mmu_oea.c revision 213307
1/*-
2 * Copyright (c) 2001 The NetBSD Foundation, Inc.
3 * All rights reserved.
4 *
5 * This code is derived from software contributed to The NetBSD Foundation
6 * by Matt Thomas <matt@3am-software.com> of Allegro Networks, Inc.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 *    must display the following acknowledgement:
18 *        This product includes software developed by the NetBSD
19 *        Foundation, Inc. and its contributors.
20 * 4. Neither the name of The NetBSD Foundation nor the names of its
21 *    contributors may be used to endorse or promote products derived
22 *    from this software without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
25 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
26 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
27 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
28 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
29 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
30 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
31 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
32 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
33 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
34 * POSSIBILITY OF SUCH DAMAGE.
35 */
36/*-
37 * Copyright (C) 1995, 1996 Wolfgang Solfrank.
38 * Copyright (C) 1995, 1996 TooLs GmbH.
39 * All rights reserved.
40 *
41 * Redistribution and use in source and binary forms, with or without
42 * modification, are permitted provided that the following conditions
43 * are met:
44 * 1. Redistributions of source code must retain the above copyright
45 *    notice, this list of conditions and the following disclaimer.
46 * 2. Redistributions in binary form must reproduce the above copyright
47 *    notice, this list of conditions and the following disclaimer in the
48 *    documentation and/or other materials provided with the distribution.
49 * 3. All advertising materials mentioning features or use of this software
50 *    must display the following acknowledgement:
51 *	This product includes software developed by TooLs GmbH.
52 * 4. The name of TooLs GmbH may not be used to endorse or promote products
53 *    derived from this software without specific prior written permission.
54 *
55 * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR
56 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
57 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
58 * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
59 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
60 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
61 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
62 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
63 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
64 * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
65 *
66 * $NetBSD: pmap.c,v 1.28 2000/03/26 20:42:36 kleink Exp $
67 */
68/*-
69 * Copyright (C) 2001 Benno Rice.
70 * All rights reserved.
71 *
72 * Redistribution and use in source and binary forms, with or without
73 * modification, are permitted provided that the following conditions
74 * are met:
75 * 1. Redistributions of source code must retain the above copyright
76 *    notice, this list of conditions and the following disclaimer.
77 * 2. Redistributions in binary form must reproduce the above copyright
78 *    notice, this list of conditions and the following disclaimer in the
79 *    documentation and/or other materials provided with the distribution.
80 *
81 * THIS SOFTWARE IS PROVIDED BY Benno Rice ``AS IS'' AND ANY EXPRESS OR
82 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
83 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
84 * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
85 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
86 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
87 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
88 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
89 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
90 * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
91 */
92
93#include <sys/cdefs.h>
94__FBSDID("$FreeBSD: head/sys/powerpc/aim/mmu_oea.c 213307 2010-09-30 18:14:12Z nwhitehorn $");
95
96/*
97 * Manages physical address maps.
98 *
99 * In addition to hardware address maps, this module is called upon to
100 * provide software-use-only maps which may or may not be stored in the
101 * same form as hardware maps.  These pseudo-maps are used to store
102 * intermediate results from copy operations to and from address spaces.
103 *
104 * Since the information managed by this module is also stored by the
105 * logical address mapping module, this module may throw away valid virtual
106 * to physical mappings at almost any time.  However, invalidations of
107 * mappings must be done as requested.
108 *
109 * In order to cope with hardware architectures which make virtual to
110 * physical map invalidates expensive, this module may delay invalidate
111 * reduced protection operations until such time as they are actually
112 * necessary.  This module is given full information as to which processors
113 * are currently using which maps, and to when physical maps must be made
114 * correct.
115 */
116
117#include "opt_kstack_pages.h"
118
119#include <sys/param.h>
120#include <sys/kernel.h>
121#include <sys/ktr.h>
122#include <sys/lock.h>
123#include <sys/msgbuf.h>
124#include <sys/mutex.h>
125#include <sys/proc.h>
126#include <sys/sysctl.h>
127#include <sys/systm.h>
128#include <sys/vmmeter.h>
129
130#include <dev/ofw/openfirm.h>
131
132#include <vm/vm.h>
133#include <vm/vm_param.h>
134#include <vm/vm_kern.h>
135#include <vm/vm_page.h>
136#include <vm/vm_map.h>
137#include <vm/vm_object.h>
138#include <vm/vm_extern.h>
139#include <vm/vm_pageout.h>
140#include <vm/vm_pager.h>
141#include <vm/uma.h>
142
143#include <machine/cpu.h>
144#include <machine/platform.h>
145#include <machine/bat.h>
146#include <machine/frame.h>
147#include <machine/md_var.h>
148#include <machine/psl.h>
149#include <machine/pte.h>
150#include <machine/smp.h>
151#include <machine/sr.h>
152#include <machine/mmuvar.h>
153
154#include "mmu_if.h"
155
156#define	MOEA_DEBUG
157
158#define TODO	panic("%s: not implemented", __func__);
159
160#define	VSID_MAKE(sr, hash)	((sr) | (((hash) & 0xfffff) << 4))
161#define	VSID_TO_SR(vsid)	((vsid) & 0xf)
162#define	VSID_TO_HASH(vsid)	(((vsid) >> 4) & 0xfffff)
163
164#define	PVO_PTEGIDX_MASK	0x007		/* which PTEG slot */
165#define	PVO_PTEGIDX_VALID	0x008		/* slot is valid */
166#define	PVO_WIRED		0x010		/* PVO entry is wired */
167#define	PVO_MANAGED		0x020		/* PVO entry is managed */
168#define	PVO_EXECUTABLE		0x040		/* PVO entry is executable */
169#define	PVO_BOOTSTRAP		0x080		/* PVO entry allocated during
170						   bootstrap */
171#define PVO_FAKE		0x100		/* fictitious phys page */
172#define	PVO_VADDR(pvo)		((pvo)->pvo_vaddr & ~ADDR_POFF)
173#define	PVO_ISEXECUTABLE(pvo)	((pvo)->pvo_vaddr & PVO_EXECUTABLE)
174#define PVO_ISFAKE(pvo)		((pvo)->pvo_vaddr & PVO_FAKE)
175#define	PVO_PTEGIDX_GET(pvo)	((pvo)->pvo_vaddr & PVO_PTEGIDX_MASK)
176#define	PVO_PTEGIDX_ISSET(pvo)	((pvo)->pvo_vaddr & PVO_PTEGIDX_VALID)
177#define	PVO_PTEGIDX_CLR(pvo)	\
178	((void)((pvo)->pvo_vaddr &= ~(PVO_PTEGIDX_VALID|PVO_PTEGIDX_MASK)))
179#define	PVO_PTEGIDX_SET(pvo, i)	\
180	((void)((pvo)->pvo_vaddr |= (i)|PVO_PTEGIDX_VALID))
181
182#define	MOEA_PVO_CHECK(pvo)
183
184struct ofw_map {
185	vm_offset_t	om_va;
186	vm_size_t	om_len;
187	vm_offset_t	om_pa;
188	u_int		om_mode;
189};
190
191/*
192 * Map of physical memory regions.
193 */
194static struct	mem_region *regions;
195static struct	mem_region *pregions;
196static u_int    phys_avail_count;
197static int	regions_sz, pregions_sz;
198static struct	ofw_map *translations;
199
200extern struct pmap ofw_pmap;
201
202/*
203 * Lock for the pteg and pvo tables.
204 */
205struct mtx	moea_table_mutex;
206struct mtx	moea_vsid_mutex;
207
208/* tlbie instruction synchronization */
209static struct mtx tlbie_mtx;
210
211/*
212 * PTEG data.
213 */
214static struct	pteg *moea_pteg_table;
215u_int		moea_pteg_count;
216u_int		moea_pteg_mask;
217
218/*
219 * PVO data.
220 */
221struct	pvo_head *moea_pvo_table;		/* pvo entries by pteg index */
222struct	pvo_head moea_pvo_kunmanaged =
223    LIST_HEAD_INITIALIZER(moea_pvo_kunmanaged);	/* list of unmanaged pages */
224struct	pvo_head moea_pvo_unmanaged =
225    LIST_HEAD_INITIALIZER(moea_pvo_unmanaged);	/* list of unmanaged pages */
226
227uma_zone_t	moea_upvo_zone;	/* zone for pvo entries for unmanaged pages */
228uma_zone_t	moea_mpvo_zone;	/* zone for pvo entries for managed pages */
229
230#define	BPVO_POOL_SIZE	32768
231static struct	pvo_entry *moea_bpvo_pool;
232static int	moea_bpvo_pool_index = 0;
233
234#define	VSID_NBPW	(sizeof(u_int32_t) * 8)
235static u_int	moea_vsid_bitmap[NPMAPS / VSID_NBPW];
236
237static boolean_t moea_initialized = FALSE;
238
239/*
240 * Statistics.
241 */
242u_int	moea_pte_valid = 0;
243u_int	moea_pte_overflow = 0;
244u_int	moea_pte_replacements = 0;
245u_int	moea_pvo_entries = 0;
246u_int	moea_pvo_enter_calls = 0;
247u_int	moea_pvo_remove_calls = 0;
248u_int	moea_pte_spills = 0;
249SYSCTL_INT(_machdep, OID_AUTO, moea_pte_valid, CTLFLAG_RD, &moea_pte_valid,
250    0, "");
251SYSCTL_INT(_machdep, OID_AUTO, moea_pte_overflow, CTLFLAG_RD,
252    &moea_pte_overflow, 0, "");
253SYSCTL_INT(_machdep, OID_AUTO, moea_pte_replacements, CTLFLAG_RD,
254    &moea_pte_replacements, 0, "");
255SYSCTL_INT(_machdep, OID_AUTO, moea_pvo_entries, CTLFLAG_RD, &moea_pvo_entries,
256    0, "");
257SYSCTL_INT(_machdep, OID_AUTO, moea_pvo_enter_calls, CTLFLAG_RD,
258    &moea_pvo_enter_calls, 0, "");
259SYSCTL_INT(_machdep, OID_AUTO, moea_pvo_remove_calls, CTLFLAG_RD,
260    &moea_pvo_remove_calls, 0, "");
261SYSCTL_INT(_machdep, OID_AUTO, moea_pte_spills, CTLFLAG_RD,
262    &moea_pte_spills, 0, "");
263
264/*
265 * Allocate physical memory for use in moea_bootstrap.
266 */
267static vm_offset_t	moea_bootstrap_alloc(vm_size_t, u_int);
268
269/*
270 * PTE calls.
271 */
272static int		moea_pte_insert(u_int, struct pte *);
273
274/*
275 * PVO calls.
276 */
277static int	moea_pvo_enter(pmap_t, uma_zone_t, struct pvo_head *,
278		    vm_offset_t, vm_offset_t, u_int, int);
279static void	moea_pvo_remove(struct pvo_entry *, int);
280static struct	pvo_entry *moea_pvo_find_va(pmap_t, vm_offset_t, int *);
281static struct	pte *moea_pvo_to_pte(const struct pvo_entry *, int);
282
283/*
284 * Utility routines.
