mmu, vm_page_t m)
1271{
1272
1273	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1274	    ("moea_is_referenced: page %p is not managed", m));
1275	return (moea_query_bit(m, PTE_REF));
1276}
1277
1278boolean_t
1279moea_is_modified(mmu_t mmu, vm_page_t m)
1280{
1281
1282	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1283	    ("moea_is_modified: page %p is not managed", m));
1284
1285	/*
1286	 * If the page is not VPO_BUSY, then PGA_WRITEABLE cannot be
1287	 * concurrently set while the object is locked.  Thus, if PGA_WRITEABLE
1288	 * is clear, no PTEs can have PTE_CHG set.
1289	 */
1290	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1291	if ((m->oflags & VPO_BUSY) == 0 &&
1292	    (m->aflags & PGA_WRITEABLE) == 0)
1293		return (FALSE);
1294	return (moea_query_bit(m, PTE_CHG));
1295}
1296
1297boolean_t
1298moea_is_prefaultable(mmu_t mmu, pmap_t pmap, vm_offset_t va)
1299{
1300	struct pvo_entry *pvo;
1301	boolean_t rv;
1302
1303	PMAP_LOCK(pmap);
1304	pvo = moea_pvo_find_va(pmap, va & ~ADDR_POFF, NULL);
1305	rv = pvo == NULL || (pvo->pvo_pte.pte.pte_hi & PTE_VALID) == 0;
1306	PMAP_UNLOCK(pmap);
1307	return (rv);
1308}
1309
1310void
1311moea_clear_reference(mmu_t mmu, vm_page_t m)
1312{
1313
1314	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1315	    ("moea_clear_reference: page %p is not managed", m));
1316	moea_clear_bit(m, PTE_REF);
1317}
1318
1319void
1320moea_clear_modify(mmu_t mmu, vm_page_t m)
1321{
1322
1323	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1324	    ("moea_clear_modify: page %p is not managed", m));
1325	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1326	KASSERT((m->oflags & VPO_BUSY) == 0,
1327	    ("moea_clear_modify: page %p is busy", m));
1328
1329	/*
1330	 * If the page is not PGA_WRITEABLE, then no PTEs can have PTE_CHG
1331	 * set.  If the object containing the page is locked and the page is
1332	 * not VPO_BUSY, then PGA_WRITEABLE cannot be concurrently set.
1333	 */
1334	if ((m->aflags & PGA_WRITEABLE) == 0)
1335		return;
1336	moea_clear_bit(m, PTE_CHG);
1337}
1338
1339/*
1340 * Clear the write and modified bits in each of the given page's mappings.
1341 */
1342void
1343moea_remove_write(mmu_t mmu, vm_page_t m)
1344{
1345	struct	pvo_entry *pvo;
1346	struct	pte *pt;
1347	pmap_t	pmap;
1348	u_int	lo;
1349
1350	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1351	    ("moea_remove_write: page %p is not managed", m));
1352
1353	/*
1354	 * If the page is not VPO_BUSY, then PGA_WRITEABLE cannot be set by
1355	 * another thread while the object is locked.  Thus, if PGA_WRITEABLE
1356	 * is clear, no page table entries need updating.
1357	 */
1358	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1359	if ((m->oflags & VPO_BUSY) == 0 &&
1360	    (m->aflags & PGA_WRITEABLE) == 0)
1361		return;
1362	rw_wlock(&pvh_global_lock);
1363	lo = moea_attr_fetch(m);
1364	powerpc_sync();
1365	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
1366		pmap = pvo->pvo_pmap;
1367		PMAP_LOCK(pmap);
1368		if ((pvo->pvo_pte.pte.pte_lo & PTE_PP) != PTE_BR) {
1369			pt = moea_pvo_to_pte(pvo, -1);
1370			pvo->pvo_pte.pte.pte_lo &= ~PTE_PP;
1371			pvo->pvo_pte.pte.pte_lo |= PTE_BR;
1372			if (pt != NULL) {
1373				moea_pte_synch(pt, &pvo->pvo_pte.pte);
1374				lo |= pvo->pvo_pte.pte.pte_lo;
1375				pvo->pvo_pte.pte.pte_lo &= ~PTE_CHG;
1376				moea_pte_change(pt, &pvo->pvo_pte.pte,
1377				    pvo->pvo_vaddr);
1378				mtx_unlock(&moea_table_mutex);
1379			}
1380		}
1381		PMAP_UNLOCK(pmap);
1382	}
1383	if ((lo & PTE_CHG) != 0) {
1384		moea_attr_clear(m, PTE_CHG);
1385		vm_page_dirty(m);
1386	}
1387	vm_page_aflag_clear(m, PGA_WRITEABLE);
1388	rw_wunlock(&pvh_global_lock);
1389}
1390
1391/*
1392 *	moea_ts_referenced:
1393 *
1394 *	Return a count of reference bits for a page, clearing those bits.
1395 *	It is not necessary for every reference bit to be cleared, but it
1396 *	is necessary that 0 only be returned when there are truly no
1397 *	reference bits set.
1398 *
1399 *	XXX: The exact number of bits to check and clear is a matter that
1400 *	should be tested and standardized at some point in the future for
1401 *	optimal aging of shared pages.
1402 */
1403boolean_t
1404moea_ts_referenced(mmu_t mmu, vm_page_t m)
1405{
1406
1407	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1408	    ("moea_ts_referenced: page %p is not managed", m));
1409	return (moea_clear_bit(m, PTE_REF));
1410}
1411
1412/*
1413 * Modify the WIMG settings of all mappings for a page.
