mmu_oea.c revision 134453
1/*
2 * Copyright (c) 2001 The NetBSD Foundation, Inc.
3 * All rights reserved.
4 *
5 * This code is derived from software contributed to The NetBSD Foundation
6 * by Matt Thomas <matt@3am-software.com> of Allegro Networks, Inc.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 *    must display the following acknowledgement:
18 *        This product includes software developed by the NetBSD
19 *        Foundation, Inc. and its contributors.
20 * 4. Neither the name of The NetBSD Foundation nor the names of its
21 *    contributors may be used to endorse or promote products derived
22 *    from this software without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
25 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
26 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
27 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
28 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
29 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
30 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
31 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
32 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
33 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
34 * POSSIBILITY OF SUCH DAMAGE.
35 */
36/*
37 * Copyright (C) 1995, 1996 Wolfgang Solfrank.
38 * Copyright (C) 1995, 1996 TooLs GmbH.
39 * All rights reserved.
40 *
41 * Redistribution and use in source and binary forms, with or without
42 * modification, are permitted provided that the following conditions
43 * are met:
44 * 1. Redistributions of source code must retain the above copyright
45 *    notice, this list of conditions and the following disclaimer.
46 * 2. Redistributions in binary form must reproduce the above copyright
47 *    notice, this list of conditions and the following disclaimer in the
48 *    documentation and/or other materials provided with the distribution.
49 * 3. All advertising materials mentioning features or use of this software
50 *    must display the following acknowledgement:
51 *	This product includes software developed by TooLs GmbH.
52 * 4. The name of TooLs GmbH may not be used to endorse or promote products
53 *    derived from this software without specific prior written permission.
54 *
55 * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR
56 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
57 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
58 * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
59 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
60 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
61 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
62 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
63 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
64 * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
65 *
66 * $NetBSD: pmap.c,v 1.28 2000/03/26 20:42:36 kleink Exp $
67 */
68/*
69 * Copyright (C) 2001 Benno Rice.
70 * All rights reserved.
71 *
72 * Redistribution and use in source and binary forms, with or without
73 * modification, are permitted provided that the following conditions
74 * are met:
75 * 1. Redistributions of source code must retain the above copyright
76 *    notice, this list of conditions and the following disclaimer.
77 * 2. Redistributions in binary form must reproduce the above copyright
78 *    notice, this list of conditions and the following disclaimer in the
79 *    documentation and/or other materials provided with the distribution.
80 *
81 * THIS SOFTWARE IS PROVIDED BY Benno Rice ``AS IS'' AND ANY EXPRESS OR
82 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
83 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
84 * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
85 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
86 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
87 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
88 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
89 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
90 * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
91 */
92
93#include <sys/cdefs.h>
94__FBSDID("$FreeBSD: head/sys/powerpc/aim/mmu_oea.c 134453 2004-08-28 20:27:12Z alc $");
95
96/*
97 * Manages physical address maps.
98 *
99 * In addition to hardware address maps, this module is called upon to
100 * provide software-use-only maps which may or may not be stored in the
101 * same form as hardware maps.  These pseudo-maps are used to store
102 * intermediate results from copy operations to and from address spaces.
103 *
104 * Since the information managed by this module is also stored by the
105 * logical address mapping module, this module may throw away valid virtual
106 * to physical mappings at almost any time.  However, invalidations of
107 * mappings must be done as requested.
108 *
109 * In order to cope with hardware architectures which make virtual to
110 * physical map invalidates expensive, this module may delay invalidate
111 * reduced protection operations until such time as they are actually
112 * necessary.  This module is given full information as to which processors
113 * are currently using which maps, and to when physical maps must be made
114 * correct.
