mmu_oea.c revision 208810
1/*-
2 * Copyright (c) 2001 The NetBSD Foundation, Inc.
3 * All rights reserved.
4 *
5 * This code is derived from software contributed to The NetBSD Foundation
6 * by Matt Thomas <matt@3am-software.com> of Allegro Networks, Inc.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 *    must display the following acknowledgement:
18 *        This product includes software developed by the NetBSD
19 *        Foundation, Inc. and its contributors.
20 * 4. Neither the name of The NetBSD Foundation nor the names of its
21 *    contributors may be used to endorse or promote products derived
22 *    from this software without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
25 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
26 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
27 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
28 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
29 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
30 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
31 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
32 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
33 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
34 * POSSIBILITY OF SUCH DAMAGE.
35 */
36/*-
37 * Copyright (C) 1995, 1996 Wolfgang Solfrank.
38 * Copyright (C) 1995, 1996 TooLs GmbH.
39 * All rights reserved.
40 *
41 * Redistribution and use in source and binary forms, with or without
42 * modification, are permitted provided that the following conditions
43 * are met:
44 * 1. Redistributions of source code must retain the above copyright
45 *    notice, this list of conditions and the following disclaimer.
46 * 2. Redistributions in binary form must reproduce the above copyright
47 *    notice, this list of conditions and the following disclaimer in the
48 *    documentation and/or other materials provided with the distribution.
49 * 3. All advertising materials mentioning features or use of this software
50 *    must display the following acknowledgement:
51 *	This product includes software developed by TooLs GmbH.
52 * 4. The name of TooLs GmbH may not be used to endorse or promote products
53 *    derived from this software without specific prior written permission.
54 *
55 * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR
56 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
57 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
58 * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
59 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
60 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
61 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
62 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
63 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
64 * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
65 *
66 * $NetBSD: pmap.c,v 1.28 2000/03/26 20:42:36 kleink Exp $
67 */
68/*-
69 * Copyright (C) 2001 Benno Rice.
70 * All rights reserved.
71 *
72 * Redistribution and use in source and binary forms, with or without
73 * modification, are permitted provided that the following conditions
74 * are met:
75 * 1. Redistributions of source code must retain the above copyright
76 *    notice, this list of conditions and the following disclaimer.
77 * 2. Redistributions in binary form must reproduce the above copyright
78 *    notice, this list of conditions and the following disclaimer in the
79 *    documentation and/or other materials provided with the distribution.
80 *
81 * THIS SOFTWARE IS PROVIDED BY Benno Rice ``AS IS'' AND ANY EXPRESS OR
82 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
83 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
84 * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
85 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
86 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
87 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
88 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
89 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
90 * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
91 */
92
93#include <sys/cdefs.h>
94__FBSDID("$FreeBSD: head/sys/powerpc/aim/mmu_oea.c 208810 2010-06-05 06:56:06Z alc $");
95
96/*
97 * Manages physical address maps.
98 *
99 * In addition to hardware address maps, this module is called upon to
100 * provide software-use-only maps which may or may not be stored in the
101 * same form as hardware maps.  These pseudo-maps are used to store
102 * intermediate results from copy operations to and from address spaces.
103 *
104 * Since the information managed by this module is also stored by the
105 * logical address mapping module, this module may throw away valid virtual
106 * to physical mappings at almost any time.  However, invalidations of
107 * mappings must be done as requested.
108 *
109 * In order to cope with hardware architectures which make virtual to
110 * physical map invalidates expensive, this module may delay invalidate
111 * reduced protection operations until such time as they are actually
112 * necessary.  This module is given full information as to which processors
113 * are currently using which maps, and to when physical maps must be made
114 * correct.
115 */
116
117#include "opt_kstack_pages.h"
118
119#include <sys/param.h>
120#include <sys/kernel.h>
121#include <sys/ktr.h>
122#include <sys/lock.h>
123#include <sys/msgbuf.h>
124#include <sys/mutex.h>
125#include <sys/proc.h>
126#include <sys/sysctl.h>
127#include <sys/systm.h>
128#include <sys/vmmeter.h>
129
130#include <dev/ofw/openfirm.h>
131
132#include <vm/vm.h>
133#include <vm/vm_param.h>
134#include <vm/vm_kern.h>
135#include <vm/vm_page.h>
136#include <vm/vm_map.h>
137#include <vm/vm_object.h>
138#include <vm/vm_extern.h>
139#include <vm/vm_pageout.h>
140#include <vm/vm_pager.h>
141#include <vm/uma.h>
142
143#include <machine/cpu.h>
144#include <machine/platform.h>
145#include <machine/bat.h>
146#include <machine/frame.h>
147#include <machine/md_var.h>
148#include <machine/psl.h>
149#include <machine/pte.h>
150#include <machine/smp.h>
151#include <machine/sr.h>
152#include <machine/mmuvar.h>
153
154#include "mmu_if.h"
155
156#define	MOEA_DEBUG
157
158#define TODO	panic("%s: not implemented", __func__);
159
160#define	VSID_MAKE(sr, hash)	((sr) | (((hash) & 0xfffff) << 4))
161#define	VSID_TO_SR(vsid)	((vsid) & 0xf)
162#define	VSID_TO_HASH(vsid)	(((vsid) >> 4) & 0xfffff)
163
164#define	PVO_PTEGIDX_MASK	0x007		/* which PTEG slot */
165#define	PVO_PTEGIDX_VALID	0x008		/* slot is valid */
166#define	PVO_WIRED		0x010		/* PVO entry is wired */
167#define	PVO_MANAGED		0x020		/* PVO entry is managed */
168#define	PVO_EXECUTABLE		0x040		/* PVO entry is executable */
169#define	PVO_BOOTSTRAP		0x080		/* PVO entry allocated during
170						   bootstrap */
171#define PVO_FAKE		0x100		/* fictitious phys page */
172#define	PVO_VADDR(pvo)		((pvo)->pvo_vaddr & ~ADDR_POFF)
173#define	PVO_ISEXECUTABLE(pvo)	((pvo)->pvo_vaddr & PVO_EXECUTABLE)
174#define PVO_ISFAKE(pvo)		((pvo)->pvo_vaddr & PVO_FAKE)
175#define	PVO_PTEGIDX_GET(pvo)	((pvo)->pvo_vaddr & PVO_PTEGIDX_MASK)
176#define	PVO_PTEGIDX_ISSET(pvo)	((pvo)->pvo_vaddr & PVO_PTEGIDX_VALID)
177#define	PVO_PTEGIDX_CLR(pvo)	\
178	((void)((pvo)->pvo_vaddr &= ~(PVO_PTEGIDX_VALID|PVO_PTEGIDX_MASK)))
179#define	PVO_PTEGIDX_SET(pvo, i)	\
180	((void)((pvo)->pvo_vaddr |= (i)|PVO_PTEGIDX_VALID))
181
182#define	MOEA_PVO_CHECK(pvo)
183
184struct ofw_map {
185	vm_offset_t	om_va;
186	vm_size_t	om_len;
187	vm_offset_t	om_pa;
188	u_int		om_mode;
189};
190
191/*
192 * Map of physical memory regions.
193 */
194static struct	mem_region *regions;
195static struct	mem_region *pregions;
196u_int           phys_avail_count;
197int		regions_sz, pregions_sz;
198static struct	ofw_map *translations;
199
200extern struct pmap ofw_pmap;
201
202/*
203 * Lock for the pteg and pvo tables.
204 */
205struct mtx	moea_table_mutex;
206
207/* tlbie instruction synchronization */
208static struct mtx tlbie_mtx;
209
210/*
211 * PTEG data.
212 */
213static struct	pteg *moea_pteg_table;
214u_int		moea_pteg_count;
215u_int		moea_pteg_mask;
216
217/*
218 * PVO data.
219 */
220struct	pvo_head *moea_pvo_table;		/* pvo entries by pteg index */
221struct	pvo_head moea_pvo_kunmanaged =
222    LIST_HEAD_INITIALIZER(moea_pvo_kunmanaged);	/* list of unmanaged pages */
223struct	pvo_head moea_pvo_unmanaged =
224    LIST_HEAD_INITIALIZER(moea_pvo_unmanaged);	/* list of unmanaged pages */
225
226uma_zone_t	moea_upvo_zone;	/* zone for pvo entries for unmanaged pages */
227uma_zone_t	moea_mpvo_zone;	/* zone for pvo entries for managed pages */
228
229#define	BPVO_POOL_SIZE	32768
230static struct	pvo_entry *moea_bpvo_pool;
231static int	moea_bpvo_pool_index = 0;
232
233#define	VSID_NBPW	(sizeof(u_int32_t) * 8)
234static u_int	moea_vsid_bitmap[NPMAPS / VSID_NBPW];
235
236static boolean_t moea_initialized = FALSE;
237
238/*
239 * Statistics.
240 */
241u_int	moea_pte_valid = 0;
242u_int	moea_pte_overflow = 0;
243u_int	moea_pte_replacements = 0;
244u_int	moea_pvo_entries = 0;
245u_int	moea_pvo_enter_calls = 0;
246u_int	moea_pvo_remove_calls = 0;
247u_int	moea_pte_spills = 0;
248SYSCTL_INT(_machdep, OID_AUTO, moea_pte_valid, CTLFLAG_RD, &moea_pte_valid,
249    0, "");
250SYSCTL_INT(_machdep, OID_AUTO, moea_pte_overflow, CTLFLAG_RD,
251    &moea_pte_overflow, 0, "");
252SYSCTL_INT(_machdep, OID_AUTO, moea_pte_replacements, CTLFLAG_RD,
253    &moea_pte_replacements, 0, "");
254SYSCTL_INT(_machdep, OID_AUTO, moea_pvo_entries, CTLFLAG_RD, &moea_pvo_entries,
255    0, "");
256SYSCTL_INT(_machdep, OID_AUTO, moea_pvo_enter_calls, CTLFLAG_RD,
257    &moea_pvo_enter_calls, 0, "");
258SYSCTL_INT(_machdep, OID_AUTO, moea_pvo_remove_calls, CTLFLAG_RD,
259    &moea_pvo_remove_calls, 0, "");
260SYSCTL_INT(_machdep, OID_AUTO, moea_pte_spills, CTLFLAG_RD,
261    &moea_pte_spills, 0, "");
262
263/*
264 * Allocate physical memory for use in moea_bootstrap.
265 */
266static vm_offset_t	moea_bootstrap_alloc(vm_size_t, u_int);
267
268/*
269 * PTE calls.
270 */
271static int		moea_pte_insert(u_int, struct pte *);
272
273/*
274 * PVO calls.
275 */
276static int	moea_pvo_enter(pmap_t, uma_zone_t, struct pvo_head *,
277		    vm_offset_t, vm_offset_t, u_int, int);
278static void	moea_pvo_remove(struct pvo_entry *, int);
279static struct	pvo_entry *moea_pvo_find_va(pmap_t, vm_offset_t, int *);
280static struct	pte *moea_pvo_to_pte(const struct pvo_entry *, int);
281
282/*
283 * Utility routines.