1414 */
1415void
1416moea_page_set_memattr(mmu_t mmu, vm_page_t m, vm_memattr_t ma)
1417{
1418	struct	pvo_entry *pvo;
1419	struct	pvo_head *pvo_head;
1420	struct	pte *pt;
1421	pmap_t	pmap;
1422	u_int	lo;
1423
1424	if ((m->oflags & VPO_UNMANAGED) != 0) {
1425		m->md.mdpg_cache_attrs = ma;
1426		return;
1427	}
1428
1429	rw_wlock(&pvh_global_lock);
1430	pvo_head = vm_page_to_pvoh(m);
1431	lo = moea_calc_wimg(VM_PAGE_TO_PHYS(m), ma);
1432
1433	LIST_FOREACH(pvo, pvo_head, pvo_vlink) {
1434		pmap = pvo->pvo_pmap;
1435		PMAP_LOCK(pmap);
1436		pt = moea_pvo_to_pte(pvo, -1);
1437		pvo->pvo_pte.pte.pte_lo &= ~PTE_WIMG;
1438		pvo->pvo_pte.pte.pte_lo |= lo;
1439		if (pt != NULL) {
1440			moea_pte_change(pt, &pvo->pvo_pte.pte,
1441			    pvo->pvo_vaddr);
1442			if (pvo->pvo_pmap == kernel_pmap)
1443				isync();
1444		}
1445		mtx_unlock(&moea_table_mutex);
1446		PMAP_UNLOCK(pmap);
1447	}
1448	m->md.mdpg_cache_attrs = ma;
1449	rw_wunlock(&pvh_global_lock);
1450}
1451
1452/*
1453 * Map a wired page into kernel virtual address space.
1454 */
1455void
1456moea_kenter(mmu_t mmu, vm_offset_t va, vm_paddr_t pa)
1457{
1458
1459	moea_kenter_attr(mmu, va, pa, VM_MEMATTR_DEFAULT);
1460}
1461
1462void
1463moea_kenter_attr(mmu_t mmu, vm_offset_t va, vm_offset_t pa, vm_memattr_t ma)
1464{
1465	u_int		pte_lo;
1466	int		error;
1467
1468#if 0
1469	if (va < VM_MIN_KERNEL_ADDRESS)
1470		panic("moea_kenter: attempt to enter non-kernel address %#x",
1471		    va);
1472#endif
1473
1474	pte_lo = moea_calc_wimg(pa, ma);
1475
1476	PMAP_LOCK(kernel_pmap);
1477	error = moea_pvo_enter(kernel_pmap, moea_upvo_zone,
1478	    &moea_pvo_kunmanaged, va, pa, pte_lo, PVO_WIRED);
1479
1480	if (error != 0 && error != ENOENT)
1481		panic("moea_kenter: failed to enter va %#x pa %#x: %d", va,
1482		    pa, error);
1483
1484	PMAP_UNLOCK(kernel_pmap);
1485}
1486
1487/*
1488 * Extract the physical page address associated with the given kernel virtual
1489 * address.
1490 */
1491vm_paddr_t
1492moea_kextract(mmu_t mmu, vm_offset_t va)
1493{
1494	struct		pvo_entry *pvo;
1495	vm_paddr_t pa;
1496
1497	/*
1498	 * Allow direct mappings on 32-bit OEA
1499	 */
1500	if (va < VM_MIN_KERNEL_ADDRESS) {
1501		return (va);
1502	}
1503
1504	PMAP_LOCK(kernel_pmap);
1505	pvo = moea_pvo_find_va(kernel_pmap, va & ~ADDR_POFF, NULL);
1506	KASSERT(pvo != NULL, ("moea_kextract: no addr found"));
1507	pa = (pvo->pvo_pte.pte.pte_lo & PTE_RPGN) | (va & ADDR_POFF);
1508	PMAP_UNLOCK(kernel_pmap);
1509	return (pa);
1510}
1511
1512/*
1513 * Remove a wired page from kernel virtual address space.
1514 */
1515void
1516moea_kremove(mmu_t mmu, vm_offset_t va)
1517{
1518
1519	moea_remove(mmu, kernel_pmap, va, va + PAGE_SIZE);
1520}
1521
1522/*
1523 * Map a range of physical addresses into kernel virtual address space.
1524 *
1525 * The value passed in *virt is a suggested virtual address for the mapping.
1526 * Architectures which can support a direct-mapped physical to virtual region
1527 * can return the appropriate address within that region, leaving '*virt'
1528 * unchanged.  We cannot and therefore do not; *virt is updated with the
1529 * first usable address after the mapped region.
1530 */
1531vm_offset_t
1532moea_map(mmu_t mmu, vm_offset_t *virt, vm_paddr_t pa_start,
1533    vm_paddr_t pa_end, int prot)
1534{
1535	vm_offset_t	sva, va;
1536
1537	sva = *virt;
1538	va = sva;
1539	for (; pa_start < pa_end; pa_start += PAGE_SIZE, va += PAGE_SIZE)
1540		moea_kenter(mmu, va, pa_start);
1541	*virt = va;
1542	return (sva);
1543}
1544
1545/*
1546 * Returns true if the pmap's pv is one of the first
1547 * 16 pvs linked to from this page.  This count may
1548 * be changed upwards or downwards in the future; it
1549 * is only necessary that true be returned for a small
1550 * subset of pmaps for proper page aging.
1551 */
1552boolean_t
1553moea_page_exists_quick(mmu_t mmu, pmap_t pmap, vm_page_t m)
1554{
1555        int loops;
1556	struct pvo_entry *pvo;
1557	boolean_t rv;
1558
1559	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1560	    ("moea_page_exists_quick: page %p is not managed", m));
1561	loops = 0;
1562	rv = FALSE;
1563	rw_wlock(&pvh_global_lock);
1564	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
1565		if (pvo->pvo_pmap == pmap) {
1566			rv = TRUE;
1567			break;
1568		}
1569		if (++loops >= 16)
1570			break;
1571	}
1572	rw_wunlock(&pvh_global_lock);
1573	return (rv);
1574}
1575
1576/*
1577 * Return the number of managed mappings to the given physical page
1578 * that are wired.
