mmu_oea.c revision 152180
1/*-
2 * Copyright (c) 2001 The NetBSD Foundation, Inc.
3 * All rights reserved.
4 *
5 * This code is derived from software contributed to The NetBSD Foundation
6 * by Matt Thomas <matt@3am-software.com> of Allegro Networks, Inc.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 *    must display the following acknowledgement:
18 *        This product includes software developed by the NetBSD
19 *        Foundation, Inc. and its contributors.
20 * 4. Neither the name of The NetBSD Foundation nor the names of its
21 *    contributors may be used to endorse or promote products derived
22 *    from this software without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
25 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
26 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
27 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
28 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
29 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
30 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
31 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
32 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
33 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
34 * POSSIBILITY OF SUCH DAMAGE.
35 */
36/*-
37 * Copyright (C) 1995, 1996 Wolfgang Solfrank.
38 * Copyright (C) 1995, 1996 TooLs GmbH.
39 * All rights reserved.
40 *
41 * Redistribution and use in source and binary forms, with or without
42 * modification, are permitted provided that the following conditions
43 * are met:
44 * 1. Redistributions of source code must retain the above copyright
45 *    notice, this list of conditions and the following disclaimer.
46 * 2. Redistributions in binary form must reproduce the above copyright
47 *    notice, this list of conditions and the following disclaimer in the
48 *    documentation and/or other materials provided with the distribution.
49 * 3. All advertising materials mentioning features or use of this software
50 *    must display the following acknowledgement:
51 *	This product includes software developed by TooLs GmbH.
52 * 4. The name of TooLs GmbH may not be used to endorse or promote products
53 *    derived from this software without specific prior written permission.
54 *
55 * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR
56 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
57 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
58 * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
59 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
60 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
61 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
62 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
63 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
64 * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
65 *
66 * $NetBSD: pmap.c,v 1.28 2000/03/26 20:42:36 kleink Exp $
67 */
68/*-
69 * Copyright (C) 2001 Benno Rice.
70 * All rights reserved.
71 *
72 * Redistribution and use in source and binary forms, with or without
73 * modification, are permitted provided that the following conditions
74 * are met:
75 * 1. Redistributions of source code must retain the above copyright
76 *    notice, this list of conditions and the following disclaimer.
77 * 2. Redistributions in binary form must reproduce the above copyright
78 *    notice, this list of conditions and the following disclaimer in the
79 *    documentation and/or other materials provided with the distribution.
80 *
81 * THIS SOFTWARE IS PROVIDED BY Benno Rice ``AS IS'' AND ANY EXPRESS OR
82 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
83 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
84 * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
85 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
86 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
87 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
88 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
89 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
90 * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
91 */
92
93#include <sys/cdefs.h>
94__FBSDID("$FreeBSD: head/sys/powerpc/aim/mmu_oea.c 152180 2005-11-08 06:49:45Z grehan $");
95
96/*
97 * Manages physical address maps.
98 *
99 * In addition to hardware address maps, this module is called upon to
100 * provide software-use-only maps which may or may not be stored in the
101 * same form as hardware maps.  These pseudo-maps are used to store
102 * intermediate results from copy operations to and from address spaces.
103 *
104 * Since the information managed by this module is also stored by the
105 * logical address mapping module, this module may throw away valid virtual
106 * to physical mappings at almost any time.  However, invalidations of
107 * mappings must be done as requested.
108 *
109 * In order to cope with hardware architectures which make virtual to
110 * physical map invalidates expensive, this module may delay invalidate
111 * reduced protection operations until such time as they are actually
112 * necessary.  This module is given full information as to which processors
113 * are currently using which maps, and to when physical maps must be made
114 * correct.
115 */
116
117#include "opt_kstack_pages.h"
118
119#include <sys/param.h>
120#include <sys/kernel.h>
121#include <sys/ktr.h>
122#include <sys/lock.h>
123#include <sys/msgbuf.h>
124#include <sys/mutex.h>
125#include <sys/proc.h>
126#include <sys/sysctl.h>
127#include <sys/systm.h>
128#include <sys/vmmeter.h>
129
130#include <dev/ofw/openfirm.h>
131
132#include <vm/vm.h>
133#include <vm/vm_param.h>
134#include <vm/vm_kern.h>
135#include <vm/vm_page.h>
136#include <vm/vm_map.h>
137#include <vm/vm_object.h>
138#include <vm/vm_extern.h>
139#include <vm/vm_pageout.h>
140#include <vm/vm_pager.h>
141#include <vm/uma.h>
142
143#include <machine/cpu.h>
144#include <machine/powerpc.h>
145#include <machine/bat.h>
146#include <machine/frame.h>
147#include <machine/md_var.h>
148#include <machine/psl.h>
149#include <machine/pte.h>
150#include <machine/sr.h>
151#include <machine/mmuvar.h>
152
153#include "mmu_if.h"
154
155#define	MOEA_DEBUG
156
157#define TODO	panic("%s: not implemented", __func__);
158
159#define	TLBIE(va)	__asm __volatile("tlbie %0" :: "r"(va))
160#define	TLBSYNC()	__asm __volatile("tlbsync");
161#define	SYNC()		__asm __volatile("sync");
162#define	EIEIO()		__asm __volatile("eieio");
163
164#define	VSID_MAKE(sr, hash)	((sr) | (((hash) & 0xfffff) << 4))
165#define	VSID_TO_SR(vsid)	((vsid) & 0xf)
166#define	VSID_TO_HASH(vsid)	(((vsid) >> 4) & 0xfffff)
167
168#define	PVO_PTEGIDX_MASK	0x007		/* which PTEG slot */
169#define	PVO_PTEGIDX_VALID	0x008		/* slot is valid */
170#define	PVO_WIRED		0x010		/* PVO entry is wired */
171#define	PVO_MANAGED		0x020		/* PVO entry is managed */
172#define	PVO_EXECUTABLE		0x040		/* PVO entry is executable */
173#define	PVO_BOOTSTRAP		0x080		/* PVO entry allocated during
174						   bootstrap */
175#define PVO_FAKE		0x100		/* fictitious phys page */
176#define	PVO_VADDR(pvo)		((pvo)->pvo_vaddr & ~ADDR_POFF)
177#define	PVO_ISEXECUTABLE(pvo)	((pvo)->pvo_vaddr & PVO_EXECUTABLE)
178#define PVO_ISFAKE(pvo)		((pvo)->pvo_vaddr & PVO_FAKE)
179#define	PVO_PTEGIDX_GET(pvo)	((pvo)->pvo_vaddr & PVO_PTEGIDX_MASK)
180#define	PVO_PTEGIDX_ISSET(pvo)	((pvo)->pvo_vaddr & PVO_PTEGIDX_VALID)
181#define	PVO_PTEGIDX_CLR(pvo)	\
182	((void)((pvo)->pvo_vaddr &= ~(PVO_PTEGIDX_VALID|PVO_PTEGIDX_MASK)))
183#define	PVO_PTEGIDX_SET(pvo, i)	\
184	((void)((pvo)->pvo_vaddr |= (i)|PVO_PTEGIDX_VALID))
185
186#define	MOEA_PVO_CHECK(pvo)
187
188struct ofw_map {
189	vm_offset_t	om_va;
190	vm_size_t	om_len;
191	vm_offset_t	om_pa;
192	u_int		om_mode;
193};
194
195/*
196 * Map of physical memory regions.
197 */
198static struct	mem_region *regions;
199static struct	mem_region *pregions;
200u_int           phys_avail_count;
201int		regions_sz, pregions_sz;
202static struct	ofw_map *translations;
203
204extern struct pmap ofw_pmap;
205
206
207
208/*
209 * Lock for the pteg and pvo tables.
210 */
211struct mtx	moea_table_mutex;
212
213/*
214 * PTEG data.
215 */
216static struct	pteg *moea_pteg_table;
217u_int		moea_pteg_count;
218u_int		moea_pteg_mask;
219
220/*
221 * PVO data.
222 */
223struct	pvo_head *moea_pvo_table;		/* pvo entries by pteg index */
224struct	pvo_head moea_pvo_kunmanaged =
225    LIST_HEAD_INITIALIZER(moea_pvo_kunmanaged);	/* list of unmanaged pages */
226struct	pvo_head moea_pvo_unmanaged =
227    LIST_HEAD_INITIALIZER(moea_pvo_unmanaged);	/* list of unmanaged pages */
228
229uma_zone_t	moea_upvo_zone;	/* zone for pvo entries for unmanaged pages */
230uma_zone_t	moea_mpvo_zone;	/* zone for pvo entries for managed pages */
231
232#define	BPVO_POOL_SIZE	32768
233static struct	pvo_entry *moea_bpvo_pool;
234static int	moea_bpvo_pool_index = 0;
235
236#define	VSID_NBPW	(sizeof(u_int32_t) * 8)
237static u_int	moea_vsid_bitmap[NPMAPS / VSID_NBPW];
238
239static boolean_t moea_initialized = FALSE;
240
241/*
242 * Statistics.
243 */
244u_int	moea_pte_valid = 0;
245u_int	moea_pte_overflow = 0;
246u_int	moea_pte_replacements = 0;
247u_int	moea_pvo_entries = 0;
248u_int	moea_pvo_enter_calls = 0;
249u_int	moea_pvo_remove_calls = 0;
250u_int	moea_pte_spills = 0;
251SYSCTL_INT(_machdep, OID_AUTO, moea_pte_valid, CTLFLAG_RD, &moea_pte_valid,
252    0, "");
253SYSCTL_INT(_machdep, OID_AUTO, moea_pte_overflow, CTLFLAG_RD,
254    &moea_pte_overflow, 0, "");
255SYSCTL_INT(_machdep, OID_AUTO, moea_pte_replacements, CTLFLAG_RD,
256    &moea_pte_replacements, 0, "");
257SYSCTL_INT(_machdep, OID_AUTO, moea_pvo_entries, CTLFLAG_RD, &moea_pvo_entries,
258    0, "");
259SYSCTL_INT(_machdep, OID_AUTO, moea_pvo_enter_calls, CTLFLAG_RD,
260    &moea_pvo_enter_calls, 0, "");
261SYSCTL_INT(_machdep, OID_AUTO, moea_pvo_remove_calls, CTLFLAG_RD,
262    &moea_pvo_remove_calls, 0, "");
263SYSCTL_INT(_machdep, OID_AUTO, moea_pte_spills, CTLFLAG_RD,
264    &moea_pte_spills, 0, "");
265
266struct	pvo_entry *moea_pvo_zeropage;
267
268vm_offset_t	moea_rkva_start = VM_MIN_KERNEL_ADDRESS;
269u_int		moea_rkva_count = 4;
270
271/*
272 * Allocate physical memory for use in moea_bootstrap.
273 */
274static vm_offset_t	moea_bootstrap_alloc(vm_size_t, u_int);
275
276/*
277 * PTE calls.
278 */
279static int		moea_pte_insert(u_int, struct pte *);
280
281/*
282 * PVO calls.
283 */
284static int	moea_pvo_enter(pmap_t, uma_zone_t, struct pvo_head *,
285		    vm_offset_t, vm_offset_t, u_int, int);
286static void	moea_pvo_remove(struct pvo_entry *, int);
287static struct	pvo_entry *moea_pvo_find_va(pmap_t, vm_offset_t, int *);
288static struct	pte *moea_pvo_to_pte(const struct pvo_entry *, int);
289
290/*
291 * Utility routines.