285 */
286static void		moea_enter_locked(pmap_t, vm_offset_t, vm_page_t,
287			    vm_prot_t, boolean_t);
288static void		moea_syncicache(vm_offset_t, vm_size_t);
289static boolean_t	moea_query_bit(vm_page_t, int);
290static u_int		moea_clear_bit(vm_page_t, int);
291static void		moea_kremove(mmu_t, vm_offset_t);
292int		moea_pte_spill(vm_offset_t);
293
294/*
295 * Kernel MMU interface
296 */
297void moea_change_wiring(mmu_t, pmap_t, vm_offset_t, boolean_t);
298void moea_clear_modify(mmu_t, vm_page_t);
299void moea_clear_reference(mmu_t, vm_page_t);
300void moea_copy_page(mmu_t, vm_page_t, vm_page_t);
301void moea_enter(mmu_t, pmap_t, vm_offset_t, vm_page_t, vm_prot_t, boolean_t);
302void moea_enter_object(mmu_t, pmap_t, vm_offset_t, vm_offset_t, vm_page_t,
303    vm_prot_t);
304void moea_enter_quick(mmu_t, pmap_t, vm_offset_t, vm_page_t, vm_prot_t);
305vm_paddr_t moea_extract(mmu_t, pmap_t, vm_offset_t);
306vm_page_t moea_extract_and_hold(mmu_t, pmap_t, vm_offset_t, vm_prot_t);
307void moea_init(mmu_t);
308boolean_t moea_is_modified(mmu_t, vm_page_t);
309boolean_t moea_is_referenced(mmu_t, vm_page_t);
310boolean_t moea_ts_referenced(mmu_t, vm_page_t);
311vm_offset_t moea_map(mmu_t, vm_offset_t *, vm_offset_t, vm_offset_t, int);
312boolean_t moea_page_exists_quick(mmu_t, pmap_t, vm_page_t);
313int moea_page_wired_mappings(mmu_t, vm_page_t);
314void moea_pinit(mmu_t, pmap_t);
315void moea_pinit0(mmu_t, pmap_t);
316void moea_protect(mmu_t, pmap_t, vm_offset_t, vm_offset_t, vm_prot_t);
317void moea_qenter(mmu_t, vm_offset_t, vm_page_t *, int);
318void moea_qremove(mmu_t, vm_offset_t, int);
319void moea_release(mmu_t, pmap_t);
320void moea_remove(mmu_t, pmap_t, vm_offset_t, vm_offset_t);
321void moea_remove_all(mmu_t, vm_page_t);
322void moea_remove_write(mmu_t, vm_page_t);
323void moea_zero_page(mmu_t, vm_page_t);
324void moea_zero_page_area(mmu_t, vm_page_t, int, int);
325void moea_zero_page_idle(mmu_t, vm_page_t);
326void moea_activate(mmu_t, struct thread *);
327void moea_deactivate(mmu_t, struct thread *);
328void moea_cpu_bootstrap(mmu_t, int);
329void moea_bootstrap(mmu_t, vm_offset_t, vm_offset_t);
330void *moea_mapdev(mmu_t, vm_offset_t, vm_size_t);
331void *moea_mapdev_attr(mmu_t, vm_offset_t, vm_size_t, vm_memattr_t);
332void moea_unmapdev(mmu_t, vm_offset_t, vm_size_t);
333vm_offset_t moea_kextract(mmu_t, vm_offset_t);
334void moea_kenter_attr(mmu_t, vm_offset_t, vm_offset_t, vm_memattr_t);
335void moea_kenter(mmu_t, vm_offset_t, vm_offset_t);
336void moea_page_set_memattr(mmu_t mmu, vm_page_t m, vm_memattr_t ma);
337boolean_t moea_dev_direct_mapped(mmu_t, vm_offset_t, vm_size_t);
338static void moea_sync_icache(mmu_t, pmap_t, vm_offset_t, vm_size_t);
339
340static mmu_method_t moea_methods[] = {
341	MMUMETHOD(mmu_change_wiring,	moea_change_wiring),
342	MMUMETHOD(mmu_clear_modify,	moea_clear_modify),
343	MMUMETHOD(mmu_clear_reference,	moea_clear_reference),
344	MMUMETHOD(mmu_copy_page,	moea_copy_page),
345	MMUMETHOD(mmu_enter,		moea_enter),
346	MMUMETHOD(mmu_enter_object,	moea_enter_object),
347	MMUMETHOD(mmu_enter_quick,	moea_enter_quick),
348	MMUMETHOD(mmu_extract,		moea_extract),
349	MMUMETHOD(mmu_extract_and_hold,	moea_extract_and_hold),
350	MMUMETHOD(mmu_init,		moea_init),
351	MMUMETHOD(mmu_is_modified,	moea_is_modified),
352	MMUMETHOD(mmu_is_referenced,	moea_is_referenced),
353	MMUMETHOD(mmu_ts_referenced,	moea_ts_referenced),
354	MMUMETHOD(mmu_map,     		moea_map),
355	MMUMETHOD(mmu_page_exists_quick,moea_page_exists_quick),
356	MMUMETHOD(mmu_page_wired_mappings,moea_page_wired_mappings),
357	MMUMETHOD(mmu_pinit,		moea_pinit),
358	MMUMETHOD(mmu_pinit0,		moea_pinit0),
359	MMUMETHOD(mmu_protect,		moea_protect),
360	MMUMETHOD(mmu_qenter,		moea_qenter),
361	MMUMETHOD(mmu_qremove,		moea_qremove),
362	MMUMETHOD(mmu_release,		moea_release),
363	MMUMETHOD(mmu_remove,		moea_remove),
364	MMUMETHOD(mmu_remove_all,      	moea_remove_all),
365	MMUMETHOD(mmu_remove_write,	moea_remove_write),
366	MMUMETHOD(mmu_sync_icache,	moea_sync_icache),
367	MMUMETHOD(mmu_zero_page,       	moea_zero_page),
368	MMUMETHOD(mmu_zero_page_area,	moea_zero_page_area),
369	MMUMETHOD(mmu_zero_page_idle,	moea_zero_page_idle),
370	MMUMETHOD(mmu_activate,		moea_activate),
371	MMUMETHOD(mmu_deactivate,      	moea_deactivate),
372	MMUMETHOD(mmu_page_set_memattr,	moea_page_set_memattr),
373
374	/* Internal interfaces */
375	MMUMETHOD(mmu_bootstrap,       	moea_bootstrap),
376	MMUMETHOD(mmu_cpu_bootstrap,   	moea_cpu_bootstrap),
377	MMUMETHOD(mmu_mapdev_attr,	moea_mapdev_attr),
378	MMUMETHOD(mmu_mapdev,		moea_mapdev),
379	MMUMETHOD(mmu_unmapdev,		moea_unmapdev),
380	MMUMETHOD(mmu_kextract,		moea_kextract),
381	MMUMETHOD(mmu_kenter,		moea_kenter),
382	MMUMETHOD(mmu_kenter_attr,	moea_kenter_attr),
383	MMUMETHOD(mmu_dev_direct_mapped,moea_dev_direct_mapped),
384
385	{ 0, 0 }
386};
387
388MMU_DEF(oea_mmu, MMU_TYPE_OEA, moea_methods, 0);
389
390static __inline uint32_t
391moea_calc_wimg(vm_offset_t pa, vm_memattr_t ma)
392{
393	uint32_t pte_lo;
394	int i;
395
396	if (ma != VM_MEMATTR_DEFAULT) {
397		switch (ma) {
398		case VM_MEMATTR_UNCACHEABLE:
399			return (PTE_I | PTE_G);
400		case VM_MEMATTR_WRITE_COMBINING:
401		case VM_MEMATTR_WRITE_BACK:
402		case VM_MEMATTR_PREFETCHABLE:
403			return (PTE_I);
404		case VM_MEMATTR_WRITE_THROUGH:
405			return (PTE_W | PTE_M);
406		}
407	}
408
409	/*
410	 * Assume the page is cache inhibited and access is guarded unless
411	 * it's in our available memory array.
412	 */
413	pte_lo = PTE_I | PTE_G;
414	for (i = 0; i < pregions_sz; i++) {
415		if ((pa >= pregions[i].mr_start) &&
416		    (pa < (pregions[i].mr_start + pregions[i].mr_size))) {
417			pte_lo = PTE_M;
418			break;
419		}
420	}
421
422	return pte_lo;
423}
424
425static void
426tlbie(vm_offset_t va)
427{
428
429	mtx_lock_spin(&tlbie_mtx);
430	__asm __volatile("tlbie %0" :: "r"(va));
431	__asm __volatile("tlbsync");
432	powerpc_sync();
433	mtx_unlock_spin(&tlbie_mtx);
434}
435
436static void
437tlbia(void)
438{
439	vm_offset_t va;
440
441	for (va = 0; va < 0x00040000; va += 0x00001000) {
442		__asm __volatile("tlbie %0" :: "r"(va));
443		powerpc_sync();
444	}
445	__asm __volatile("tlbsync");
446	powerpc_sync();
447}
448
449static __inline int
450va_to_sr(u_int *sr, vm_offset_t va)
451{
452	return (sr[(uintptr_t)va >> ADDR_SR_SHFT]);
453}
454
455static __inline u_int
456va_to_pteg(u_int sr, vm_offset_t addr)
457{
458	u_int hash;
459
460	hash = (sr & SR_VSID_MASK) ^ (((u_int)addr & ADDR_PIDX) >>
461	    ADDR_PIDX_SHFT);
462	return (hash & moea_pteg_mask);
463}
464
465static __inline struct pvo_head *
466pa_to_pvoh(vm_offset_t pa, vm_page_t *pg_p)
467{
468	struct	vm_page *pg;
469
470	pg = PHYS_TO_VM_PAGE(pa);
471
472	if (pg_p != NULL)
473		*pg_p = pg;
474
475	if (pg == NULL)
476		return (&moea_pvo_unmanaged);
477
478	return (&pg->md.mdpg_pvoh);
479}
480
481static __inline struct pvo_head *
482vm_page_to_pvoh(vm_page_t m)
483{
484
485	return (&m->md.mdpg_pvoh);
486}
487
488static __inline void
489moea_attr_clear(vm_page_t m, int ptebit)
490{
491
492	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
493	m->md.mdpg_attrs &= ~ptebit;
494}
495
496static __inline int
497moea_attr_fetch(vm_page_t m)
498{
499
500	return (m->md.mdpg_attrs);
501}
502
503static __inline void
504moea_attr_save(vm_page_t m, int ptebit)
505{
506
507	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
508	m->md.mdpg_attrs |= ptebit;
509}
510
511static __inline int
512moea_pte_compare(const struct pte *pt, const struct pte *pvo_pt)
513{
514	if (pt->pte_hi == pvo_pt->pte_hi)
515		return (1);
516
517	return (0);
518}
519
520static __inline int
521moea_pte_match(struct pte *pt, u_int sr, vm_offset_t va, int which)
522{
523	return (pt->pte_hi & ~PTE_VALID) ==
524	    (((sr & SR_VSID_MASK) << PTE_VSID_SHFT) |
525	    ((va >> ADDR_API_SHFT) & PTE_API) | which);
526}
527
528static __inline void
529moea_pte_create(struct pte *pt, u_int sr, vm_offset_t va, u_int pte_lo)
530{
531
532	mtx_assert(&moea_table_mutex, MA_OWNED);
533
534	/*
535	 * Construct a PTE.  Default to IMB initially.  Valid bit only gets
536	 * set when the real pte is set in memory.
537	 *
538	 * Note: Don't set the valid bit for correct operation of tlb update.
539	 */
540	pt->pte_hi = ((sr & SR_VSID_MASK) << PTE_VSID_SHFT) |
541	    (((va & ADDR_PIDX) >> ADDR_API_SHFT) & PTE_API);
542	pt->pte_lo = pte_lo;
543}
544
545static __inline void
546moea_pte_synch(struct pte *pt, struct pte *pvo_pt)
547{
548
549	mtx_assert(&moea_table_mutex, MA_OWNED);
550	pvo_pt->pte_lo |= pt->pte_lo & (PTE_REF | PTE_CHG);
551}
552
553static __inline void
554moea_pte_clear(struct pte *pt, vm_offset_t va, int ptebit)
555{
556
557	mtx_assert(&moea_table_mutex, MA_OWNED);
558
559	/*
560	 * As shown in Section 7.6.3.2.3
561	 */
562	pt->pte_lo &= ~ptebit;
563	tlbie(va);
564}
565
566static __inline void
567moea_pte_set(struct pte *pt, struct pte *pvo_pt)
568{
569
570	mtx_assert(&moea_table_mutex, MA_OWNED);
571	pvo_pt->pte_hi |= PTE_VALID;
572
573	/*
574	 * Update the PTE as defined in section 7.6.3.1.
575	 * Note that the REF/CHG bits are from pvo_pt and thus should havce
576	 * been saved so this routine can restore them (if desired).
577	 */
578	pt->pte_lo = pvo_pt->pte_lo;
579	powerpc_sync();
580	pt->pte_hi = pvo_pt->pte_hi;
581	powerpc_sync();
582	moea_pte_valid++;
583}
584
585static __inline void
586moea_pte_unset(struct pte *pt, struct pte *pvo_pt, vm_offset_t va)
587{
588
589	mtx_assert(&moea_table_mutex, MA_OWNED);
590	pvo_pt->pte_hi &= ~PTE_VALID;
591
592	/*
593	 * Force the reg & chg bits back into the PTEs.
594	 */
595	powerpc_sync();
596
597	/*
598	 * Invalidate the pte.
599	 */
600	pt->pte_hi &= ~PTE_VALID;
601
602	tlbie(va);
603
604	/*
605	 * Save the reg & chg bits.
606	 */
607	moea_pte_synch(pt, pvo_pt);
608	moea_pte_valid--;
609}
610
611static __inline void
612moea_pte_change(struct pte *pt, struct pte *pvo_pt, vm_offset_t va)
613{
614
615	/*
616	 * Invalidate the PTE
617	 */
618	moea_pte_unset(pt, pvo_pt, va);
619	moea_pte_set(pt, pvo_pt);
620}
621
622/*
623 * Quick sort callout for comparing memory regions.