284 */
285static void		moea_enter_locked(pmap_t, vm_offset_t, vm_page_t,
286			    vm_prot_t, boolean_t);
287static void		moea_syncicache(vm_offset_t, vm_size_t);
288static boolean_t	moea_query_bit(vm_page_t, int);
289static u_int		moea_clear_bit(vm_page_t, int, int *);
290static void		moea_kremove(mmu_t, vm_offset_t);
291int		moea_pte_spill(vm_offset_t);
292
293/*
294 * Kernel MMU interface
295 */
296void moea_change_wiring(mmu_t, pmap_t, vm_offset_t, boolean_t);
297void moea_clear_modify(mmu_t, vm_page_t);
298void moea_clear_reference(mmu_t, vm_page_t);
299void moea_copy_page(mmu_t, vm_page_t, vm_page_t);
300void moea_enter(mmu_t, pmap_t, vm_offset_t, vm_page_t, vm_prot_t, boolean_t);
301void moea_enter_object(mmu_t, pmap_t, vm_offset_t, vm_offset_t, vm_page_t,
302    vm_prot_t);
303void moea_enter_quick(mmu_t, pmap_t, vm_offset_t, vm_page_t, vm_prot_t);
304vm_paddr_t moea_extract(mmu_t, pmap_t, vm_offset_t);
305vm_page_t moea_extract_and_hold(mmu_t, pmap_t, vm_offset_t, vm_prot_t);
306void moea_init(mmu_t);
307boolean_t moea_is_modified(mmu_t, vm_page_t);
308boolean_t moea_is_referenced(mmu_t, vm_page_t);
309boolean_t moea_ts_referenced(mmu_t, vm_page_t);
310vm_offset_t moea_map(mmu_t, vm_offset_t *, vm_offset_t, vm_offset_t, int);
311boolean_t moea_page_exists_quick(mmu_t, pmap_t, vm_page_t);
312int moea_page_wired_mappings(mmu_t, vm_page_t);
313void moea_pinit(mmu_t, pmap_t);
314void moea_pinit0(mmu_t, pmap_t);
315void moea_protect(mmu_t, pmap_t, vm_offset_t, vm_offset_t, vm_prot_t);
316void moea_qenter(mmu_t, vm_offset_t, vm_page_t *, int);
317void moea_qremove(mmu_t, vm_offset_t, int);
318void moea_release(mmu_t, pmap_t);
319void moea_remove(mmu_t, pmap_t, vm_offset_t, vm_offset_t);
320void moea_remove_all(mmu_t, vm_page_t);
321void moea_remove_write(mmu_t, vm_page_t);
322void moea_zero_page(mmu_t, vm_page_t);
323void moea_zero_page_area(mmu_t, vm_page_t, int, int);
324void moea_zero_page_idle(mmu_t, vm_page_t);
325void moea_activate(mmu_t, struct thread *);
326void moea_deactivate(mmu_t, struct thread *);
327void moea_cpu_bootstrap(mmu_t, int);
328void moea_bootstrap(mmu_t, vm_offset_t, vm_offset_t);
329void *moea_mapdev(mmu_t, vm_offset_t, vm_size_t);
330void moea_unmapdev(mmu_t, vm_offset_t, vm_size_t);
331vm_offset_t moea_kextract(mmu_t, vm_offset_t);
332void moea_kenter(mmu_t, vm_offset_t, vm_offset_t);
333boolean_t moea_dev_direct_mapped(mmu_t, vm_offset_t, vm_size_t);
334static void moea_sync_icache(mmu_t, pmap_t, vm_offset_t, vm_size_t);
335
336static mmu_method_t moea_methods[] = {
337	MMUMETHOD(mmu_change_wiring,	moea_change_wiring),
338	MMUMETHOD(mmu_clear_modify,	moea_clear_modify),
339	MMUMETHOD(mmu_clear_reference,	moea_clear_reference),
340	MMUMETHOD(mmu_copy_page,	moea_copy_page),
341	MMUMETHOD(mmu_enter,		moea_enter),
342	MMUMETHOD(mmu_enter_object,	moea_enter_object),
343	MMUMETHOD(mmu_enter_quick,	moea_enter_quick),
344	MMUMETHOD(mmu_extract,		moea_extract),
345	MMUMETHOD(mmu_extract_and_hold,	moea_extract_and_hold),
346	MMUMETHOD(mmu_init,		moea_init),
347	MMUMETHOD(mmu_is_modified,	moea_is_modified),
348	MMUMETHOD(mmu_is_referenced,	moea_is_referenced),
349	MMUMETHOD(mmu_ts_referenced,	moea_ts_referenced),
350	MMUMETHOD(mmu_map,     		moea_map),
351	MMUMETHOD(mmu_page_exists_quick,moea_page_exists_quick),
352	MMUMETHOD(mmu_page_wired_mappings,moea_page_wired_mappings),
353	MMUMETHOD(mmu_pinit,		moea_pinit),
354	MMUMETHOD(mmu_pinit0,		moea_pinit0),
355	MMUMETHOD(mmu_protect,		moea_protect),
356	MMUMETHOD(mmu_qenter,		moea_qenter),
357	MMUMETHOD(mmu_qremove,		moea_qremove),
358	MMUMETHOD(mmu_release,		moea_release),
359	MMUMETHOD(mmu_remove,		moea_remove),
360	MMUMETHOD(mmu_remove_all,      	moea_remove_all),
361	MMUMETHOD(mmu_remove_write,	moea_remove_write),
362	MMUMETHOD(mmu_sync_icache,	moea_sync_icache),
363	MMUMETHOD(mmu_zero_page,       	moea_zero_page),
364	MMUMETHOD(mmu_zero_page_area,	moea_zero_page_area),
365	MMUMETHOD(mmu_zero_page_idle,	moea_zero_page_idle),
366	MMUMETHOD(mmu_activate,		moea_activate),
367	MMUMETHOD(mmu_deactivate,      	moea_deactivate),
368
369	/* Internal interfaces */
370	MMUMETHOD(mmu_bootstrap,       	moea_bootstrap),
371	MMUMETHOD(mmu_cpu_bootstrap,   	moea_cpu_bootstrap),
372	MMUMETHOD(mmu_mapdev,		moea_mapdev),
373	MMUMETHOD(mmu_unmapdev,		moea_unmapdev),
374	MMUMETHOD(mmu_kextract,		moea_kextract),
375	MMUMETHOD(mmu_kenter,		moea_kenter),
376	MMUMETHOD(mmu_dev_direct_mapped,moea_dev_direct_mapped),
377
378	{ 0, 0 }
379};
380
381static mmu_def_t oea_mmu = {
382	MMU_TYPE_OEA,
383	moea_methods,
384	0
385};
386MMU_DEF(oea_mmu);
387
388static void
389tlbie(vm_offset_t va)
390{
391
392	mtx_lock_spin(&tlbie_mtx);
393	__asm __volatile("tlbie %0" :: "r"(va));
394	__asm __volatile("tlbsync");
395	powerpc_sync();
396	mtx_unlock_spin(&tlbie_mtx);
397}
398
399static void
400tlbia(void)
401{
402	vm_offset_t va;
403
404	for (va = 0; va < 0x00040000; va += 0x00001000) {
405		__asm __volatile("tlbie %0" :: "r"(va));
406		powerpc_sync();
407	}
408	__asm __volatile("tlbsync");
409	powerpc_sync();
410}
411
412static __inline int
413va_to_sr(u_int *sr, vm_offset_t va)
414{
415	return (sr[(uintptr_t)va >> ADDR_SR_SHFT]);
416}
417
418static __inline u_int
419va_to_pteg(u_int sr, vm_offset_t addr)
420{
421	u_int hash;
422
423	hash = (sr & SR_VSID_MASK) ^ (((u_int)addr & ADDR_PIDX) >>
424	    ADDR_PIDX_SHFT);
425	return (hash & moea_pteg_mask);
426}
427
428static __inline struct pvo_head *
429pa_to_pvoh(vm_offset_t pa, vm_page_t *pg_p)
430{
431	struct	vm_page *pg;
432
433	pg = PHYS_TO_VM_PAGE(pa);
434
435	if (pg_p != NULL)
436		*pg_p = pg;
437
438	if (pg == NULL)
439		return (&moea_pvo_unmanaged);
440
441	return (&pg->md.mdpg_pvoh);
442}
443
444static __inline struct pvo_head *
445vm_page_to_pvoh(vm_page_t m)
446{
447
448	return (&m->md.mdpg_pvoh);
449}
450
451static __inline void
452moea_attr_clear(vm_page_t m, int ptebit)
453{
454
455	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
456	m->md.mdpg_attrs &= ~ptebit;
457}
458
459static __inline int
460moea_attr_fetch(vm_page_t m)
461{
462
463	return (m->md.mdpg_attrs);
464}
465
466static __inline void
467moea_attr_save(vm_page_t m, int ptebit)
468{
469
470	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
471	m->md.mdpg_attrs |= ptebit;
472}
473
474static __inline int
475moea_pte_compare(const struct pte *pt, const struct pte *pvo_pt)
476{
477	if (pt->pte_hi == pvo_pt->pte_hi)
478		return (1);
479
480	return (0);
481}
482
483static __inline int
484moea_pte_match(struct pte *pt, u_int sr, vm_offset_t va, int which)
485{
486	return (pt->pte_hi & ~PTE_VALID) ==
487	    (((sr & SR_VSID_MASK) << PTE_VSID_SHFT) |
488	    ((va >> ADDR_API_SHFT) & PTE_API) | which);
489}
490
491static __inline void
492moea_pte_create(struct pte *pt, u_int sr, vm_offset_t va, u_int pte_lo)
493{
494
495	mtx_assert(&moea_table_mutex, MA_OWNED);
496
497	/*
498	 * Construct a PTE.  Default to IMB initially.  Valid bit only gets
499	 * set when the real pte is set in memory.
500	 *
501	 * Note: Don't set the valid bit for correct operation of tlb update.
502	 */
503	pt->pte_hi = ((sr & SR_VSID_MASK) << PTE_VSID_SHFT) |
504	    (((va & ADDR_PIDX) >> ADDR_API_SHFT) & PTE_API);
505	pt->pte_lo = pte_lo;
506}
507
508static __inline void
509moea_pte_synch(struct pte *pt, struct pte *pvo_pt)
510{
511
512	mtx_assert(&moea_table_mutex, MA_OWNED);
513	pvo_pt->pte_lo |= pt->pte_lo & (PTE_REF | PTE_CHG);
514}
515
516static __inline void
517moea_pte_clear(struct pte *pt, vm_offset_t va, int ptebit)
518{
519
520	mtx_assert(&moea_table_mutex, MA_OWNED);
521
522	/*
523	 * As shown in Section 7.6.3.2.3
524	 */
525	pt->pte_lo &= ~ptebit;
526	tlbie(va);
527}
528
529static __inline void
530moea_pte_set(struct pte *pt, struct pte *pvo_pt)
531{
532
533	mtx_assert(&moea_table_mutex, MA_OWNED);
534	pvo_pt->pte_hi |= PTE_VALID;
535
536	/*
537	 * Update the PTE as defined in section 7.6.3.1.
538	 * Note that the REF/CHG bits are from pvo_pt and thus should havce
539	 * been saved so this routine can restore them (if desired).
540	 */
541	pt->pte_lo = pvo_pt->pte_lo;
542	powerpc_sync();
543	pt->pte_hi = pvo_pt->pte_hi;
544	powerpc_sync();
545	moea_pte_valid++;
546}
547
548static __inline void
549moea_pte_unset(struct pte *pt, struct pte *pvo_pt, vm_offset_t va)
550{
551
552	mtx_assert(&moea_table_mutex, MA_OWNED);
553	pvo_pt->pte_hi &= ~PTE_VALID;
554
555	/*
556	 * Force the reg & chg bits back into the PTEs.
557	 */
558	powerpc_sync();
559
560	/*
561	 * Invalidate the pte.
562	 */
563	pt->pte_hi &= ~PTE_VALID;
564
565	tlbie(va);
566
567	/*
568	 * Save the reg & chg bits.
569	 */
570	moea_pte_synch(pt, pvo_pt);
571	moea_pte_valid--;
572}
573
574static __inline void
575moea_pte_change(struct pte *pt, struct pte *pvo_pt, vm_offset_t va)
576{
577
578	/*
579	 * Invalidate the PTE
580	 */
581	moea_pte_unset(pt, pvo_pt, va);
582	moea_pte_set(pt, pvo_pt);
583}
584
585/*
586 * Quick sort callout for comparing memory regions.