1579 */
1580int
1581moea_page_wired_mappings(mmu_t mmu, vm_page_t m)
1582{
1583	struct pvo_entry *pvo;
1584	int count;
1585
1586	count = 0;
1587	if ((m->oflags & VPO_UNMANAGED) != 0)
1588		return (count);
1589	rw_wlock(&pvh_global_lock);
1590	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink)
1591		if ((pvo->pvo_vaddr & PVO_WIRED) != 0)
1592			count++;
1593	rw_wunlock(&pvh_global_lock);
1594	return (count);
1595}
1596
1597static u_int	moea_vsidcontext;
1598
1599void
1600moea_pinit(mmu_t mmu, pmap_t pmap)
1601{
1602	int	i, mask;
1603	u_int	entropy;
1604
1605	KASSERT((int)pmap < VM_MIN_KERNEL_ADDRESS, ("moea_pinit: virt pmap"));
1606	PMAP_LOCK_INIT(pmap);
1607	RB_INIT(&pmap->pmap_pvo);
1608
1609	entropy = 0;
1610	__asm __volatile("mftb %0" : "=r"(entropy));
1611
1612	if ((pmap->pmap_phys = (pmap_t)moea_kextract(mmu, (vm_offset_t)pmap))
1613	    == NULL) {
1614		pmap->pmap_phys = pmap;
1615	}
1616
1617
1618	mtx_lock(&moea_vsid_mutex);
1619	/*
1620	 * Allocate some segment registers for this pmap.
1621	 */
1622	for (i = 0; i < NPMAPS; i += VSID_NBPW) {
1623		u_int	hash, n;
1624
1625		/*
1626		 * Create a new value by mutiplying by a prime and adding in
1627		 * entropy from the timebase register.  This is to make the
1628		 * VSID more random so that the PT hash function collides
1629		 * less often.  (Note that the prime casues gcc to do shifts
1630		 * instead of a multiply.)
1631		 */
1632		moea_vsidcontext = (moea_vsidcontext * 0x1105) + entropy;
1633		hash = moea_vsidcontext & (NPMAPS - 1);
1634		if (hash == 0)		/* 0 is special, avoid it */
1635			continue;
1636		n = hash >> 5;
1637		mask = 1 << (hash & (VSID_NBPW - 1));
1638		hash = (moea_vsidcontext & 0xfffff);
1639		if (moea_vsid_bitmap[n] & mask) {	/* collision? */
1640			/* anything free in this bucket? */
1641			if (moea_vsid_bitmap[n] == 0xffffffff) {
1642				entropy = (moea_vsidcontext >> 20);
1643				continue;
1644			}
1645			i = ffs(~moea_vsid_bitmap[n]) - 1;
1646			mask = 1 << i;
1647			hash &= 0xfffff & ~(VSID_NBPW - 1);
1648			hash |= i;
1649		}
1650		KASSERT(!(moea_vsid_bitmap[n] & mask),
1651		    ("Allocating in-use VSID group %#x\n", hash));
1652		moea_vsid_bitmap[n] |= mask;
1653		for (i = 0; i < 16; i++)
1654			pmap->pm_sr[i] = VSID_MAKE(i, hash);
1655		mtx_unlock(&moea_vsid_mutex);
1656		return;
1657	}
1658
1659	mtx_unlock(&moea_vsid_mutex);
1660	panic("moea_pinit: out of segments");
1661}
1662
1663/*
1664 * Initialize the pmap associated with process 0.
1665 */
1666void
1667moea_pinit0(mmu_t mmu, pmap_t pm)
1668{
1669
1670	moea_pinit(mmu, pm);
1671	bzero(&pm->pm_stats, sizeof(pm->pm_stats));
1672}
1673
1674/*
1675 * Set the physical protection on the specified range of this map as requested.
1676 */
1677void
1678moea_protect(mmu_t mmu, pmap_t pm, vm_offset_t sva, vm_offset_t eva,
1679    vm_prot_t prot)
1680{
1681	struct	pvo_entry *pvo, *tpvo, key;
1682	struct	pte *pt;
1683
1684	KASSERT(pm == &curproc->p_vmspace->vm_pmap || pm == kernel_pmap,
1685	    ("moea_protect: non current pmap"));
1686
1687	if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
1688		moea_remove(mmu, pm, sva, eva);
1689		return;
1690	}
1691
1692	rw_wlock(&pvh_global_lock);
1693	PMAP_LOCK(pm);
1694	key.pvo_vaddr = sva;
1695	for (pvo = RB_NFIND(pvo_tree, &pm->pmap_pvo, &key);
1696	    pvo != NULL && PVO_VADDR(pvo) < eva; pvo = tpvo) {
1697		tpvo = RB_NEXT(pvo_tree, &pm->pmap_pvo, pvo);
1698		if ((prot & VM_PROT_EXECUTE) == 0)
1699			pvo->pvo_vaddr &= ~PVO_EXECUTABLE;
1700
1701		/*
1702		 * Grab the PTE pointer before we diddle with the cached PTE
1703		 * copy.
1704		 */
1705		pt = moea_pvo_to_pte(pvo, -1);
1706		/*
1707		 * Change the protection of the page.
1708		 */
1709		pvo->pvo_pte.pte.pte_lo &= ~PTE_PP;
1710		pvo->pvo_pte.pte.pte_lo |= PTE_BR;
1711
1712		/*
1713		 * If the PVO is in the page table, update that pte as well.
1714		 */
1715		if (pt != NULL) {
1716			moea_pte_change(pt, &pvo->pvo_pte.pte, pvo->pvo_vaddr);
1717			mtx_unlock(&moea_table_mutex);
1718		}
1719	}
1720	rw_wunlock(&pvh_global_lock);
1721	PMAP_UNLOCK(pm);
1722}
1723
1724/*
1725 * Map a list of wired pages into kernel virtual address space.  This is
1726 * intended for temporary mappings which do not need page modification or
1727 * references recorded.  Existing mappings in the region are overwritten.
1728 */
1729void
1730moea_qenter(mmu_t mmu, vm_offset_t sva, vm_page_t *m, int count)
1731{
1732	vm_offset_t va;
1733
1734	va = sva;
1735	while (count-- > 0) {
1736		moea_kenter(mmu, va, VM_PAGE_TO_PHYS(*m));
1737		va += PAGE_SIZE;
1738		m++;
1739	}
1740}
1741
1742/*
1743 * Remove page mappings from kernel virtual address space.  Intended for
1744 * temporary mappings entered by moea_qenter.