624 */
625static int	mr_cmp(const void *a, const void *b);
626static int	om_cmp(const void *a, const void *b);
627
628static int
629mr_cmp(const void *a, const void *b)
630{
631	const struct	mem_region *regiona;
632	const struct	mem_region *regionb;
633
634	regiona = a;
635	regionb = b;
636	if (regiona->mr_start < regionb->mr_start)
637		return (-1);
638	else if (regiona->mr_start > regionb->mr_start)
639		return (1);
640	else
641		return (0);
642}
643
644static int
645om_cmp(const void *a, const void *b)
646{
647	const struct	ofw_map *mapa;
648	const struct	ofw_map *mapb;
649
650	mapa = a;
651	mapb = b;
652	if (mapa->om_pa < mapb->om_pa)
653		return (-1);
654	else if (mapa->om_pa > mapb->om_pa)
655		return (1);
656	else
657		return (0);
658}
659
660void
661moea_cpu_bootstrap(mmu_t mmup, int ap)
662{
663	u_int sdr;
664	int i;
665
666	if (ap) {
667		powerpc_sync();
668		__asm __volatile("mtdbatu 0,%0" :: "r"(battable[0].batu));
669		__asm __volatile("mtdbatl 0,%0" :: "r"(battable[0].batl));
670		isync();
671		__asm __volatile("mtibatu 0,%0" :: "r"(battable[0].batu));
672		__asm __volatile("mtibatl 0,%0" :: "r"(battable[0].batl));
673		isync();
674	}
675
676	__asm __volatile("mtdbatu 1,%0" :: "r"(battable[8].batu));
677	__asm __volatile("mtdbatl 1,%0" :: "r"(battable[8].batl));
678	isync();
679
680	__asm __volatile("mtibatu 1,%0" :: "r"(0));
681	__asm __volatile("mtdbatu 2,%0" :: "r"(0));
682	__asm __volatile("mtibatu 2,%0" :: "r"(0));
683	__asm __volatile("mtdbatu 3,%0" :: "r"(0));
684	__asm __volatile("mtibatu 3,%0" :: "r"(0));
685	isync();
686
687	for (i = 0; i < 16; i++)
688		mtsrin(i << ADDR_SR_SHFT, EMPTY_SEGMENT);
689
690	__asm __volatile("mtsr %0,%1" :: "n"(KERNEL_SR), "r"(KERNEL_SEGMENT));
691	__asm __volatile("mtsr %0,%1" :: "n"(KERNEL2_SR), "r"(KERNEL2_SEGMENT));
692	powerpc_sync();
693
694	sdr = (u_int)moea_pteg_table | (moea_pteg_mask >> 10);
695	__asm __volatile("mtsdr1 %0" :: "r"(sdr));
696	isync();
697
698	tlbia();
699}
700
701void
702moea_bootstrap(mmu_t mmup, vm_offset_t kernelstart, vm_offset_t kernelend)
703{
704	ihandle_t	mmui;
705	phandle_t	chosen, mmu;
706	int		sz;
707	int		i, j;
708	int		ofw_mappings;
709	vm_size_t	size, physsz, hwphyssz;
710	vm_offset_t	pa, va, off;
711	void		*dpcpu;
712	register_t	msr;
713
714        /*
715         * Set up BAT0 to map the lowest 256 MB area
716         */
717        battable[0x0].batl = BATL(0x00000000, BAT_M, BAT_PP_RW);
718        battable[0x0].batu = BATU(0x00000000, BAT_BL_256M, BAT_Vs);
719
720        /*
721         * Map PCI memory space.
722         */
723        battable[0x8].batl = BATL(0x80000000, BAT_I|BAT_G, BAT_PP_RW);
724        battable[0x8].batu = BATU(0x80000000, BAT_BL_256M, BAT_Vs);
725
726        battable[0x9].batl = BATL(0x90000000, BAT_I|BAT_G, BAT_PP_RW);
727        battable[0x9].batu = BATU(0x90000000, BAT_BL_256M, BAT_Vs);
728
729        battable[0xa].batl = BATL(0xa0000000, BAT_I|BAT_G, BAT_PP_RW);
730        battable[0xa].batu = BATU(0xa0000000, BAT_BL_256M, BAT_Vs);
731
732        battable[0xb].batl = BATL(0xb0000000, BAT_I|BAT_G, BAT_PP_RW);
733        battable[0xb].batu = BATU(0xb0000000, BAT_BL_256M, BAT_Vs);
734
735        /*
736         * Map obio devices.
737         */
738        battable[0xf].batl = BATL(0xf0000000, BAT_I|BAT_G, BAT_PP_RW);
739        battable[0xf].batu = BATU(0xf0000000, BAT_BL_256M, BAT_Vs);
740
741	/*
742	 * Use an IBAT and a DBAT to map the bottom segment of memory
743	 * where we are. Turn off instruction relocation temporarily
744	 * to prevent faults while reprogramming the IBAT.
745	 */
746	msr = mfmsr();
747	mtmsr(msr & ~PSL_IR);
748	__asm (".balign 32; \n"
749	       "mtibatu 0,%0; mtibatl 0,%1; isync; \n"
750	       "mtdbatu 0,%0; mtdbatl 0,%1; isync"
751	    :: "r"(battable[0].batu), "r"(battable[0].batl));
752	mtmsr(msr);
753
754	/* map pci space */
755	__asm __volatile("mtdbatu 1,%0" :: "r"(battable[8].batu));
756	__asm __volatile("mtdbatl 1,%0" :: "r"(battable[8].batl));
757	isync();
758
759	/* set global direct map flag */
760	hw_direct_map = 1;
761
762	mem_regions(&pregions, &pregions_sz, &regions, &regions_sz);
763	CTR0(KTR_PMAP, "moea_bootstrap: physical memory");
764
765	qsort(pregions, pregions_sz, sizeof(*pregions), mr_cmp);
766	for (i = 0; i < pregions_sz; i++) {
767		vm_offset_t pa;
768		vm_offset_t end;
769
770		CTR3(KTR_PMAP, "physregion: %#x - %#x (%#x)",
771			pregions[i].mr_start,
772			pregions[i].mr_start + pregions[i].mr_size,
773			pregions[i].mr_size);
774		/*
775		 * Install entries into the BAT table to allow all
776		 * of physmem to be convered by on-demand BAT entries.
777		 * The loop will sometimes set the same battable element
778		 * twice, but that's fine since they won't be used for
779		 * a while yet.
780		 */
781		pa = pregions[i].mr_start & 0xf0000000;
782		end = pregions[i].mr_start + pregions[i].mr_size;
783		do {
784                        u_int n = pa >> ADDR_SR_SHFT;
785
786			battable[n].batl = BATL(pa, BAT_M, BAT_PP_RW);
787			battable[n].batu = BATU(pa, BAT_BL_256M, BAT_Vs);
788			pa += SEGMENT_LENGTH;
789		} while (pa < end);
790	}
791
792	if (sizeof(phys_avail)/sizeof(phys_avail[0]) < regions_sz)
793		panic("moea_bootstrap: phys_avail too small");
794	qsort(regions, regions_sz, sizeof(*regions), mr_cmp);
795	phys_avail_count = 0;
796	physsz = 0;
797	hwphyssz = 0;
798	TUNABLE_ULONG_FETCH("hw.physmem", (u_long *) &hwphyssz);
799	for (i = 0, j = 0; i < regions_sz; i++, j += 2) {
800		CTR3(KTR_PMAP, "region: %#x - %#x (%#x)", regions[i].mr_start,
801		    regions[i].mr_start + regions[i].mr_size,
802		    regions[i].mr_size);
803		if (hwphyssz != 0 &&
804		    (physsz + regions[i].mr_size) >= hwphyssz) {
805			if (physsz < hwphyssz) {
806				phys_avail[j] = regions[i].mr_start;
807				phys_avail[j + 1] = regions[i].mr_start +
808				    hwphyssz - physsz;
809				physsz = hwphyssz;
810				phys_avail_count++;
811			}
812			break;
813		}
814		phys_avail[j] = regions[i].mr_start;
815		phys_avail[j + 1] = regions[i].mr_start + regions[i].mr_size;
816		phys_avail_count++;
817		physsz += regions[i].mr_size;
818	}
819	physmem = btoc(physsz);
820
821	/*
822	 * Allocate PTEG table.
823	 */
824#ifdef PTEGCOUNT
825	moea_pteg_count = PTEGCOUNT;
826#else
827	moea_pteg_count = 0x1000;
828
829	while (moea_pteg_count < physmem)
830		moea_pteg_count <<= 1;
831
832	moea_pteg_count >>= 1;
833#endif /* PTEGCOUNT */
834
835	size = moea_pteg_count * sizeof(struct pteg);
836	CTR2(KTR_PMAP, "moea_bootstrap: %d PTEGs, %d bytes", moea_pteg_count,
837	    size);
838	moea_pteg_table = (struct pteg *)moea_bootstrap_alloc(size, size);
839	CTR1(KTR_PMAP, "moea_bootstrap: PTEG table at %p", moea_pteg_table);
840	bzero((void *)moea_pteg_table, moea_pteg_count * sizeof(struct pteg));
841	moea_pteg_mask = moea_pteg_count - 1;
842
843	/*
844	 * Allocate pv/overflow lists.
845	 */
846	size = sizeof(struct pvo_head) * moea_pteg_count;
847	moea_pvo_table = (struct pvo_head *)moea_bootstrap_alloc(size,
848	    PAGE_SIZE);
849	CTR1(KTR_PMAP, "moea_bootstrap: PVO table at %p", moea_pvo_table);
850	for (i = 0; i < moea_pteg_count; i++)
851		LIST_INIT(&moea_pvo_table[i]);
852
853	/*
854	 * Initialize the lock that synchronizes access to the pteg and pvo
855	 * tables.
856	 */
857	mtx_init(&moea_table_mutex, "pmap table", NULL, MTX_DEF |
858	    MTX_RECURSE);
859	mtx_init(&moea_vsid_mutex, "VSID table", NULL, MTX_DEF);
860
861	mtx_init(&tlbie_mtx, "tlbie", NULL, MTX_SPIN);
862
863	/*
864	 * Initialise the unmanaged pvo pool.
865	 */
866	moea_bpvo_pool = (struct pvo_entry *)moea_bootstrap_alloc(
867		BPVO_POOL_SIZE*sizeof(struct pvo_entry), 0);
868	moea_bpvo_pool_index = 0;
869
870	/*
871	 * Make sure kernel vsid is allocated as well as VSID 0.
872	 */
873	moea_vsid_bitmap[(KERNEL_VSIDBITS & (NPMAPS - 1)) / VSID_NBPW]
874		|= 1 << (KERNEL_VSIDBITS % VSID_NBPW);
875	moea_vsid_bitmap[0] |= 1;
876
877	/*
878	 * Set up the Open Firmware pmap and add it's mappings.
879	 */
880	moea_pinit(mmup, &ofw_pmap);
881	ofw_pmap.pm_sr[KERNEL_SR] = KERNEL_SEGMENT;
882	ofw_pmap.pm_sr[KERNEL2_SR] = KERNEL2_SEGMENT;
883	if ((chosen = OF_finddevice("/chosen")) == -1)
884		panic("moea_bootstrap: can't find /chosen");
885	OF_getprop(chosen, "mmu", &mmui, 4);
886	if ((mmu = OF_instance_to_package(mmui)) == -1)
887		panic("moea_bootstrap: can't get mmu package");
888	if ((sz = OF_getproplen(mmu, "translations")) == -1)
889		panic("moea_bootstrap: can't get ofw translation count");
890	translations = NULL;
891	for (i = 0; phys_avail[i] != 0; i += 2) {
892		if (phys_avail[i + 1] >= sz) {
893			translations = (struct ofw_map *)phys_avail[i];
894			break;
895		}
896	}
897	if (translations == NULL)
898		panic("moea_bootstrap: no space to copy translations");
899	bzero(translations, sz);
900	if (OF_getprop(mmu, "translations", translations, sz) == -1)
901		panic("moea_bootstrap: can't get ofw translations");
902	CTR0(KTR_PMAP, "moea_bootstrap: translations");
903	sz /= sizeof(*translations);
904	qsort(translations, sz, sizeof (*translations), om_cmp);
905	for (i = 0, ofw_mappings = 0; i < sz; i++) {
906		CTR3(KTR_PMAP, "translation: pa=%#x va=%#x len=%#x",
907		    translations[i].om_pa, translations[i].om_va,
908		    translations[i].om_len);
909
910		/*
911		 * If the mapping is 1:1, let the RAM and device on-demand
912		 * BAT tables take care of the translation.