292 */
293static struct		pvo_entry *moea_rkva_alloc(mmu_t);
294static void		moea_pa_map(struct pvo_entry *, vm_offset_t,
295			    struct pte *, int *);
296static void		moea_pa_unmap(struct pvo_entry *, struct pte *, int *);
297static void		moea_syncicache(vm_offset_t, vm_size_t);
298static boolean_t	moea_query_bit(vm_page_t, int);
299static u_int		moea_clear_bit(vm_page_t, int, int *);
300static void		moea_kremove(mmu_t, vm_offset_t);
301static void		tlbia(void);
302int		moea_pte_spill(vm_offset_t);
303
304/*
305 * Kernel MMU interface
306 */
307void moea_change_wiring(mmu_t, pmap_t, vm_offset_t, boolean_t);
308void moea_clear_modify(mmu_t, vm_page_t);
309void moea_clear_reference(mmu_t, vm_page_t);
310void moea_copy_page(mmu_t, vm_page_t, vm_page_t);
311void moea_enter(mmu_t, pmap_t, vm_offset_t, vm_page_t, vm_prot_t, boolean_t);
312vm_page_t moea_enter_quick(mmu_t, pmap_t, vm_offset_t, vm_page_t, vm_prot_t,
313    vm_page_t);
314vm_paddr_t moea_extract(mmu_t, pmap_t, vm_offset_t);
315vm_page_t moea_extract_and_hold(mmu_t, pmap_t, vm_offset_t, vm_prot_t);
316void moea_init(mmu_t);
317boolean_t moea_is_modified(mmu_t, vm_page_t);
318boolean_t moea_ts_referenced(mmu_t, vm_page_t);
319vm_offset_t moea_map(mmu_t, vm_offset_t *, vm_offset_t, vm_offset_t, int);
320boolean_t moea_page_exists_quick(mmu_t, pmap_t, vm_page_t);
321void moea_page_protect(mmu_t, vm_page_t, vm_prot_t);
322void moea_pinit(mmu_t, pmap_t);
323void moea_pinit0(mmu_t, pmap_t);
324void moea_protect(mmu_t, pmap_t, vm_offset_t, vm_offset_t, vm_prot_t);
325void moea_qenter(mmu_t, vm_offset_t, vm_page_t *, int);
326void moea_qremove(mmu_t, vm_offset_t, int);
327void moea_release(mmu_t, pmap_t);
328void moea_remove(mmu_t, pmap_t, vm_offset_t, vm_offset_t);
329void moea_remove_all(mmu_t, vm_page_t);
330void moea_zero_page(mmu_t, vm_page_t);
331void moea_zero_page_area(mmu_t, vm_page_t, int, int);
332void moea_zero_page_idle(mmu_t, vm_page_t);
333void moea_activate(mmu_t, struct thread *);
334void moea_deactivate(mmu_t, struct thread *);
335void moea_bootstrap(mmu_t, vm_offset_t, vm_offset_t);
336void *moea_mapdev(mmu_t, vm_offset_t, vm_size_t);
337void moea_unmapdev(mmu_t, vm_offset_t, vm_size_t);
338vm_offset_t moea_kextract(mmu_t, vm_offset_t);
339void moea_kenter(mmu_t, vm_offset_t, vm_offset_t);
340boolean_t moea_dev_direct_mapped(mmu_t, vm_offset_t, vm_size_t);
341
342static mmu_method_t moea_methods[] = {
343	MMUMETHOD(mmu_change_wiring,	moea_change_wiring),
344	MMUMETHOD(mmu_clear_modify,	moea_clear_modify),
345	MMUMETHOD(mmu_clear_reference,	moea_clear_reference),
346	MMUMETHOD(mmu_copy_page,	moea_copy_page),
347	MMUMETHOD(mmu_enter,		moea_enter),
348	MMUMETHOD(mmu_enter_quick,	moea_enter_quick),
349	MMUMETHOD(mmu_extract,		moea_extract),
350	MMUMETHOD(mmu_extract_and_hold,	moea_extract_and_hold),
351	MMUMETHOD(mmu_init,		moea_init),
352	MMUMETHOD(mmu_is_modified,	moea_is_modified),
353	MMUMETHOD(mmu_ts_referenced,	moea_ts_referenced),
354	MMUMETHOD(mmu_map,     		moea_map),
355	MMUMETHOD(mmu_page_exists_quick,moea_page_exists_quick),
356	MMUMETHOD(mmu_page_protect,    	moea_page_protect),
357	MMUMETHOD(mmu_pinit,		moea_pinit),
358	MMUMETHOD(mmu_pinit0,		moea_pinit0),
359	MMUMETHOD(mmu_protect,		moea_protect),
360	MMUMETHOD(mmu_qenter,		moea_qenter),
361	MMUMETHOD(mmu_qremove,		moea_qremove),
362	MMUMETHOD(mmu_release,		moea_release),
363	MMUMETHOD(mmu_remove,		moea_remove),
364	MMUMETHOD(mmu_remove_all,      	moea_remove_all),
365	MMUMETHOD(mmu_zero_page,       	moea_zero_page),
366	MMUMETHOD(mmu_zero_page_area,	moea_zero_page_area),
367	MMUMETHOD(mmu_zero_page_idle,	moea_zero_page_idle),
368	MMUMETHOD(mmu_activate,		moea_activate),
369	MMUMETHOD(mmu_deactivate,      	moea_deactivate),
370
371	/* Internal interfaces */
372	MMUMETHOD(mmu_bootstrap,       	moea_bootstrap),
373	MMUMETHOD(mmu_mapdev,		moea_mapdev),
374	MMUMETHOD(mmu_unmapdev,		moea_unmapdev),
375	MMUMETHOD(mmu_kextract,		moea_kextract),
376	MMUMETHOD(mmu_kenter,		moea_kenter),
377	MMUMETHOD(mmu_dev_direct_mapped,moea_dev_direct_mapped),
378
379	{ 0, 0 }
380};
381
382static mmu_def_t oea_mmu = {
383	MMU_TYPE_OEA,
384	moea_methods,
385	0
386};
387MMU_DEF(oea_mmu);
388
389
390static __inline int
391va_to_sr(u_int *sr, vm_offset_t va)
392{
393	return (sr[(uintptr_t)va >> ADDR_SR_SHFT]);
394}
395
396static __inline u_int
397va_to_pteg(u_int sr, vm_offset_t addr)
398{
399	u_int hash;
400
401	hash = (sr & SR_VSID_MASK) ^ (((u_int)addr & ADDR_PIDX) >>
402	    ADDR_PIDX_SHFT);
403	return (hash & moea_pteg_mask);
404}
405
406static __inline struct pvo_head *
407pa_to_pvoh(vm_offset_t pa, vm_page_t *pg_p)
408{
409	struct	vm_page *pg;
410
411	pg = PHYS_TO_VM_PAGE(pa);
412
413	if (pg_p != NULL)
414		*pg_p = pg;
415
416	if (pg == NULL)
417		return (&moea_pvo_unmanaged);
418
419	return (&pg->md.mdpg_pvoh);
420}
421
422static __inline struct pvo_head *
423vm_page_to_pvoh(vm_page_t m)
424{
425
426	return (&m->md.mdpg_pvoh);
427}
428
429static __inline void
430moea_attr_clear(vm_page_t m, int ptebit)
431{
432
433	m->md.mdpg_attrs &= ~ptebit;
434}
435
436static __inline int
437moea_attr_fetch(vm_page_t m)
438{
439
440	return (m->md.mdpg_attrs);
441}
442
443static __inline void
444moea_attr_save(vm_page_t m, int ptebit)
445{
446
447	m->md.mdpg_attrs |= ptebit;
448}
449
450static __inline int
451moea_pte_compare(const struct pte *pt, const struct pte *pvo_pt)
452{
453	if (pt->pte_hi == pvo_pt->pte_hi)
454		return (1);
455
456	return (0);
457}
458
459static __inline int
460moea_pte_match(struct pte *pt, u_int sr, vm_offset_t va, int which)
461{
462	return (pt->pte_hi & ~PTE_VALID) ==
463	    (((sr & SR_VSID_MASK) << PTE_VSID_SHFT) |
464	    ((va >> ADDR_API_SHFT) & PTE_API) | which);
465}
466
467static __inline void
468moea_pte_create(struct pte *pt, u_int sr, vm_offset_t va, u_int pte_lo)
469{
470	/*
471	 * Construct a PTE.  Default to IMB initially.  Valid bit only gets
472	 * set when the real pte is set in memory.
473	 *
474	 * Note: Don't set the valid bit for correct operation of tlb update.
475	 */
476	pt->pte_hi = ((sr & SR_VSID_MASK) << PTE_VSID_SHFT) |
477	    (((va & ADDR_PIDX) >> ADDR_API_SHFT) & PTE_API);
478	pt->pte_lo = pte_lo;
479}
480
481static __inline void
482moea_pte_synch(struct pte *pt, struct pte *pvo_pt)
483{
484
485	pvo_pt->pte_lo |= pt->pte_lo & (PTE_REF | PTE_CHG);
486}
487
488static __inline void
489moea_pte_clear(struct pte *pt, vm_offset_t va, int ptebit)
490{
491
492	/*
493	 * As shown in Section 7.6.3.2.3
494	 */
495	pt->pte_lo &= ~ptebit;
496	TLBIE(va);
497	EIEIO();
498	TLBSYNC();
499	SYNC();
500}
501
502static __inline void
503moea_pte_set(struct pte *pt, struct pte *pvo_pt)
504{
505
506	pvo_pt->pte_hi |= PTE_VALID;
507
508	/*
509	 * Update the PTE as defined in section 7.6.3.1.
510	 * Note that the REF/CHG bits are from pvo_pt and thus should havce
511	 * been saved so this routine can restore them (if desired).
512	 */
513	pt->pte_lo = pvo_pt->pte_lo;
514	EIEIO();
515	pt->pte_hi = pvo_pt->pte_hi;
516	SYNC();
517	moea_pte_valid++;
518}
519
520static __inline void
521moea_pte_unset(struct pte *pt, struct pte *pvo_pt, vm_offset_t va)
522{
523
524	pvo_pt->pte_hi &= ~PTE_VALID;
525
526	/*
527	 * Force the reg & chg bits back into the PTEs.
528	 */
529	SYNC();
530
531	/*
532	 * Invalidate the pte.
533	 */
534	pt->pte_hi &= ~PTE_VALID;
535
536	SYNC();
537	TLBIE(va);
538	EIEIO();
539	TLBSYNC();
540	SYNC();
541
542	/*
543	 * Save the reg & chg bits.
544	 */
545	moea_pte_synch(pt, pvo_pt);
546	moea_pte_valid--;
547}
548
549static __inline void
550moea_pte_change(struct pte *pt, struct pte *pvo_pt, vm_offset_t va)
551{
552
553	/*
554	 * Invalidate the PTE
555	 */
556	moea_pte_unset(pt, pvo_pt, va);
557	moea_pte_set(pt, pvo_pt);
558}
559
560/*
561 * Quick sort callout for comparing memory regions.
562 */
563static int	mr_cmp(const void *a, const void *b);
564static int	om_cmp(const void *a, const void *b);
565
566static int
567mr_cmp(const void *a, const void *b)
568{
569	const struct	mem_region *regiona;
570	const struct	mem_region *regionb;
571
572	regiona = a;
573	regionb = b;
574	if (regiona->mr_start < regionb->mr_start)
575		return (-1);
576	else if (regiona->mr_start > regionb->mr_start)
577		return (1);
578	else
579		return (0);
580}
581
582static int
583om_cmp(const void *a, const void *b)
584{
585	const struct	ofw_map *mapa;
586	const struct	ofw_map *mapb;
587
588	mapa = a;
589	mapb = b;
590	if (mapa->om_pa < mapb->om_pa)
591		return (-1);
592	else if (mapa->om_pa > mapb->om_pa)
593		return (1);
594	else
595		return (0);
596}
597
598void
599moea_bootstrap(mmu_t mmup, vm_offset_t kernelstart, vm_offset_t kernelend)
600{
601	ihandle_t	mmui;
602	phandle_t	chosen, mmu;
603	int		sz;
604	int		i, j;
605	int		ofw_mappings;
606	vm_size_t	size, physsz, hwphyssz;
607	vm_offset_t	pa, va, off;
608	u_int		batl, batu;
609
610        /*
611         * Set up BAT0 to map the lowest 256 MB area
612         */
613        battable[0x0].batl = BATL(0x00000000, BAT_M, BAT_PP_RW);
614        battable[0x0].batu = BATU(0x00000000, BAT_BL_256M, BAT_Vs);
615
616        /*
617         * Map PCI memory space.