587 */
588static int	mr_cmp(const void *a, const void *b);
589static int	om_cmp(const void *a, const void *b);
590
591static int
592mr_cmp(const void *a, const void *b)
593{
594	const struct	mem_region *regiona;
595	const struct	mem_region *regionb;
596
597	regiona = a;
598	regionb = b;
599	if (regiona->mr_start < regionb->mr_start)
600		return (-1);
601	else if (regiona->mr_start > regionb->mr_start)
602		return (1);
603	else
604		return (0);
605}
606
607static int
608om_cmp(const void *a, const void *b)
609{
610	const struct	ofw_map *mapa;
611	const struct	ofw_map *mapb;
612
613	mapa = a;
614	mapb = b;
615	if (mapa->om_pa < mapb->om_pa)
616		return (-1);
617	else if (mapa->om_pa > mapb->om_pa)
618		return (1);
619	else
620		return (0);
621}
622
623void
624moea_cpu_bootstrap(mmu_t mmup, int ap)
625{
626	u_int sdr;
627	int i;
628
629	if (ap) {
630		powerpc_sync();
631		__asm __volatile("mtdbatu 0,%0" :: "r"(battable[0].batu));
632		__asm __volatile("mtdbatl 0,%0" :: "r"(battable[0].batl));
633		isync();
634		__asm __volatile("mtibatu 0,%0" :: "r"(battable[0].batu));
635		__asm __volatile("mtibatl 0,%0" :: "r"(battable[0].batl));
636		isync();
637	}
638
639	__asm __volatile("mtdbatu 1,%0" :: "r"(battable[8].batu));
640	__asm __volatile("mtdbatl 1,%0" :: "r"(battable[8].batl));
641	isync();
642
643	__asm __volatile("mtibatu 1,%0" :: "r"(0));
644	__asm __volatile("mtdbatu 2,%0" :: "r"(0));
645	__asm __volatile("mtibatu 2,%0" :: "r"(0));
646	__asm __volatile("mtdbatu 3,%0" :: "r"(0));
647	__asm __volatile("mtibatu 3,%0" :: "r"(0));
648	isync();
649
650	for (i = 0; i < 16; i++)
651		mtsrin(i << ADDR_SR_SHFT, EMPTY_SEGMENT);
652
653	__asm __volatile("mtsr %0,%1" :: "n"(KERNEL_SR), "r"(KERNEL_SEGMENT));
654	__asm __volatile("mtsr %0,%1" :: "n"(KERNEL2_SR), "r"(KERNEL2_SEGMENT));
655	powerpc_sync();
656
657	sdr = (u_int)moea_pteg_table | (moea_pteg_mask >> 10);
658	__asm __volatile("mtsdr1 %0" :: "r"(sdr));
659	isync();
660
661	tlbia();
662}
663
664void
665moea_bootstrap(mmu_t mmup, vm_offset_t kernelstart, vm_offset_t kernelend)
666{
667	ihandle_t	mmui;
668	phandle_t	chosen, mmu;
669	int		sz;
670	int		i, j;
671	int		ofw_mappings;
672	vm_size_t	size, physsz, hwphyssz;
673	vm_offset_t	pa, va, off;
674	void		*dpcpu;
675
676        /*
677         * Set up BAT0 to map the lowest 256 MB area
678         */
679        battable[0x0].batl = BATL(0x00000000, BAT_M, BAT_PP_RW);
680        battable[0x0].batu = BATU(0x00000000, BAT_BL_256M, BAT_Vs);
681
682        /*
683         * Map PCI memory space.
684         */
685        battable[0x8].batl = BATL(0x80000000, BAT_I|BAT_G, BAT_PP_RW);
686        battable[0x8].batu = BATU(0x80000000, BAT_BL_256M, BAT_Vs);
687
688        battable[0x9].batl = BATL(0x90000000, BAT_I|BAT_G, BAT_PP_RW);
689        battable[0x9].batu = BATU(0x90000000, BAT_BL_256M, BAT_Vs);
690
691        battable[0xa].batl = BATL(0xa0000000, BAT_I|BAT_G, BAT_PP_RW);
692        battable[0xa].batu = BATU(0xa0000000, BAT_BL_256M, BAT_Vs);
693
694        battable[0xb].batl = BATL(0xb0000000, BAT_I|BAT_G, BAT_PP_RW);
695        battable[0xb].batu = BATU(0xb0000000, BAT_BL_256M, BAT_Vs);
696
697        /*
698         * Map obio devices.
699         */
700        battable[0xf].batl = BATL(0xf0000000, BAT_I|BAT_G, BAT_PP_RW);
701        battable[0xf].batu = BATU(0xf0000000, BAT_BL_256M, BAT_Vs);
702
703	/*
704	 * Use an IBAT and a DBAT to map the bottom segment of memory
705	 * where we are.
706	 */
707	__asm (".balign 32; \n"
708	       "mtibatu 0,%0; mtibatl 0,%1; isync; \n"
709	       "mtdbatu 0,%0; mtdbatl 0,%1; isync"
710	    :: "r"(battable[0].batu), "r"(battable[0].batl));
711
712	/* map pci space */
713	__asm __volatile("mtdbatu 1,%0" :: "r"(battable[8].batu));
714	__asm __volatile("mtdbatl 1,%0" :: "r"(battable[8].batl));
715	isync();
716
717	/* set global direct map flag */
718	hw_direct_map = 1;
719
720	mem_regions(&pregions, &pregions_sz, &regions, &regions_sz);
721	CTR0(KTR_PMAP, "moea_bootstrap: physical memory");
722
723	qsort(pregions, pregions_sz, sizeof(*pregions), mr_cmp);
724	for (i = 0; i < pregions_sz; i++) {
725		vm_offset_t pa;
726		vm_offset_t end;
727
728		CTR3(KTR_PMAP, "physregion: %#x - %#x (%#x)",
729			pregions[i].mr_start,
730			pregions[i].mr_start + pregions[i].mr_size,
731			pregions[i].mr_size);
732		/*
733		 * Install entries into the BAT table to allow all
734		 * of physmem to be convered by on-demand BAT entries.
735		 * The loop will sometimes set the same battable element
736		 * twice, but that's fine since they won't be used for
737		 * a while yet.
738		 */
739		pa = pregions[i].mr_start & 0xf0000000;
740		end = pregions[i].mr_start + pregions[i].mr_size;
741		do {
742                        u_int n = pa >> ADDR_SR_SHFT;
743
744			battable[n].batl = BATL(pa, BAT_M, BAT_PP_RW);
745			battable[n].batu = BATU(pa, BAT_BL_256M, BAT_Vs);
746			pa += SEGMENT_LENGTH;
747		} while (pa < end);
748	}
749
750	if (sizeof(phys_avail)/sizeof(phys_avail[0]) < regions_sz)
751		panic("moea_bootstrap: phys_avail too small");
752	qsort(regions, regions_sz, sizeof(*regions), mr_cmp);
753	phys_avail_count = 0;
754	physsz = 0;
755	hwphyssz = 0;
756	TUNABLE_ULONG_FETCH("hw.physmem", (u_long *) &hwphyssz);
757	for (i = 0, j = 0; i < regions_sz; i++, j += 2) {
758		CTR3(KTR_PMAP, "region: %#x - %#x (%#x)", regions[i].mr_start,
759		    regions[i].mr_start + regions[i].mr_size,
760		    regions[i].mr_size);
761		if (hwphyssz != 0 &&
762		    (physsz + regions[i].mr_size) >= hwphyssz) {
763			if (physsz < hwphyssz) {
764				phys_avail[j] = regions[i].mr_start;
765				phys_avail[j + 1] = regions[i].mr_start +
766				    hwphyssz - physsz;
767				physsz = hwphyssz;
768				phys_avail_count++;
769			}
770			break;
771		}
772		phys_avail[j] = regions[i].mr_start;
773		phys_avail[j + 1] = regions[i].mr_start + regions[i].mr_size;
774		phys_avail_count++;
775		physsz += regions[i].mr_size;
776	}
777	physmem = btoc(physsz);
778
779	/*
780	 * Allocate PTEG table.
781	 */
782#ifdef PTEGCOUNT
783	moea_pteg_count = PTEGCOUNT;
784#else
785	moea_pteg_count = 0x1000;
786
787	while (moea_pteg_count < physmem)
788		moea_pteg_count <<= 1;
789
790	moea_pteg_count >>= 1;
791#endif /* PTEGCOUNT */
792
793	size = moea_pteg_count * sizeof(struct pteg);
794	CTR2(KTR_PMAP, "moea_bootstrap: %d PTEGs, %d bytes", moea_pteg_count,
795	    size);
796	moea_pteg_table = (struct pteg *)moea_bootstrap_alloc(size, size);
797	CTR1(KTR_PMAP, "moea_bootstrap: PTEG table at %p", moea_pteg_table);
798	bzero((void *)moea_pteg_table, moea_pteg_count * sizeof(struct pteg));
799	moea_pteg_mask = moea_pteg_count - 1;
800
801	/*
802	 * Allocate pv/overflow lists.
803	 */
804	size = sizeof(struct pvo_head) * moea_pteg_count;
805	moea_pvo_table = (struct pvo_head *)moea_bootstrap_alloc(size,
806	    PAGE_SIZE);
807	CTR1(KTR_PMAP, "moea_bootstrap: PVO table at %p", moea_pvo_table);
808	for (i = 0; i < moea_pteg_count; i++)
809		LIST_INIT(&moea_pvo_table[i]);
810
811	/*
812	 * Initialize the lock that synchronizes access to the pteg and pvo
813	 * tables.
814	 */
815	mtx_init(&moea_table_mutex, "pmap table", NULL, MTX_DEF |
816	    MTX_RECURSE);
817
818	mtx_init(&tlbie_mtx, "tlbie", NULL, MTX_SPIN);
819
820	/*
821	 * Initialise the unmanaged pvo pool.
822	 */
823	moea_bpvo_pool = (struct pvo_entry *)moea_bootstrap_alloc(
824		BPVO_POOL_SIZE*sizeof(struct pvo_entry), 0);
825	moea_bpvo_pool_index = 0;
826
827	/*
828	 * Make sure kernel vsid is allocated as well as VSID 0.
829	 */
830	moea_vsid_bitmap[(KERNEL_VSIDBITS & (NPMAPS - 1)) / VSID_NBPW]
831		|= 1 << (KERNEL_VSIDBITS % VSID_NBPW);
832	moea_vsid_bitmap[0] |= 1;
833
834	/*
835	 * Set up the Open Firmware pmap and add it's mappings.
836	 */
837	moea_pinit(mmup, &ofw_pmap);
838	ofw_pmap.pm_sr[KERNEL_SR] = KERNEL_SEGMENT;
839	ofw_pmap.pm_sr[KERNEL2_SR] = KERNEL2_SEGMENT;
840	if ((chosen = OF_finddevice("/chosen")) == -1)
841		panic("moea_bootstrap: can't find /chosen");
842	OF_getprop(chosen, "mmu", &mmui, 4);
843	if ((mmu = OF_instance_to_package(mmui)) == -1)
844		panic("moea_bootstrap: can't get mmu package");
845	if ((sz = OF_getproplen(mmu, "translations")) == -1)
846		panic("moea_bootstrap: can't get ofw translation count");
847	translations = NULL;
848	for (i = 0; phys_avail[i] != 0; i += 2) {
849		if (phys_avail[i + 1] >= sz) {
850			translations = (struct ofw_map *)phys_avail[i];
851			break;
852		}
853	}
854	if (translations == NULL)
855		panic("moea_bootstrap: no space to copy translations");
856	bzero(translations, sz);
857	if (OF_getprop(mmu, "translations", translations, sz) == -1)
858		panic("moea_bootstrap: can't get ofw translations");
859	CTR0(KTR_PMAP, "moea_bootstrap: translations");
860	sz /= sizeof(*translations);
861	qsort(translations, sz, sizeof (*translations), om_cmp);
862	for (i = 0, ofw_mappings = 0; i < sz; i++) {
863		CTR3(KTR_PMAP, "translation: pa=%#x va=%#x len=%#x",
864		    translations[i].om_pa, translations[i].om_va,
865		    translations[i].om_len);
866
867		/*
868		 * If the mapping is 1:1, let the RAM and device on-demand
869		 * BAT tables take care of the translation.
870		 */
871		if (translations[i].om_va == translations[i].om_pa)
872			continue;
873
874		/* Enter the pages */
875		for (off = 0; off < translations[i].om_len; off += PAGE_SIZE) {
876			struct	vm_page m;
877
878			m.phys_addr = translations[i].om_pa + off;
879			m.oflags = VPO_BUSY;
880			PMAP_LOCK(&ofw_pmap);
881			moea_enter_locked(&ofw_pmap,
882				   translations[i].om_va + off, &m,
883				   VM_PROT_ALL, 1);
884			PMAP_UNLOCK(&ofw_pmap);
885			ofw_mappings++;
886		}
887	}
888
889	/*
890	 * Calculate the last available physical address.