913		 */
914		if (translations[i].om_va == translations[i].om_pa)
915			continue;
916
917		/* Enter the pages */
918		for (off = 0; off < translations[i].om_len; off += PAGE_SIZE) {
919			struct	vm_page m;
920
921			m.phys_addr = translations[i].om_pa + off;
922			m.oflags = VPO_BUSY;
923			PMAP_LOCK(&ofw_pmap);
924			moea_enter_locked(&ofw_pmap,
925				   translations[i].om_va + off, &m,
926				   VM_PROT_ALL, 1);
927			PMAP_UNLOCK(&ofw_pmap);
928			ofw_mappings++;
929		}
930	}
931
932	/*
933	 * Calculate the last available physical address.
934	 */
935	for (i = 0; phys_avail[i + 2] != 0; i += 2)
936		;
937	Maxmem = powerpc_btop(phys_avail[i + 1]);
938
939	/*
940	 * Initialize the kernel pmap (which is statically allocated).
941	 */
942	PMAP_LOCK_INIT(kernel_pmap);
943	for (i = 0; i < 16; i++) {
944		kernel_pmap->pm_sr[i] = EMPTY_SEGMENT;
945	}
946	kernel_pmap->pm_sr[KERNEL_SR] = KERNEL_SEGMENT;
947	kernel_pmap->pm_sr[KERNEL2_SR] = KERNEL2_SEGMENT;
948	kernel_pmap->pm_active = ~0;
949
950	moea_cpu_bootstrap(mmup,0);
951
952	pmap_bootstrapped++;
953
954	/*
955	 * Set the start and end of kva.
956	 */
957	virtual_avail = VM_MIN_KERNEL_ADDRESS;
958	virtual_end = VM_MAX_SAFE_KERNEL_ADDRESS;
959
960	/*
961	 * Allocate a kernel stack with a guard page for thread0 and map it
962	 * into the kernel page map.
963	 */
964	pa = moea_bootstrap_alloc(KSTACK_PAGES * PAGE_SIZE, PAGE_SIZE);
965	va = virtual_avail + KSTACK_GUARD_PAGES * PAGE_SIZE;
966	virtual_avail = va + KSTACK_PAGES * PAGE_SIZE;
967	CTR2(KTR_PMAP, "moea_bootstrap: kstack0 at %#x (%#x)", pa, va);
968	thread0.td_kstack = va;
969	thread0.td_kstack_pages = KSTACK_PAGES;
970	for (i = 0; i < KSTACK_PAGES; i++) {
971		moea_kenter(mmup, va, pa);
972		pa += PAGE_SIZE;
973		va += PAGE_SIZE;
974	}
975
976	/*
977	 * Allocate virtual address space for the message buffer.
978	 */
979	pa = msgbuf_phys = moea_bootstrap_alloc(MSGBUF_SIZE, PAGE_SIZE);
980	msgbufp = (struct msgbuf *)virtual_avail;
981	va = virtual_avail;
982	virtual_avail += round_page(MSGBUF_SIZE);
983	while (va < virtual_avail) {
984		moea_kenter(mmup, va, pa);
985		pa += PAGE_SIZE;
986		va += PAGE_SIZE;
987	}
988
989	/*
990	 * Allocate virtual address space for the dynamic percpu area.
991	 */
992	pa = moea_bootstrap_alloc(DPCPU_SIZE, PAGE_SIZE);
993	dpcpu = (void *)virtual_avail;
994	va = virtual_avail;
995	virtual_avail += DPCPU_SIZE;
996	while (va < virtual_avail) {
997		moea_kenter(mmup, va, pa);
998		pa += PAGE_SIZE;
999		va += PAGE_SIZE;
1000	}
1001	dpcpu_init(dpcpu, 0);
1002}
1003
1004/*
1005 * Activate a user pmap.  The pmap must be activated before it's address
1006 * space can be accessed in any way.
1007 */
1008void
1009moea_activate(mmu_t mmu, struct thread *td)
1010{
1011	pmap_t	pm, pmr;
1012
1013	/*
1014	 * Load all the data we need up front to encourage the compiler to
1015	 * not issue any loads while we have interrupts disabled below.
1016	 */
1017	pm = &td->td_proc->p_vmspace->vm_pmap;
1018	pmr = pm->pmap_phys;
1019
1020	pm->pm_active |= PCPU_GET(cpumask);
1021	PCPU_SET(curpmap, pmr);
1022}
1023
1024void
1025moea_deactivate(mmu_t mmu, struct thread *td)
1026{
1027	pmap_t	pm;
1028
1029	pm = &td->td_proc->p_vmspace->vm_pmap;
1030	pm->pm_active &= ~PCPU_GET(cpumask);
1031	PCPU_SET(curpmap, NULL);
1032}
1033
1034void
1035moea_change_wiring(mmu_t mmu, pmap_t pm, vm_offset_t va, boolean_t wired)
1036{
1037	struct	pvo_entry *pvo;
1038
1039	PMAP_LOCK(pm);
1040	pvo = moea_pvo_find_va(pm, va & ~ADDR_POFF, NULL);
1041
1042	if (pvo != NULL) {
1043		if (wired) {
1044			if ((pvo->pvo_vaddr & PVO_WIRED) == 0)
1045				pm->pm_stats.wired_count++;
1046			pvo->pvo_vaddr |= PVO_WIRED;
1047		} else {
1048			if ((pvo->pvo_vaddr & PVO_WIRED) != 0)
1049				pm->pm_stats.wired_count--;
1050			pvo->pvo_vaddr &= ~PVO_WIRED;
1051		}
1052	}
1053	PMAP_UNLOCK(pm);
1054}
1055
1056void
1057moea_copy_page(mmu_t mmu, vm_page_t msrc, vm_page_t mdst)
1058{
1059	vm_offset_t	dst;
1060	vm_offset_t	src;
1061
1062	dst = VM_PAGE_TO_PHYS(mdst);
1063	src = VM_PAGE_TO_PHYS(msrc);
1064
1065	kcopy((void *)src, (void *)dst, PAGE_SIZE);
1066}
1067
1068/*
1069 * Zero a page of physical memory by temporarily mapping it into the tlb.
1070 */
1071void
1072moea_zero_page(mmu_t mmu, vm_page_t m)
1073{
1074	vm_offset_t pa = VM_PAGE_TO_PHYS(m);
1075	void *va = (void *)pa;
1076
1077	bzero(va, PAGE_SIZE);
1078}
1079
1080void
1081moea_zero_page_area(mmu_t mmu, vm_page_t m, int off, int size)
1082{
1083	vm_offset_t pa = VM_PAGE_TO_PHYS(m);
1084	void *va = (void *)(pa + off);
1085
1086	bzero(va, size);
1087}
1088
1089void
1090moea_zero_page_idle(mmu_t mmu, vm_page_t m)
1091{
1092	vm_offset_t pa = VM_PAGE_TO_PHYS(m);
1093	void *va = (void *)pa;
1094
1095	bzero(va, PAGE_SIZE);
1096}
1097
1098/*
1099 * Map the given physical page at the specified virtual address in the
1100 * target pmap with the protection requested.  If specified the page
1101 * will be wired down.
1102 */
1103void
1104moea_enter(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
1105	   boolean_t wired)
1106{
1107
1108	vm_page_lock_queues();
1109	PMAP_LOCK(pmap);
1110	moea_enter_locked(pmap, va, m, prot, wired);
1111	vm_page_unlock_queues();
1112	PMAP_UNLOCK(pmap);
1113}
1114
1115/*
1116 * Map the given physical page at the specified virtual address in the
1117 * target pmap with the protection requested.  If specified the page
1118 * will be wired down.
1119 *
1120 * The page queues and pmap must be locked.
1121 */
1122static void
1123moea_enter_locked(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
1124    boolean_t wired)
1125{
1126	struct		pvo_head *pvo_head;
1127	uma_zone_t	zone;
1128	vm_page_t	pg;
1129	u_int		pte_lo, pvo_flags, was_exec;
1130	int		error;
1131
1132	if (!moea_initialized) {
1133		pvo_head = &moea_pvo_kunmanaged;
1134		zone = moea_upvo_zone;
1135		pvo_flags = 0;
1136		pg = NULL;
1137		was_exec = PTE_EXEC;
1138	} else {
1139		pvo_head = vm_page_to_pvoh(m);
1140		pg = m;
1141		zone = moea_mpvo_zone;
1142		pvo_flags = PVO_MANAGED;
1143		was_exec = 0;
1144	}
1145	if (pmap_bootstrapped)
1146		mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1147	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1148	KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) != 0 ||
1149	    (m->oflags & VPO_BUSY) != 0 || VM_OBJECT_LOCKED(m->object),
1150	    ("moea_enter_locked: page %p is not busy", m));
1151
1152	/* XXX change the pvo head for fake pages */
1153	if ((m->flags & PG_FICTITIOUS) == PG_FICTITIOUS) {
1154		pvo_flags &= ~PVO_MANAGED;
1155		pvo_head = &moea_pvo_kunmanaged;
1156		zone = moea_upvo_zone;
1157	}
1158
1159	/*
1160	 * If this is a managed page, and it's the first reference to the page,
1161	 * clear the execness of the page.  Otherwise fetch the execness.
1162	 */
1163	if ((pg != NULL) && ((m->flags & PG_FICTITIOUS) == 0)) {
1164		if (LIST_EMPTY(pvo_head)) {
1165			moea_attr_clear(pg, PTE_EXEC);
1166		} else {
1167			was_exec = moea_attr_fetch(pg) & PTE_EXEC;
1168		}
1169	}
1170
1171	pte_lo = moea_calc_wimg(VM_PAGE_TO_PHYS(m), VM_MEMATTR_DEFAULT);
1172
1173	if (prot & VM_PROT_WRITE) {
1174		pte_lo |= PTE_BW;
1175		if (pmap_bootstrapped &&
1176		    (m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0)
1177			vm_page_flag_set(m, PG_WRITEABLE);
1178	} else
1179		pte_lo |= PTE_BR;
1180
1181	if (prot & VM_PROT_EXECUTE)
1182		pvo_flags |= PVO_EXECUTABLE;
1183
1184	if (wired)
1185		pvo_flags |= PVO_WIRED;
1186
1187	if ((m->flags & PG_FICTITIOUS) != 0)
1188		pvo_flags |= PVO_FAKE;
1189
1190	error = moea_pvo_enter(pmap, zone, pvo_head, va, VM_PAGE_TO_PHYS(m),
1191	    pte_lo, pvo_flags);
1192
1193	/*
1194	 * Flush the real page from the instruction cache if this page is
1195	 * mapped executable and cacheable and was not previously mapped (or
1196	 * was not mapped executable).
1197	 */
1198	if (error == 0 && (pvo_flags & PVO_EXECUTABLE) &&
1199	    (pte_lo & PTE_I) == 0 && was_exec == 0) {
1200		/*
1201		 * Flush the real memory from the cache.
1202		 */
1203		moea_syncicache(VM_PAGE_TO_PHYS(m), PAGE_SIZE);
1204		if (pg != NULL)
1205			moea_attr_save(pg, PTE_EXEC);
1206	}
1207
1208	/* XXX syncicache always until problems are sorted */
1209	moea_syncicache(VM_PAGE_TO_PHYS(m), PAGE_SIZE);
1210}
1211
1212/*
1213 * Maps a sequence of resident pages belonging to the same object.
1214 * The sequence begins with the given page m_start.  This page is
1215 * mapped at the given virtual address start.  Each subsequent page is
1216 * mapped at a virtual address that is offset from start by the same
1217 * amount as the page is offset from m_start within the object.  The
1218 * last page in the sequence is the page with the largest offset from
1219 * m_start that can be mapped at a virtual address less than the given
1220 * virtual address end.  Not every virtual page between start and end
1221 * is mapped; only those for which a resident page exists with the
1222 * corresponding offset from m_start are mapped.