1745 */
1746void
1747moea_qremove(mmu_t mmu, vm_offset_t sva, int count)
1748{
1749	vm_offset_t va;
1750
1751	va = sva;
1752	while (count-- > 0) {
1753		moea_kremove(mmu, va);
1754		va += PAGE_SIZE;
1755	}
1756}
1757
1758void
1759moea_release(mmu_t mmu, pmap_t pmap)
1760{
1761        int idx, mask;
1762
1763	/*
1764	 * Free segment register's VSID
1765	 */
1766        if (pmap->pm_sr[0] == 0)
1767                panic("moea_release");
1768
1769	mtx_lock(&moea_vsid_mutex);
1770        idx = VSID_TO_HASH(pmap->pm_sr[0]) & (NPMAPS-1);
1771        mask = 1 << (idx % VSID_NBPW);
1772        idx /= VSID_NBPW;
1773        moea_vsid_bitmap[idx] &= ~mask;
1774	mtx_unlock(&moea_vsid_mutex);
1775	PMAP_LOCK_DESTROY(pmap);
1776}
1777
1778/*
1779 * Remove the given range of addresses from the specified map.
1780 */
1781void
1782moea_remove(mmu_t mmu, pmap_t pm, vm_offset_t sva, vm_offset_t eva)
1783{
1784	struct	pvo_entry *pvo, *tpvo, key;
1785
1786	rw_wlock(&pvh_global_lock);
1787	PMAP_LOCK(pm);
1788	key.pvo_vaddr = sva;
1789	for (pvo = RB_NFIND(pvo_tree, &pm->pmap_pvo, &key);
1790	    pvo != NULL && PVO_VADDR(pvo) < eva; pvo = tpvo) {
1791		tpvo = RB_NEXT(pvo_tree, &pm->pmap_pvo, pvo);
1792		moea_pvo_remove(pvo, -1);
1793	}
1794	PMAP_UNLOCK(pm);
1795	rw_wunlock(&pvh_global_lock);
1796}
1797
1798/*
1799 * Remove physical page from all pmaps in which it resides. moea_pvo_remove()
1800 * will reflect changes in pte's back to the vm_page.
1801 */
1802void
1803moea_remove_all(mmu_t mmu, vm_page_t m)
1804{
1805	struct  pvo_head *pvo_head;
1806	struct	pvo_entry *pvo, *next_pvo;
1807	pmap_t	pmap;
1808
1809	rw_wlock(&pvh_global_lock);
1810	pvo_head = vm_page_to_pvoh(m);
1811	for (pvo = LIST_FIRST(pvo_head); pvo != NULL; pvo = next_pvo) {
1812		next_pvo = LIST_NEXT(pvo, pvo_vlink);
1813
1814		pmap = pvo->pvo_pmap;
1815		PMAP_LOCK(pmap);
1816		moea_pvo_remove(pvo, -1);
1817		PMAP_UNLOCK(pmap);
1818	}
1819	if ((m->aflags & PGA_WRITEABLE) && moea_is_modified(mmu, m)) {
1820		moea_attr_clear(m, PTE_CHG);
1821		vm_page_dirty(m);
1822	}
1823	vm_page_aflag_clear(m, PGA_WRITEABLE);
1824	rw_wunlock(&pvh_global_lock);
1825}
1826
1827/*
1828 * Allocate a physical page of memory directly from the phys_avail map.
1829 * Can only be called from moea_bootstrap before avail start and end are
1830 * calculated.
1831 */
1832static vm_offset_t
1833moea_bootstrap_alloc(vm_size_t size, u_int align)
1834{
1835	vm_offset_t	s, e;
1836	int		i, j;
1837
1838	size = round_page(size);
1839	for (i = 0; phys_avail[i + 1] != 0; i += 2) {
1840		if (align != 0)
1841			s = (phys_avail[i] + align - 1) & ~(align - 1);
1842		else
1843			s = phys_avail[i];
1844		e = s + size;
1845
1846		if (s < phys_avail[i] || e > phys_avail[i + 1])
1847			continue;
1848
1849		if (s == phys_avail[i]) {
1850			phys_avail[i] += size;
1851		} else if (e == phys_avail[i + 1]) {
1852			phys_avail[i + 1] -= size;
1853		} else {
1854			for (j = phys_avail_count * 2; j > i; j -= 2) {
1855				phys_avail[j] = phys_avail[j - 2];
1856				phys_avail[j + 1] = phys_avail[j - 1];
1857			}
1858
1859			phys_avail[i + 3] = phys_avail[i + 1];
1860			phys_avail[i + 1] = s;
1861			phys_avail[i + 2] = e;
1862			phys_avail_count++;
1863		}
1864
1865		return (s);
1866	}
1867	panic("moea_bootstrap_alloc: could not allocate memory");
1868}
1869
1870static void
1871moea_syncicache(vm_offset_t pa, vm_size_t len)
1872{
1873	__syncicache((void *)pa, len);
1874}
1875
1876static int
1877moea_pvo_enter(pmap_t pm, uma_zone_t zone, struct pvo_head *pvo_head,
1878    vm_offset_t va, vm_offset_t pa, u_int pte_lo, int flags)
1879{
1880	struct	pvo_entry *pvo;
1881	u_int	sr;
1882	int	first;
1883	u_int	ptegidx;
1884	int	i;
1885	int     bootstrap;
1886
1887	moea_pvo_enter_calls++;
1888	first = 0;
1889	bootstrap = 0;
1890
1891	/*
1892	 * Compute the PTE Group index.
1893	 */
1894	va &= ~ADDR_POFF;
1895	sr = va_to_sr(pm->pm_sr, va);
1896	ptegidx = va_to_pteg(sr, va);
1897
1898	/*
1899	 * Remove any existing mapping for this page.  Reuse the pvo entry if
1900	 * there is a mapping.