618         */
619        battable[0x8].batl = BATL(0x80000000, BAT_I|BAT_G, BAT_PP_RW);
620        battable[0x8].batu = BATU(0x80000000, BAT_BL_256M, BAT_Vs);
621
622        battable[0x9].batl = BATL(0x90000000, BAT_I|BAT_G, BAT_PP_RW);
623        battable[0x9].batu = BATU(0x90000000, BAT_BL_256M, BAT_Vs);
624
625        battable[0xa].batl = BATL(0xa0000000, BAT_I|BAT_G, BAT_PP_RW);
626        battable[0xa].batu = BATU(0xa0000000, BAT_BL_256M, BAT_Vs);
627
628        battable[0xb].batl = BATL(0xb0000000, BAT_I|BAT_G, BAT_PP_RW);
629        battable[0xb].batu = BATU(0xb0000000, BAT_BL_256M, BAT_Vs);
630
631        /*
632         * Map obio devices.
633         */
634        battable[0xf].batl = BATL(0xf0000000, BAT_I|BAT_G, BAT_PP_RW);
635        battable[0xf].batu = BATU(0xf0000000, BAT_BL_256M, BAT_Vs);
636
637	/*
638	 * Use an IBAT and a DBAT to map the bottom segment of memory
639	 * where we are.
640	 */
641	batu = BATU(0x00000000, BAT_BL_256M, BAT_Vs);
642	batl = BATL(0x00000000, BAT_M, BAT_PP_RW);
643	__asm (".balign 32; \n"
644	       "mtibatu 0,%0; mtibatl 0,%1; isync; \n"
645	       "mtdbatu 0,%0; mtdbatl 0,%1; isync"
646	    :: "r"(batu), "r"(batl));
647
648#if 0
649	/* map frame buffer */
650	batu = BATU(0x90000000, BAT_BL_256M, BAT_Vs);
651	batl = BATL(0x90000000, BAT_I|BAT_G, BAT_PP_RW);
652	__asm ("mtdbatu 1,%0; mtdbatl 1,%1; isync"
653	    :: "r"(batu), "r"(batl));
654#endif
655
656#if 1
657	/* map pci space */
658	batu = BATU(0x80000000, BAT_BL_256M, BAT_Vs);
659	batl = BATL(0x80000000, BAT_I|BAT_G, BAT_PP_RW);
660	__asm ("mtdbatu 1,%0; mtdbatl 1,%1; isync"
661	    :: "r"(batu), "r"(batl));
662#endif
663
664	/*
665	 * Set the start and end of kva.
666	 */
667	virtual_avail = VM_MIN_KERNEL_ADDRESS;
668	virtual_end = VM_MAX_KERNEL_ADDRESS;
669
670	mem_regions(&pregions, &pregions_sz, &regions, &regions_sz);
671	CTR0(KTR_PMAP, "moea_bootstrap: physical memory");
672
673	qsort(pregions, pregions_sz, sizeof(*pregions), mr_cmp);
674	for (i = 0; i < pregions_sz; i++) {
675		vm_offset_t pa;
676		vm_offset_t end;
677
678		CTR3(KTR_PMAP, "physregion: %#x - %#x (%#x)",
679			pregions[i].mr_start,
680			pregions[i].mr_start + pregions[i].mr_size,
681			pregions[i].mr_size);
682		/*
683		 * Install entries into the BAT table to allow all
684		 * of physmem to be convered by on-demand BAT entries.
685		 * The loop will sometimes set the same battable element
686		 * twice, but that's fine since they won't be used for
687		 * a while yet.
688		 */
689		pa = pregions[i].mr_start & 0xf0000000;
690		end = pregions[i].mr_start + pregions[i].mr_size;
691		do {
692                        u_int n = pa >> ADDR_SR_SHFT;
693
694			battable[n].batl = BATL(pa, BAT_M, BAT_PP_RW);
695			battable[n].batu = BATU(pa, BAT_BL_256M, BAT_Vs);
696			pa += SEGMENT_LENGTH;
697		} while (pa < end);
698	}
699
700	if (sizeof(phys_avail)/sizeof(phys_avail[0]) < regions_sz)
701		panic("moea_bootstrap: phys_avail too small");
702	qsort(regions, regions_sz, sizeof(*regions), mr_cmp);
703	phys_avail_count = 0;
704	physsz = 0;
705	hwphyssz = 0;
706	TUNABLE_ULONG_FETCH("hw.physmem", (u_long *) &hwphyssz);
707	for (i = 0, j = 0; i < regions_sz; i++, j += 2) {
708		CTR3(KTR_PMAP, "region: %#x - %#x (%#x)", regions[i].mr_start,
709		    regions[i].mr_start + regions[i].mr_size,
710		    regions[i].mr_size);
711		if (hwphyssz != 0 &&
712		    (physsz + regions[i].mr_size) >= hwphyssz) {
713			if (physsz < hwphyssz) {
714				phys_avail[j] = regions[i].mr_start;
715				phys_avail[j + 1] = regions[i].mr_start +
716				    hwphyssz - physsz;
717				physsz = hwphyssz;
718				phys_avail_count++;
719			}
720			break;
721		}
722		phys_avail[j] = regions[i].mr_start;
723		phys_avail[j + 1] = regions[i].mr_start + regions[i].mr_size;
724		phys_avail_count++;
725		physsz += regions[i].mr_size;
726	}
727	physmem = btoc(physsz);
728
729	/*
730	 * Allocate PTEG table.
731	 */
732#ifdef PTEGCOUNT
733	moea_pteg_count = PTEGCOUNT;
734#else
735	moea_pteg_count = 0x1000;
736
737	while (moea_pteg_count < physmem)
738		moea_pteg_count <<= 1;
739
740	moea_pteg_count >>= 1;
741#endif /* PTEGCOUNT */
742
743	size = moea_pteg_count * sizeof(struct pteg);
744	CTR2(KTR_PMAP, "moea_bootstrap: %d PTEGs, %d bytes", moea_pteg_count,
745	    size);
746	moea_pteg_table = (struct pteg *)moea_bootstrap_alloc(size, size);
747	CTR1(KTR_PMAP, "moea_bootstrap: PTEG table at %p", moea_pteg_table);
748	bzero((void *)moea_pteg_table, moea_pteg_count * sizeof(struct pteg));
749	moea_pteg_mask = moea_pteg_count - 1;
750
751	/*
752	 * Allocate pv/overflow lists.
753	 */
754	size = sizeof(struct pvo_head) * moea_pteg_count;
755	moea_pvo_table = (struct pvo_head *)moea_bootstrap_alloc(size,
756	    PAGE_SIZE);
757	CTR1(KTR_PMAP, "moea_bootstrap: PVO table at %p", moea_pvo_table);
758	for (i = 0; i < moea_pteg_count; i++)
759		LIST_INIT(&moea_pvo_table[i]);
760
761	/*
762	 * Initialize the lock that synchronizes access to the pteg and pvo
763	 * tables.
764	 */
765	mtx_init(&moea_table_mutex, "pmap table", NULL, MTX_DEF);
766
767	/*
768	 * Allocate the message buffer.
769	 */
770	msgbuf_phys = moea_bootstrap_alloc(MSGBUF_SIZE, 0);
771
772	/*
773	 * Initialise the unmanaged pvo pool.
774	 */
775	moea_bpvo_pool = (struct pvo_entry *)moea_bootstrap_alloc(
776		BPVO_POOL_SIZE*sizeof(struct pvo_entry), 0);
777	moea_bpvo_pool_index = 0;
778
779	/*
780	 * Make sure kernel vsid is allocated as well as VSID 0.
781	 */
782	moea_vsid_bitmap[(KERNEL_VSIDBITS & (NPMAPS - 1)) / VSID_NBPW]
783		|= 1 << (KERNEL_VSIDBITS % VSID_NBPW);
784	moea_vsid_bitmap[0] |= 1;
785
786	/*
787	 * Set up the Open Firmware pmap and add it's mappings.
788	 */
789	moea_pinit(mmup, &ofw_pmap);
790	ofw_pmap.pm_sr[KERNEL_SR] = KERNEL_SEGMENT;
791	ofw_pmap.pm_sr[KERNEL2_SR] = KERNEL2_SEGMENT;
792	if ((chosen = OF_finddevice("/chosen")) == -1)
793		panic("moea_bootstrap: can't find /chosen");
794	OF_getprop(chosen, "mmu", &mmui, 4);
795	if ((mmu = OF_instance_to_package(mmui)) == -1)
796		panic("moea_bootstrap: can't get mmu package");
797	if ((sz = OF_getproplen(mmu, "translations")) == -1)
798		panic("moea_bootstrap: can't get ofw translation count");
799	translations = NULL;
800	for (i = 0; phys_avail[i] != 0; i += 2) {
801		if (phys_avail[i + 1] >= sz) {
802			translations = (struct ofw_map *)phys_avail[i];
803			break;
804		}
805	}
806	if (translations == NULL)
807		panic("moea_bootstrap: no space to copy translations");
808	bzero(translations, sz);
809	if (OF_getprop(mmu, "translations", translations, sz) == -1)
810		panic("moea_bootstrap: can't get ofw translations");
811	CTR0(KTR_PMAP, "moea_bootstrap: translations");
812	sz /= sizeof(*translations);
813	qsort(translations, sz, sizeof (*translations), om_cmp);
814	for (i = 0, ofw_mappings = 0; i < sz; i++) {
815		CTR3(KTR_PMAP, "translation: pa=%#x va=%#x len=%#x",
816		    translations[i].om_pa, translations[i].om_va,
817		    translations[i].om_len);
818
819		/*
820		 * If the mapping is 1:1, let the RAM and device on-demand
821		 * BAT tables take care of the translation.
822		 */
823		if (translations[i].om_va == translations[i].om_pa)
824			continue;
825
826		/* Enter the pages */
827		for (off = 0; off < translations[i].om_len; off += PAGE_SIZE) {
828			struct	vm_page m;
829
830			m.phys_addr = translations[i].om_pa + off;
831			moea_enter(mmup, &ofw_pmap,
832				   translations[i].om_va + off, &m,
833				   VM_PROT_ALL, 1);
834			ofw_mappings++;
835		}
836	}
837#ifdef SMP
838	TLBSYNC();
839#endif
840
841	/*
842	 * Initialize the kernel pmap (which is statically allocated).
843	 */
844	PMAP_LOCK_INIT(kernel_pmap);
845	for (i = 0; i < 16; i++) {
846		kernel_pmap->pm_sr[i] = EMPTY_SEGMENT;
847	}
848	kernel_pmap->pm_sr[KERNEL_SR] = KERNEL_SEGMENT;
849	kernel_pmap->pm_sr[KERNEL2_SR] = KERNEL2_SEGMENT;
850	kernel_pmap->pm_active = ~0;
851
852	/*
853	 * Allocate a kernel stack with a guard page for thread0 and map it
854	 * into the kernel page map.
855	 */
856	pa = moea_bootstrap_alloc(KSTACK_PAGES * PAGE_SIZE, 0);
857	kstack0_phys = pa;
858	kstack0 = virtual_avail + (KSTACK_GUARD_PAGES * PAGE_SIZE);
859	CTR2(KTR_PMAP, "moea_bootstrap: kstack0 at %#x (%#x)", kstack0_phys,
860	    kstack0);
861	virtual_avail += (KSTACK_PAGES + KSTACK_GUARD_PAGES) * PAGE_SIZE;
862	for (i = 0; i < KSTACK_PAGES; i++) {
863		pa = kstack0_phys + i * PAGE_SIZE;
864		va = kstack0 + i * PAGE_SIZE;
865		moea_kenter(mmup, va, pa);
866		TLBIE(va);
867	}
868
869	/*
870	 * Calculate the last available physical address.