115 */
116
117#include "opt_kstack_pages.h"
118
119#include <sys/param.h>
120#include <sys/kernel.h>
121#include <sys/ktr.h>
122#include <sys/lock.h>
123#include <sys/msgbuf.h>
124#include <sys/mutex.h>
125#include <sys/proc.h>
126#include <sys/sysctl.h>
127#include <sys/systm.h>
128#include <sys/vmmeter.h>
129
130#include <dev/ofw/openfirm.h>
131
132#include <vm/vm.h>
133#include <vm/vm_param.h>
134#include <vm/vm_kern.h>
135#include <vm/vm_page.h>
136#include <vm/vm_map.h>
137#include <vm/vm_object.h>
138#include <vm/vm_extern.h>
139#include <vm/vm_pageout.h>
140#include <vm/vm_pager.h>
141#include <vm/uma.h>
142
143#include <machine/cpu.h>
144#include <machine/powerpc.h>
145#include <machine/bat.h>
146#include <machine/frame.h>
147#include <machine/md_var.h>
148#include <machine/psl.h>
149#include <machine/pte.h>
150#include <machine/sr.h>
151
152#define	PMAP_DEBUG
153
154#define TODO	panic("%s: not implemented", __func__);
155
156#define	TLBIE(va)	__asm __volatile("tlbie %0" :: "r"(va))
157#define	TLBSYNC()	__asm __volatile("tlbsync");
158#define	SYNC()		__asm __volatile("sync");
159#define	EIEIO()		__asm __volatile("eieio");
160
161#define	VSID_MAKE(sr, hash)	((sr) | (((hash) & 0xfffff) << 4))
162#define	VSID_TO_SR(vsid)	((vsid) & 0xf)
163#define	VSID_TO_HASH(vsid)	(((vsid) >> 4) & 0xfffff)
164
165#define	PVO_PTEGIDX_MASK	0x0007		/* which PTEG slot */
166#define	PVO_PTEGIDX_VALID	0x0008		/* slot is valid */
167#define	PVO_WIRED		0x0010		/* PVO entry is wired */
168#define	PVO_MANAGED		0x0020		/* PVO entry is managed */
169#define	PVO_EXECUTABLE		0x0040		/* PVO entry is executable */
170#define	PVO_BOOTSTRAP		0x0080		/* PVO entry allocated during
171						   bootstrap */
172#define	PVO_VADDR(pvo)		((pvo)->pvo_vaddr & ~ADDR_POFF)
173#define	PVO_ISEXECUTABLE(pvo)	((pvo)->pvo_vaddr & PVO_EXECUTABLE)
174#define	PVO_PTEGIDX_GET(pvo)	((pvo)->pvo_vaddr & PVO_PTEGIDX_MASK)
175#define	PVO_PTEGIDX_ISSET(pvo)	((pvo)->pvo_vaddr & PVO_PTEGIDX_VALID)
176#define	PVO_PTEGIDX_CLR(pvo)	\
177	((void)((pvo)->pvo_vaddr &= ~(PVO_PTEGIDX_VALID|PVO_PTEGIDX_MASK)))
178#define	PVO_PTEGIDX_SET(pvo, i)	\
179	((void)((pvo)->pvo_vaddr |= (i)|PVO_PTEGIDX_VALID))
180
181#define	PMAP_PVO_CHECK(pvo)
182
183struct ofw_map {
184	vm_offset_t	om_va;
185	vm_size_t	om_len;
186	vm_offset_t	om_pa;
187	u_int		om_mode;
188};
189
190int	pmap_bootstrapped = 0;
191
192/*
193 * Virtual and physical address of message buffer.
194 */
195struct		msgbuf *msgbufp;
196vm_offset_t	msgbuf_phys;
197
198int pmap_pagedaemon_waken;
199
200/*
201 * Map of physical memory regions.
202 */
203vm_offset_t	phys_avail[128];
204u_int		phys_avail_count;
205static struct	mem_region *regions;
206static struct	mem_region *pregions;
207int		regions_sz, pregions_sz;
208static struct	ofw_map *translations;
209
210/*
211 * First and last available kernel virtual addresses.
212 */
213vm_offset_t virtual_avail;
214vm_offset_t virtual_end;
215vm_offset_t kernel_vm_end;
216
217/*
218 * Kernel pmap.
219 */
220struct pmap kernel_pmap_store;
221extern struct pmap ofw_pmap;
222
223/*
224 * PTEG data.
225 */
226static struct	pteg *pmap_pteg_table;
227u_int		pmap_pteg_count;
228u_int		pmap_pteg_mask;
229
230/*
231 * PVO data.