1223 */
1224void
1225moea_enter_object(mmu_t mmu, pmap_t pm, vm_offset_t start, vm_offset_t end,
1226    vm_page_t m_start, vm_prot_t prot)
1227{
1228	vm_page_t m;
1229	vm_pindex_t diff, psize;
1230
1231	psize = atop(end - start);
1232	m = m_start;
1233	vm_page_lock_queues();
1234	PMAP_LOCK(pm);
1235	while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) {
1236		moea_enter_locked(pm, start + ptoa(diff), m, prot &
1237		    (VM_PROT_READ | VM_PROT_EXECUTE), FALSE);
1238		m = TAILQ_NEXT(m, listq);
1239	}
1240	vm_page_unlock_queues();
1241	PMAP_UNLOCK(pm);
1242}
1243
1244void
1245moea_enter_quick(mmu_t mmu, pmap_t pm, vm_offset_t va, vm_page_t m,
1246    vm_prot_t prot)
1247{
1248
1249	vm_page_lock_queues();
1250	PMAP_LOCK(pm);
1251	moea_enter_locked(pm, va, m, prot & (VM_PROT_READ | VM_PROT_EXECUTE),
1252	    FALSE);
1253	vm_page_unlock_queues();
1254	PMAP_UNLOCK(pm);
1255}
1256
1257vm_paddr_t
1258moea_extract(mmu_t mmu, pmap_t pm, vm_offset_t va)
1259{
1260	struct	pvo_entry *pvo;
1261	vm_paddr_t pa;
1262
1263	PMAP_LOCK(pm);
1264	pvo = moea_pvo_find_va(pm, va & ~ADDR_POFF, NULL);
1265	if (pvo == NULL)
1266		pa = 0;
1267	else
1268		pa = (pvo->pvo_pte.pte.pte_lo & PTE_RPGN) | (va & ADDR_POFF);
1269	PMAP_UNLOCK(pm);
1270	return (pa);
1271}
1272
1273/*
1274 * Atomically extract and hold the physical page with the given
1275 * pmap and virtual address pair if that mapping permits the given
1276 * protection.
1277 */
1278vm_page_t
1279moea_extract_and_hold(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_prot_t prot)
1280{
1281	struct	pvo_entry *pvo;
1282	vm_page_t m;
1283        vm_paddr_t pa;
1284
1285	m = NULL;
1286	pa = 0;
1287	PMAP_LOCK(pmap);
1288retry:
1289	pvo = moea_pvo_find_va(pmap, va & ~ADDR_POFF, NULL);
1290	if (pvo != NULL && (pvo->pvo_pte.pte.pte_hi & PTE_VALID) &&
1291	    ((pvo->pvo_pte.pte.pte_lo & PTE_PP) == PTE_RW ||
1292	     (prot & VM_PROT_WRITE) == 0)) {
1293		if (vm_page_pa_tryrelock(pmap, pvo->pvo_pte.pte.pte_lo & PTE_RPGN, &pa))
1294			goto retry;
1295		m = PHYS_TO_VM_PAGE(pvo->pvo_pte.pte.pte_lo & PTE_RPGN);
1296		vm_page_hold(m);
1297	}
1298	PA_UNLOCK_COND(pa);
1299	PMAP_UNLOCK(pmap);
1300	return (m);
1301}
1302
1303void
1304moea_init(mmu_t mmu)
1305{
1306
1307	moea_upvo_zone = uma_zcreate("UPVO entry", sizeof (struct pvo_entry),
1308	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
1309	    UMA_ZONE_VM | UMA_ZONE_NOFREE);
1310	moea_mpvo_zone = uma_zcreate("MPVO entry", sizeof(struct pvo_entry),
1311	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
1312	    UMA_ZONE_VM | UMA_ZONE_NOFREE);
1313	moea_initialized = TRUE;
1314}
1315
1316boolean_t
1317moea_is_referenced(mmu_t mmu, vm_page_t m)
1318{
1319
1320	KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0,
1321	    ("moea_is_referenced: page %p is not managed", m));
1322	return (moea_query_bit(m, PTE_REF));
1323}
1324
1325boolean_t
1326moea_is_modified(mmu_t mmu, vm_page_t m)
1327{
1328
1329	KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0,
1330	    ("moea_is_modified: page %p is not managed", m));
1331
1332	/*
1333	 * If the page is not VPO_BUSY, then PG_WRITEABLE cannot be
1334	 * concurrently set while the object is locked.  Thus, if PG_WRITEABLE
1335	 * is clear, no PTEs can have PTE_CHG set.
1336	 */
1337	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1338	if ((m->oflags & VPO_BUSY) == 0 &&
1339	    (m->flags & PG_WRITEABLE) == 0)
1340		return (FALSE);
1341	return (moea_query_bit(m, PTE_CHG));
1342}
1343
1344void
1345moea_clear_reference(mmu_t mmu, vm_page_t m)
1346{
1347
1348	KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0,
1349	    ("moea_clear_reference: page %p is not managed", m));
1350	moea_clear_bit(m, PTE_REF);
1351}
1352
1353void
1354moea_clear_modify(mmu_t mmu, vm_page_t m)
1355{
1356
1357	KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0,
1358	    ("moea_clear_modify: page %p is not managed", m));
1359	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1360	KASSERT((m->oflags & VPO_BUSY) == 0,
1361	    ("moea_clear_modify: page %p is busy", m));
1362
1363	/*
1364	 * If the page is not PG_WRITEABLE, then no PTEs can have PTE_CHG
1365	 * set.  If the object containing the page is locked and the page is
1366	 * not VPO_BUSY, then PG_WRITEABLE cannot be concurrently set.
1367	 */
1368	if ((m->flags & PG_WRITEABLE) == 0)
1369		return;
1370	moea_clear_bit(m, PTE_CHG);
1371}
1372
1373/*
1374 * Clear the write and modified bits in each of the given page's mappings.
1375 */
1376void
1377moea_remove_write(mmu_t mmu, vm_page_t m)
1378{
1379	struct	pvo_entry *pvo;
1380	struct	pte *pt;
1381	pmap_t	pmap;
1382	u_int	lo;
1383
1384	KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0,
1385	    ("moea_remove_write: page %p is not managed", m));
1386
1387	/*
1388	 * If the page is not VPO_BUSY, then PG_WRITEABLE cannot be set by
1389	 * another thread while the object is locked.  Thus, if PG_WRITEABLE
1390	 * is clear, no page table entries need updating.
1391	 */
1392	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1393	if ((m->oflags & VPO_BUSY) == 0 &&
1394	    (m->flags & PG_WRITEABLE) == 0)
1395		return;
1396	vm_page_lock_queues();
1397	lo = moea_attr_fetch(m);
1398	powerpc_sync();
1399	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
1400		pmap = pvo->pvo_pmap;
1401		PMAP_LOCK(pmap);
1402		if ((pvo->pvo_pte.pte.pte_lo & PTE_PP) != PTE_BR) {
1403			pt = moea_pvo_to_pte(pvo, -1);
1404			pvo->pvo_pte.pte.pte_lo &= ~PTE_PP;
1405			pvo->pvo_pte.pte.pte_lo |= PTE_BR;
1406			if (pt != NULL) {
1407				moea_pte_synch(pt, &pvo->pvo_pte.pte);
1408				lo |= pvo->pvo_pte.pte.pte_lo;
1409				pvo->pvo_pte.pte.pte_lo &= ~PTE_CHG;
1410				moea_pte_change(pt, &pvo->pvo_pte.pte,
1411				    pvo->pvo_vaddr);
1412				mtx_unlock(&moea_table_mutex);
1413			}
1414		}
1415		PMAP_UNLOCK(pmap);
1416	}
1417	if ((lo & PTE_CHG) != 0) {
1418		moea_attr_clear(m, PTE_CHG);
1419		vm_page_dirty(m);
1420	}
1421	vm_page_flag_clear(m, PG_WRITEABLE);
1422	vm_page_unlock_queues();
1423}
1424
1425/*
1426 *	moea_ts_referenced:
1427 *
1428 *	Return a count of reference bits for a page, clearing those bits.
1429 *	It is not necessary for every reference bit to be cleared, but it
1430 *	is necessary that 0 only be returned when there are truly no
1431 *	reference bits set.
1432 *
1433 *	XXX: The exact number of bits to check and clear is a matter that
1434 *	should be tested and standardized at some point in the future for
1435 *	optimal aging of shared pages.
1436 */
1437boolean_t
1438moea_ts_referenced(mmu_t mmu, vm_page_t m)
1439{
1440
1441	KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0,
1442	    ("moea_ts_referenced: page %p is not managed", m));
1443	return (moea_clear_bit(m, PTE_REF));
1444}
1445
1446/*
1447 * Modify the WIMG settings of all mappings for a page.
1448 */
1449void
1450moea_page_set_memattr(mmu_t mmu, vm_page_t m, vm_memattr_t ma)
1451{
1452	struct	pvo_entry *pvo;
1453	struct	pte *pt;
1454	pmap_t	pmap;
1455	u_int	lo;
1456
1457	vm_page_lock_queues();
1458	lo = moea_calc_wimg(VM_PAGE_TO_PHYS(m), ma);
1459	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
1460		pmap = pvo->pvo_pmap;
1461		PMAP_LOCK(pmap);
1462		mtx_lock(&moea_table_mutex);
1463		pt = moea_pvo_to_pte(pvo, -1);
1464		pvo->pvo_pte.pte.pte_lo &= ~PTE_WIMG;
1465		pvo->pvo_pte.pte.pte_lo |= lo;
1466		if (pt != NULL) {
1467			moea_pte_change(pt, &pvo->pvo_pte.pte,
1468			    pvo->pvo_vaddr);
1469			if (pvo->pvo_pmap == kernel_pmap)
1470				isync();
1471		}
1472		mtx_unlock(&moea_table_mutex);
1473		PMAP_UNLOCK(pmap);
1474	}
1475	m->md.mdpg_cache_attrs = ma;
1476	vm_page_unlock_queues();
1477}
1478
1479/*
1480 * Map a wired page into kernel virtual address space.
1481 */
1482void
1483moea_kenter(mmu_t mmu, vm_offset_t va, vm_offset_t pa)
1484{
1485
1486	moea_kenter_attr(mmu, va, pa, VM_MEMATTR_DEFAULT);
1487}
1488
1489void
1490moea_kenter_attr(mmu_t mmu, vm_offset_t va, vm_offset_t pa, vm_memattr_t ma)
1491{
1492	u_int		pte_lo;
1493	int		error;
1494
1495#if 0
1496	if (va < VM_MIN_KERNEL_ADDRESS)
1497		panic("moea_kenter: attempt to enter non-kernel address %#x",
1498		    va);
1499#endif
1500
1501	pte_lo = moea_calc_wimg(pa, ma);
1502
1503	PMAP_LOCK(kernel_pmap);
1504	error = moea_pvo_enter(kernel_pmap, moea_upvo_zone,
1505	    &moea_pvo_kunmanaged, va, pa, pte_lo, PVO_WIRED);
1506
1507	if (error != 0 && error != ENOENT)
1508		panic("moea_kenter: failed to enter va %#x pa %#x: %d", va,
1509		    pa, error);
1510
1511	/*
1512	 * Flush the real memory from the instruction cache.
1513	 */
1514	if ((pte_lo & (PTE_I | PTE_G)) == 0) {
1515		moea_syncicache(pa, PAGE_SIZE);
1516	}
1517	PMAP_UNLOCK(kernel_pmap);
1518}
1519
1520/*
1521 * Extract the physical page address associated with the given kernel virtual
1522 * address.
1523 */
1524vm_offset_t
1525moea_kextract(mmu_t mmu, vm_offset_t va)
1526{
1527	struct		pvo_entry *pvo;
1528	vm_paddr_t pa;
1529
1530	/*
1531	 * Allow direct mappings on 32-bit OEA
1532	 */
1533	if (va < VM_MIN_KERNEL_ADDRESS) {
1534		return (va);
1535	}
1536
1537	PMAP_LOCK(kernel_pmap);
1538	pvo = moea_pvo_find_va(kernel_pmap, va & ~ADDR_POFF, NULL);
1539	KASSERT(pvo != NULL, ("moea_kextract: no addr found"));
1540	pa = (pvo->pvo_pte.pte.pte_lo & PTE_RPGN) | (va & ADDR_POFF);
1541	PMAP_UNLOCK(kernel_pmap);
1542	return (pa);
1543}
1544
1545/*
1546 * Remove a wired page from kernel virtual address space.
1547 */
1548void
1549moea_kremove(mmu_t mmu, vm_offset_t va)
1550{
1551
1552	moea_remove(mmu, kernel_pmap, va, va + PAGE_SIZE);
1553}
1554
1555/*
1556 * Map a range of physical addresses into kernel virtual address space.
1557 *
1558 * The value passed in *virt is a suggested virtual address for the mapping.
1559 * Architectures which can support a direct-mapped physical to virtual region
1560 * can return the appropriate address within that region, leaving '*virt'
1561 * unchanged.  We cannot and therefore do not; *virt is updated with the
1562 * first usable address after the mapped region.