871	 */
872	for (i = 0; phys_avail[i + 2] != 0; i += 2)
873		;
874	Maxmem = powerpc_btop(phys_avail[i + 1]);
875
876	/*
877	 * Allocate virtual address space for the message buffer.
878	 */
879	msgbufp = (struct msgbuf *)virtual_avail;
880	virtual_avail += round_page(MSGBUF_SIZE);
881
882	/*
883	 * Initialize hardware.
884	 */
885	for (i = 0; i < 16; i++) {
886		mtsrin(i << ADDR_SR_SHFT, EMPTY_SEGMENT);
887	}
888	__asm __volatile ("mtsr %0,%1"
889	    :: "n"(KERNEL_SR), "r"(KERNEL_SEGMENT));
890	__asm __volatile ("mtsr %0,%1"
891	    :: "n"(KERNEL2_SR), "r"(KERNEL2_SEGMENT));
892	__asm __volatile ("sync; mtsdr1 %0; isync"
893	    :: "r"((u_int)moea_pteg_table | (moea_pteg_mask >> 10)));
894	tlbia();
895
896	pmap_bootstrapped++;
897}
898
899/*
900 * Activate a user pmap.  The pmap must be activated before it's address
901 * space can be accessed in any way.
902 */
903void
904moea_activate(mmu_t mmu, struct thread *td)
905{
906	pmap_t	pm, pmr;
907
908	/*
909	 * Load all the data we need up front to encourage the compiler to
910	 * not issue any loads while we have interrupts disabled below.
911	 */
912	pm = &td->td_proc->p_vmspace->vm_pmap;
913
914	if ((pmr = (pmap_t)moea_kextract(mmu, (vm_offset_t)pm)) == NULL)
915		pmr = pm;
916
917	pm->pm_active |= PCPU_GET(cpumask);
918	PCPU_SET(curpmap, pmr);
919}
920
921void
922moea_deactivate(mmu_t mmu, struct thread *td)
923{
924	pmap_t	pm;
925
926	pm = &td->td_proc->p_vmspace->vm_pmap;
927	pm->pm_active &= ~(PCPU_GET(cpumask));
928	PCPU_SET(curpmap, NULL);
929}
930
931void
932moea_change_wiring(mmu_t mmu, pmap_t pm, vm_offset_t va, boolean_t wired)
933{
934	struct	pvo_entry *pvo;
935
936	PMAP_LOCK(pm);
937	pvo = moea_pvo_find_va(pm, va & ~ADDR_POFF, NULL);
938
939	if (pvo != NULL) {
940		if (wired) {
941			if ((pvo->pvo_vaddr & PVO_WIRED) == 0)
942				pm->pm_stats.wired_count++;
943			pvo->pvo_vaddr |= PVO_WIRED;
944		} else {
945			if ((pvo->pvo_vaddr & PVO_WIRED) != 0)
946				pm->pm_stats.wired_count--;
947			pvo->pvo_vaddr &= ~PVO_WIRED;
948		}
949	}
950	PMAP_UNLOCK(pm);
951}
952
953void
954moea_copy_page(mmu_t mmu, vm_page_t msrc, vm_page_t mdst)
955{
956	vm_offset_t	dst;
957	vm_offset_t	src;
958
959	dst = VM_PAGE_TO_PHYS(mdst);
960	src = VM_PAGE_TO_PHYS(msrc);
961
962	kcopy((void *)src, (void *)dst, PAGE_SIZE);
963}
964
965/*
966 * Zero a page of physical memory by temporarily mapping it into the tlb.
967 */
968void
969moea_zero_page(mmu_t mmu, vm_page_t m)
970{
971	vm_offset_t pa = VM_PAGE_TO_PHYS(m);
972	caddr_t va;
973
974	if (pa < SEGMENT_LENGTH) {
975		va = (caddr_t) pa;
976	} else if (moea_initialized) {
977		if (moea_pvo_zeropage == NULL)
978			moea_pvo_zeropage = moea_rkva_alloc(mmu);
979		moea_pa_map(moea_pvo_zeropage, pa, NULL, NULL);
980		va = (caddr_t)PVO_VADDR(moea_pvo_zeropage);
981	} else {
982		panic("moea_zero_page: can't zero pa %#x", pa);
983	}
984
985	bzero(va, PAGE_SIZE);
986
987	if (pa >= SEGMENT_LENGTH)
988		moea_pa_unmap(moea_pvo_zeropage, NULL, NULL);
989}
990
991void
992moea_zero_page_area(mmu_t mmu, vm_page_t m, int off, int size)
993{
994	vm_offset_t pa = VM_PAGE_TO_PHYS(m);
995	caddr_t va;
996
997	if (pa < SEGMENT_LENGTH) {
998		va = (caddr_t) pa;
999	} else if (moea_initialized) {
1000		if (moea_pvo_zeropage == NULL)
1001			moea_pvo_zeropage = moea_rkva_alloc(mmu);
1002		moea_pa_map(moea_pvo_zeropage, pa, NULL, NULL);
1003		va = (caddr_t)PVO_VADDR(moea_pvo_zeropage);
1004	} else {
1005		panic("moea_zero_page: can't zero pa %#x", pa);
1006	}
1007
1008	bzero(va + off, size);
1009
1010	if (pa >= SEGMENT_LENGTH)
1011		moea_pa_unmap(moea_pvo_zeropage, NULL, NULL);
1012}
1013
1014void
1015moea_zero_page_idle(mmu_t mmu, vm_page_t m)
1016{
1017
1018	/* XXX this is called outside of Giant, is moea_zero_page safe? */
1019	/* XXX maybe have a dedicated mapping for this to avoid the problem? */
1020	mtx_lock(&Giant);
1021	moea_zero_page(mmu, m);
1022	mtx_unlock(&Giant);
1023}
1024
1025/*
1026 * Map the given physical page at the specified virtual address in the
1027 * target pmap with the protection requested.  If specified the page
1028 * will be wired down.
1029 */
1030void
1031moea_enter(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
1032	   boolean_t wired)
1033{
1034	struct		pvo_head *pvo_head;
1035	uma_zone_t	zone;
1036	vm_page_t	pg;
1037	u_int		pte_lo, pvo_flags, was_exec, i;
1038	int		error;
1039
1040	if (!moea_initialized) {
1041		pvo_head = &moea_pvo_kunmanaged;
1042		zone = moea_upvo_zone;
1043		pvo_flags = 0;
1044		pg = NULL;
1045		was_exec = PTE_EXEC;
1046	} else {
1047		pvo_head = vm_page_to_pvoh(m);
1048		pg = m;
1049		zone = moea_mpvo_zone;
1050		pvo_flags = PVO_MANAGED;
1051		was_exec = 0;
1052	}
1053	if (pmap_bootstrapped)
1054		vm_page_lock_queues();
1055	PMAP_LOCK(pmap);
1056
1057	/* XXX change the pvo head for fake pages */
1058	if ((m->flags & PG_FICTITIOUS) == PG_FICTITIOUS)
1059		pvo_head = &moea_pvo_kunmanaged;
1060
1061	/*
1062	 * If this is a managed page, and it's the first reference to the page,
1063	 * clear the execness of the page.  Otherwise fetch the execness.
1064	 */
1065	if ((pg != NULL) && ((m->flags & PG_FICTITIOUS) == 0)) {
1066		if (LIST_EMPTY(pvo_head)) {
1067			moea_attr_clear(pg, PTE_EXEC);
1068		} else {
1069			was_exec = moea_attr_fetch(pg) & PTE_EXEC;
1070		}
1071	}
1072
1073	/*
1074	 * Assume the page is cache inhibited and access is guarded unless
1075	 * it's in our available memory array.
1076	 */
1077	pte_lo = PTE_I | PTE_G;
1078	for (i = 0; i < pregions_sz; i++) {
1079		if ((VM_PAGE_TO_PHYS(m) >= pregions[i].mr_start) &&
1080		    (VM_PAGE_TO_PHYS(m) <
1081			(pregions[i].mr_start + pregions[i].mr_size))) {
1082			pte_lo &= ~(PTE_I | PTE_G);
1083			break;
1084		}
1085	}
1086
1087	if (prot & VM_PROT_WRITE)
1088		pte_lo |= PTE_BW;
1089	else
1090		pte_lo |= PTE_BR;
1091
1092	if (prot & VM_PROT_EXECUTE)
1093		pvo_flags |= PVO_EXECUTABLE;
1094
1095	if (wired)
1096		pvo_flags |= PVO_WIRED;
1097
1098	if ((m->flags & PG_FICTITIOUS) != 0)
1099		pvo_flags |= PVO_FAKE;
1100
1101	error = moea_pvo_enter(pmap, zone, pvo_head, va, VM_PAGE_TO_PHYS(m),
1102	    pte_lo, pvo_flags);
1103
1104	/*
1105	 * Flush the real page from the instruction cache if this page is
1106	 * mapped executable and cacheable and was not previously mapped (or
1107	 * was not mapped executable).
1108	 */
1109	if (error == 0 && (pvo_flags & PVO_EXECUTABLE) &&
1110	    (pte_lo & PTE_I) == 0 && was_exec == 0) {
1111		/*
1112		 * Flush the real memory from the cache.
1113		 */
1114		moea_syncicache(VM_PAGE_TO_PHYS(m), PAGE_SIZE);
1115		if (pg != NULL)
1116			moea_attr_save(pg, PTE_EXEC);
1117	}
1118	if (pmap_bootstrapped)
1119		vm_page_unlock_queues();
1120
1121	/* XXX syncicache always until problems are sorted */
1122	moea_syncicache(VM_PAGE_TO_PHYS(m), PAGE_SIZE);
1123	PMAP_UNLOCK(pmap);
1124}
1125
1126vm_page_t
1127moea_enter_quick(mmu_t mmu, pmap_t pm, vm_offset_t va, vm_page_t m,
1128    vm_prot_t prot, vm_page_t mpte)
1129{
1130
1131	vm_page_busy(m);
1132	vm_page_unlock_queues();
1133	VM_OBJECT_UNLOCK(m->object);
1134	mtx_lock(&Giant);
1135	moea_enter(mmu, pm, va, m, prot & (VM_PROT_READ | VM_PROT_EXECUTE),
1136	    FALSE);
1137	mtx_unlock(&Giant);
1138	VM_OBJECT_LOCK(m->object);
1139	vm_page_lock_queues();
1140	vm_page_wakeup(m);
1141	return (NULL);
1142}
1143
1144vm_paddr_t
1145moea_extract(mmu_t mmu, pmap_t pm, vm_offset_t va)
1146{
1147	struct	pvo_entry *pvo;
1148	vm_paddr_t pa;
1149
1150	PMAP_LOCK(pm);
1151	pvo = moea_pvo_find_va(pm, va & ~ADDR_POFF, NULL);
1152	if (pvo == NULL)
1153		pa = 0;
1154	else
1155		pa = (pvo->pvo_pte.pte_lo & PTE_RPGN) | (va & ADDR_POFF);
1156	PMAP_UNLOCK(pm);
1157	return (pa);
1158}
1159
1160/*
1161 * Atomically extract and hold the physical page with the given
1162 * pmap and virtual address pair if that mapping permits the given
1163 * protection.