232 */
233struct	pvo_head *pmap_pvo_table;		/* pvo entries by pteg index */
234struct	pvo_head pmap_pvo_kunmanaged =
235    LIST_HEAD_INITIALIZER(pmap_pvo_kunmanaged);	/* list of unmanaged pages */
236struct	pvo_head pmap_pvo_unmanaged =
237    LIST_HEAD_INITIALIZER(pmap_pvo_unmanaged);	/* list of unmanaged pages */
238
239uma_zone_t	pmap_upvo_zone;	/* zone for pvo entries for unmanaged pages */
240uma_zone_t	pmap_mpvo_zone;	/* zone for pvo entries for managed pages */
241
242#define	BPVO_POOL_SIZE	32768
243static struct	pvo_entry *pmap_bpvo_pool;
244static int	pmap_bpvo_pool_index = 0;
245
246#define	VSID_NBPW	(sizeof(u_int32_t) * 8)
247static u_int	pmap_vsid_bitmap[NPMAPS / VSID_NBPW];
248
249static boolean_t pmap_initialized = FALSE;
250
251/*
252 * Statistics.
253 */
254u_int	pmap_pte_valid = 0;
255u_int	pmap_pte_overflow = 0;
256u_int	pmap_pte_replacements = 0;
257u_int	pmap_pvo_entries = 0;
258u_int	pmap_pvo_enter_calls = 0;
259u_int	pmap_pvo_remove_calls = 0;
260u_int	pmap_pte_spills = 0;
261SYSCTL_INT(_machdep, OID_AUTO, pmap_pte_valid, CTLFLAG_RD, &pmap_pte_valid,
262    0, "");
263SYSCTL_INT(_machdep, OID_AUTO, pmap_pte_overflow, CTLFLAG_RD,
264    &pmap_pte_overflow, 0, "");
265SYSCTL_INT(_machdep, OID_AUTO, pmap_pte_replacements, CTLFLAG_RD,
266    &pmap_pte_replacements, 0, "");
267SYSCTL_INT(_machdep, OID_AUTO, pmap_pvo_entries, CTLFLAG_RD, &pmap_pvo_entries,
268    0, "");
269SYSCTL_INT(_machdep, OID_AUTO, pmap_pvo_enter_calls, CTLFLAG_RD,
270    &pmap_pvo_enter_calls, 0, "");
271SYSCTL_INT(_machdep, OID_AUTO, pmap_pvo_remove_calls, CTLFLAG_RD,
272    &pmap_pvo_remove_calls, 0, "");
273SYSCTL_INT(_machdep, OID_AUTO, pmap_pte_spills, CTLFLAG_RD,
274    &pmap_pte_spills, 0, "");
275
276struct	pvo_entry *pmap_pvo_zeropage;
277
278vm_offset_t	pmap_rkva_start = VM_MIN_KERNEL_ADDRESS;
279u_int		pmap_rkva_count = 4;
280
281/*
282 * Allocate physical memory for use in pmap_bootstrap.
283 */
284static vm_offset_t	pmap_bootstrap_alloc(vm_size_t, u_int);
285
286/*
287 * PTE calls.
288 */
289static int		pmap_pte_insert(u_int, struct pte *);
290
291/*
292 * PVO calls.
293 */
294static int	pmap_pvo_enter(pmap_t, uma_zone_t, struct pvo_head *,
295		    vm_offset_t, vm_offset_t, u_int, int);
296static void	pmap_pvo_remove(struct pvo_entry *, int);
297static struct	pvo_entry *pmap_pvo_find_va(pmap_t, vm_offset_t, int *);
298static struct	pte *pmap_pvo_to_pte(const struct pvo_entry *, int);
299
300/*
301 * Utility routines.