1901	 */
1902	mtx_lock(&moea_table_mutex);
1903	LIST_FOREACH(pvo, &moea_pvo_table[ptegidx], pvo_olink) {
1904		if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) {
1905			if ((pvo->pvo_pte.pte.pte_lo & PTE_RPGN) == pa &&
1906			    (pvo->pvo_pte.pte.pte_lo & PTE_PP) ==
1907			    (pte_lo & PTE_PP)) {
1908				mtx_unlock(&moea_table_mutex);
1909				return (0);
1910			}
1911			moea_pvo_remove(pvo, -1);
1912			break;
1913		}
1914	}
1915
1916	/*
1917	 * If we aren't overwriting a mapping, try to allocate.
1918	 */
1919	if (moea_initialized) {
1920		pvo = uma_zalloc(zone, M_NOWAIT);
1921	} else {
1922		if (moea_bpvo_pool_index >= BPVO_POOL_SIZE) {
1923			panic("moea_enter: bpvo pool exhausted, %d, %d, %d",
1924			      moea_bpvo_pool_index, BPVO_POOL_SIZE,
1925			      BPVO_POOL_SIZE * sizeof(struct pvo_entry));
1926		}
1927		pvo = &moea_bpvo_pool[moea_bpvo_pool_index];
1928		moea_bpvo_pool_index++;
1929		bootstrap = 1;
1930	}
1931
1932	if (pvo == NULL) {
1933		mtx_unlock(&moea_table_mutex);
1934		return (ENOMEM);
1935	}
1936
1937	moea_pvo_entries++;
1938	pvo->pvo_vaddr = va;
1939	pvo->pvo_pmap = pm;
1940	LIST_INSERT_HEAD(&moea_pvo_table[ptegidx], pvo, pvo_olink);
1941	pvo->pvo_vaddr &= ~ADDR_POFF;
1942	if (flags & VM_PROT_EXECUTE)
1943		pvo->pvo_vaddr |= PVO_EXECUTABLE;
1944	if (flags & PVO_WIRED)
1945		pvo->pvo_vaddr |= PVO_WIRED;
1946	if (pvo_head != &moea_pvo_kunmanaged)
1947		pvo->pvo_vaddr |= PVO_MANAGED;
1948	if (bootstrap)
1949		pvo->pvo_vaddr |= PVO_BOOTSTRAP;
1950
1951	moea_pte_create(&pvo->pvo_pte.pte, sr, va, pa | pte_lo);
1952
1953	/*
1954	 * Add to pmap list
1955	 */
1956	RB_INSERT(pvo_tree, &pm->pmap_pvo, pvo);
1957
1958	/*
1959	 * Remember if the list was empty and therefore will be the first
1960	 * item.
1961	 */
1962	if (LIST_FIRST(pvo_head) == NULL)
1963		first = 1;
1964	LIST_INSERT_HEAD(pvo_head, pvo, pvo_vlink);
1965
1966	if (pvo->pvo_pte.pte.pte_lo & PVO_WIRED)
1967		pm->pm_stats.wired_count++;
1968	pm->pm_stats.resident_count++;
1969
1970	/*
1971	 * We hope this succeeds but it isn't required.
1972	 */
1973	i = moea_pte_insert(ptegidx, &pvo->pvo_pte.pte);
1974	if (i >= 0) {
1975		PVO_PTEGIDX_SET(pvo, i);
1976	} else {
1977		panic("moea_pvo_enter: overflow");
1978		moea_pte_overflow++;
1979	}
1980	mtx_unlock(&moea_table_mutex);
1981
1982	return (first ? ENOENT : 0);
1983}
1984
1985static void
1986moea_pvo_remove(struct pvo_entry *pvo, int pteidx)
1987{
1988	struct	pte *pt;
1989
1990	/*
1991	 * If there is an active pte entry, we need to deactivate it (and
1992	 * save the ref & cfg bits).
1993	 */
1994	pt = moea_pvo_to_pte(pvo, pteidx);
1995	if (pt != NULL) {
1996		moea_pte_unset(pt, &pvo->pvo_pte.pte, pvo->pvo_vaddr);
1997		mtx_unlock(&moea_table_mutex);
1998		PVO_PTEGIDX_CLR(pvo);
1999	} else {
2000		moea_pte_overflow--;
2001	}
2002
2003	/*
2004	 * Update our statistics.
2005	 */
2006	pvo->pvo_pmap->pm_stats.resident_count--;
2007	if (pvo->pvo_pte.pte.pte_lo & PVO_WIRED)
2008		pvo->pvo_pmap->pm_stats.wired_count--;
2009
2010	/*
2011	 * Save the REF/CHG bits into their cache if the page is managed.
2012	 */
2013	if ((pvo->pvo_vaddr & PVO_MANAGED) == PVO_MANAGED) {
2014		struct	vm_page *pg;
2015
2016		pg = PHYS_TO_VM_PAGE(pvo->pvo_pte.pte.pte_lo & PTE_RPGN);
2017		if (pg != NULL) {
2018			moea_attr_save(pg, pvo->pvo_pte.pte.pte_lo &
2019			    (PTE_REF | PTE_CHG));
2020		}
2021	}
2022
2023	/*
2024	 * Remove this PVO from the PV and pmap lists.
2025	 */
2026	LIST_REMOVE(pvo, pvo_vlink);
2027	RB_REMOVE(pvo_tree, &pvo->pvo_pmap->pmap_pvo, pvo);
2028
2029	/*
2030	 * Remove this from the overflow list and return it to the pool
2031	 * if we aren't going to reuse it.
2032	 */
2033	LIST_REMOVE(pvo, pvo_olink);
2034	if (!(pvo->pvo_vaddr & PVO_BOOTSTRAP))
2035		uma_zfree(pvo->pvo_vaddr & PVO_MANAGED ? moea_mpvo_zone :
2036		    moea_upvo_zone, pvo);
2037	moea_pvo_entries--;
2038	moea_pvo_remove_calls++;
2039}
2040
2041static __inline int
2042moea_pvo_pte_index(const struct pvo_entry *pvo, int ptegidx)
2043{
2044	int	pteidx;
2045
2046	/*
2047	 * We can find the actual pte entry without searching by grabbing
2048	 * the PTEG index from 3 unused bits in pte_lo[11:9] and by
2049	 * noticing the HID bit.