1164 */
1165vm_page_t
1166moea_extract_and_hold(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_prot_t prot)
1167{
1168	struct	pvo_entry *pvo;
1169	vm_page_t m;
1170
1171	m = NULL;
1172	mtx_lock(&Giant);
1173	vm_page_lock_queues();
1174	PMAP_LOCK(pmap);
1175	pvo = moea_pvo_find_va(pmap, va & ~ADDR_POFF, NULL);
1176	if (pvo != NULL && (pvo->pvo_pte.pte_hi & PTE_VALID) &&
1177	    ((pvo->pvo_pte.pte_lo & PTE_PP) == PTE_RW ||
1178	     (prot & VM_PROT_WRITE) == 0)) {
1179		m = PHYS_TO_VM_PAGE(pvo->pvo_pte.pte_lo & PTE_RPGN);
1180		vm_page_hold(m);
1181	}
1182	vm_page_unlock_queues();
1183	PMAP_UNLOCK(pmap);
1184	mtx_unlock(&Giant);
1185	return (m);
1186}
1187
1188void
1189moea_init(mmu_t mmu)
1190{
1191
1192	CTR0(KTR_PMAP, "moea_init");
1193
1194	moea_upvo_zone = uma_zcreate("UPVO entry", sizeof (struct pvo_entry),
1195	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
1196	    UMA_ZONE_VM | UMA_ZONE_NOFREE);
1197	moea_mpvo_zone = uma_zcreate("MPVO entry", sizeof(struct pvo_entry),
1198	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
1199	    UMA_ZONE_VM | UMA_ZONE_NOFREE);
1200	moea_initialized = TRUE;
1201}
1202
1203boolean_t
1204moea_is_modified(mmu_t mmu, vm_page_t m)
1205{
1206
1207	if ((m->flags & (PG_FICTITIOUS |PG_UNMANAGED)) != 0)
1208		return (FALSE);
1209
1210	return (moea_query_bit(m, PTE_CHG));
1211}
1212
1213void
1214moea_clear_reference(mmu_t mmu, vm_page_t m)
1215{
1216
1217	if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) != 0)
1218		return;
1219	moea_clear_bit(m, PTE_REF, NULL);
1220}
1221
1222void
1223moea_clear_modify(mmu_t mmu, vm_page_t m)
1224{
1225
1226	if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) != 0)
1227		return;
1228	moea_clear_bit(m, PTE_CHG, NULL);
1229}
1230
1231/*
1232 *	moea_ts_referenced:
1233 *
1234 *	Return a count of reference bits for a page, clearing those bits.
1235 *	It is not necessary for every reference bit to be cleared, but it
1236 *	is necessary that 0 only be returned when there are truly no
1237 *	reference bits set.
1238 *
1239 *	XXX: The exact number of bits to check and clear is a matter that
1240 *	should be tested and standardized at some point in the future for
1241 *	optimal aging of shared pages.
1242 */
1243boolean_t
1244moea_ts_referenced(mmu_t mmu, vm_page_t m)
1245{
1246	int count;
1247
1248	if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) != 0)
1249		return (0);
1250
1251	count = moea_clear_bit(m, PTE_REF, NULL);
1252
1253	return (count);
1254}
1255
1256/*
1257 * Map a wired page into kernel virtual address space.
1258 */
1259void
1260moea_kenter(mmu_t mmu, vm_offset_t va, vm_offset_t pa)
1261{
1262	u_int		pte_lo;
1263	int		error;
1264	int		i;
1265
1266#if 0
1267	if (va < VM_MIN_KERNEL_ADDRESS)
1268		panic("moea_kenter: attempt to enter non-kernel address %#x",
1269		    va);
1270#endif
1271
1272	pte_lo = PTE_I | PTE_G;
1273	for (i = 0; i < pregions_sz; i++) {
1274		if ((pa >= pregions[i].mr_start) &&
1275		    (pa < (pregions[i].mr_start + pregions[i].mr_size))) {
1276			pte_lo &= ~(PTE_I | PTE_G);
1277			break;
1278		}
1279	}
1280
1281	PMAP_LOCK(kernel_pmap);
1282	error = moea_pvo_enter(kernel_pmap, moea_upvo_zone,
1283	    &moea_pvo_kunmanaged, va, pa, pte_lo, PVO_WIRED);
1284
1285	if (error != 0 && error != ENOENT)
1286		panic("moea_kenter: failed to enter va %#x pa %#x: %d", va,
1287		    pa, error);
1288
1289	/*
1290	 * Flush the real memory from the instruction cache.
1291	 */
1292	if ((pte_lo & (PTE_I | PTE_G)) == 0) {
1293		moea_syncicache(pa, PAGE_SIZE);
1294	}
1295	PMAP_UNLOCK(kernel_pmap);
1296}
1297
1298/*
1299 * Extract the physical page address associated with the given kernel virtual
1300 * address.
1301 */
1302vm_offset_t
1303moea_kextract(mmu_t mmu, vm_offset_t va)
1304{
1305	struct		pvo_entry *pvo;
1306	vm_paddr_t pa;
1307
1308#ifdef UMA_MD_SMALL_ALLOC
1309	/*
1310	 * Allow direct mappings
1311	 */
1312	if (va < VM_MIN_KERNEL_ADDRESS) {
1313		return (va);
1314	}
1315#endif
1316
1317	PMAP_LOCK(kernel_pmap);
1318	pvo = moea_pvo_find_va(kernel_pmap, va & ~ADDR_POFF, NULL);
1319	KASSERT(pvo != NULL, ("moea_kextract: no addr found"));
1320	pa = (pvo->pvo_pte.pte_lo & PTE_RPGN) | (va & ADDR_POFF);
1321	PMAP_UNLOCK(kernel_pmap);
1322	return (pa);
1323}
1324
1325/*
1326 * Remove a wired page from kernel virtual address space.
1327 */
1328void
1329moea_kremove(mmu_t mmu, vm_offset_t va)
1330{
1331
1332	moea_remove(mmu, kernel_pmap, va, va + PAGE_SIZE);
1333}
1334
1335/*
1336 * Map a range of physical addresses into kernel virtual address space.
1337 *
1338 * The value passed in *virt is a suggested virtual address for the mapping.
1339 * Architectures which can support a direct-mapped physical to virtual region
1340 * can return the appropriate address within that region, leaving '*virt'
1341 * unchanged.  We cannot and therefore do not; *virt is updated with the
1342 * first usable address after the mapped region.
1343 */
1344vm_offset_t
1345moea_map(mmu_t mmu, vm_offset_t *virt, vm_offset_t pa_start,
1346    vm_offset_t pa_end, int prot)
1347{
1348	vm_offset_t	sva, va;
1349
1350	sva = *virt;
1351	va = sva;
1352	for (; pa_start < pa_end; pa_start += PAGE_SIZE, va += PAGE_SIZE)
1353		moea_kenter(mmu, va, pa_start);
1354	*virt = va;
1355	return (sva);
1356}
1357
1358/*
1359 * Lower the permission for all mappings to a given page.
1360 */
1361void
1362moea_page_protect(mmu_t mmu, vm_page_t m, vm_prot_t prot)
1363{
1364	struct	pvo_head *pvo_head;
1365	struct	pvo_entry *pvo, *next_pvo;
1366	struct	pte *pt;
1367	pmap_t	pmap;
1368
1369	/*
1370	 * Since the routine only downgrades protection, if the
1371	 * maximal protection is desired, there isn't any change
1372	 * to be made.
1373	 */
1374	if ((prot & (VM_PROT_READ|VM_PROT_WRITE)) ==
1375	    (VM_PROT_READ|VM_PROT_WRITE))
1376		return;
1377
1378	pvo_head = vm_page_to_pvoh(m);
1379	for (pvo = LIST_FIRST(pvo_head); pvo != NULL; pvo = next_pvo) {
1380		next_pvo = LIST_NEXT(pvo, pvo_vlink);
1381		MOEA_PVO_CHECK(pvo);	/* sanity check */
1382		pmap = pvo->pvo_pmap;
1383		PMAP_LOCK(pmap);
1384
1385		/*
1386		 * Downgrading to no mapping at all, we just remove the entry.
1387		 */
1388		if ((prot & VM_PROT_READ) == 0) {
1389			moea_pvo_remove(pvo, -1);
1390			PMAP_UNLOCK(pmap);
1391			continue;
1392		}
1393
1394		/*
1395		 * If EXEC permission is being revoked, just clear the flag
1396		 * in the PVO.
1397		 */
1398		if ((prot & VM_PROT_EXECUTE) == 0)
1399			pvo->pvo_vaddr &= ~PVO_EXECUTABLE;
1400
1401		/*
1402		 * If this entry is already RO, don't diddle with the page
1403		 * table.
1404		 */
1405		if ((pvo->pvo_pte.pte_lo & PTE_PP) == PTE_BR) {
1406			PMAP_UNLOCK(pmap);
1407			MOEA_PVO_CHECK(pvo);
1408			continue;
1409		}
1410
1411		/*
1412		 * Grab the PTE before we diddle the bits so pvo_to_pte can
1413		 * verify the pte contents are as expected.
1414		 */
1415		pt = moea_pvo_to_pte(pvo, -1);
1416		pvo->pvo_pte.pte_lo &= ~PTE_PP;
1417		pvo->pvo_pte.pte_lo |= PTE_BR;
1418		if (pt != NULL)
1419			moea_pte_change(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
1420		PMAP_UNLOCK(pmap);
1421		MOEA_PVO_CHECK(pvo);	/* sanity check */
1422	}
1423
1424	/*
1425	 * Downgrading from writeable: clear the VM page flag
1426	 */
1427	if ((prot & VM_PROT_WRITE) != VM_PROT_WRITE)
1428		vm_page_flag_clear(m, PG_WRITEABLE);
1429}
1430
1431/*
1432 * Returns true if the pmap's pv is one of the first
1433 * 16 pvs linked to from this page.  This count may
1434 * be changed upwards or downwards in the future; it
1435 * is only necessary that true be returned for a small
1436 * subset of pmaps for proper page aging.
1437 */
1438boolean_t
1439moea_page_exists_quick(mmu_t mmu, pmap_t pmap, vm_page_t m)
1440{
1441        int loops;
1442	struct pvo_entry *pvo;
1443
1444        if (!moea_initialized || (m->flags & PG_FICTITIOUS))
1445                return FALSE;
1446
1447	loops = 0;
1448	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
1449		if (pvo->pvo_pmap == pmap)
1450			return (TRUE);
1451		if (++loops >= 16)
1452			break;
1453	}
1454
1455	return (FALSE);
1456}
1457
1458static u_int	moea_vsidcontext;
1459
1460void
1461moea_pinit(mmu_t mmu, pmap_t pmap)
1462{
1463	int	i, mask;
1464	u_int	entropy;
1465
1466	KASSERT((int)pmap < VM_MIN_KERNEL_ADDRESS, ("moea_pinit: virt pmap"));
1467	PMAP_LOCK_INIT(pmap);
1468
1469	entropy = 0;
1470	__asm __volatile("mftb %0" : "=r"(entropy));
1471
1472	/*
1473	 * Allocate some segment registers for this pmap.
1474	 */
1475	for (i = 0; i < NPMAPS; i += VSID_NBPW) {
1476		u_int	hash, n;
1477
1478		/*
1479		 * Create a new value by mutiplying by a prime and adding in
1480		 * entropy from the timebase register.  This is to make the
1481		 * VSID more random so that the PT hash function collides
1482		 * less often.  (Note that the prime casues gcc to do shifts
1483		 * instead of a multiply.)
1484		 */
1485		moea_vsidcontext = (moea_vsidcontext * 0x1105) + entropy;
1486		hash = moea_vsidcontext & (NPMAPS - 1);
1487		if (hash == 0)		/* 0 is special, avoid it */
1488			continue;
1489		n = hash >> 5;
1490		mask = 1 << (hash & (VSID_NBPW - 1));
1491		hash = (moea_vsidcontext & 0xfffff);
1492		if (moea_vsid_bitmap[n] & mask) {	/* collision? */
1493			/* anything free in this bucket? */
1494			if (moea_vsid_bitmap[n] == 0xffffffff) {
1495				entropy = (moea_vsidcontext >> 20);
1496				continue;
1497			}
1498			i = ffs(~moea_vsid_bitmap[i]) - 1;
1499			mask = 1 << i;
1500			hash &= 0xfffff & ~(VSID_NBPW - 1);
1501			hash |= i;
1502		}
1503		moea_vsid_bitmap[n] |= mask;
1504		for (i = 0; i < 16; i++)
1505			pmap->pm_sr[i] = VSID_MAKE(i, hash);
1506		return;
1507	}
1508
1509	panic("moea_pinit: out of segments");
1510}
1511
1512/*
1513 * Initialize the pmap associated with process 0.