302 */
303static struct		pvo_entry *pmap_rkva_alloc(void);
304static void		pmap_pa_map(struct pvo_entry *, vm_offset_t,
305			    struct pte *, int *);
306static void		pmap_pa_unmap(struct pvo_entry *, struct pte *, int *);
307static void		pmap_syncicache(vm_offset_t, vm_size_t);
308static boolean_t	pmap_query_bit(vm_page_t, int);
309static u_int		pmap_clear_bit(vm_page_t, int, int *);
310static void		tlbia(void);
311
312static __inline int
313va_to_sr(u_int *sr, vm_offset_t va)
314{
315	return (sr[(uintptr_t)va >> ADDR_SR_SHFT]);
316}
317
318static __inline u_int
319va_to_pteg(u_int sr, vm_offset_t addr)
320{
321	u_int hash;
322
323	hash = (sr & SR_VSID_MASK) ^ (((u_int)addr & ADDR_PIDX) >>
324	    ADDR_PIDX_SHFT);
325	return (hash & pmap_pteg_mask);
326}
327
328static __inline struct pvo_head *
329pa_to_pvoh(vm_offset_t pa, vm_page_t *pg_p)
330{
331	struct	vm_page *pg;
332
333	pg = PHYS_TO_VM_PAGE(pa);
334
335	if (pg_p != NULL)
336		*pg_p = pg;
337
338	if (pg == NULL)
339		return (&pmap_pvo_unmanaged);
340
341	return (&pg->md.mdpg_pvoh);
342}
343
344static __inline struct pvo_head *
345vm_page_to_pvoh(vm_page_t m)
346{
347
348	return (&m->md.mdpg_pvoh);
349}
350
351static __inline void
352pmap_attr_clear(vm_page_t m, int ptebit)
353{
354
355	m->md.mdpg_attrs &= ~ptebit;
356}
357
358static __inline int
359pmap_attr_fetch(vm_page_t m)
360{
361
362	return (m->md.mdpg_attrs);
363}
364
365static __inline void
366pmap_attr_save(vm_page_t m, int ptebit)
367{
368
369	m->md.mdpg_attrs |= ptebit;
370}
371
372static __inline int
373pmap_pte_compare(const struct pte *pt, const struct pte *pvo_pt)
374{
375	if (pt->pte_hi == pvo_pt->pte_hi)
376		return (1);
377
378	return (0);
379}
380
381static __inline int
382pmap_pte_match(struct pte *pt, u_int sr, vm_offset_t va, int which)
383{
384	return (pt->pte_hi & ~PTE_VALID) ==
385	    (((sr & SR_VSID_MASK) << PTE_VSID_SHFT) |
386	    ((va >> ADDR_API_SHFT) & PTE_API) | which);
387}
388
389static __inline void
390pmap_pte_create(struct pte *pt, u_int sr, vm_offset_t va, u_int pte_lo)
391{
392	/*
393	 * Construct a PTE.  Default to IMB initially.  Valid bit only gets
394	 * set when the real pte is set in memory.
395	 *
396	 * Note: Don't set the valid bit for correct operation of tlb update.
397	 */
398	pt->pte_hi = ((sr & SR_VSID_MASK) << PTE_VSID_SHFT) |
399	    (((va & ADDR_PIDX) >> ADDR_API_SHFT) & PTE_API);
400	pt->pte_lo = pte_lo;
401}
402
403static __inline void
404pmap_pte_synch(struct pte *pt, struct pte *pvo_pt)
405{
406
407	pvo_pt->pte_lo |= pt->pte_lo & (PTE_REF | PTE_CHG);
408}
409
410static __inline void
411pmap_pte_clear(struct pte *pt, vm_offset_t va, int ptebit)
412{
413
414	/*
415	 * As shown in Section 7.6.3.2.3
416	 */
417	pt->pte_lo &= ~ptebit;
418	TLBIE(va);
419	EIEIO();
420	TLBSYNC();
421	SYNC();
422}
423
424static __inline void
425pmap_pte_set(struct pte *pt, struct pte *pvo_pt)
426{
427
428	pvo_pt->pte_hi |= PTE_VALID;
429
430	/*
431	 * Update the PTE as defined in section 7.6.3.1.
432	 * Note that the REF/CHG bits are from pvo_pt and thus should havce
433	 * been saved so this routine can restore them (if desired).
434	 */
435	pt->pte_lo = pvo_pt->pte_lo;
436	EIEIO();
437	pt->pte_hi = pvo_pt->pte_hi;
438	SYNC();
439	pmap_pte_valid++;
440}
441
442static __inline void
443pmap_pte_unset(struct pte *pt, struct pte *pvo_pt, vm_offset_t va)
444{
445
446	pvo_pt->pte_hi &= ~PTE_VALID;
447
448	/*
449	 * Force the reg & chg bits back into the PTEs.
450	 */
451	SYNC();
452
453	/*
454	 * Invalidate the pte.
455	 */
456	pt->pte_hi &= ~PTE_VALID;
457
458	SYNC();
459	TLBIE(va);
460	EIEIO();
461	TLBSYNC();
462	SYNC();
463
464	/*
465	 * Save the reg & chg bits.