2050	 */
2051	pteidx = ptegidx * 8 + PVO_PTEGIDX_GET(pvo);
2052	if (pvo->pvo_pte.pte.pte_hi & PTE_HID)
2053		pteidx ^= moea_pteg_mask * 8;
2054
2055	return (pteidx);
2056}
2057
2058static struct pvo_entry *
2059moea_pvo_find_va(pmap_t pm, vm_offset_t va, int *pteidx_p)
2060{
2061	struct	pvo_entry *pvo;
2062	int	ptegidx;
2063	u_int	sr;
2064
2065	va &= ~ADDR_POFF;
2066	sr = va_to_sr(pm->pm_sr, va);
2067	ptegidx = va_to_pteg(sr, va);
2068
2069	mtx_lock(&moea_table_mutex);
2070	LIST_FOREACH(pvo, &moea_pvo_table[ptegidx], pvo_olink) {
2071		if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) {
2072			if (pteidx_p)
2073				*pteidx_p = moea_pvo_pte_index(pvo, ptegidx);
2074			break;
2075		}
2076	}
2077	mtx_unlock(&moea_table_mutex);
2078
2079	return (pvo);
2080}
2081
2082static struct pte *
2083moea_pvo_to_pte(const struct pvo_entry *pvo, int pteidx)
2084{
2085	struct	pte *pt;
2086
2087	/*
2088	 * If we haven't been supplied the ptegidx, calculate it.
2089	 */
2090	if (pteidx == -1) {
2091		int	ptegidx;
2092		u_int	sr;
2093
2094		sr = va_to_sr(pvo->pvo_pmap->pm_sr, pvo->pvo_vaddr);
2095		ptegidx = va_to_pteg(sr, pvo->pvo_vaddr);
2096		pteidx = moea_pvo_pte_index(pvo, ptegidx);
2097	}
2098
2099	pt = &moea_pteg_table[pteidx >> 3].pt[pteidx & 7];
2100	mtx_lock(&moea_table_mutex);
2101
2102	if ((pvo->pvo_pte.pte.pte_hi & PTE_VALID) && !PVO_PTEGIDX_ISSET(pvo)) {
2103		panic("moea_pvo_to_pte: pvo %p has valid pte in pvo but no "
2104		    "valid pte index", pvo);
2105	}
2106
2107	if ((pvo->pvo_pte.pte.pte_hi & PTE_VALID) == 0 && PVO_PTEGIDX_ISSET(pvo)) {
2108		panic("moea_pvo_to_pte: pvo %p has valid pte index in pvo "
2109		    "pvo but no valid pte", pvo);
2110	}
2111
2112	if ((pt->pte_hi ^ (pvo->pvo_pte.pte.pte_hi & ~PTE_VALID)) == PTE_VALID) {
2113		if ((pvo->pvo_pte.pte.pte_hi & PTE_VALID) == 0) {
2114			panic("moea_pvo_to_pte: pvo %p has valid pte in "
2115			    "moea_pteg_table %p but invalid in pvo", pvo, pt);
2116		}
2117
2118		if (((pt->pte_lo ^ pvo->pvo_pte.pte.pte_lo) & ~(PTE_CHG|PTE_REF))
2119		    != 0) {
2120			panic("moea_pvo_to_pte: pvo %p pte does not match "
2121			    "pte %p in moea_pteg_table", pvo, pt);
2122		}
2123
2124		mtx_assert(&moea_table_mutex, MA_OWNED);
2125		return (pt);
2126	}
2127
2128	if (pvo->pvo_pte.pte.pte_hi & PTE_VALID) {
2129		panic("moea_pvo_to_pte: pvo %p has invalid pte %p in "
2130		    "moea_pteg_table but valid in pvo", pvo, pt);
2131	}
2132
2133	mtx_unlock(&moea_table_mutex);
2134	return (NULL);
2135}
2136
2137/*
2138 * XXX: THIS STUFF SHOULD BE IN pte.c?
2139 */
2140int
2141moea_pte_spill(vm_offset_t addr)
2142{
2143	struct	pvo_entry *source_pvo, *victim_pvo;
2144	struct	pvo_entry *pvo;
2145	int	ptegidx, i, j;
2146	u_int	sr;
2147	struct	pteg *pteg;
2148	struct	pte *pt;
2149
2150	moea_pte_spills++;
2151
2152	sr = mfsrin(addr);
2153	ptegidx = va_to_pteg(sr, addr);
2154
2155	/*
2156	 * Have to substitute some entry.  Use the primary hash for this.
2157	 * Use low bits of timebase as random generator.
2158	 */
2159	pteg = &moea_pteg_table[ptegidx];
2160	mtx_lock(&moea_table_mutex);
2161	__asm __volatile("mftb %0" : "=r"(i));
2162	i &= 7;
2163	pt = &pteg->pt[i];
2164
2165	source_pvo = NULL;
2166	victim_pvo = NULL;
2167	LIST_FOREACH(pvo, &moea_pvo_table[ptegidx], pvo_olink) {
2168		/*
2169		 * We need to find a pvo entry for this address.
2170		 */
2171		if (source_pvo == NULL &&
2172		    moea_pte_match(&pvo->pvo_pte.pte, sr, addr,
2173		    pvo->pvo_pte.pte.pte_hi & PTE_HID)) {
2174			/*
2175			 * Now found an entry to be spilled into the pteg.
2176			 * The PTE is now valid, so we know it's active.
2177			 */
2178			j = moea_pte_insert(ptegidx, &pvo->pvo_pte.pte);
2179
2180			if (j >= 0) {
2181				PVO_PTEGIDX_SET(pvo, j);
2182				moea_pte_overflow--;
2183				mtx_unlock(&moea_table_mutex);
2184				return (1);
2185			}
2186
2187			source_pvo = pvo;
2188
2189			if (victim_pvo != NULL)
2190				break;
2191		}
2192
2193		/*
2194		 * We also need the pvo entry of the victim we are replacing
2195		 * so save the R & C bits of the PTE.