1514 */
1515void
1516moea_pinit0(mmu_t mmu, pmap_t pm)
1517{
1518
1519	moea_pinit(mmu, pm);
1520	bzero(&pm->pm_stats, sizeof(pm->pm_stats));
1521}
1522
1523/*
1524 * Set the physical protection on the specified range of this map as requested.
1525 */
1526void
1527moea_protect(mmu_t mmu, pmap_t pm, vm_offset_t sva, vm_offset_t eva,
1528    vm_prot_t prot)
1529{
1530	struct	pvo_entry *pvo;
1531	struct	pte *pt;
1532	int	pteidx;
1533
1534	CTR4(KTR_PMAP, "moea_protect: pm=%p sva=%#x eva=%#x prot=%#x", pm, sva,
1535	    eva, prot);
1536
1537
1538	KASSERT(pm == &curproc->p_vmspace->vm_pmap || pm == kernel_pmap,
1539	    ("moea_protect: non current pmap"));
1540
1541	if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
1542		mtx_lock(&Giant);
1543		moea_remove(mmu, pm, sva, eva);
1544		mtx_unlock(&Giant);
1545		return;
1546	}
1547
1548	mtx_lock(&Giant);
1549	vm_page_lock_queues();
1550	PMAP_LOCK(pm);
1551	for (; sva < eva; sva += PAGE_SIZE) {
1552		pvo = moea_pvo_find_va(pm, sva, &pteidx);
1553		if (pvo == NULL)
1554			continue;
1555
1556		if ((prot & VM_PROT_EXECUTE) == 0)
1557			pvo->pvo_vaddr &= ~PVO_EXECUTABLE;
1558
1559		/*
1560		 * Grab the PTE pointer before we diddle with the cached PTE
1561		 * copy.
1562		 */
1563		pt = moea_pvo_to_pte(pvo, pteidx);
1564		/*
1565		 * Change the protection of the page.
1566		 */
1567		pvo->pvo_pte.pte_lo &= ~PTE_PP;
1568		pvo->pvo_pte.pte_lo |= PTE_BR;
1569
1570		/*
1571		 * If the PVO is in the page table, update that pte as well.
1572		 */
1573		if (pt != NULL)
1574			moea_pte_change(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
1575	}
1576	vm_page_unlock_queues();
1577	PMAP_UNLOCK(pm);
1578	mtx_unlock(&Giant);
1579}
1580
1581/*
1582 * Map a list of wired pages into kernel virtual address space.  This is
1583 * intended for temporary mappings which do not need page modification or
1584 * references recorded.  Existing mappings in the region are overwritten.
1585 */
1586void
1587moea_qenter(mmu_t mmu, vm_offset_t sva, vm_page_t *m, int count)
1588{
1589	vm_offset_t va;
1590
1591	va = sva;
1592	while (count-- > 0) {
1593		moea_kenter(mmu, va, VM_PAGE_TO_PHYS(*m));
1594		va += PAGE_SIZE;
1595		m++;
1596	}
1597}
1598
1599/*
1600 * Remove page mappings from kernel virtual address space.  Intended for
1601 * temporary mappings entered by moea_qenter.
1602 */
1603void
1604moea_qremove(mmu_t mmu, vm_offset_t sva, int count)
1605{
1606	vm_offset_t va;
1607
1608	va = sva;
1609	while (count-- > 0) {
1610		moea_kremove(mmu, va);
1611		va += PAGE_SIZE;
1612	}
1613}
1614
1615void
1616moea_release(mmu_t mmu, pmap_t pmap)
1617{
1618        int idx, mask;
1619
1620	/*
1621	 * Free segment register's VSID
1622	 */
1623        if (pmap->pm_sr[0] == 0)
1624                panic("moea_release");
1625
1626        idx = VSID_TO_HASH(pmap->pm_sr[0]) & (NPMAPS-1);
1627        mask = 1 << (idx % VSID_NBPW);
1628        idx /= VSID_NBPW;
1629        moea_vsid_bitmap[idx] &= ~mask;
1630	PMAP_LOCK_DESTROY(pmap);
1631}
1632
1633/*
1634 * Remove the given range of addresses from the specified map.
1635 */
1636void
1637moea_remove(mmu_t mmu, pmap_t pm, vm_offset_t sva, vm_offset_t eva)
1638{
1639	struct	pvo_entry *pvo;
1640	int	pteidx;
1641
1642	vm_page_lock_queues();
1643	PMAP_LOCK(pm);
1644	for (; sva < eva; sva += PAGE_SIZE) {
1645		pvo = moea_pvo_find_va(pm, sva, &pteidx);
1646		if (pvo != NULL) {
1647			moea_pvo_remove(pvo, pteidx);
1648		}
1649	}
1650	PMAP_UNLOCK(pm);
1651	vm_page_unlock_queues();
1652}
1653
1654/*
1655 * Remove physical page from all pmaps in which it resides. moea_pvo_remove()
1656 * will reflect changes in pte's back to the vm_page.
1657 */
1658void
1659moea_remove_all(mmu_t mmu, vm_page_t m)
1660{
1661	struct  pvo_head *pvo_head;
1662	struct	pvo_entry *pvo, *next_pvo;
1663	pmap_t	pmap;
1664
1665	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1666
1667	pvo_head = vm_page_to_pvoh(m);
1668	for (pvo = LIST_FIRST(pvo_head); pvo != NULL; pvo = next_pvo) {
1669		next_pvo = LIST_NEXT(pvo, pvo_vlink);
1670
1671		MOEA_PVO_CHECK(pvo);	/* sanity check */
1672		pmap = pvo->pvo_pmap;
1673		PMAP_LOCK(pmap);
1674		moea_pvo_remove(pvo, -1);
1675		PMAP_UNLOCK(pmap);
1676	}
1677	vm_page_flag_clear(m, PG_WRITEABLE);
1678}
1679
1680/*
1681 * Allocate a physical page of memory directly from the phys_avail map.
1682 * Can only be called from moea_bootstrap before avail start and end are
1683 * calculated.
1684 */
1685static vm_offset_t
1686moea_bootstrap_alloc(vm_size_t size, u_int align)
1687{
1688	vm_offset_t	s, e;
1689	int		i, j;
1690
1691	size = round_page(size);
1692	for (i = 0; phys_avail[i + 1] != 0; i += 2) {
1693		if (align != 0)
1694			s = (phys_avail[i] + align - 1) & ~(align - 1);
1695		else
1696			s = phys_avail[i];
1697		e = s + size;
1698
1699		if (s < phys_avail[i] || e > phys_avail[i + 1])
1700			continue;
1701
1702		if (s == phys_avail[i]) {
1703			phys_avail[i] += size;
1704		} else if (e == phys_avail[i + 1]) {
1705			phys_avail[i + 1] -= size;
1706		} else {
1707			for (j = phys_avail_count * 2; j > i; j -= 2) {
1708				phys_avail[j] = phys_avail[j - 2];
1709				phys_avail[j + 1] = phys_avail[j - 1];
1710			}
1711
1712			phys_avail[i + 3] = phys_avail[i + 1];
1713			phys_avail[i + 1] = s;
1714			phys_avail[i + 2] = e;
1715			phys_avail_count++;
1716		}
1717
1718		return (s);
1719	}
1720	panic("moea_bootstrap_alloc: could not allocate memory");
1721}
1722
1723/*
1724 * Return an unmapped pvo for a kernel virtual address.
1725 * Used by pmap functions that operate on physical pages.
1726 */
1727static struct pvo_entry *
1728moea_rkva_alloc(mmu_t mmu)
1729{
1730	struct		pvo_entry *pvo;
1731	struct		pte *pt;
1732	vm_offset_t	kva;
1733	int		pteidx;
1734
1735	if (moea_rkva_count == 0)
1736		panic("moea_rkva_alloc: no more reserved KVAs");
1737
1738	kva = moea_rkva_start + (PAGE_SIZE * --moea_rkva_count);
1739	moea_kenter(mmu, kva, 0);
1740
1741	pvo = moea_pvo_find_va(kernel_pmap, kva, &pteidx);
1742
1743	if (pvo == NULL)
1744		panic("moea_kva_alloc: moea_pvo_find_va failed");
1745
1746	pt = moea_pvo_to_pte(pvo, pteidx);
1747
1748	if (pt == NULL)
1749		panic("moea_kva_alloc: moea_pvo_to_pte failed");
1750
1751	moea_pte_unset(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
1752	PVO_PTEGIDX_CLR(pvo);
1753
1754	moea_pte_overflow++;
1755
1756	return (pvo);
1757}
1758
1759static void
1760moea_pa_map(struct pvo_entry *pvo, vm_offset_t pa, struct pte *saved_pt,
1761    int *depth_p)
1762{
1763	struct	pte *pt;
1764
1765	/*
1766	 * If this pvo already has a valid pte, we need to save it so it can
1767	 * be restored later.  We then just reload the new PTE over the old
1768	 * slot.
1769	 */
1770	if (saved_pt != NULL) {
1771		pt = moea_pvo_to_pte(pvo, -1);
1772
1773		if (pt != NULL) {
1774			moea_pte_unset(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
1775			PVO_PTEGIDX_CLR(pvo);
1776			moea_pte_overflow++;
1777		}
1778
1779		*saved_pt = pvo->pvo_pte;
1780
1781		pvo->pvo_pte.pte_lo &= ~PTE_RPGN;
1782	}
1783
1784	pvo->pvo_pte.pte_lo |= pa;
1785
1786	if (!moea_pte_spill(pvo->pvo_vaddr))
1787		panic("moea_pa_map: could not spill pvo %p", pvo);
1788
1789	if (depth_p != NULL)
1790		(*depth_p)++;
1791}
1792
1793static void
1794moea_pa_unmap(struct pvo_entry *pvo, struct pte *saved_pt, int *depth_p)
1795{
1796	struct	pte *pt;
1797
1798	pt = moea_pvo_to_pte(pvo, -1);
1799
1800	if (pt != NULL) {
1801		moea_pte_unset(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
1802		PVO_PTEGIDX_CLR(pvo);
1803		moea_pte_overflow++;
1804	}
1805
1806	pvo->pvo_pte.pte_lo &= ~PTE_RPGN;
1807
1808	/*
1809	 * If there is a saved PTE and it's valid, restore it and return.
1810	 */
1811	if (saved_pt != NULL && (saved_pt->pte_lo & PTE_RPGN) != 0) {
1812		if (depth_p != NULL && --(*depth_p) == 0)
1813			panic("moea_pa_unmap: restoring but depth == 0");
1814
1815		pvo->pvo_pte = *saved_pt;
1816
1817		if (!moea_pte_spill(pvo->pvo_vaddr))
1818			panic("moea_pa_unmap: could not spill pvo %p", pvo);
1819	}
1820}
1821
1822static void
1823moea_syncicache(vm_offset_t pa, vm_size_t len)
1824{
1825	__syncicache((void *)pa, len);
1826}
1827
1828static void
1829tlbia(void)
1830{
1831	caddr_t	i;
1832
1833	SYNC();
1834	for (i = 0; i < (caddr_t)0x00040000; i += 0x00001000) {
1835		TLBIE(i);
1836		EIEIO();
1837	}
1838	TLBSYNC();
1839	SYNC();
1840}
1841
1842static int
1843moea_pvo_enter(pmap_t pm, uma_zone_t zone, struct pvo_head *pvo_head,
1844    vm_offset_t va, vm_offset_t pa, u_int pte_lo, int flags)
1845{
1846	struct	pvo_entry *pvo;
1847	u_int	sr;
1848	int	first;
1849	u_int	ptegidx;
1850	int	i;
1851	int     bootstrap;
1852
1853	moea_pvo_enter_calls++;
1854	first = 0;
1855	bootstrap = 0;
1856
1857	/*
1858	 * Compute the PTE Group index.