891	 */
892	for (i = 0; phys_avail[i + 2] != 0; i += 2)
893		;
894	Maxmem = powerpc_btop(phys_avail[i + 1]);
895
896	/*
897	 * Initialize the kernel pmap (which is statically allocated).
898	 */
899	PMAP_LOCK_INIT(kernel_pmap);
900	for (i = 0; i < 16; i++) {
901		kernel_pmap->pm_sr[i] = EMPTY_SEGMENT;
902	}
903	kernel_pmap->pm_sr[KERNEL_SR] = KERNEL_SEGMENT;
904	kernel_pmap->pm_sr[KERNEL2_SR] = KERNEL2_SEGMENT;
905	kernel_pmap->pm_active = ~0;
906
907	moea_cpu_bootstrap(mmup,0);
908
909	pmap_bootstrapped++;
910
911	/*
912	 * Set the start and end of kva.
913	 */
914	virtual_avail = VM_MIN_KERNEL_ADDRESS;
915	virtual_end = VM_MAX_SAFE_KERNEL_ADDRESS;
916
917	/*
918	 * Allocate a kernel stack with a guard page for thread0 and map it
919	 * into the kernel page map.
920	 */
921	pa = moea_bootstrap_alloc(KSTACK_PAGES * PAGE_SIZE, PAGE_SIZE);
922	va = virtual_avail + KSTACK_GUARD_PAGES * PAGE_SIZE;
923	virtual_avail = va + KSTACK_PAGES * PAGE_SIZE;
924	CTR2(KTR_PMAP, "moea_bootstrap: kstack0 at %#x (%#x)", pa, va);
925	thread0.td_kstack = va;
926	thread0.td_kstack_pages = KSTACK_PAGES;
927	for (i = 0; i < KSTACK_PAGES; i++) {
928		moea_kenter(mmup, va, pa);
929		pa += PAGE_SIZE;
930		va += PAGE_SIZE;
931	}
932
933	/*
934	 * Allocate virtual address space for the message buffer.
935	 */
936	pa = msgbuf_phys = moea_bootstrap_alloc(MSGBUF_SIZE, PAGE_SIZE);
937	msgbufp = (struct msgbuf *)virtual_avail;
938	va = virtual_avail;
939	virtual_avail += round_page(MSGBUF_SIZE);
940	while (va < virtual_avail) {
941		moea_kenter(mmup, va, pa);
942		pa += PAGE_SIZE;
943		va += PAGE_SIZE;
944	}
945
946	/*
947	 * Allocate virtual address space for the dynamic percpu area.
948	 */
949	pa = moea_bootstrap_alloc(DPCPU_SIZE, PAGE_SIZE);
950	dpcpu = (void *)virtual_avail;
951	va = virtual_avail;
952	virtual_avail += DPCPU_SIZE;
953	while (va < virtual_avail) {
954		moea_kenter(mmup, va, pa);
955		pa += PAGE_SIZE;
956		va += PAGE_SIZE;
957	}
958	dpcpu_init(dpcpu, 0);
959}
960
961/*
962 * Activate a user pmap.  The pmap must be activated before it's address
963 * space can be accessed in any way.
964 */
965void
966moea_activate(mmu_t mmu, struct thread *td)
967{
968	pmap_t	pm, pmr;
969
970	/*
971	 * Load all the data we need up front to encourage the compiler to
972	 * not issue any loads while we have interrupts disabled below.
973	 */
974	pm = &td->td_proc->p_vmspace->vm_pmap;
975	pmr = pm->pmap_phys;
976
977	pm->pm_active |= PCPU_GET(cpumask);
978	PCPU_SET(curpmap, pmr);
979}
980
981void
982moea_deactivate(mmu_t mmu, struct thread *td)
983{
984	pmap_t	pm;
985
986	pm = &td->td_proc->p_vmspace->vm_pmap;
987	pm->pm_active &= ~PCPU_GET(cpumask);
988	PCPU_SET(curpmap, NULL);
989}
990
991void
992moea_change_wiring(mmu_t mmu, pmap_t pm, vm_offset_t va, boolean_t wired)
993{
994	struct	pvo_entry *pvo;
995
996	PMAP_LOCK(pm);
997	pvo = moea_pvo_find_va(pm, va & ~ADDR_POFF, NULL);
998
999	if (pvo != NULL) {
1000		if (wired) {
1001			if ((pvo->pvo_vaddr & PVO_WIRED) == 0)
1002				pm->pm_stats.wired_count++;
1003			pvo->pvo_vaddr |= PVO_WIRED;
1004		} else {
1005			if ((pvo->pvo_vaddr & PVO_WIRED) != 0)
1006				pm->pm_stats.wired_count--;
1007			pvo->pvo_vaddr &= ~PVO_WIRED;
1008		}
1009	}
1010	PMAP_UNLOCK(pm);
1011}
1012
1013void
1014moea_copy_page(mmu_t mmu, vm_page_t msrc, vm_page_t mdst)
1015{
1016	vm_offset_t	dst;
1017	vm_offset_t	src;
1018
1019	dst = VM_PAGE_TO_PHYS(mdst);
1020	src = VM_PAGE_TO_PHYS(msrc);
1021
1022	kcopy((void *)src, (void *)dst, PAGE_SIZE);
1023}
1024
1025/*
1026 * Zero a page of physical memory by temporarily mapping it into the tlb.
1027 */
1028void
1029moea_zero_page(mmu_t mmu, vm_page_t m)
1030{
1031	vm_offset_t pa = VM_PAGE_TO_PHYS(m);
1032	void *va = (void *)pa;
1033
1034	bzero(va, PAGE_SIZE);
1035}
1036
1037void
1038moea_zero_page_area(mmu_t mmu, vm_page_t m, int off, int size)
1039{
1040	vm_offset_t pa = VM_PAGE_TO_PHYS(m);
1041	void *va = (void *)(pa + off);
1042
1043	bzero(va, size);
1044}
1045
1046void
1047moea_zero_page_idle(mmu_t mmu, vm_page_t m)
1048{
1049	vm_offset_t pa = VM_PAGE_TO_PHYS(m);
1050	void *va = (void *)pa;
1051
1052	bzero(va, PAGE_SIZE);
1053}
1054
1055/*
1056 * Map the given physical page at the specified virtual address in the
1057 * target pmap with the protection requested.  If specified the page
1058 * will be wired down.
1059 */
1060void
1061moea_enter(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
1062	   boolean_t wired)
1063{
1064
1065	vm_page_lock_queues();
1066	PMAP_LOCK(pmap);
1067	moea_enter_locked(pmap, va, m, prot, wired);
1068	vm_page_unlock_queues();
1069	PMAP_UNLOCK(pmap);
1070}
1071
1072/*
1073 * Map the given physical page at the specified virtual address in the
1074 * target pmap with the protection requested.  If specified the page
1075 * will be wired down.
1076 *
1077 * The page queues and pmap must be locked.
1078 */
1079static void
1080moea_enter_locked(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
1081    boolean_t wired)
1082{
1083	struct		pvo_head *pvo_head;
1084	uma_zone_t	zone;
1085	vm_page_t	pg;
1086	u_int		pte_lo, pvo_flags, was_exec, i;
1087	int		error;
1088
1089	if (!moea_initialized) {
1090		pvo_head = &moea_pvo_kunmanaged;
1091		zone = moea_upvo_zone;
1092		pvo_flags = 0;
1093		pg = NULL;
1094		was_exec = PTE_EXEC;
1095	} else {
1096		pvo_head = vm_page_to_pvoh(m);
1097		pg = m;
1098		zone = moea_mpvo_zone;
1099		pvo_flags = PVO_MANAGED;
1100		was_exec = 0;
1101	}
1102	if (pmap_bootstrapped)
1103		mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1104	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1105	KASSERT((m->oflags & VPO_BUSY) != 0 || VM_OBJECT_LOCKED(m->object),
1106	    ("moea_enter_locked: page %p is not busy", m));
1107
1108	/* XXX change the pvo head for fake pages */
1109	if ((m->flags & PG_FICTITIOUS) == PG_FICTITIOUS) {
1110		pvo_flags &= ~PVO_MANAGED;
1111		pvo_head = &moea_pvo_kunmanaged;
1112		zone = moea_upvo_zone;
1113	}
1114
1115	/*
1116	 * If this is a managed page, and it's the first reference to the page,
1117	 * clear the execness of the page.  Otherwise fetch the execness.
1118	 */
1119	if ((pg != NULL) && ((m->flags & PG_FICTITIOUS) == 0)) {
1120		if (LIST_EMPTY(pvo_head)) {
1121			moea_attr_clear(pg, PTE_EXEC);
1122		} else {
1123			was_exec = moea_attr_fetch(pg) & PTE_EXEC;
1124		}
1125	}
1126
1127	/*
1128	 * Assume the page is cache inhibited and access is guarded unless
1129	 * it's in our available memory array.
1130	 */
1131	pte_lo = PTE_I | PTE_G;
1132	for (i = 0; i < pregions_sz; i++) {
1133		if ((VM_PAGE_TO_PHYS(m) >= pregions[i].mr_start) &&
1134		    (VM_PAGE_TO_PHYS(m) <
1135			(pregions[i].mr_start + pregions[i].mr_size))) {
1136			pte_lo = PTE_M;
1137			break;
1138		}
1139	}
1140
1141	if (prot & VM_PROT_WRITE) {
1142		pte_lo |= PTE_BW;
1143		if (pmap_bootstrapped &&
1144		    (m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0)
1145			vm_page_flag_set(m, PG_WRITEABLE);
1146	} else
1147		pte_lo |= PTE_BR;
1148
1149	if (prot & VM_PROT_EXECUTE)
1150		pvo_flags |= PVO_EXECUTABLE;
1151
1152	if (wired)
1153		pvo_flags |= PVO_WIRED;
1154
1155	if ((m->flags & PG_FICTITIOUS) != 0)
1156		pvo_flags |= PVO_FAKE;
1157
1158	error = moea_pvo_enter(pmap, zone, pvo_head, va, VM_PAGE_TO_PHYS(m),
1159	    pte_lo, pvo_flags);
1160
1161	/*
1162	 * Flush the real page from the instruction cache if this page is
1163	 * mapped executable and cacheable and was not previously mapped (or
1164	 * was not mapped executable).
1165	 */
1166	if (error == 0 && (pvo_flags & PVO_EXECUTABLE) &&
1167	    (pte_lo & PTE_I) == 0 && was_exec == 0) {
1168		/*
1169		 * Flush the real memory from the cache.
1170		 */
1171		moea_syncicache(VM_PAGE_TO_PHYS(m), PAGE_SIZE);
1172		if (pg != NULL)
1173			moea_attr_save(pg, PTE_EXEC);
1174	}
1175
1176	/* XXX syncicache always until problems are sorted */
1177	moea_syncicache(VM_PAGE_TO_PHYS(m), PAGE_SIZE);
1178}
1179
1180/*
1181 * Maps a sequence of resident pages belonging to the same object.
1182 * The sequence begins with the given page m_start.  This page is
1183 * mapped at the given virtual address start.  Each subsequent page is
1184 * mapped at a virtual address that is offset from start by the same
1185 * amount as the page is offset from m_start within the object.  The
1186 * last page in the sequence is the page with the largest offset from
1187 * m_start that can be mapped at a virtual address less than the given
1188 * virtual address end.  Not every virtual page between start and end
1189 * is mapped; only those for which a resident page exists with the
1190 * corresponding offset from m_start are mapped.