466	 */
467	pmap_pte_synch(pt, pvo_pt);
468	pmap_pte_valid--;
469}
470
471static __inline void
472pmap_pte_change(struct pte *pt, struct pte *pvo_pt, vm_offset_t va)
473{
474
475	/*
476	 * Invalidate the PTE
477	 */
478	pmap_pte_unset(pt, pvo_pt, va);
479	pmap_pte_set(pt, pvo_pt);
480}
481
482/*
483 * Quick sort callout for comparing memory regions.
484 */
485static int	mr_cmp(const void *a, const void *b);
486static int	om_cmp(const void *a, const void *b);
487
488static int
489mr_cmp(const void *a, const void *b)
490{
491	const struct	mem_region *regiona;
492	const struct	mem_region *regionb;
493
494	regiona = a;
495	regionb = b;
496	if (regiona->mr_start < regionb->mr_start)
497		return (-1);
498	else if (regiona->mr_start > regionb->mr_start)
499		return (1);
500	else
501		return (0);
502}
503
504static int
505om_cmp(const void *a, const void *b)
506{
507	const struct	ofw_map *mapa;
508	const struct	ofw_map *mapb;
509
510	mapa = a;
511	mapb = b;
512	if (mapa->om_pa < mapb->om_pa)
513		return (-1);
514	else if (mapa->om_pa > mapb->om_pa)
515		return (1);
516	else
517		return (0);
518}
519
520void
521pmap_bootstrap(vm_offset_t kernelstart, vm_offset_t kernelend)
522{
523	ihandle_t	mmui;
524	phandle_t	chosen, mmu;
525	int		sz;
526	int		i, j;
527	int		ofw_mappings;
528	vm_size_t	size, physsz;
529	vm_offset_t	pa, va, off;
530	u_int		batl, batu;
531
532        /*
533         * Set up BAT0 to map the lowest 256 MB area
534         */
535        battable[0x0].batl = BATL(0x00000000, BAT_M, BAT_PP_RW);
536        battable[0x0].batu = BATU(0x00000000, BAT_BL_256M, BAT_Vs);
537
538        /*
539         * Map PCI memory space.
540         */
541        battable[0x8].batl = BATL(0x80000000, BAT_I|BAT_G, BAT_PP_RW);
542        battable[0x8].batu = BATU(0x80000000, BAT_BL_256M, BAT_Vs);
543
544        battable[0x9].batl = BATL(0x90000000, BAT_I|BAT_G, BAT_PP_RW);
545        battable[0x9].batu = BATU(0x90000000, BAT_BL_256M, BAT_Vs);
546
547        battable[0xa].batl = BATL(0xa0000000, BAT_I|BAT_G, BAT_PP_RW);
548        battable[0xa].batu = BATU(0xa0000000, BAT_BL_256M, BAT_Vs);
549
550        battable[0xb].batl = BATL(0xb0000000, BAT_I|BAT_G, BAT_PP_RW);
551        battable[0xb].batu = BATU(0xb0000000, BAT_BL_256M, BAT_Vs);
552
553        /*
554         * Map obio devices.
555         */
556        battable[0xf].batl = BATL(0xf0000000, BAT_I|BAT_G, BAT_PP_RW);
557        battable[0xf].batu = BATU(0xf0000000, BAT_BL_256M, BAT_Vs);
558
559	/*
560	 * Use an IBAT and a DBAT to map the bottom segment of memory
561	 * where we are.
562	 */
563	batu = BATU(0x00000000, BAT_BL_256M, BAT_Vs);
564	batl = BATL(0x00000000, BAT_M, BAT_PP_RW);
565	__asm ("mtibatu 0,%0; mtibatl 0,%1; isync; \n"
566	       "mtdbatu 0,%0; mtdbatl 0,%1; isync"
567	    :: "r"(batu), "r"(batl));
568
569#if 0
570	/* map frame buffer */
571	batu = BATU(0x90000000, BAT_BL_256M, BAT_Vs);
572	batl = BATL(0x90000000, BAT_I|BAT_G, BAT_PP_RW);
573	__asm ("mtdbatu 1,%0; mtdbatl 1,%1; isync"
574	    :: "r"(batu), "r"(batl));
575#endif
576
577#if 1
578	/* map pci space */
579	batu = BATU(0x80000000, BAT_BL_256M, BAT_Vs);
580	batl = BATL(0x80000000, BAT_I|BAT_G, BAT_PP_RW);
581	__asm ("mtdbatu 1,%0; mtdbatl 1,%1; isync"
582	    :: "r"(batu), "r"(batl));
583#endif
584
585	/*
586	 * Set the start and end of kva.