2196		 */
2197		if ((pt->pte_hi & PTE_HID) == 0 && victim_pvo == NULL &&
2198		    moea_pte_compare(pt, &pvo->pvo_pte.pte)) {
2199			victim_pvo = pvo;
2200			if (source_pvo != NULL)
2201				break;
2202		}
2203	}
2204
2205	if (source_pvo == NULL) {
2206		mtx_unlock(&moea_table_mutex);
2207		return (0);
2208	}
2209
2210	if (victim_pvo == NULL) {
2211		if ((pt->pte_hi & PTE_HID) == 0)
2212			panic("moea_pte_spill: victim p-pte (%p) has no pvo"
2213			    "entry", pt);
2214
2215		/*
2216		 * If this is a secondary PTE, we need to search it's primary
2217		 * pvo bucket for the matching PVO.
2218		 */
2219		LIST_FOREACH(pvo, &moea_pvo_table[ptegidx ^ moea_pteg_mask],
2220		    pvo_olink) {
2221			/*
2222			 * We also need the pvo entry of the victim we are
2223			 * replacing so save the R & C bits of the PTE.
2224			 */
2225			if (moea_pte_compare(pt, &pvo->pvo_pte.pte)) {
2226				victim_pvo = pvo;
2227				break;
2228			}
2229		}
2230
2231		if (victim_pvo == NULL)
2232			panic("moea_pte_spill: victim s-pte (%p) has no pvo"
2233			    "entry", pt);
2234	}
2235
2236	/*
2237	 * We are invalidating the TLB entry for the EA we are replacing even
2238	 * though it's valid.  If we don't, we lose any ref/chg bit changes
2239	 * contained in the TLB entry.
2240	 */
2241	source_pvo->pvo_pte.pte.pte_hi &= ~PTE_HID;
2242
2243	moea_pte_unset(pt, &victim_pvo->pvo_pte.pte, victim_pvo->pvo_vaddr);
2244	moea_pte_set(pt, &source_pvo->pvo_pte.pte);
2245
2246	PVO_PTEGIDX_CLR(victim_pvo);
2247	PVO_PTEGIDX_SET(source_pvo, i);
2248	moea_pte_replacements++;
2249
2250	mtx_unlock(&moea_table_mutex);
2251	return (1);
2252}
2253
2254static int
2255moea_pte_insert(u_int ptegidx, struct pte *pvo_pt)
2256{
2257	struct	pte *pt;
2258	int	i;
2259
2260	mtx_assert(&moea_table_mutex, MA_OWNED);
2261
2262	/*
2263	 * First try primary hash.
2264	 */
2265	for (pt = moea_pteg_table[ptegidx].pt, i = 0; i < 8; i++, pt++) {
2266		if ((pt->pte_hi & PTE_VALID) == 0) {
2267			pvo_pt->pte_hi &= ~PTE_HID;
2268			moea_pte_set(pt, pvo_pt);
2269			return (i);
2270		}
2271	}
2272
2273	/*
2274	 * Now try secondary hash.
2275	 */
2276	ptegidx ^= moea_pteg_mask;
2277
2278	for (pt = moea_pteg_table[ptegidx].pt, i = 0; i < 8; i++, pt++) {
2279		if ((pt->pte_hi & PTE_VALID) == 0) {
2280			pvo_pt->pte_hi |= PTE_HID;
2281			moea_pte_set(pt, pvo_pt);
2282			return (i);
2283		}
2284	}
2285
2286	panic("moea_pte_insert: overflow");
2287	return (-1);
2288}
2289
2290static boolean_t
2291moea_query_bit(vm_page_t m, int ptebit)
2292{
2293	struct	pvo_entry *pvo;
2294	struct	pte *pt;
2295
2296	if (moea_attr_fetch(m) & ptebit)
2297		return (TRUE);
2298
2299	rw_wlock(&pvh_global_lock);
2300	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
2301
2302		/*
2303		 * See if we saved the bit off.  If so, cache it and return
2304		 * success.
2305		 */
2306		if (pvo->pvo_pte.pte.pte_lo & ptebit) {
2307			moea_attr_save(m, ptebit);
2308			rw_wunlock(&pvh_global_lock);
2309			return (TRUE);
2310		}
2311	}
2312
2313	/*
2314	 * No luck, now go through the hard part of looking at the PTEs
2315	 * themselves.  Sync so that any pending REF/CHG bits are flushed to
2316	 * the PTEs.
2317	 */
2318	powerpc_sync();
2319	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
2320
2321		/*
2322		 * See if this pvo has a valid PTE.  if so, fetch the
2323		 * REF/CHG bits from the valid PTE.  If the appropriate
2324		 * ptebit is set, cache it and return success.
2325		 */
2326		pt = moea_pvo_to_pte(pvo, -1);
2327		if (pt != NULL) {
2328			moea_pte_synch(pt, &pvo->pvo_pte.pte);
2329			mtx_unlock(&moea_table_mutex);
2330			if (pvo->pvo_pte.pte.pte_lo & ptebit) {
2331				moea_attr_save(m, ptebit);
2332				rw_wunlock(&pvh_global_lock);
2333				return (TRUE);
2334			}
2335		}
2336	}
2337
2338	rw_wunlock(&pvh_global_lock);
2339	return (FALSE);
2340}
2341
2342static u_int
2343moea_clear_bit(vm_page_t m, int ptebit)
2344{
2345	u_int	count;
2346	struct	pvo_entry *pvo;
2347	struct	pte *pt;
2348
2349	rw_wlock(&pvh_global_lock);
2350
2351	/*
2352	 * Clear the cached value.
2353	 */
2354	moea_attr_clear(m, ptebit);
2355
2356	/*
2357	 * Sync so that any pending REF/CHG bits are flushed to the PTEs (so
2358	 * we can reset the right ones).  note that since the pvo entries and
2359	 * list heads are accessed via BAT0 and are never placed in the page
2360	 * table, we don't have to worry about further accesses setting the
2361	 * REF/CHG bits.