1191 */
1192void
1193moea_enter_object(mmu_t mmu, pmap_t pm, vm_offset_t start, vm_offset_t end,
1194    vm_page_t m_start, vm_prot_t prot)
1195{
1196	vm_page_t m;
1197	vm_pindex_t diff, psize;
1198
1199	psize = atop(end - start);
1200	m = m_start;
1201	vm_page_lock_queues();
1202	PMAP_LOCK(pm);
1203	while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) {
1204		moea_enter_locked(pm, start + ptoa(diff), m, prot &
1205		    (VM_PROT_READ | VM_PROT_EXECUTE), FALSE);
1206		m = TAILQ_NEXT(m, listq);
1207	}
1208	vm_page_unlock_queues();
1209	PMAP_UNLOCK(pm);
1210}
1211
1212void
1213moea_enter_quick(mmu_t mmu, pmap_t pm, vm_offset_t va, vm_page_t m,
1214    vm_prot_t prot)
1215{
1216
1217	vm_page_lock_queues();
1218	PMAP_LOCK(pm);
1219	moea_enter_locked(pm, va, m, prot & (VM_PROT_READ | VM_PROT_EXECUTE),
1220	    FALSE);
1221	vm_page_unlock_queues();
1222	PMAP_UNLOCK(pm);
1223}
1224
1225vm_paddr_t
1226moea_extract(mmu_t mmu, pmap_t pm, vm_offset_t va)
1227{
1228	struct	pvo_entry *pvo;
1229	vm_paddr_t pa;
1230
1231	PMAP_LOCK(pm);
1232	pvo = moea_pvo_find_va(pm, va & ~ADDR_POFF, NULL);
1233	if (pvo == NULL)
1234		pa = 0;
1235	else
1236		pa = (pvo->pvo_pte.pte.pte_lo & PTE_RPGN) | (va & ADDR_POFF);
1237	PMAP_UNLOCK(pm);
1238	return (pa);
1239}
1240
1241/*
1242 * Atomically extract and hold the physical page with the given
1243 * pmap and virtual address pair if that mapping permits the given
1244 * protection.
1245 */
1246vm_page_t
1247moea_extract_and_hold(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_prot_t prot)
1248{
1249	struct	pvo_entry *pvo;
1250	vm_page_t m;
1251        vm_paddr_t pa;
1252
1253	m = NULL;
1254	pa = 0;
1255	PMAP_LOCK(pmap);
1256retry:
1257	pvo = moea_pvo_find_va(pmap, va & ~ADDR_POFF, NULL);
1258	if (pvo != NULL && (pvo->pvo_pte.pte.pte_hi & PTE_VALID) &&
1259	    ((pvo->pvo_pte.pte.pte_lo & PTE_PP) == PTE_RW ||
1260	     (prot & VM_PROT_WRITE) == 0)) {
1261		if (vm_page_pa_tryrelock(pmap, pvo->pvo_pte.pte.pte_lo & PTE_RPGN, &pa))
1262			goto retry;
1263		m = PHYS_TO_VM_PAGE(pvo->pvo_pte.pte.pte_lo & PTE_RPGN);
1264		vm_page_hold(m);
1265	}
1266	PA_UNLOCK_COND(pa);
1267	PMAP_UNLOCK(pmap);
1268	return (m);
1269}
1270
1271void
1272moea_init(mmu_t mmu)
1273{
1274
1275	moea_upvo_zone = uma_zcreate("UPVO entry", sizeof (struct pvo_entry),
1276	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
1277	    UMA_ZONE_VM | UMA_ZONE_NOFREE);
1278	moea_mpvo_zone = uma_zcreate("MPVO entry", sizeof(struct pvo_entry),
1279	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
1280	    UMA_ZONE_VM | UMA_ZONE_NOFREE);
1281	moea_initialized = TRUE;
1282}
1283
1284boolean_t
1285moea_is_referenced(mmu_t mmu, vm_page_t m)
1286{
1287
1288	KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0,
1289	    ("moea_is_referenced: page %p is not managed", m));
1290	return (moea_query_bit(m, PTE_REF));
1291}
1292
1293boolean_t
1294moea_is_modified(mmu_t mmu, vm_page_t m)
1295{
1296
1297	KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0,
1298	    ("moea_is_modified: page %p is not managed", m));
1299
1300	/*
1301	 * If the page is not VPO_BUSY, then PG_WRITEABLE cannot be
1302	 * concurrently set while the object is locked.  Thus, if PG_WRITEABLE
1303	 * is clear, no PTEs can have PTE_CHG set.
1304	 */
1305	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1306	if ((m->oflags & VPO_BUSY) == 0 &&
1307	    (m->flags & PG_WRITEABLE) == 0)
1308		return (FALSE);
1309	return (moea_query_bit(m, PTE_CHG));
1310}
1311
1312void
1313moea_clear_reference(mmu_t mmu, vm_page_t m)
1314{
1315
1316	KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0,
1317	    ("moea_clear_reference: page %p is not managed", m));
1318	vm_page_lock_queues();
1319	moea_clear_bit(m, PTE_REF, NULL);
1320	vm_page_unlock_queues();
1321}
1322
1323void
1324moea_clear_modify(mmu_t mmu, vm_page_t m)
1325{
1326
1327	KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0,
1328	    ("moea_clear_modify: page %p is not managed", m));
1329	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1330	KASSERT((m->oflags & VPO_BUSY) == 0,
1331	    ("moea_clear_modify: page %p is busy", m));
1332
1333	/*
1334	 * If the page is not PG_WRITEABLE, then no PTEs can have PTE_CHG
1335	 * set.  If the object containing the page is locked and the page is
1336	 * not VPO_BUSY, then PG_WRITEABLE cannot be concurrently set.
1337	 */
1338	if ((m->flags & PG_WRITEABLE) == 0)
1339		return;
1340	vm_page_lock_queues();
1341	moea_clear_bit(m, PTE_CHG, NULL);
1342	vm_page_unlock_queues();
1343}
1344
1345/*
1346 * Clear the write and modified bits in each of the given page's mappings.
1347 */
1348void
1349moea_remove_write(mmu_t mmu, vm_page_t m)
1350{
1351	struct	pvo_entry *pvo;
1352	struct	pte *pt;
1353	pmap_t	pmap;
1354	u_int	lo;
1355
1356	KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0,
1357	    ("moea_remove_write: page %p is not managed", m));
1358
1359	/*
1360	 * If the page is not VPO_BUSY, then PG_WRITEABLE cannot be set by
1361	 * another thread while the object is locked.  Thus, if PG_WRITEABLE
1362	 * is clear, no page table entries need updating.
1363	 */
1364	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1365	if ((m->oflags & VPO_BUSY) == 0 &&
1366	    (m->flags & PG_WRITEABLE) == 0)
1367		return;
1368	vm_page_lock_queues();
1369	lo = moea_attr_fetch(m);
1370	powerpc_sync();
1371	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
1372		pmap = pvo->pvo_pmap;
1373		PMAP_LOCK(pmap);
1374		if ((pvo->pvo_pte.pte.pte_lo & PTE_PP) != PTE_BR) {
1375			pt = moea_pvo_to_pte(pvo, -1);
1376			pvo->pvo_pte.pte.pte_lo &= ~PTE_PP;
1377			pvo->pvo_pte.pte.pte_lo |= PTE_BR;
1378			if (pt != NULL) {
1379				moea_pte_synch(pt, &pvo->pvo_pte.pte);
1380				lo |= pvo->pvo_pte.pte.pte_lo;
1381				pvo->pvo_pte.pte.pte_lo &= ~PTE_CHG;
1382				moea_pte_change(pt, &pvo->pvo_pte.pte,
1383				    pvo->pvo_vaddr);
1384				mtx_unlock(&moea_table_mutex);
1385			}
1386		}
1387		PMAP_UNLOCK(pmap);
1388	}
1389	if ((lo & PTE_CHG) != 0) {
1390		moea_attr_clear(m, PTE_CHG);
1391		vm_page_dirty(m);
1392	}
1393	vm_page_flag_clear(m, PG_WRITEABLE);
1394	vm_page_unlock_queues();
1395}
1396
1397/*
1398 *	moea_ts_referenced:
1399 *
1400 *	Return a count of reference bits for a page, clearing those bits.
1401 *	It is not necessary for every reference bit to be cleared, but it
1402 *	is necessary that 0 only be returned when there are truly no
1403 *	reference bits set.
1404 *
1405 *	XXX: The exact number of bits to check and clear is a matter that
1406 *	should be tested and standardized at some point in the future for
1407 *	optimal aging of shared pages.
1408 */
1409boolean_t
1410moea_ts_referenced(mmu_t mmu, vm_page_t m)
1411{
1412	int count;
1413
1414	if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) != 0)
1415		return (0);
1416
1417	count = moea_clear_bit(m, PTE_REF, NULL);
1418
1419	return (count);
1420}
1421
1422/*
1423 * Map a wired page into kernel virtual address space.
1424 */
1425void
1426moea_kenter(mmu_t mmu, vm_offset_t va, vm_offset_t pa)
1427{
1428	u_int		pte_lo;
1429	int		error;
1430	int		i;
1431
1432#if 0
1433	if (va < VM_MIN_KERNEL_ADDRESS)
1434		panic("moea_kenter: attempt to enter non-kernel address %#x",
1435		    va);
1436#endif
1437
1438	pte_lo = PTE_I | PTE_G;
1439	for (i = 0; i < pregions_sz; i++) {
1440		if ((pa >= pregions[i].mr_start) &&
1441		    (pa < (pregions[i].mr_start + pregions[i].mr_size))) {
1442			pte_lo = PTE_M;
1443			break;
1444		}
1445	}
1446
1447	PMAP_LOCK(kernel_pmap);
1448	error = moea_pvo_enter(kernel_pmap, moea_upvo_zone,
1449	    &moea_pvo_kunmanaged, va, pa, pte_lo, PVO_WIRED);
1450
1451	if (error != 0 && error != ENOENT)
1452		panic("moea_kenter: failed to enter va %#x pa %#x: %d", va,
1453		    pa, error);
1454
1455	/*
1456	 * Flush the real memory from the instruction cache.
1457	 */
1458	if ((pte_lo & (PTE_I | PTE_G)) == 0) {
1459		moea_syncicache(pa, PAGE_SIZE);
1460	}
1461	PMAP_UNLOCK(kernel_pmap);
1462}
1463
1464/*
1465 * Extract the physical page address associated with the given kernel virtual
1466 * address.
1467 */
1468vm_offset_t
1469moea_kextract(mmu_t mmu, vm_offset_t va)
1470{
1471	struct		pvo_entry *pvo;
1472	vm_paddr_t pa;
1473
1474	/*
1475	 * Allow direct mappings on 32-bit OEA
1476	 */
1477	if (va < VM_MIN_KERNEL_ADDRESS) {
1478		return (va);
1479	}
1480
1481	PMAP_LOCK(kernel_pmap);
1482	pvo = moea_pvo_find_va(kernel_pmap, va & ~ADDR_POFF, NULL);
1483	KASSERT(pvo != NULL, ("moea_kextract: no addr found"));
1484	pa = (pvo->pvo_pte.pte.pte_lo & PTE_RPGN) | (va & ADDR_POFF);
1485	PMAP_UNLOCK(kernel_pmap);
1486	return (pa);
1487}
1488
1489/*
1490 * Remove a wired page from kernel virtual address space.
1491 */
1492void
1493moea_kremove(mmu_t mmu, vm_offset_t va)
1494{
1495
1496	moea_remove(mmu, kernel_pmap, va, va + PAGE_SIZE);
1497}
1498
1499/*
1500 * Map a range of physical addresses into kernel virtual address space.
1501 *
1502 * The value passed in *virt is a suggested virtual address for the mapping.
1503 * Architectures which can support a direct-mapped physical to virtual region
1504 * can return the appropriate address within that region, leaving '*virt'
1505 * unchanged.  We cannot and therefore do not; *virt is updated with the
1506 * first usable address after the mapped region.
1507 */
1508vm_offset_t
1509moea_map(mmu_t mmu, vm_offset_t *virt, vm_offset_t pa_start,
1510    vm_offset_t pa_end, int prot)
1511{
1512	vm_offset_t	sva, va;
1513
1514	sva = *virt;
1515	va = sva;
1516	for (; pa_start < pa_end; pa_start += PAGE_SIZE, va += PAGE_SIZE)
1517		moea_kenter(mmu, va, pa_start);
1518	*virt = va;
1519	return (sva);
1520}
1521
1522/*
1523 * Returns true if the pmap's pv is one of the first
1524 * 16 pvs linked to from this page.  This count may
1525 * be changed upwards or downwards in the future; it
1526 * is only necessary that true be returned for a small
1527 * subset of pmaps for proper page aging.