1563 */
1564vm_offset_t
1565moea_map(mmu_t mmu, vm_offset_t *virt, vm_offset_t pa_start,
1566    vm_offset_t pa_end, int prot)
1567{
1568	vm_offset_t	sva, va;
1569
1570	sva = *virt;
1571	va = sva;
1572	for (; pa_start < pa_end; pa_start += PAGE_SIZE, va += PAGE_SIZE)
1573		moea_kenter(mmu, va, pa_start);
1574	*virt = va;
1575	return (sva);
1576}
1577
1578/*
1579 * Returns true if the pmap's pv is one of the first
1580 * 16 pvs linked to from this page.  This count may
1581 * be changed upwards or downwards in the future; it
1582 * is only necessary that true be returned for a small
1583 * subset of pmaps for proper page aging.
1584 */
1585boolean_t
1586moea_page_exists_quick(mmu_t mmu, pmap_t pmap, vm_page_t m)
1587{
1588        int loops;
1589	struct pvo_entry *pvo;
1590	boolean_t rv;
1591
1592	KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0,
1593	    ("moea_page_exists_quick: page %p is not managed", m));
1594	loops = 0;
1595	rv = FALSE;
1596	vm_page_lock_queues();
1597	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
1598		if (pvo->pvo_pmap == pmap) {
1599			rv = TRUE;
1600			break;
1601		}
1602		if (++loops >= 16)
1603			break;
1604	}
1605	vm_page_unlock_queues();
1606	return (rv);
1607}
1608
1609/*
1610 * Return the number of managed mappings to the given physical page
1611 * that are wired.
1612 */
1613int
1614moea_page_wired_mappings(mmu_t mmu, vm_page_t m)
1615{
1616	struct pvo_entry *pvo;
1617	int count;
1618
1619	count = 0;
1620	if ((m->flags & PG_FICTITIOUS) != 0)
1621		return (count);
1622	vm_page_lock_queues();
1623	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink)
1624		if ((pvo->pvo_vaddr & PVO_WIRED) != 0)
1625			count++;
1626	vm_page_unlock_queues();
1627	return (count);
1628}
1629
1630static u_int	moea_vsidcontext;
1631
1632void
1633moea_pinit(mmu_t mmu, pmap_t pmap)
1634{
1635	int	i, mask;
1636	u_int	entropy;
1637
1638	KASSERT((int)pmap < VM_MIN_KERNEL_ADDRESS, ("moea_pinit: virt pmap"));
1639	PMAP_LOCK_INIT(pmap);
1640
1641	entropy = 0;
1642	__asm __volatile("mftb %0" : "=r"(entropy));
1643
1644	if ((pmap->pmap_phys = (pmap_t)moea_kextract(mmu, (vm_offset_t)pmap))
1645	    == NULL) {
1646		pmap->pmap_phys = pmap;
1647	}
1648
1649
1650	mtx_lock(&moea_vsid_mutex);
1651	/*
1652	 * Allocate some segment registers for this pmap.
1653	 */
1654	for (i = 0; i < NPMAPS; i += VSID_NBPW) {
1655		u_int	hash, n;
1656
1657		/*
1658		 * Create a new value by mutiplying by a prime and adding in
1659		 * entropy from the timebase register.  This is to make the
1660		 * VSID more random so that the PT hash function collides
1661		 * less often.  (Note that the prime casues gcc to do shifts
1662		 * instead of a multiply.)
1663		 */
1664		moea_vsidcontext = (moea_vsidcontext * 0x1105) + entropy;
1665		hash = moea_vsidcontext & (NPMAPS - 1);
1666		if (hash == 0)		/* 0 is special, avoid it */
1667			continue;
1668		n = hash >> 5;
1669		mask = 1 << (hash & (VSID_NBPW - 1));
1670		hash = (moea_vsidcontext & 0xfffff);
1671		if (moea_vsid_bitmap[n] & mask) {	/* collision? */
1672			/* anything free in this bucket? */
1673			if (moea_vsid_bitmap[n] == 0xffffffff) {
1674				entropy = (moea_vsidcontext >> 20);
1675				continue;
1676			}
1677			i = ffs(~moea_vsid_bitmap[n]) - 1;
1678			mask = 1 << i;
1679			hash &= 0xfffff & ~(VSID_NBPW - 1);
1680			hash |= i;
1681		}
1682		moea_vsid_bitmap[n] |= mask;
1683		for (i = 0; i < 16; i++)
1684			pmap->pm_sr[i] = VSID_MAKE(i, hash);
1685		mtx_unlock(&moea_vsid_mutex);
1686		return;
1687	}
1688
1689	mtx_unlock(&moea_vsid_mutex);
1690	panic("moea_pinit: out of segments");
1691}
1692
1693/*
1694 * Initialize the pmap associated with process 0.
1695 */
1696void
1697moea_pinit0(mmu_t mmu, pmap_t pm)
1698{
1699
1700	moea_pinit(mmu, pm);
1701	bzero(&pm->pm_stats, sizeof(pm->pm_stats));
1702}
1703
1704/*
1705 * Set the physical protection on the specified range of this map as requested.
1706 */
1707void
1708moea_protect(mmu_t mmu, pmap_t pm, vm_offset_t sva, vm_offset_t eva,
1709    vm_prot_t prot)
1710{
1711	struct	pvo_entry *pvo;
1712	struct	pte *pt;
1713	int	pteidx;
1714
1715	KASSERT(pm == &curproc->p_vmspace->vm_pmap || pm == kernel_pmap,
1716	    ("moea_protect: non current pmap"));
1717
1718	if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
1719		moea_remove(mmu, pm, sva, eva);
1720		return;
1721	}
1722
1723	vm_page_lock_queues();
1724	PMAP_LOCK(pm);
1725	for (; sva < eva; sva += PAGE_SIZE) {
1726		pvo = moea_pvo_find_va(pm, sva, &pteidx);
1727		if (pvo == NULL)
1728			continue;
1729
1730		if ((prot & VM_PROT_EXECUTE) == 0)
1731			pvo->pvo_vaddr &= ~PVO_EXECUTABLE;
1732
1733		/*
1734		 * Grab the PTE pointer before we diddle with the cached PTE
1735		 * copy.
1736		 */
1737		pt = moea_pvo_to_pte(pvo, pteidx);
1738		/*
1739		 * Change the protection of the page.
1740		 */
1741		pvo->pvo_pte.pte.pte_lo &= ~PTE_PP;
1742		pvo->pvo_pte.pte.pte_lo |= PTE_BR;
1743
1744		/*
1745		 * If the PVO is in the page table, update that pte as well.
1746		 */
1747		if (pt != NULL) {
1748			moea_pte_change(pt, &pvo->pvo_pte.pte, pvo->pvo_vaddr);
1749			mtx_unlock(&moea_table_mutex);
1750		}
1751	}
1752	vm_page_unlock_queues();
1753	PMAP_UNLOCK(pm);
1754}
1755
1756/*
1757 * Map a list of wired pages into kernel virtual address space.  This is
1758 * intended for temporary mappings which do not need page modification or
1759 * references recorded.  Existing mappings in the region are overwritten.
1760 */
1761void
1762moea_qenter(mmu_t mmu, vm_offset_t sva, vm_page_t *m, int count)
1763{
1764	vm_offset_t va;
1765
1766	va = sva;
1767	while (count-- > 0) {
1768		moea_kenter(mmu, va, VM_PAGE_TO_PHYS(*m));
1769		va += PAGE_SIZE;
1770		m++;
1771	}
1772}
1773
1774/*
1775 * Remove page mappings from kernel virtual address space.  Intended for
1776 * temporary mappings entered by moea_qenter.
1777 */
1778void
1779moea_qremove(mmu_t mmu, vm_offset_t sva, int count)
1780{
1781	vm_offset_t va;
1782
1783	va = sva;
1784	while (count-- > 0) {
1785		moea_kremove(mmu, va);
1786		va += PAGE_SIZE;
1787	}
1788}
1789
1790void
1791moea_release(mmu_t mmu, pmap_t pmap)
1792{
1793        int idx, mask;
1794
1795	/*
1796	 * Free segment register's VSID
1797	 */
1798        if (pmap->pm_sr[0] == 0)
1799                panic("moea_release");
1800
1801	mtx_lock(&moea_vsid_mutex);
1802        idx = VSID_TO_HASH(pmap->pm_sr[0]) & (NPMAPS-1);
1803        mask = 1 << (idx % VSID_NBPW);
1804        idx /= VSID_NBPW;
1805        moea_vsid_bitmap[idx] &= ~mask;
1806	mtx_unlock(&moea_vsid_mutex);
1807	PMAP_LOCK_DESTROY(pmap);
1808}
1809
1810/*
1811 * Remove the given range of addresses from the specified map.
1812 */
1813void
1814moea_remove(mmu_t mmu, pmap_t pm, vm_offset_t sva, vm_offset_t eva)
1815{
1816	struct	pvo_entry *pvo;
1817	int	pteidx;
1818
1819	vm_page_lock_queues();
1820	PMAP_LOCK(pm);
1821	for (; sva < eva; sva += PAGE_SIZE) {
1822		pvo = moea_pvo_find_va(pm, sva, &pteidx);
1823		if (pvo != NULL) {
1824			moea_pvo_remove(pvo, pteidx);
1825		}
1826	}
1827	PMAP_UNLOCK(pm);
1828	vm_page_unlock_queues();
1829}
1830
1831/*
1832 * Remove physical page from all pmaps in which it resides. moea_pvo_remove()
1833 * will reflect changes in pte's back to the vm_page.
1834 */
1835void
1836moea_remove_all(mmu_t mmu, vm_page_t m)
1837{
1838	struct  pvo_head *pvo_head;
1839	struct	pvo_entry *pvo, *next_pvo;
1840	pmap_t	pmap;
1841
1842	vm_page_lock_queues();
1843	pvo_head = vm_page_to_pvoh(m);
1844	for (pvo = LIST_FIRST(pvo_head); pvo != NULL; pvo = next_pvo) {
1845		next_pvo = LIST_NEXT(pvo, pvo_vlink);
1846
1847		MOEA_PVO_CHECK(pvo);	/* sanity check */
1848		pmap = pvo->pvo_pmap;
1849		PMAP_LOCK(pmap);
1850		moea_pvo_remove(pvo, -1);
1851		PMAP_UNLOCK(pmap);
1852	}
1853	if ((m->flags & PG_WRITEABLE) && moea_is_modified(mmu, m)) {
1854		moea_attr_clear(m, PTE_CHG);
1855		vm_page_dirty(m);
1856	}
1857	vm_page_flag_clear(m, PG_WRITEABLE);
1858	vm_page_unlock_queues();
1859}
1860
1861/*
1862 * Allocate a physical page of memory directly from the phys_avail map.
1863 * Can only be called from moea_bootstrap before avail start and end are
1864 * calculated.
1865 */
1866static vm_offset_t
1867moea_bootstrap_alloc(vm_size_t size, u_int align)
1868{
1869	vm_offset_t	s, e;
1870	int		i, j;
1871
1872	size = round_page(size);
1873	for (i = 0; phys_avail[i + 1] != 0; i += 2) {
1874		if (align != 0)
1875			s = (phys_avail[i] + align - 1) & ~(align - 1);
1876		else
1877			s = phys_avail[i];
1878		e = s + size;
1879
1880		if (s < phys_avail[i] || e > phys_avail[i + 1])
1881			continue;
1882
1883		if (s == phys_avail[i]) {
1884			phys_avail[i] += size;
1885		} else if (e == phys_avail[i + 1]) {
1886			phys_avail[i + 1] -= size;
1887		} else {
1888			for (j = phys_avail_count * 2; j > i; j -= 2) {
1889				phys_avail[j] = phys_avail[j - 2];
1890				phys_avail[j + 1] = phys_avail[j - 1];
1891			}
1892
1893			phys_avail[i + 3] = phys_avail[i + 1];
1894			phys_avail[i + 1] = s;
1895			phys_avail[i + 2] = e;
1896			phys_avail_count++;
1897		}
1898
1899		return (s);
1900	}
1901	panic("moea_bootstrap_alloc: could not allocate memory");
1902}
1903
1904static void
1905moea_syncicache(vm_offset_t pa, vm_size_t len)
1906{
1907	__syncicache((void *)pa, len);
1908}
1909
1910static int
1911moea_pvo_enter(pmap_t pm, uma_zone_t zone, struct pvo_head *pvo_head,
1912    vm_offset_t va, vm_offset_t pa, u_int pte_lo, int flags)
1913{
1914	struct	pvo_entry *pvo;
1915	u_int	sr;
1916	int	first;
1917	u_int	ptegidx;
1918	int	i;
1919	int     bootstrap;
1920
1921	moea_pvo_enter_calls++;
1922	first = 0;
1923	bootstrap = 0;
1924
1925	/*
1926	 * Compute the PTE Group index.