1859	 */
1860	va &= ~ADDR_POFF;
1861	sr = va_to_sr(pm->pm_sr, va);
1862	ptegidx = va_to_pteg(sr, va);
1863
1864	/*
1865	 * Remove any existing mapping for this page.  Reuse the pvo entry if
1866	 * there is a mapping.
1867	 */
1868	mtx_lock(&moea_table_mutex);
1869	LIST_FOREACH(pvo, &moea_pvo_table[ptegidx], pvo_olink) {
1870		if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) {
1871			if ((pvo->pvo_pte.pte_lo & PTE_RPGN) == pa &&
1872			    (pvo->pvo_pte.pte_lo & PTE_PP) ==
1873			    (pte_lo & PTE_PP)) {
1874				mtx_unlock(&moea_table_mutex);
1875				return (0);
1876			}
1877			moea_pvo_remove(pvo, -1);
1878			break;
1879		}
1880	}
1881
1882	/*
1883	 * If we aren't overwriting a mapping, try to allocate.
1884	 */
1885	if (moea_initialized) {
1886		pvo = uma_zalloc(zone, M_NOWAIT);
1887	} else {
1888		if (moea_bpvo_pool_index >= BPVO_POOL_SIZE) {
1889			panic("moea_enter: bpvo pool exhausted, %d, %d, %d",
1890			      moea_bpvo_pool_index, BPVO_POOL_SIZE,
1891			      BPVO_POOL_SIZE * sizeof(struct pvo_entry));
1892		}
1893		pvo = &moea_bpvo_pool[moea_bpvo_pool_index];
1894		moea_bpvo_pool_index++;
1895		bootstrap = 1;
1896	}
1897
1898	if (pvo == NULL) {
1899		mtx_unlock(&moea_table_mutex);
1900		return (ENOMEM);
1901	}
1902
1903	moea_pvo_entries++;
1904	pvo->pvo_vaddr = va;
1905	pvo->pvo_pmap = pm;
1906	LIST_INSERT_HEAD(&moea_pvo_table[ptegidx], pvo, pvo_olink);
1907	pvo->pvo_vaddr &= ~ADDR_POFF;
1908	if (flags & VM_PROT_EXECUTE)
1909		pvo->pvo_vaddr |= PVO_EXECUTABLE;
1910	if (flags & PVO_WIRED)
1911		pvo->pvo_vaddr |= PVO_WIRED;
1912	if (pvo_head != &moea_pvo_kunmanaged)
1913		pvo->pvo_vaddr |= PVO_MANAGED;
1914	if (bootstrap)
1915		pvo->pvo_vaddr |= PVO_BOOTSTRAP;
1916	if (flags & PVO_FAKE)
1917		pvo->pvo_vaddr |= PVO_FAKE;
1918
1919	moea_pte_create(&pvo->pvo_pte, sr, va, pa | pte_lo);
1920
1921	/*
1922	 * Remember if the list was empty and therefore will be the first
1923	 * item.
1924	 */
1925	if (LIST_FIRST(pvo_head) == NULL)
1926		first = 1;
1927	LIST_INSERT_HEAD(pvo_head, pvo, pvo_vlink);
1928
1929	if (pvo->pvo_pte.pte_lo & PVO_WIRED)
1930		pm->pm_stats.wired_count++;
1931	pm->pm_stats.resident_count++;
1932
1933	/*
1934	 * We hope this succeeds but it isn't required.
1935	 */
1936	i = moea_pte_insert(ptegidx, &pvo->pvo_pte);
1937	if (i >= 0) {
1938		PVO_PTEGIDX_SET(pvo, i);
1939	} else {
1940		panic("moea_pvo_enter: overflow");
1941		moea_pte_overflow++;
1942	}
1943	mtx_unlock(&moea_table_mutex);
1944
1945	return (first ? ENOENT : 0);
1946}
1947
1948static void
1949moea_pvo_remove(struct pvo_entry *pvo, int pteidx)
1950{
1951	struct	pte *pt;
1952
1953	/*
1954	 * If there is an active pte entry, we need to deactivate it (and
1955	 * save the ref & cfg bits).
1956	 */
1957	pt = moea_pvo_to_pte(pvo, pteidx);
1958	if (pt != NULL) {
1959		moea_pte_unset(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
1960		PVO_PTEGIDX_CLR(pvo);
1961	} else {
1962		moea_pte_overflow--;
1963	}
1964
1965	/*
1966	 * Update our statistics.
1967	 */
1968	pvo->pvo_pmap->pm_stats.resident_count--;
1969	if (pvo->pvo_pte.pte_lo & PVO_WIRED)
1970		pvo->pvo_pmap->pm_stats.wired_count--;
1971
1972	/*
1973	 * Save the REF/CHG bits into their cache if the page is managed.
1974	 */
1975	if ((pvo->pvo_vaddr & (PVO_MANAGED|PVO_FAKE)) == PVO_MANAGED) {
1976		struct	vm_page *pg;
1977
1978		pg = PHYS_TO_VM_PAGE(pvo->pvo_pte.pte_lo & PTE_RPGN);
1979		if (pg != NULL) {
1980			moea_attr_save(pg, pvo->pvo_pte.pte_lo &
1981			    (PTE_REF | PTE_CHG));
1982		}
1983	}
1984
1985	/*
1986	 * Remove this PVO from the PV list.
1987	 */
1988	LIST_REMOVE(pvo, pvo_vlink);
1989
1990	/*
1991	 * Remove this from the overflow list and return it to the pool
1992	 * if we aren't going to reuse it.
1993	 */
1994	LIST_REMOVE(pvo, pvo_olink);
1995	if (!(pvo->pvo_vaddr & PVO_BOOTSTRAP))
1996		uma_zfree(pvo->pvo_vaddr & PVO_MANAGED ? moea_mpvo_zone :
1997		    moea_upvo_zone, pvo);
1998	moea_pvo_entries--;
1999	moea_pvo_remove_calls++;
2000}
2001
2002static __inline int
2003moea_pvo_pte_index(const struct pvo_entry *pvo, int ptegidx)
2004{
2005	int	pteidx;
2006
2007	/*
2008	 * We can find the actual pte entry without searching by grabbing
2009	 * the PTEG index from 3 unused bits in pte_lo[11:9] and by
2010	 * noticing the HID bit.
2011	 */
2012	pteidx = ptegidx * 8 + PVO_PTEGIDX_GET(pvo);
2013	if (pvo->pvo_pte.pte_hi & PTE_HID)
2014		pteidx ^= moea_pteg_mask * 8;
2015
2016	return (pteidx);
2017}
2018
2019static struct pvo_entry *
2020moea_pvo_find_va(pmap_t pm, vm_offset_t va, int *pteidx_p)
2021{
2022	struct	pvo_entry *pvo;
2023	int	ptegidx;
2024	u_int	sr;
2025
2026	va &= ~ADDR_POFF;
2027	sr = va_to_sr(pm->pm_sr, va);
2028	ptegidx = va_to_pteg(sr, va);
2029
2030	mtx_lock(&moea_table_mutex);
2031	LIST_FOREACH(pvo, &moea_pvo_table[ptegidx], pvo_olink) {
2032		if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) {
2033			if (pteidx_p)
2034				*pteidx_p = moea_pvo_pte_index(pvo, ptegidx);
2035			break;
2036		}
2037	}
2038	mtx_unlock(&moea_table_mutex);
2039
2040	return (pvo);
2041}
2042
2043static struct pte *
2044moea_pvo_to_pte(const struct pvo_entry *pvo, int pteidx)
2045{
2046	struct	pte *pt;
2047
2048	/*
2049	 * If we haven't been supplied the ptegidx, calculate it.
2050	 */
2051	if (pteidx == -1) {
2052		int	ptegidx;
2053		u_int	sr;
2054
2055		sr = va_to_sr(pvo->pvo_pmap->pm_sr, pvo->pvo_vaddr);
2056		ptegidx = va_to_pteg(sr, pvo->pvo_vaddr);
2057		pteidx = moea_pvo_pte_index(pvo, ptegidx);
2058	}
2059
2060	pt = &moea_pteg_table[pteidx >> 3].pt[pteidx & 7];
2061
2062	if ((pvo->pvo_pte.pte_hi & PTE_VALID) && !PVO_PTEGIDX_ISSET(pvo)) {
2063		panic("moea_pvo_to_pte: pvo %p has valid pte in pvo but no "
2064		    "valid pte index", pvo);
2065	}
2066
2067	if ((pvo->pvo_pte.pte_hi & PTE_VALID) == 0 && PVO_PTEGIDX_ISSET(pvo)) {
2068		panic("moea_pvo_to_pte: pvo %p has valid pte index in pvo "
2069		    "pvo but no valid pte", pvo);
2070	}
2071
2072	if ((pt->pte_hi ^ (pvo->pvo_pte.pte_hi & ~PTE_VALID)) == PTE_VALID) {
2073		if ((pvo->pvo_pte.pte_hi & PTE_VALID) == 0) {
2074			panic("moea_pvo_to_pte: pvo %p has valid pte in "
2075			    "moea_pteg_table %p but invalid in pvo", pvo, pt);
2076		}
2077
2078		if (((pt->pte_lo ^ pvo->pvo_pte.pte_lo) & ~(PTE_CHG|PTE_REF))
2079		    != 0) {
2080			panic("moea_pvo_to_pte: pvo %p pte does not match "
2081			    "pte %p in moea_pteg_table", pvo, pt);
2082		}
2083
2084		return (pt);
2085	}
2086
2087	if (pvo->pvo_pte.pte_hi & PTE_VALID) {
2088		panic("moea_pvo_to_pte: pvo %p has invalid pte %p in "
2089		    "moea_pteg_table but valid in pvo", pvo, pt);
2090	}
2091
2092	return (NULL);
2093}
2094
2095/*
2096 * XXX: THIS STUFF SHOULD BE IN pte.c?
2097 */
2098int
2099moea_pte_spill(vm_offset_t addr)
2100{
2101	struct	pvo_entry *source_pvo, *victim_pvo;
2102	struct	pvo_entry *pvo;
2103	int	ptegidx, i, j;
2104	u_int	sr;
2105	struct	pteg *pteg;
2106	struct	pte *pt;
2107
2108	moea_pte_spills++;
2109
2110	sr = mfsrin(addr);
2111	ptegidx = va_to_pteg(sr, addr);
2112
2113	/*
2114	 * Have to substitute some entry.  Use the primary hash for this.
2115	 * Use low bits of timebase as random generator.
2116	 */
2117	pteg = &moea_pteg_table[ptegidx];
2118	mtx_lock(&moea_table_mutex);
2119	__asm __volatile("mftb %0" : "=r"(i));
2120	i &= 7;
2121	pt = &pteg->pt[i];
2122
2123	source_pvo = NULL;
2124	victim_pvo = NULL;
2125	LIST_FOREACH(pvo, &moea_pvo_table[ptegidx], pvo_olink) {
2126		/*
2127		 * We need to find a pvo entry for this address.
2128		 */
2129		MOEA_PVO_CHECK(pvo);
2130		if (source_pvo == NULL &&
2131		    moea_pte_match(&pvo->pvo_pte, sr, addr,
2132		    pvo->pvo_pte.pte_hi & PTE_HID)) {
2133			/*
2134			 * Now found an entry to be spilled into the pteg.