1528 */
1529boolean_t
1530moea_page_exists_quick(mmu_t mmu, pmap_t pmap, vm_page_t m)
1531{
1532        int loops;
1533	struct pvo_entry *pvo;
1534
1535        if (!moea_initialized || (m->flags & PG_FICTITIOUS))
1536                return FALSE;
1537
1538	loops = 0;
1539	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
1540		if (pvo->pvo_pmap == pmap)
1541			return (TRUE);
1542		if (++loops >= 16)
1543			break;
1544	}
1545
1546	return (FALSE);
1547}
1548
1549/*
1550 * Return the number of managed mappings to the given physical page
1551 * that are wired.
1552 */
1553int
1554moea_page_wired_mappings(mmu_t mmu, vm_page_t m)
1555{
1556	struct pvo_entry *pvo;
1557	int count;
1558
1559	count = 0;
1560	if (!moea_initialized || (m->flags & PG_FICTITIOUS) != 0)
1561		return (count);
1562	vm_page_lock_queues();
1563	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink)
1564		if ((pvo->pvo_vaddr & PVO_WIRED) != 0)
1565			count++;
1566	vm_page_unlock_queues();
1567	return (count);
1568}
1569
1570static u_int	moea_vsidcontext;
1571
1572void
1573moea_pinit(mmu_t mmu, pmap_t pmap)
1574{
1575	int	i, mask;
1576	u_int	entropy;
1577
1578	KASSERT((int)pmap < VM_MIN_KERNEL_ADDRESS, ("moea_pinit: virt pmap"));
1579	PMAP_LOCK_INIT(pmap);
1580
1581	entropy = 0;
1582	__asm __volatile("mftb %0" : "=r"(entropy));
1583
1584	if ((pmap->pmap_phys = (pmap_t)moea_kextract(mmu, (vm_offset_t)pmap))
1585	    == NULL) {
1586		pmap->pmap_phys = pmap;
1587	}
1588
1589
1590	/*
1591	 * Allocate some segment registers for this pmap.
1592	 */
1593	for (i = 0; i < NPMAPS; i += VSID_NBPW) {
1594		u_int	hash, n;
1595
1596		/*
1597		 * Create a new value by mutiplying by a prime and adding in
1598		 * entropy from the timebase register.  This is to make the
1599		 * VSID more random so that the PT hash function collides
1600		 * less often.  (Note that the prime casues gcc to do shifts
1601		 * instead of a multiply.)
1602		 */
1603		moea_vsidcontext = (moea_vsidcontext * 0x1105) + entropy;
1604		hash = moea_vsidcontext & (NPMAPS - 1);
1605		if (hash == 0)		/* 0 is special, avoid it */
1606			continue;
1607		n = hash >> 5;
1608		mask = 1 << (hash & (VSID_NBPW - 1));
1609		hash = (moea_vsidcontext & 0xfffff);
1610		if (moea_vsid_bitmap[n] & mask) {	/* collision? */
1611			/* anything free in this bucket? */
1612			if (moea_vsid_bitmap[n] == 0xffffffff) {
1613				entropy = (moea_vsidcontext >> 20);
1614				continue;
1615			}
1616			i = ffs(~moea_vsid_bitmap[i]) - 1;
1617			mask = 1 << i;
1618			hash &= 0xfffff & ~(VSID_NBPW - 1);
1619			hash |= i;
1620		}
1621		moea_vsid_bitmap[n] |= mask;
1622		for (i = 0; i < 16; i++)
1623			pmap->pm_sr[i] = VSID_MAKE(i, hash);
1624		return;
1625	}
1626
1627	panic("moea_pinit: out of segments");
1628}
1629
1630/*
1631 * Initialize the pmap associated with process 0.
1632 */
1633void
1634moea_pinit0(mmu_t mmu, pmap_t pm)
1635{
1636
1637	moea_pinit(mmu, pm);
1638	bzero(&pm->pm_stats, sizeof(pm->pm_stats));
1639}
1640
1641/*
1642 * Set the physical protection on the specified range of this map as requested.
1643 */
1644void
1645moea_protect(mmu_t mmu, pmap_t pm, vm_offset_t sva, vm_offset_t eva,
1646    vm_prot_t prot)
1647{
1648	struct	pvo_entry *pvo;
1649	struct	pte *pt;
1650	int	pteidx;
1651
1652	KASSERT(pm == &curproc->p_vmspace->vm_pmap || pm == kernel_pmap,
1653	    ("moea_protect: non current pmap"));
1654
1655	if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
1656		moea_remove(mmu, pm, sva, eva);
1657		return;
1658	}
1659
1660	vm_page_lock_queues();
1661	PMAP_LOCK(pm);
1662	for (; sva < eva; sva += PAGE_SIZE) {
1663		pvo = moea_pvo_find_va(pm, sva, &pteidx);
1664		if (pvo == NULL)
1665			continue;
1666
1667		if ((prot & VM_PROT_EXECUTE) == 0)
1668			pvo->pvo_vaddr &= ~PVO_EXECUTABLE;
1669
1670		/*
1671		 * Grab the PTE pointer before we diddle with the cached PTE
1672		 * copy.
1673		 */
1674		pt = moea_pvo_to_pte(pvo, pteidx);
1675		/*
1676		 * Change the protection of the page.
1677		 */
1678		pvo->pvo_pte.pte.pte_lo &= ~PTE_PP;
1679		pvo->pvo_pte.pte.pte_lo |= PTE_BR;
1680
1681		/*
1682		 * If the PVO is in the page table, update that pte as well.
1683		 */
1684		if (pt != NULL) {
1685			moea_pte_change(pt, &pvo->pvo_pte.pte, pvo->pvo_vaddr);
1686			mtx_unlock(&moea_table_mutex);
1687		}
1688	}
1689	vm_page_unlock_queues();
1690	PMAP_UNLOCK(pm);
1691}
1692
1693/*
1694 * Map a list of wired pages into kernel virtual address space.  This is
1695 * intended for temporary mappings which do not need page modification or
1696 * references recorded.  Existing mappings in the region are overwritten.
1697 */
1698void
1699moea_qenter(mmu_t mmu, vm_offset_t sva, vm_page_t *m, int count)
1700{
1701	vm_offset_t va;
1702
1703	va = sva;
1704	while (count-- > 0) {
1705		moea_kenter(mmu, va, VM_PAGE_TO_PHYS(*m));
1706		va += PAGE_SIZE;
1707		m++;
1708	}
1709}
1710
1711/*
1712 * Remove page mappings from kernel virtual address space.  Intended for
1713 * temporary mappings entered by moea_qenter.
1714 */
1715void
1716moea_qremove(mmu_t mmu, vm_offset_t sva, int count)
1717{
1718	vm_offset_t va;
1719
1720	va = sva;
1721	while (count-- > 0) {
1722		moea_kremove(mmu, va);
1723		va += PAGE_SIZE;
1724	}
1725}
1726
1727void
1728moea_release(mmu_t mmu, pmap_t pmap)
1729{
1730        int idx, mask;
1731
1732	/*
1733	 * Free segment register's VSID
1734	 */
1735        if (pmap->pm_sr[0] == 0)
1736                panic("moea_release");
1737
1738        idx = VSID_TO_HASH(pmap->pm_sr[0]) & (NPMAPS-1);
1739        mask = 1 << (idx % VSID_NBPW);
1740        idx /= VSID_NBPW;
1741        moea_vsid_bitmap[idx] &= ~mask;
1742	PMAP_LOCK_DESTROY(pmap);
1743}
1744
1745/*
1746 * Remove the given range of addresses from the specified map.
1747 */
1748void
1749moea_remove(mmu_t mmu, pmap_t pm, vm_offset_t sva, vm_offset_t eva)
1750{
1751	struct	pvo_entry *pvo;
1752	int	pteidx;
1753
1754	vm_page_lock_queues();
1755	PMAP_LOCK(pm);
1756	for (; sva < eva; sva += PAGE_SIZE) {
1757		pvo = moea_pvo_find_va(pm, sva, &pteidx);
1758		if (pvo != NULL) {
1759			moea_pvo_remove(pvo, pteidx);
1760		}
1761	}
1762	PMAP_UNLOCK(pm);
1763	vm_page_unlock_queues();
1764}
1765
1766/*
1767 * Remove physical page from all pmaps in which it resides. moea_pvo_remove()
1768 * will reflect changes in pte's back to the vm_page.
1769 */
1770void
1771moea_remove_all(mmu_t mmu, vm_page_t m)
1772{
1773	struct  pvo_head *pvo_head;
1774	struct	pvo_entry *pvo, *next_pvo;
1775	pmap_t	pmap;
1776
1777	vm_page_lock_queues();
1778	pvo_head = vm_page_to_pvoh(m);
1779	for (pvo = LIST_FIRST(pvo_head); pvo != NULL; pvo = next_pvo) {
1780		next_pvo = LIST_NEXT(pvo, pvo_vlink);
1781
1782		MOEA_PVO_CHECK(pvo);	/* sanity check */
1783		pmap = pvo->pvo_pmap;
1784		PMAP_LOCK(pmap);
1785		moea_pvo_remove(pvo, -1);
1786		PMAP_UNLOCK(pmap);
1787	}
1788	if ((m->flags & PG_WRITEABLE) && moea_is_modified(mmu, m)) {
1789		moea_attr_clear(m, LPTE_CHG);
1790		vm_page_dirty(m);
1791	}
1792	vm_page_flag_clear(m, PG_WRITEABLE);
1793	vm_page_unlock_queues();
1794}
1795
1796/*
1797 * Allocate a physical page of memory directly from the phys_avail map.
1798 * Can only be called from moea_bootstrap before avail start and end are
1799 * calculated.
1800 */
1801static vm_offset_t
1802moea_bootstrap_alloc(vm_size_t size, u_int align)
1803{
1804	vm_offset_t	s, e;
1805	int		i, j;
1806
1807	size = round_page(size);
1808	for (i = 0; phys_avail[i + 1] != 0; i += 2) {
1809		if (align != 0)
1810			s = (phys_avail[i] + align - 1) & ~(align - 1);
1811		else
1812			s = phys_avail[i];
1813		e = s + size;
1814
1815		if (s < phys_avail[i] || e > phys_avail[i + 1])
1816			continue;
1817
1818		if (s == phys_avail[i]) {
1819			phys_avail[i] += size;
1820		} else if (e == phys_avail[i + 1]) {
1821			phys_avail[i + 1] -= size;
1822		} else {
1823			for (j = phys_avail_count * 2; j > i; j -= 2) {
1824				phys_avail[j] = phys_avail[j - 2];
1825				phys_avail[j + 1] = phys_avail[j - 1];
1826			}
1827
1828			phys_avail[i + 3] = phys_avail[i + 1];
1829			phys_avail[i + 1] = s;
1830			phys_avail[i + 2] = e;
1831			phys_avail_count++;
1832		}
1833
1834		return (s);
1835	}
1836	panic("moea_bootstrap_alloc: could not allocate memory");
1837}
1838
1839static void
1840moea_syncicache(vm_offset_t pa, vm_size_t len)
1841{
1842	__syncicache((void *)pa, len);
1843}
1844
1845static int
1846moea_pvo_enter(pmap_t pm, uma_zone_t zone, struct pvo_head *pvo_head,
1847    vm_offset_t va, vm_offset_t pa, u_int pte_lo, int flags)
1848{
1849	struct	pvo_entry *pvo;
1850	u_int	sr;
1851	int	first;
1852	u_int	ptegidx;
1853	int	i;
1854	int     bootstrap;
1855
1856	moea_pvo_enter_calls++;
1857	first = 0;
1858	bootstrap = 0;
1859
1860	/*
1861	 * Compute the PTE Group index.
1862	 */
1863	va &= ~ADDR_POFF;
1864	sr = va_to_sr(pm->pm_sr, va);
1865	ptegidx = va_to_pteg(sr, va);
1866
1867	/*
1868	 * Remove any existing mapping for this page.  Reuse the pvo entry if
1869	 * there is a mapping.