1927	 */
1928	va &= ~ADDR_POFF;
1929	sr = va_to_sr(pm->pm_sr, va);
1930	ptegidx = va_to_pteg(sr, va);
1931
1932	/*
1933	 * Remove any existing mapping for this page.  Reuse the pvo entry if
1934	 * there is a mapping.
1935	 */
1936	mtx_lock(&moea_table_mutex);
1937	LIST_FOREACH(pvo, &moea_pvo_table[ptegidx], pvo_olink) {
1938		if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) {
1939			if ((pvo->pvo_pte.pte.pte_lo & PTE_RPGN) == pa &&
1940			    (pvo->pvo_pte.pte.pte_lo & PTE_PP) ==
1941			    (pte_lo & PTE_PP)) {
1942				mtx_unlock(&moea_table_mutex);
1943				return (0);
1944			}
1945			moea_pvo_remove(pvo, -1);
1946			break;
1947		}
1948	}
1949
1950	/*
1951	 * If we aren't overwriting a mapping, try to allocate.
1952	 */
1953	if (moea_initialized) {
1954		pvo = uma_zalloc(zone, M_NOWAIT);
1955	} else {
1956		if (moea_bpvo_pool_index >= BPVO_POOL_SIZE) {
1957			panic("moea_enter: bpvo pool exhausted, %d, %d, %d",
1958			      moea_bpvo_pool_index, BPVO_POOL_SIZE,
1959			      BPVO_POOL_SIZE * sizeof(struct pvo_entry));
1960		}
1961		pvo = &moea_bpvo_pool[moea_bpvo_pool_index];
1962		moea_bpvo_pool_index++;
1963		bootstrap = 1;
1964	}
1965
1966	if (pvo == NULL) {
1967		mtx_unlock(&moea_table_mutex);
1968		return (ENOMEM);
1969	}
1970
1971	moea_pvo_entries++;
1972	pvo->pvo_vaddr = va;
1973	pvo->pvo_pmap = pm;
1974	LIST_INSERT_HEAD(&moea_pvo_table[ptegidx], pvo, pvo_olink);
1975	pvo->pvo_vaddr &= ~ADDR_POFF;
1976	if (flags & VM_PROT_EXECUTE)
1977		pvo->pvo_vaddr |= PVO_EXECUTABLE;
1978	if (flags & PVO_WIRED)
1979		pvo->pvo_vaddr |= PVO_WIRED;
1980	if (pvo_head != &moea_pvo_kunmanaged)
1981		pvo->pvo_vaddr |= PVO_MANAGED;
1982	if (bootstrap)
1983		pvo->pvo_vaddr |= PVO_BOOTSTRAP;
1984	if (flags & PVO_FAKE)
1985		pvo->pvo_vaddr |= PVO_FAKE;
1986
1987	moea_pte_create(&pvo->pvo_pte.pte, sr, va, pa | pte_lo);
1988
1989	/*
1990	 * Remember if the list was empty and therefore will be the first
1991	 * item.
1992	 */
1993	if (LIST_FIRST(pvo_head) == NULL)
1994		first = 1;
1995	LIST_INSERT_HEAD(pvo_head, pvo, pvo_vlink);
1996
1997	if (pvo->pvo_pte.pte.pte_lo & PVO_WIRED)
1998		pm->pm_stats.wired_count++;
1999	pm->pm_stats.resident_count++;
2000
2001	/*
2002	 * We hope this succeeds but it isn't required.
2003	 */
2004	i = moea_pte_insert(ptegidx, &pvo->pvo_pte.pte);
2005	if (i >= 0) {
2006		PVO_PTEGIDX_SET(pvo, i);
2007	} else {
2008		panic("moea_pvo_enter: overflow");
2009		moea_pte_overflow++;
2010	}
2011	mtx_unlock(&moea_table_mutex);
2012
2013	return (first ? ENOENT : 0);
2014}
2015
2016static void
2017moea_pvo_remove(struct pvo_entry *pvo, int pteidx)
2018{
2019	struct	pte *pt;
2020
2021	/*
2022	 * If there is an active pte entry, we need to deactivate it (and
2023	 * save the ref & cfg bits).
2024	 */
2025	pt = moea_pvo_to_pte(pvo, pteidx);
2026	if (pt != NULL) {
2027		moea_pte_unset(pt, &pvo->pvo_pte.pte, pvo->pvo_vaddr);
2028		mtx_unlock(&moea_table_mutex);
2029		PVO_PTEGIDX_CLR(pvo);
2030	} else {
2031		moea_pte_overflow--;
2032	}
2033
2034	/*
2035	 * Update our statistics.
2036	 */
2037	pvo->pvo_pmap->pm_stats.resident_count--;
2038	if (pvo->pvo_pte.pte.pte_lo & PVO_WIRED)
2039		pvo->pvo_pmap->pm_stats.wired_count--;
2040
2041	/*
2042	 * Save the REF/CHG bits into their cache if the page is managed.
2043	 */
2044	if ((pvo->pvo_vaddr & (PVO_MANAGED|PVO_FAKE)) == PVO_MANAGED) {
2045		struct	vm_page *pg;
2046
2047		pg = PHYS_TO_VM_PAGE(pvo->pvo_pte.pte.pte_lo & PTE_RPGN);
2048		if (pg != NULL) {
2049			moea_attr_save(pg, pvo->pvo_pte.pte.pte_lo &
2050			    (PTE_REF | PTE_CHG));
2051		}
2052	}
2053
2054	/*
2055	 * Remove this PVO from the PV list.
2056	 */
2057	LIST_REMOVE(pvo, pvo_vlink);
2058
2059	/*
2060	 * Remove this from the overflow list and return it to the pool
2061	 * if we aren't going to reuse it.
2062	 */
2063	LIST_REMOVE(pvo, pvo_olink);
2064	if (!(pvo->pvo_vaddr & PVO_BOOTSTRAP))
2065		uma_zfree(pvo->pvo_vaddr & PVO_MANAGED ? moea_mpvo_zone :
2066		    moea_upvo_zone, pvo);
2067	moea_pvo_entries--;
2068	moea_pvo_remove_calls++;
2069}
2070
2071static __inline int
2072moea_pvo_pte_index(const struct pvo_entry *pvo, int ptegidx)
2073{
2074	int	pteidx;
2075
2076	/*
2077	 * We can find the actual pte entry without searching by grabbing
2078	 * the PTEG index from 3 unused bits in pte_lo[11:9] and by
2079	 * noticing the HID bit.
2080	 */
2081	pteidx = ptegidx * 8 + PVO_PTEGIDX_GET(pvo);
2082	if (pvo->pvo_pte.pte.pte_hi & PTE_HID)
2083		pteidx ^= moea_pteg_mask * 8;
2084
2085	return (pteidx);
2086}
2087
2088static struct pvo_entry *
2089moea_pvo_find_va(pmap_t pm, vm_offset_t va, int *pteidx_p)
2090{
2091	struct	pvo_entry *pvo;
2092	int	ptegidx;
2093	u_int	sr;
2094
2095	va &= ~ADDR_POFF;
2096	sr = va_to_sr(pm->pm_sr, va);
2097	ptegidx = va_to_pteg(sr, va);
2098
2099	mtx_lock(&moea_table_mutex);
2100	LIST_FOREACH(pvo, &moea_pvo_table[ptegidx], pvo_olink) {
2101		if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) {
2102			if (pteidx_p)
2103				*pteidx_p = moea_pvo_pte_index(pvo, ptegidx);
2104			break;
2105		}
2106	}
2107	mtx_unlock(&moea_table_mutex);
2108
2109	return (pvo);
2110}
2111
2112static struct pte *
2113moea_pvo_to_pte(const struct pvo_entry *pvo, int pteidx)
2114{
2115	struct	pte *pt;
2116
2117	/*
2118	 * If we haven't been supplied the ptegidx, calculate it.
2119	 */
2120	if (pteidx == -1) {
2121		int	ptegidx;
2122		u_int	sr;
2123
2124		sr = va_to_sr(pvo->pvo_pmap->pm_sr, pvo->pvo_vaddr);
2125		ptegidx = va_to_pteg(sr, pvo->pvo_vaddr);
2126		pteidx = moea_pvo_pte_index(pvo, ptegidx);
2127	}
2128
2129	pt = &moea_pteg_table[pteidx >> 3].pt[pteidx & 7];
2130	mtx_lock(&moea_table_mutex);
2131
2132	if ((pvo->pvo_pte.pte.pte_hi & PTE_VALID) && !PVO_PTEGIDX_ISSET(pvo)) {
2133		panic("moea_pvo_to_pte: pvo %p has valid pte in pvo but no "
2134		    "valid pte index", pvo);
2135	}
2136
2137	if ((pvo->pvo_pte.pte.pte_hi & PTE_VALID) == 0 && PVO_PTEGIDX_ISSET(pvo)) {
2138		panic("moea_pvo_to_pte: pvo %p has valid pte index in pvo "
2139		    "pvo but no valid pte", pvo);
2140	}
2141
2142	if ((pt->pte_hi ^ (pvo->pvo_pte.pte.pte_hi & ~PTE_VALID)) == PTE_VALID) {
2143		if ((pvo->pvo_pte.pte.pte_hi & PTE_VALID) == 0) {
2144			panic("moea_pvo_to_pte: pvo %p has valid pte in "
2145			    "moea_pteg_table %p but invalid in pvo", pvo, pt);
2146		}
2147
2148		if (((pt->pte_lo ^ pvo->pvo_pte.pte.pte_lo) & ~(PTE_CHG|PTE_REF))
2149		    != 0) {
2150			panic("moea_pvo_to_pte: pvo %p pte does not match "
2151			    "pte %p in moea_pteg_table", pvo, pt);
2152		}
2153
2154		mtx_assert(&moea_table_mutex, MA_OWNED);
2155		return (pt);
2156	}
2157
2158	if (pvo->pvo_pte.pte.pte_hi & PTE_VALID) {
2159		panic("moea_pvo_to_pte: pvo %p has invalid pte %p in "
2160		    "moea_pteg_table but valid in pvo", pvo, pt);
2161	}
2162
2163	mtx_unlock(&moea_table_mutex);
2164	return (NULL);
2165}
2166
2167/*
2168 * XXX: THIS STUFF SHOULD BE IN pte.c?
2169 */
2170int
2171moea_pte_spill(vm_offset_t addr)
2172{
2173	struct	pvo_entry *source_pvo, *victim_pvo;
2174	struct	pvo_entry *pvo;
2175	int	ptegidx, i, j;
2176	u_int	sr;
2177	struct	pteg *pteg;
2178	struct	pte *pt;
2179
2180	moea_pte_spills++;
2181
2182	sr = mfsrin(addr);
2183	ptegidx = va_to_pteg(sr, addr);
2184
2185	/*
2186	 * Have to substitute some entry.  Use the primary hash for this.
2187	 * Use low bits of timebase as random generator.
2188	 */
2189	pteg = &moea_pteg_table[ptegidx];
2190	mtx_lock(&moea_table_mutex);
2191	__asm __volatile("mftb %0" : "=r"(i));
2192	i &= 7;
2193	pt = &pteg->pt[i];
2194
2195	source_pvo = NULL;
2196	victim_pvo = NULL;
2197	LIST_FOREACH(pvo, &moea_pvo_table[ptegidx], pvo_olink) {
2198		/*
2199		 * We need to find a pvo entry for this address.
2200		 */
2201		MOEA_PVO_CHECK(pvo);
2202		if (source_pvo == NULL &&
2203		    moea_pte_match(&pvo->pvo_pte.pte, sr, addr,
2204		    pvo->pvo_pte.pte.pte_hi & PTE_HID)) {
2205			/*
2206			 * Now found an entry to be spilled into the pteg.
2207			 * The PTE is now valid, so we know it's active.
2208			 */
2209			j = moea_pte_insert(ptegidx, &pvo->pvo_pte.pte);
2210
2211			if (j >= 0) {
2212				PVO_PTEGIDX_SET(pvo, j);
2213				moea_pte_overflow--;
2214				MOEA_PVO_CHECK(pvo);
2215				mtx_unlock(&moea_table_mutex);
2216				return (1);
2217			}
2218
2219			source_pvo = pvo;
2220
2221			if (victim_pvo != NULL)
2222				break;
2223		}
2224
2225		/*
2226		 * We also need the pvo entry of the victim we are replacing
2227		 * so save the R & C bits of the PTE.