2135			 * The PTE is now valid, so we know it's active.
2136			 */
2137			j = moea_pte_insert(ptegidx, &pvo->pvo_pte);
2138
2139			if (j >= 0) {
2140				PVO_PTEGIDX_SET(pvo, j);
2141				moea_pte_overflow--;
2142				MOEA_PVO_CHECK(pvo);
2143				mtx_unlock(&moea_table_mutex);
2144				return (1);
2145			}
2146
2147			source_pvo = pvo;
2148
2149			if (victim_pvo != NULL)
2150				break;
2151		}
2152
2153		/*
2154		 * We also need the pvo entry of the victim we are replacing
2155		 * so save the R & C bits of the PTE.
2156		 */
2157		if ((pt->pte_hi & PTE_HID) == 0 && victim_pvo == NULL &&
2158		    moea_pte_compare(pt, &pvo->pvo_pte)) {
2159			victim_pvo = pvo;
2160			if (source_pvo != NULL)
2161				break;
2162		}
2163	}
2164
2165	if (source_pvo == NULL) {
2166		mtx_unlock(&moea_table_mutex);
2167		return (0);
2168	}
2169
2170	if (victim_pvo == NULL) {
2171		if ((pt->pte_hi & PTE_HID) == 0)
2172			panic("moea_pte_spill: victim p-pte (%p) has no pvo"
2173			    "entry", pt);
2174
2175		/*
2176		 * If this is a secondary PTE, we need to search it's primary
2177		 * pvo bucket for the matching PVO.
2178		 */
2179		LIST_FOREACH(pvo, &moea_pvo_table[ptegidx ^ moea_pteg_mask],
2180		    pvo_olink) {
2181			MOEA_PVO_CHECK(pvo);
2182			/*
2183			 * We also need the pvo entry of the victim we are
2184			 * replacing so save the R & C bits of the PTE.
2185			 */
2186			if (moea_pte_compare(pt, &pvo->pvo_pte)) {
2187				victim_pvo = pvo;
2188				break;
2189			}
2190		}
2191
2192		if (victim_pvo == NULL)
2193			panic("moea_pte_spill: victim s-pte (%p) has no pvo"
2194			    "entry", pt);
2195	}
2196
2197	/*
2198	 * We are invalidating the TLB entry for the EA we are replacing even
2199	 * though it's valid.  If we don't, we lose any ref/chg bit changes
2200	 * contained in the TLB entry.
2201	 */
2202	source_pvo->pvo_pte.pte_hi &= ~PTE_HID;
2203
2204	moea_pte_unset(pt, &victim_pvo->pvo_pte, victim_pvo->pvo_vaddr);
2205	moea_pte_set(pt, &source_pvo->pvo_pte);
2206
2207	PVO_PTEGIDX_CLR(victim_pvo);
2208	PVO_PTEGIDX_SET(source_pvo, i);
2209	moea_pte_replacements++;
2210
2211	MOEA_PVO_CHECK(victim_pvo);
2212	MOEA_PVO_CHECK(source_pvo);
2213
2214	mtx_unlock(&moea_table_mutex);
2215	return (1);
2216}
2217
2218static int
2219moea_pte_insert(u_int ptegidx, struct pte *pvo_pt)
2220{
2221	struct	pte *pt;
2222	int	i;
2223
2224	/*
2225	 * First try primary hash.
2226	 */
2227	for (pt = moea_pteg_table[ptegidx].pt, i = 0; i < 8; i++, pt++) {
2228		if ((pt->pte_hi & PTE_VALID) == 0) {
2229			pvo_pt->pte_hi &= ~PTE_HID;
2230			moea_pte_set(pt, pvo_pt);
2231			return (i);
2232		}
2233	}
2234
2235	/*
2236	 * Now try secondary hash.
2237	 */
2238	ptegidx ^= moea_pteg_mask;
2239	ptegidx++;
2240	for (pt = moea_pteg_table[ptegidx].pt, i = 0; i < 8; i++, pt++) {
2241		if ((pt->pte_hi & PTE_VALID) == 0) {
2242			pvo_pt->pte_hi |= PTE_HID;
2243			moea_pte_set(pt, pvo_pt);
2244			return (i);
2245		}
2246	}
2247
2248	panic("moea_pte_insert: overflow");
2249	return (-1);
2250}
2251
2252static boolean_t
2253moea_query_bit(vm_page_t m, int ptebit)
2254{
2255	struct	pvo_entry *pvo;
2256	struct	pte *pt;
2257
2258#if 0
2259	if (moea_attr_fetch(m) & ptebit)
2260		return (TRUE);
2261#endif
2262
2263	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
2264		MOEA_PVO_CHECK(pvo);	/* sanity check */
2265
2266		/*
2267		 * See if we saved the bit off.  If so, cache it and return
2268		 * success.
2269		 */
2270		if (pvo->pvo_pte.pte_lo & ptebit) {
2271			moea_attr_save(m, ptebit);
2272			MOEA_PVO_CHECK(pvo);	/* sanity check */
2273			return (TRUE);
2274		}
2275	}
2276
2277	/*
2278	 * No luck, now go through the hard part of looking at the PTEs
2279	 * themselves.  Sync so that any pending REF/CHG bits are flushed to
2280	 * the PTEs.
2281	 */
2282	SYNC();
2283	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
2284		MOEA_PVO_CHECK(pvo);	/* sanity check */
2285
2286		/*
2287		 * See if this pvo has a valid PTE.  if so, fetch the
2288		 * REF/CHG bits from the valid PTE.  If the appropriate
2289		 * ptebit is set, cache it and return success.
2290		 */
2291		pt = moea_pvo_to_pte(pvo, -1);
2292		if (pt != NULL) {
2293			moea_pte_synch(pt, &pvo->pvo_pte);
2294			if (pvo->pvo_pte.pte_lo & ptebit) {
2295				moea_attr_save(m, ptebit);
2296				MOEA_PVO_CHECK(pvo);	/* sanity check */
2297				return (TRUE);
2298			}
2299		}
2300	}
2301
2302	return (FALSE);
2303}
2304
2305static u_int
2306moea_clear_bit(vm_page_t m, int ptebit, int *origbit)
2307{
2308	u_int	count;
2309	struct	pvo_entry *pvo;
2310	struct	pte *pt;
2311	int	rv;
2312
2313	/*
2314	 * Clear the cached value.
2315	 */
2316	rv = moea_attr_fetch(m);
2317	moea_attr_clear(m, ptebit);
2318
2319	/*
2320	 * Sync so that any pending REF/CHG bits are flushed to the PTEs (so
2321	 * we can reset the right ones).  note that since the pvo entries and
2322	 * list heads are accessed via BAT0 and are never placed in the page
2323	 * table, we don't have to worry about further accesses setting the
2324	 * REF/CHG bits.
2325	 */
2326	SYNC();
2327
2328	/*
2329	 * For each pvo entry, clear the pvo's ptebit.  If this pvo has a
2330	 * valid pte clear the ptebit from the valid pte.
2331	 */
2332	count = 0;
2333	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
2334		MOEA_PVO_CHECK(pvo);	/* sanity check */
2335		pt = moea_pvo_to_pte(pvo, -1);
2336		if (pt != NULL) {
2337			moea_pte_synch(pt, &pvo->pvo_pte);
2338			if (pvo->pvo_pte.pte_lo & ptebit) {
2339				count++;
2340				moea_pte_clear(pt, PVO_VADDR(pvo), ptebit);
2341			}
2342		}
2343		rv |= pvo->pvo_pte.pte_lo;
2344		pvo->pvo_pte.pte_lo &= ~ptebit;
2345		MOEA_PVO_CHECK(pvo);	/* sanity check */
2346	}
2347
2348	if (origbit != NULL) {
2349		*origbit = rv;
2350	}
2351
2352	return (count);
2353}
2354
2355/*
2356 * Return true if the physical range is encompassed by the battable[idx]
2357 */
2358static int
2359moea_bat_mapped(int idx, vm_offset_t pa, vm_size_t size)
2360{
2361	u_int prot;
2362	u_int32_t start;
2363	u_int32_t end;
2364	u_int32_t bat_ble;
2365
2366	/*
2367	 * Return immediately if not a valid mapping
2368	 */
2369	if (!battable[idx].batu & BAT_Vs)
2370		return (EINVAL);
2371
2372	/*
2373	 * The BAT entry must be cache-inhibited, guarded, and r/w
2374	 * so it can function as an i/o page
2375	 */
2376	prot = battable[idx].batl & (BAT_I|BAT_G|BAT_PP_RW);
2377	if (prot != (BAT_I|BAT_G|BAT_PP_RW))
2378		return (EPERM);
2379
2380	/*
2381	 * The address should be within the BAT range. Assume that the
2382	 * start address in the BAT has the correct alignment (thus
2383	 * not requiring masking)
2384	 */
2385	start = battable[idx].batl & BAT_PBS;
2386	bat_ble = (battable[idx].batu & ~(BAT_EBS)) | 0x03;
2387	end = start | (bat_ble << 15) | 0x7fff;
2388
2389	if ((pa < start) || ((pa + size) > end))
2390		return (ERANGE);
2391
2392	return (0);
2393}
2394
2395boolean_t
2396moea_dev_direct_mapped(mmu_t mmu, vm_offset_t pa, vm_size_t size)
2397{
2398	int i;
2399
2400	/*
2401	 * This currently does not work for entries that
2402	 * overlap 256M BAT segments.
2403	 */
2404
2405	for(i = 0; i < 16; i++)
2406		if (moea_bat_mapped(i, pa, size) == 0)
2407			return (0);
2408
2409	return (EFAULT);
2410}
2411
2412/*
2413 * Map a set of physical memory pages into the kernel virtual
2414 * address space. Return a pointer to where it is mapped. This
2415 * routine is intended to be used for mapping device memory,
2416 * NOT real memory.
2417 */
2418void *
2419moea_mapdev(mmu_t mmu, vm_offset_t pa, vm_size_t size)
2420{
2421	vm_offset_t va, tmpva, ppa, offset;
2422	int i;
2423
2424	ppa = trunc_page(pa);
2425	offset = pa & PAGE_MASK;
2426	size = roundup(offset + size, PAGE_SIZE);
2427
2428	GIANT_REQUIRED;
2429
2430	/*
2431	 * If the physical address lies within a valid BAT table entry,
2432	 * return the 1:1 mapping. This currently doesn't work
2433	 * for regions that overlap 256M BAT segments.
2434	 */
2435	for (i = 0; i < 16; i++) {
2436		if (moea_bat_mapped(i, pa, size) == 0)
2437			return ((void *) pa);
2438	}
2439
2440	va = kmem_alloc_nofault(kernel_map, size);
2441	if (!va)
2442		panic("moea_mapdev: Couldn't alloc kernel virtual memory");
2443
2444	for (tmpva = va; size > 0;) {
2445		moea_kenter(mmu, tmpva, ppa);
2446		TLBIE(tmpva); /* XXX or should it be invalidate-all ? */
2447		size -= PAGE_SIZE;
2448		tmpva += PAGE_SIZE;
2449		ppa += PAGE_SIZE;
2450	}
2451
2452	return ((void *)(va + offset));
2453}
2454
2455void
2456moea_unmapdev(mmu_t mmu, vm_offset_t va, vm_size_t size)
2457{
2458	vm_offset_t base, offset;
2459
2460	/*
2461	 * If this is outside kernel virtual space, then it's a
2462	 * battable entry and doesn't require unmapping
2463	 */
2464	if ((va >= VM_MIN_KERNEL_ADDRESS) && (va <= VM_MAX_KERNEL_ADDRESS)) {
2465		base = trunc_page(va);
2466		offset = va & PAGE_MASK;
2467		size = roundup(offset + size, PAGE_SIZE);
2468		kmem_free(kernel_map, base, size);
2469	}
2470}
2471