1870	 */
1871	mtx_lock(&moea_table_mutex);
1872	LIST_FOREACH(pvo, &moea_pvo_table[ptegidx], pvo_olink) {
1873		if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) {
1874			if ((pvo->pvo_pte.pte.pte_lo & PTE_RPGN) == pa &&
1875			    (pvo->pvo_pte.pte.pte_lo & PTE_PP) ==
1876			    (pte_lo & PTE_PP)) {
1877				mtx_unlock(&moea_table_mutex);
1878				return (0);
1879			}
1880			moea_pvo_remove(pvo, -1);
1881			break;
1882		}
1883	}
1884
1885	/*
1886	 * If we aren't overwriting a mapping, try to allocate.
1887	 */
1888	if (moea_initialized) {
1889		pvo = uma_zalloc(zone, M_NOWAIT);
1890	} else {
1891		if (moea_bpvo_pool_index >= BPVO_POOL_SIZE) {
1892			panic("moea_enter: bpvo pool exhausted, %d, %d, %d",
1893			      moea_bpvo_pool_index, BPVO_POOL_SIZE,
1894			      BPVO_POOL_SIZE * sizeof(struct pvo_entry));
1895		}
1896		pvo = &moea_bpvo_pool[moea_bpvo_pool_index];
1897		moea_bpvo_pool_index++;
1898		bootstrap = 1;
1899	}
1900
1901	if (pvo == NULL) {
1902		mtx_unlock(&moea_table_mutex);
1903		return (ENOMEM);
1904	}
1905
1906	moea_pvo_entries++;
1907	pvo->pvo_vaddr = va;
1908	pvo->pvo_pmap = pm;
1909	LIST_INSERT_HEAD(&moea_pvo_table[ptegidx], pvo, pvo_olink);
1910	pvo->pvo_vaddr &= ~ADDR_POFF;
1911	if (flags & VM_PROT_EXECUTE)
1912		pvo->pvo_vaddr |= PVO_EXECUTABLE;
1913	if (flags & PVO_WIRED)
1914		pvo->pvo_vaddr |= PVO_WIRED;
1915	if (pvo_head != &moea_pvo_kunmanaged)
1916		pvo->pvo_vaddr |= PVO_MANAGED;
1917	if (bootstrap)
1918		pvo->pvo_vaddr |= PVO_BOOTSTRAP;
1919	if (flags & PVO_FAKE)
1920		pvo->pvo_vaddr |= PVO_FAKE;
1921
1922	moea_pte_create(&pvo->pvo_pte.pte, sr, va, pa | pte_lo);
1923
1924	/*
1925	 * Remember if the list was empty and therefore will be the first
1926	 * item.
1927	 */
1928	if (LIST_FIRST(pvo_head) == NULL)
1929		first = 1;
1930	LIST_INSERT_HEAD(pvo_head, pvo, pvo_vlink);
1931
1932	if (pvo->pvo_pte.pte.pte_lo & PVO_WIRED)
1933		pm->pm_stats.wired_count++;
1934	pm->pm_stats.resident_count++;
1935
1936	/*
1937	 * We hope this succeeds but it isn't required.
1938	 */
1939	i = moea_pte_insert(ptegidx, &pvo->pvo_pte.pte);
1940	if (i >= 0) {
1941		PVO_PTEGIDX_SET(pvo, i);
1942	} else {
1943		panic("moea_pvo_enter: overflow");
1944		moea_pte_overflow++;
1945	}
1946	mtx_unlock(&moea_table_mutex);
1947
1948	return (first ? ENOENT : 0);
1949}
1950
1951static void
1952moea_pvo_remove(struct pvo_entry *pvo, int pteidx)
1953{
1954	struct	pte *pt;
1955
1956	/*
1957	 * If there is an active pte entry, we need to deactivate it (and
1958	 * save the ref & cfg bits).
1959	 */
1960	pt = moea_pvo_to_pte(pvo, pteidx);
1961	if (pt != NULL) {
1962		moea_pte_unset(pt, &pvo->pvo_pte.pte, pvo->pvo_vaddr);
1963		mtx_unlock(&moea_table_mutex);
1964		PVO_PTEGIDX_CLR(pvo);
1965	} else {
1966		moea_pte_overflow--;
1967	}
1968
1969	/*
1970	 * Update our statistics.
1971	 */
1972	pvo->pvo_pmap->pm_stats.resident_count--;
1973	if (pvo->pvo_pte.pte.pte_lo & PVO_WIRED)
1974		pvo->pvo_pmap->pm_stats.wired_count--;
1975
1976	/*
1977	 * Save the REF/CHG bits into their cache if the page is managed.
1978	 */
1979	if ((pvo->pvo_vaddr & (PVO_MANAGED|PVO_FAKE)) == PVO_MANAGED) {
1980		struct	vm_page *pg;
1981
1982		pg = PHYS_TO_VM_PAGE(pvo->pvo_pte.pte.pte_lo & PTE_RPGN);
1983		if (pg != NULL) {
1984			moea_attr_save(pg, pvo->pvo_pte.pte.pte_lo &
1985			    (PTE_REF | PTE_CHG));
1986		}
1987	}
1988
1989	/*
1990	 * Remove this PVO from the PV list.
1991	 */
1992	LIST_REMOVE(pvo, pvo_vlink);
1993
1994	/*
1995	 * Remove this from the overflow list and return it to the pool
1996	 * if we aren't going to reuse it.
1997	 */
1998	LIST_REMOVE(pvo, pvo_olink);
1999	if (!(pvo->pvo_vaddr & PVO_BOOTSTRAP))
2000		uma_zfree(pvo->pvo_vaddr & PVO_MANAGED ? moea_mpvo_zone :
2001		    moea_upvo_zone, pvo);
2002	moea_pvo_entries--;
2003	moea_pvo_remove_calls++;
2004}
2005
2006static __inline int
2007moea_pvo_pte_index(const struct pvo_entry *pvo, int ptegidx)
2008{
2009	int	pteidx;
2010
2011	/*
2012	 * We can find the actual pte entry without searching by grabbing
2013	 * the PTEG index from 3 unused bits in pte_lo[11:9] and by
2014	 * noticing the HID bit.
2015	 */
2016	pteidx = ptegidx * 8 + PVO_PTEGIDX_GET(pvo);
2017	if (pvo->pvo_pte.pte.pte_hi & PTE_HID)
2018		pteidx ^= moea_pteg_mask * 8;
2019
2020	return (pteidx);
2021}
2022
2023static struct pvo_entry *
2024moea_pvo_find_va(pmap_t pm, vm_offset_t va, int *pteidx_p)
2025{
2026	struct	pvo_entry *pvo;
2027	int	ptegidx;
2028	u_int	sr;
2029
2030	va &= ~ADDR_POFF;
2031	sr = va_to_sr(pm->pm_sr, va);
2032	ptegidx = va_to_pteg(sr, va);
2033
2034	mtx_lock(&moea_table_mutex);
2035	LIST_FOREACH(pvo, &moea_pvo_table[ptegidx], pvo_olink) {
2036		if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) {
2037			if (pteidx_p)
2038				*pteidx_p = moea_pvo_pte_index(pvo, ptegidx);
2039			break;
2040		}
2041	}
2042	mtx_unlock(&moea_table_mutex);
2043
2044	return (pvo);
2045}
2046
2047static struct pte *
2048moea_pvo_to_pte(const struct pvo_entry *pvo, int pteidx)
2049{
2050	struct	pte *pt;
2051
2052	/*
2053	 * If we haven't been supplied the ptegidx, calculate it.
2054	 */
2055	if (pteidx == -1) {
2056		int	ptegidx;
2057		u_int	sr;
2058
2059		sr = va_to_sr(pvo->pvo_pmap->pm_sr, pvo->pvo_vaddr);
2060		ptegidx = va_to_pteg(sr, pvo->pvo_vaddr);
2061		pteidx = moea_pvo_pte_index(pvo, ptegidx);
2062	}
2063
2064	pt = &moea_pteg_table[pteidx >> 3].pt[pteidx & 7];
2065	mtx_lock(&moea_table_mutex);
2066
2067	if ((pvo->pvo_pte.pte.pte_hi & PTE_VALID) && !PVO_PTEGIDX_ISSET(pvo)) {
2068		panic("moea_pvo_to_pte: pvo %p has valid pte in pvo but no "
2069		    "valid pte index", pvo);
2070	}
2071
2072	if ((pvo->pvo_pte.pte.pte_hi & PTE_VALID) == 0 && PVO_PTEGIDX_ISSET(pvo)) {
2073		panic("moea_pvo_to_pte: pvo %p has valid pte index in pvo "
2074		    "pvo but no valid pte", pvo);
2075	}
2076
2077	if ((pt->pte_hi ^ (pvo->pvo_pte.pte.pte_hi & ~PTE_VALID)) == PTE_VALID) {
2078		if ((pvo->pvo_pte.pte.pte_hi & PTE_VALID) == 0) {
2079			panic("moea_pvo_to_pte: pvo %p has valid pte in "
2080			    "moea_pteg_table %p but invalid in pvo", pvo, pt);
2081		}
2082
2083		if (((pt->pte_lo ^ pvo->pvo_pte.pte.pte_lo) & ~(PTE_CHG|PTE_REF))
2084		    != 0) {
2085			panic("moea_pvo_to_pte: pvo %p pte does not match "
2086			    "pte %p in moea_pteg_table", pvo, pt);
2087		}
2088
2089		mtx_assert(&moea_table_mutex, MA_OWNED);
2090		return (pt);
2091	}
2092
2093	if (pvo->pvo_pte.pte.pte_hi & PTE_VALID) {
2094		panic("moea_pvo_to_pte: pvo %p has invalid pte %p in "
2095		    "moea_pteg_table but valid in pvo", pvo, pt);
2096	}
2097
2098	mtx_unlock(&moea_table_mutex);
2099	return (NULL);
2100}
2101
2102/*
2103 * XXX: THIS STUFF SHOULD BE IN pte.c?
2104 */
2105int
2106moea_pte_spill(vm_offset_t addr)
2107{
2108	struct	pvo_entry *source_pvo, *victim_pvo;
2109	struct	pvo_entry *pvo;
2110	int	ptegidx, i, j;
2111	u_int	sr;
2112	struct	pteg *pteg;
2113	struct	pte *pt;
2114
2115	moea_pte_spills++;
2116
2117	sr = mfsrin(addr);
2118	ptegidx = va_to_pteg(sr, addr);
2119
2120	/*
2121	 * Have to substitute some entry.  Use the primary hash for this.
2122	 * Use low bits of timebase as random generator.
2123	 */
2124	pteg = &moea_pteg_table[ptegidx];
2125	mtx_lock(&moea_table_mutex);
2126	__asm __volatile("mftb %0" : "=r"(i));
2127	i &= 7;
2128	pt = &pteg->pt[i];
2129
2130	source_pvo = NULL;
2131	victim_pvo = NULL;
2132	LIST_FOREACH(pvo, &moea_pvo_table[ptegidx], pvo_olink) {
2133		/*
2134		 * We need to find a pvo entry for this address.
2135		 */
2136		MOEA_PVO_CHECK(pvo);
2137		if (source_pvo == NULL &&
2138		    moea_pte_match(&pvo->pvo_pte.pte, sr, addr,
2139		    pvo->pvo_pte.pte.pte_hi & PTE_HID)) {
2140			/*
2141			 * Now found an entry to be spilled into the pteg.
2142			 * The PTE is now valid, so we know it's active.
2143			 */
2144			j = moea_pte_insert(ptegidx, &pvo->pvo_pte.pte);
2145
2146			if (j >= 0) {
2147				PVO_PTEGIDX_SET(pvo, j);
2148				moea_pte_overflow--;
2149				MOEA_PVO_CHECK(pvo);
2150				mtx_unlock(&moea_table_mutex);
2151				return (1);
2152			}
2153
2154			source_pvo = pvo;
2155
2156			if (victim_pvo != NULL)
2157				break;
2158		}
2159
2160		/*
2161		 * We also need the pvo entry of the victim we are replacing
2162		 * so save the R & C bits of the PTE.