2362	 */
2363	powerpc_sync();
2364
2365	/*
2366	 * For each pvo entry, clear the pvo's ptebit.  If this pvo has a
2367	 * valid pte clear the ptebit from the valid pte.
2368	 */
2369	count = 0;
2370	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
2371		pt = moea_pvo_to_pte(pvo, -1);
2372		if (pt != NULL) {
2373			moea_pte_synch(pt, &pvo->pvo_pte.pte);
2374			if (pvo->pvo_pte.pte.pte_lo & ptebit) {
2375				count++;
2376				moea_pte_clear(pt, PVO_VADDR(pvo), ptebit);
2377			}
2378			mtx_unlock(&moea_table_mutex);
2379		}
2380		pvo->pvo_pte.pte.pte_lo &= ~ptebit;
2381	}
2382
2383	rw_wunlock(&pvh_global_lock);
2384	return (count);
2385}
2386
2387/*
2388 * Return true if the physical range is encompassed by the battable[idx]
2389 */
2390static int
2391moea_bat_mapped(int idx, vm_offset_t pa, vm_size_t size)
2392{
2393	u_int prot;
2394	u_int32_t start;
2395	u_int32_t end;
2396	u_int32_t bat_ble;
2397
2398	/*
2399	 * Return immediately if not a valid mapping
2400	 */
2401	if (!(battable[idx].batu & BAT_Vs))
2402		return (EINVAL);
2403
2404	/*
2405	 * The BAT entry must be cache-inhibited, guarded, and r/w
2406	 * so it can function as an i/o page
2407	 */
2408	prot = battable[idx].batl & (BAT_I|BAT_G|BAT_PP_RW);
2409	if (prot != (BAT_I|BAT_G|BAT_PP_RW))
2410		return (EPERM);
2411
2412	/*
2413	 * The address should be within the BAT range. Assume that the
2414	 * start address in the BAT has the correct alignment (thus
2415	 * not requiring masking)
2416	 */
2417	start = battable[idx].batl & BAT_PBS;
2418	bat_ble = (battable[idx].batu & ~(BAT_EBS)) | 0x03;
2419	end = start | (bat_ble << 15) | 0x7fff;
2420
2421	if ((pa < start) || ((pa + size) > end))
2422		return (ERANGE);
2423
2424	return (0);
2425}
2426
2427boolean_t
2428moea_dev_direct_mapped(mmu_t mmu, vm_paddr_t pa, vm_size_t size)
2429{
2430	int i;
2431
2432	/*
2433	 * This currently does not work for entries that
2434	 * overlap 256M BAT segments.
2435	 */
2436
2437	for(i = 0; i < 16; i++)
2438		if (moea_bat_mapped(i, pa, size) == 0)
2439			return (0);
2440
2441	return (EFAULT);
2442}
2443
2444/*
2445 * Map a set of physical memory pages into the kernel virtual
2446 * address space. Return a pointer to where it is mapped. This
2447 * routine is intended to be used for mapping device memory,
2448 * NOT real memory.
2449 */
2450void *
2451moea_mapdev(mmu_t mmu, vm_paddr_t pa, vm_size_t size)
2452{
2453
2454	return (moea_mapdev_attr(mmu, pa, size, VM_MEMATTR_DEFAULT));
2455}
2456
2457void *
2458moea_mapdev_attr(mmu_t mmu, vm_offset_t pa, vm_size_t size, vm_memattr_t ma)
2459{
2460	vm_offset_t va, tmpva, ppa, offset;
2461	int i;
2462
2463	ppa = trunc_page(pa);
2464	offset = pa & PAGE_MASK;
2465	size = roundup(offset + size, PAGE_SIZE);
2466
2467	/*
2468	 * If the physical address lies within a valid BAT table entry,
2469	 * return the 1:1 mapping. This currently doesn't work
2470	 * for regions that overlap 256M BAT segments.
2471	 */
2472	for (i = 0; i < 16; i++) {
2473		if (moea_bat_mapped(i, pa, size) == 0)
2474			return ((void *) pa);
2475	}
2476
2477	va = kmem_alloc_nofault(kernel_map, size);
2478	if (!va)
2479		panic("moea_mapdev: Couldn't alloc kernel virtual memory");
2480
2481	for (tmpva = va; size > 0;) {
2482		moea_kenter_attr(mmu, tmpva, ppa, ma);
2483		tlbie(tmpva);
2484		size -= PAGE_SIZE;
2485		tmpva += PAGE_SIZE;
2486		ppa += PAGE_SIZE;
2487	}
2488
2489	return ((void *)(va + offset));
2490}
2491
2492void
2493moea_unmapdev(mmu_t mmu, vm_offset_t va, vm_size_t size)
2494{
2495	vm_offset_t base, offset;
2496
2497	/*
2498	 * If this is outside kernel virtual space, then it's a
2499	 * battable entry and doesn't require unmapping
2500	 */
2501	if ((va >= VM_MIN_KERNEL_ADDRESS) && (va <= virtual_end)) {
2502		base = trunc_page(va);
2503		offset = va & PAGE_MASK;
2504		size = roundup(offset + size, PAGE_SIZE);
2505		kmem_free(kernel_map, base, size);
2506	}
2507}
2508
2509static void
2510moea_sync_icache(mmu_t mmu, pmap_t pm, vm_offset_t va, vm_size_t sz)
2511{
2512	struct pvo_entry *pvo;
2513	vm_offset_t lim;
2514	vm_paddr_t pa;
2515	vm_size_t len;
2516
2517	PMAP_LOCK(pm);
2518	while (sz > 0) {
2519		lim = round_page(va);
2520		len = MIN(lim - va, sz);
2521		pvo = moea_pvo_find_va(pm, va & ~ADDR_POFF, NULL);
2522		if (pvo != NULL) {
2523			pa = (pvo->pvo_pte.pte.pte_lo & PTE_RPGN) |
2524			    (va & ADDR_POFF);
2525			moea_syncicache(pa, len);
2526		}
2527		va += len;
2528		sz -= len;
2529	}
2530	PMAP_UNLOCK(pm);
2531}
2532