2228		 */
2229		if ((pt->pte_hi & PTE_HID) == 0 && victim_pvo == NULL &&
2230		    moea_pte_compare(pt, &pvo->pvo_pte.pte)) {
2231			victim_pvo = pvo;
2232			if (source_pvo != NULL)
2233				break;
2234		}
2235	}
2236
2237	if (source_pvo == NULL) {
2238		mtx_unlock(&moea_table_mutex);
2239		return (0);
2240	}
2241
2242	if (victim_pvo == NULL) {
2243		if ((pt->pte_hi & PTE_HID) == 0)
2244			panic("moea_pte_spill: victim p-pte (%p) has no pvo"
2245			    "entry", pt);
2246
2247		/*
2248		 * If this is a secondary PTE, we need to search it's primary
2249		 * pvo bucket for the matching PVO.
2250		 */
2251		LIST_FOREACH(pvo, &moea_pvo_table[ptegidx ^ moea_pteg_mask],
2252		    pvo_olink) {
2253			MOEA_PVO_CHECK(pvo);
2254			/*
2255			 * We also need the pvo entry of the victim we are
2256			 * replacing so save the R & C bits of the PTE.
2257			 */
2258			if (moea_pte_compare(pt, &pvo->pvo_pte.pte)) {
2259				victim_pvo = pvo;
2260				break;
2261			}
2262		}
2263
2264		if (victim_pvo == NULL)
2265			panic("moea_pte_spill: victim s-pte (%p) has no pvo"
2266			    "entry", pt);
2267	}
2268
2269	/*
2270	 * We are invalidating the TLB entry for the EA we are replacing even
2271	 * though it's valid.  If we don't, we lose any ref/chg bit changes
2272	 * contained in the TLB entry.
2273	 */
2274	source_pvo->pvo_pte.pte.pte_hi &= ~PTE_HID;
2275
2276	moea_pte_unset(pt, &victim_pvo->pvo_pte.pte, victim_pvo->pvo_vaddr);
2277	moea_pte_set(pt, &source_pvo->pvo_pte.pte);
2278
2279	PVO_PTEGIDX_CLR(victim_pvo);
2280	PVO_PTEGIDX_SET(source_pvo, i);
2281	moea_pte_replacements++;
2282
2283	MOEA_PVO_CHECK(victim_pvo);
2284	MOEA_PVO_CHECK(source_pvo);
2285
2286	mtx_unlock(&moea_table_mutex);
2287	return (1);
2288}
2289
2290static int
2291moea_pte_insert(u_int ptegidx, struct pte *pvo_pt)
2292{
2293	struct	pte *pt;
2294	int	i;
2295
2296	mtx_assert(&moea_table_mutex, MA_OWNED);
2297
2298	/*
2299	 * First try primary hash.
2300	 */
2301	for (pt = moea_pteg_table[ptegidx].pt, i = 0; i < 8; i++, pt++) {
2302		if ((pt->pte_hi & PTE_VALID) == 0) {
2303			pvo_pt->pte_hi &= ~PTE_HID;
2304			moea_pte_set(pt, pvo_pt);
2305			return (i);
2306		}
2307	}
2308
2309	/*
2310	 * Now try secondary hash.
2311	 */
2312	ptegidx ^= moea_pteg_mask;
2313
2314	for (pt = moea_pteg_table[ptegidx].pt, i = 0; i < 8; i++, pt++) {
2315		if ((pt->pte_hi & PTE_VALID) == 0) {
2316			pvo_pt->pte_hi |= PTE_HID;
2317			moea_pte_set(pt, pvo_pt);
2318			return (i);
2319		}
2320	}
2321
2322	panic("moea_pte_insert: overflow");
2323	return (-1);
2324}
2325
2326static boolean_t
2327moea_query_bit(vm_page_t m, int ptebit)
2328{
2329	struct	pvo_entry *pvo;
2330	struct	pte *pt;
2331
2332	if (moea_attr_fetch(m) & ptebit)
2333		return (TRUE);
2334
2335	vm_page_lock_queues();
2336	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
2337		MOEA_PVO_CHECK(pvo);	/* sanity check */
2338
2339		/*
2340		 * See if we saved the bit off.  If so, cache it and return
2341		 * success.
2342		 */
2343		if (pvo->pvo_pte.pte.pte_lo & ptebit) {
2344			moea_attr_save(m, ptebit);
2345			MOEA_PVO_CHECK(pvo);	/* sanity check */
2346			vm_page_unlock_queues();
2347			return (TRUE);
2348		}
2349	}
2350
2351	/*
2352	 * No luck, now go through the hard part of looking at the PTEs
2353	 * themselves.  Sync so that any pending REF/CHG bits are flushed to
2354	 * the PTEs.
2355	 */
2356	powerpc_sync();
2357	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
2358		MOEA_PVO_CHECK(pvo);	/* sanity check */
2359
2360		/*
2361		 * See if this pvo has a valid PTE.  if so, fetch the
2362		 * REF/CHG bits from the valid PTE.  If the appropriate
2363		 * ptebit is set, cache it and return success.
2364		 */
2365		pt = moea_pvo_to_pte(pvo, -1);
2366		if (pt != NULL) {
2367			moea_pte_synch(pt, &pvo->pvo_pte.pte);
2368			mtx_unlock(&moea_table_mutex);
2369			if (pvo->pvo_pte.pte.pte_lo & ptebit) {
2370				moea_attr_save(m, ptebit);
2371				MOEA_PVO_CHECK(pvo);	/* sanity check */
2372				vm_page_unlock_queues();
2373				return (TRUE);
2374			}
2375		}
2376	}
2377
2378	vm_page_unlock_queues();
2379	return (FALSE);
2380}
2381
2382static u_int
2383moea_clear_bit(vm_page_t m, int ptebit)
2384{
2385	u_int	count;
2386	struct	pvo_entry *pvo;
2387	struct	pte *pt;
2388
2389	vm_page_lock_queues();
2390
2391	/*
2392	 * Clear the cached value.
2393	 */
2394	moea_attr_clear(m, ptebit);
2395
2396	/*
2397	 * Sync so that any pending REF/CHG bits are flushed to the PTEs (so
2398	 * we can reset the right ones).  note that since the pvo entries and
2399	 * list heads are accessed via BAT0 and are never placed in the page
2400	 * table, we don't have to worry about further accesses setting the
2401	 * REF/CHG bits.
2402	 */
2403	powerpc_sync();
2404
2405	/*
2406	 * For each pvo entry, clear the pvo's ptebit.  If this pvo has a
2407	 * valid pte clear the ptebit from the valid pte.
2408	 */
2409	count = 0;
2410	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
2411		MOEA_PVO_CHECK(pvo);	/* sanity check */
2412		pt = moea_pvo_to_pte(pvo, -1);
2413		if (pt != NULL) {
2414			moea_pte_synch(pt, &pvo->pvo_pte.pte);
2415			if (pvo->pvo_pte.pte.pte_lo & ptebit) {
2416				count++;
2417				moea_pte_clear(pt, PVO_VADDR(pvo), ptebit);
2418			}
2419			mtx_unlock(&moea_table_mutex);
2420		}
2421		pvo->pvo_pte.pte.pte_lo &= ~ptebit;
2422		MOEA_PVO_CHECK(pvo);	/* sanity check */
2423	}
2424
2425	vm_page_unlock_queues();
2426	return (count);
2427}
2428
2429/*
2430 * Return true if the physical range is encompassed by the battable[idx]
2431 */
2432static int
2433moea_bat_mapped(int idx, vm_offset_t pa, vm_size_t size)
2434{
2435	u_int prot;
2436	u_int32_t start;
2437	u_int32_t end;
2438	u_int32_t bat_ble;
2439
2440	/*
2441	 * Return immediately if not a valid mapping
2442	 */
2443	if (!battable[idx].batu & BAT_Vs)
2444		return (EINVAL);
2445
2446	/*
2447	 * The BAT entry must be cache-inhibited, guarded, and r/w
2448	 * so it can function as an i/o page
2449	 */
2450	prot = battable[idx].batl & (BAT_I|BAT_G|BAT_PP_RW);
2451	if (prot != (BAT_I|BAT_G|BAT_PP_RW))
2452		return (EPERM);
2453
2454	/*
2455	 * The address should be within the BAT range. Assume that the
2456	 * start address in the BAT has the correct alignment (thus
2457	 * not requiring masking)
2458	 */
2459	start = battable[idx].batl & BAT_PBS;
2460	bat_ble = (battable[idx].batu & ~(BAT_EBS)) | 0x03;
2461	end = start | (bat_ble << 15) | 0x7fff;
2462
2463	if ((pa < start) || ((pa + size) > end))
2464		return (ERANGE);
2465
2466	return (0);
2467}
2468
2469boolean_t
2470moea_dev_direct_mapped(mmu_t mmu, vm_offset_t pa, vm_size_t size)
2471{
2472	int i;
2473
2474	/*
2475	 * This currently does not work for entries that
2476	 * overlap 256M BAT segments.
2477	 */
2478
2479	for(i = 0; i < 16; i++)
2480		if (moea_bat_mapped(i, pa, size) == 0)
2481			return (0);
2482
2483	return (EFAULT);
2484}
2485
2486/*
2487 * Map a set of physical memory pages into the kernel virtual
2488 * address space. Return a pointer to where it is mapped. This
2489 * routine is intended to be used for mapping device memory,
2490 * NOT real memory.
2491 */
2492void *
2493moea_mapdev(mmu_t mmu, vm_offset_t pa, vm_size_t size)
2494{
2495
2496	return (moea_mapdev_attr(mmu, pa, size, VM_MEMATTR_DEFAULT));
2497}
2498
2499void *
2500moea_mapdev_attr(mmu_t mmu, vm_offset_t pa, vm_size_t size, vm_memattr_t ma)
2501{
2502	vm_offset_t va, tmpva, ppa, offset;
2503	int i;
2504
2505	ppa = trunc_page(pa);
2506	offset = pa & PAGE_MASK;
2507	size = roundup(offset + size, PAGE_SIZE);
2508
2509	/*
2510	 * If the physical address lies within a valid BAT table entry,
2511	 * return the 1:1 mapping. This currently doesn't work
2512	 * for regions that overlap 256M BAT segments.
2513	 */
2514	for (i = 0; i < 16; i++) {
2515		if (moea_bat_mapped(i, pa, size) == 0)
2516			return ((void *) pa);
2517	}
2518
2519	va = kmem_alloc_nofault(kernel_map, size);
2520	if (!va)
2521		panic("moea_mapdev: Couldn't alloc kernel virtual memory");
2522
2523	for (tmpva = va; size > 0;) {
2524		moea_kenter_attr(mmu, tmpva, ppa, ma);
2525		tlbie(tmpva);
2526		size -= PAGE_SIZE;
2527		tmpva += PAGE_SIZE;
2528		ppa += PAGE_SIZE;
2529	}
2530
2531	return ((void *)(va + offset));
2532}
2533
2534void
2535moea_unmapdev(mmu_t mmu, vm_offset_t va, vm_size_t size)
2536{
2537	vm_offset_t base, offset;
2538
2539	/*
2540	 * If this is outside kernel virtual space, then it's a
2541	 * battable entry and doesn't require unmapping
2542	 */
2543	if ((va >= VM_MIN_KERNEL_ADDRESS) && (va <= virtual_end)) {
2544		base = trunc_page(va);
2545		offset = va & PAGE_MASK;
2546		size = roundup(offset + size, PAGE_SIZE);
2547		kmem_free(kernel_map, base, size);
2548	}
2549}
2550
2551static void
2552moea_sync_icache(mmu_t mmu, pmap_t pm, vm_offset_t va, vm_size_t sz)
2553{
2554	struct pvo_entry *pvo;
2555	vm_offset_t lim;
2556	vm_paddr_t pa;
2557	vm_size_t len;
2558
2559	PMAP_LOCK(pm);
2560	while (sz > 0) {
2561		lim = round_page(va);
2562		len = MIN(lim - va, sz);
2563		pvo = moea_pvo_find_va(pm, va & ~ADDR_POFF, NULL);
2564		if (pvo != NULL) {
2565			pa = (pvo->pvo_pte.pte.pte_lo & PTE_RPGN) |
2566			    (va & ADDR_POFF);
2567			moea_syncicache(pa, len);
2568		}
2569		va += len;
2570		sz -= len;
2571	}
2572	PMAP_UNLOCK(pm);
2573}
2574