2163		 */
2164		if ((pt->pte_hi & PTE_HID) == 0 && victim_pvo == NULL &&
2165		    moea_pte_compare(pt, &pvo->pvo_pte.pte)) {
2166			victim_pvo = pvo;
2167			if (source_pvo != NULL)
2168				break;
2169		}
2170	}
2171
2172	if (source_pvo == NULL) {
2173		mtx_unlock(&moea_table_mutex);
2174		return (0);
2175	}
2176
2177	if (victim_pvo == NULL) {
2178		if ((pt->pte_hi & PTE_HID) == 0)
2179			panic("moea_pte_spill: victim p-pte (%p) has no pvo"
2180			    "entry", pt);
2181
2182		/*
2183		 * If this is a secondary PTE, we need to search it's primary
2184		 * pvo bucket for the matching PVO.
2185		 */
2186		LIST_FOREACH(pvo, &moea_pvo_table[ptegidx ^ moea_pteg_mask],
2187		    pvo_olink) {
2188			MOEA_PVO_CHECK(pvo);
2189			/*
2190			 * We also need the pvo entry of the victim we are
2191			 * replacing so save the R & C bits of the PTE.
2192			 */
2193			if (moea_pte_compare(pt, &pvo->pvo_pte.pte)) {
2194				victim_pvo = pvo;
2195				break;
2196			}
2197		}
2198
2199		if (victim_pvo == NULL)
2200			panic("moea_pte_spill: victim s-pte (%p) has no pvo"
2201			    "entry", pt);
2202	}
2203
2204	/*
2205	 * We are invalidating the TLB entry for the EA we are replacing even
2206	 * though it's valid.  If we don't, we lose any ref/chg bit changes
2207	 * contained in the TLB entry.
2208	 */
2209	source_pvo->pvo_pte.pte.pte_hi &= ~PTE_HID;
2210
2211	moea_pte_unset(pt, &victim_pvo->pvo_pte.pte, victim_pvo->pvo_vaddr);
2212	moea_pte_set(pt, &source_pvo->pvo_pte.pte);
2213
2214	PVO_PTEGIDX_CLR(victim_pvo);
2215	PVO_PTEGIDX_SET(source_pvo, i);
2216	moea_pte_replacements++;
2217
2218	MOEA_PVO_CHECK(victim_pvo);
2219	MOEA_PVO_CHECK(source_pvo);
2220
2221	mtx_unlock(&moea_table_mutex);
2222	return (1);
2223}
2224
2225static int
2226moea_pte_insert(u_int ptegidx, struct pte *pvo_pt)
2227{
2228	struct	pte *pt;
2229	int	i;
2230
2231	mtx_assert(&moea_table_mutex, MA_OWNED);
2232
2233	/*
2234	 * First try primary hash.
2235	 */
2236	for (pt = moea_pteg_table[ptegidx].pt, i = 0; i < 8; i++, pt++) {
2237		if ((pt->pte_hi & PTE_VALID) == 0) {
2238			pvo_pt->pte_hi &= ~PTE_HID;
2239			moea_pte_set(pt, pvo_pt);
2240			return (i);
2241		}
2242	}
2243
2244	/*
2245	 * Now try secondary hash.
2246	 */
2247	ptegidx ^= moea_pteg_mask;
2248
2249	for (pt = moea_pteg_table[ptegidx].pt, i = 0; i < 8; i++, pt++) {
2250		if ((pt->pte_hi & PTE_VALID) == 0) {
2251			pvo_pt->pte_hi |= PTE_HID;
2252			moea_pte_set(pt, pvo_pt);
2253			return (i);
2254		}
2255	}
2256
2257	panic("moea_pte_insert: overflow");
2258	return (-1);
2259}
2260
2261static boolean_t
2262moea_query_bit(vm_page_t m, int ptebit)
2263{
2264	struct	pvo_entry *pvo;
2265	struct	pte *pt;
2266
2267	if (moea_attr_fetch(m) & ptebit)
2268		return (TRUE);
2269
2270	vm_page_lock_queues();
2271	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
2272		MOEA_PVO_CHECK(pvo);	/* sanity check */
2273
2274		/*
2275		 * See if we saved the bit off.  If so, cache it and return
2276		 * success.
2277		 */
2278		if (pvo->pvo_pte.pte.pte_lo & ptebit) {
2279			moea_attr_save(m, ptebit);
2280			MOEA_PVO_CHECK(pvo);	/* sanity check */
2281			vm_page_unlock_queues();
2282			return (TRUE);
2283		}
2284	}
2285
2286	/*
2287	 * No luck, now go through the hard part of looking at the PTEs
2288	 * themselves.  Sync so that any pending REF/CHG bits are flushed to
2289	 * the PTEs.
2290	 */
2291	powerpc_sync();
2292	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
2293		MOEA_PVO_CHECK(pvo);	/* sanity check */
2294
2295		/*
2296		 * See if this pvo has a valid PTE.  if so, fetch the
2297		 * REF/CHG bits from the valid PTE.  If the appropriate
2298		 * ptebit is set, cache it and return success.
2299		 */
2300		pt = moea_pvo_to_pte(pvo, -1);
2301		if (pt != NULL) {
2302			moea_pte_synch(pt, &pvo->pvo_pte.pte);
2303			mtx_unlock(&moea_table_mutex);
2304			if (pvo->pvo_pte.pte.pte_lo & ptebit) {
2305				moea_attr_save(m, ptebit);
2306				MOEA_PVO_CHECK(pvo);	/* sanity check */
2307				vm_page_unlock_queues();
2308				return (TRUE);
2309			}
2310		}
2311	}
2312
2313	vm_page_unlock_queues();
2314	return (FALSE);
2315}
2316
2317static u_int
2318moea_clear_bit(vm_page_t m, int ptebit, int *origbit)
2319{
2320	u_int	count;
2321	struct	pvo_entry *pvo;
2322	struct	pte *pt;
2323	int	rv;
2324
2325	/*
2326	 * Clear the cached value.
2327	 */
2328	rv = moea_attr_fetch(m);
2329	moea_attr_clear(m, ptebit);
2330
2331	/*
2332	 * Sync so that any pending REF/CHG bits are flushed to the PTEs (so
2333	 * we can reset the right ones).  note that since the pvo entries and
2334	 * list heads are accessed via BAT0 and are never placed in the page
2335	 * table, we don't have to worry about further accesses setting the
2336	 * REF/CHG bits.
2337	 */
2338	powerpc_sync();
2339
2340	/*
2341	 * For each pvo entry, clear the pvo's ptebit.  If this pvo has a
2342	 * valid pte clear the ptebit from the valid pte.
2343	 */
2344	count = 0;
2345	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
2346		MOEA_PVO_CHECK(pvo);	/* sanity check */
2347		pt = moea_pvo_to_pte(pvo, -1);
2348		if (pt != NULL) {
2349			moea_pte_synch(pt, &pvo->pvo_pte.pte);
2350			if (pvo->pvo_pte.pte.pte_lo & ptebit) {
2351				count++;
2352				moea_pte_clear(pt, PVO_VADDR(pvo), ptebit);
2353			}
2354			mtx_unlock(&moea_table_mutex);
2355		}
2356		rv |= pvo->pvo_pte.pte.pte_lo;
2357		pvo->pvo_pte.pte.pte_lo &= ~ptebit;
2358		MOEA_PVO_CHECK(pvo);	/* sanity check */
2359	}
2360
2361	if (origbit != NULL) {
2362		*origbit = rv;
2363	}
2364
2365	return (count);
2366}
2367
2368/*
2369 * Return true if the physical range is encompassed by the battable[idx]
2370 */
2371static int
2372moea_bat_mapped(int idx, vm_offset_t pa, vm_size_t size)
2373{
2374	u_int prot;
2375	u_int32_t start;
2376	u_int32_t end;
2377	u_int32_t bat_ble;
2378
2379	/*
2380	 * Return immediately if not a valid mapping
2381	 */
2382	if (!battable[idx].batu & BAT_Vs)
2383		return (EINVAL);
2384
2385	/*
2386	 * The BAT entry must be cache-inhibited, guarded, and r/w
2387	 * so it can function as an i/o page
2388	 */
2389	prot = battable[idx].batl & (BAT_I|BAT_G|BAT_PP_RW);
2390	if (prot != (BAT_I|BAT_G|BAT_PP_RW))
2391		return (EPERM);
2392
2393	/*
2394	 * The address should be within the BAT range. Assume that the
2395	 * start address in the BAT has the correct alignment (thus
2396	 * not requiring masking)
2397	 */
2398	start = battable[idx].batl & BAT_PBS;
2399	bat_ble = (battable[idx].batu & ~(BAT_EBS)) | 0x03;
2400	end = start | (bat_ble << 15) | 0x7fff;
2401
2402	if ((pa < start) || ((pa + size) > end))
2403		return (ERANGE);
2404
2405	return (0);
2406}
2407
2408boolean_t
2409moea_dev_direct_mapped(mmu_t mmu, vm_offset_t pa, vm_size_t size)
2410{
2411	int i;
2412
2413	/*
2414	 * This currently does not work for entries that
2415	 * overlap 256M BAT segments.
2416	 */
2417
2418	for(i = 0; i < 16; i++)
2419		if (moea_bat_mapped(i, pa, size) == 0)
2420			return (0);
2421
2422	return (EFAULT);
2423}
2424
2425/*
2426 * Map a set of physical memory pages into the kernel virtual
2427 * address space. Return a pointer to where it is mapped. This
2428 * routine is intended to be used for mapping device memory,
2429 * NOT real memory.
2430 */
2431void *
2432moea_mapdev(mmu_t mmu, vm_offset_t pa, vm_size_t size)
2433{
2434	vm_offset_t va, tmpva, ppa, offset;
2435	int i;
2436
2437	ppa = trunc_page(pa);
2438	offset = pa & PAGE_MASK;
2439	size = roundup(offset + size, PAGE_SIZE);
2440
2441	GIANT_REQUIRED;
2442
2443	/*
2444	 * If the physical address lies within a valid BAT table entry,
2445	 * return the 1:1 mapping. This currently doesn't work
2446	 * for regions that overlap 256M BAT segments.
2447	 */
2448	for (i = 0; i < 16; i++) {
2449		if (moea_bat_mapped(i, pa, size) == 0)
2450			return ((void *) pa);
2451	}
2452
2453	va = kmem_alloc_nofault(kernel_map, size);
2454	if (!va)
2455		panic("moea_mapdev: Couldn't alloc kernel virtual memory");
2456
2457	for (tmpva = va; size > 0;) {
2458		moea_kenter(mmu, tmpva, ppa);
2459		tlbie(tmpva);
2460		size -= PAGE_SIZE;
2461		tmpva += PAGE_SIZE;
2462		ppa += PAGE_SIZE;
2463	}
2464
2465	return ((void *)(va + offset));
2466}
2467
2468void
2469moea_unmapdev(mmu_t mmu, vm_offset_t va, vm_size_t size)
2470{
2471	vm_offset_t base, offset;
2472
2473	/*
2474	 * If this is outside kernel virtual space, then it's a
2475	 * battable entry and doesn't require unmapping
2476	 */
2477	if ((va >= VM_MIN_KERNEL_ADDRESS) && (va <= virtual_end)) {
2478		base = trunc_page(va);
2479		offset = va & PAGE_MASK;
2480		size = roundup(offset + size, PAGE_SIZE);
2481		kmem_free(kernel_map, base, size);
2482	}
2483}
2484
2485static void
2486moea_sync_icache(mmu_t mmu, pmap_t pm, vm_offset_t va, vm_size_t sz)
2487{
2488	struct pvo_entry *pvo;
2489	vm_offset_t lim;
2490	vm_paddr_t pa;
2491	vm_size_t len;
2492
2493	PMAP_LOCK(pm);
2494	while (sz > 0) {
2495		lim = round_page(va);
2496		len = MIN(lim - va, sz);
2497		pvo = moea_pvo_find_va(pm, va & ~ADDR_POFF, NULL);
2498		if (pvo != NULL) {
2499			pa = (pvo->pvo_pte.pte.pte_lo & PTE_RPGN) |
2500			    (va & ADDR_POFF);
2501			moea_syncicache(pa, len);
2502		}
2503		va += len;
2504		sz -= len;
2505	}
2506	PMAP_UNLOCK(pm);
2507}
2508