587	 */
588	virtual_avail = VM_MIN_KERNEL_ADDRESS;
589	virtual_end = VM_MAX_KERNEL_ADDRESS;
590
591	mem_regions(&pregions, &pregions_sz, &regions, &regions_sz);
592	CTR0(KTR_PMAP, "pmap_bootstrap: physical memory");
593
594	qsort(pregions, pregions_sz, sizeof(*pregions), mr_cmp);
595	for (i = 0; i < pregions_sz; i++) {
596		vm_offset_t pa;
597		vm_offset_t end;
598
599		CTR3(KTR_PMAP, "physregion: %#x - %#x (%#x)",
600			pregions[i].mr_start,
601			pregions[i].mr_start + pregions[i].mr_size,
602			pregions[i].mr_size);
603		/*
604		 * Install entries into the BAT table to allow all
605		 * of physmem to be convered by on-demand BAT entries.
606		 * The loop will sometimes set the same battable element
607		 * twice, but that's fine since they won't be used for
608		 * a while yet.
609		 */
610		pa = pregions[i].mr_start & 0xf0000000;
611		end = pregions[i].mr_start + pregions[i].mr_size;
612		do {
613                        u_int n = pa >> ADDR_SR_SHFT;
614
615			battable[n].batl = BATL(pa, BAT_M, BAT_PP_RW);
616			battable[n].batu = BATU(pa, BAT_BL_256M, BAT_Vs);
617			pa += SEGMENT_LENGTH;
618		} while (pa < end);
619	}
620
621	if (sizeof(phys_avail)/sizeof(phys_avail[0]) < regions_sz)
622		panic("pmap_bootstrap: phys_avail too small");
623	qsort(regions, regions_sz, sizeof(*regions), mr_cmp);
624	phys_avail_count = 0;
625	physsz = 0;
626	for (i = 0, j = 0; i < regions_sz; i++, j += 2) {
627		CTR3(KTR_PMAP, "region: %#x - %#x (%#x)", regions[i].mr_start,
628		    regions[i].mr_start + regions[i].mr_size,
629		    regions[i].mr_size);
630		phys_avail[j] = regions[i].mr_start;
631		phys_avail[j + 1] = regions[i].mr_start + regions[i].mr_size;
632		phys_avail_count++;
633		physsz += regions[i].mr_size;
634	}
635	physmem = btoc(physsz);
636
637	/*
638	 * Allocate PTEG table.
639	 */
640#ifdef PTEGCOUNT
641	pmap_pteg_count = PTEGCOUNT;
642#else
643	pmap_pteg_count = 0x1000;
644
645	while (pmap_pteg_count < physmem)
646		pmap_pteg_count <<= 1;
647
648	pmap_pteg_count >>= 1;
649#endif /* PTEGCOUNT */
650
651	size = pmap_pteg_count * sizeof(struct pteg);
652	CTR2(KTR_PMAP, "pmap_bootstrap: %d PTEGs, %d bytes", pmap_pteg_count,
653	    size);
654	pmap_pteg_table = (struct pteg *)pmap_bootstrap_alloc(size, size);
655	CTR1(KTR_PMAP, "pmap_bootstrap: PTEG table at %p", pmap_pteg_table);
656	bzero((void *)pmap_pteg_table, pmap_pteg_count * sizeof(struct pteg));
657	pmap_pteg_mask = pmap_pteg_count - 1;
658
659	/*
660	 * Allocate pv/overflow lists.
661	 */
662	size = sizeof(struct pvo_head) * pmap_pteg_count;
663	pmap_pvo_table = (struct pvo_head *)pmap_bootstrap_alloc(size,
664	    PAGE_SIZE);
665	CTR1(KTR_PMAP, "pmap_bootstrap: PVO table at %p", pmap_pvo_table);
666	for (i = 0; i < pmap_pteg_count; i++)
667		LIST_INIT(&pmap_pvo_table[i]);
668
669	/*
670	 * Allocate the message buffer.
671	 */
672	msgbuf_phys = pmap_bootstrap_alloc(MSGBUF_SIZE, 0);
673
674	/*
675	 * Initialise the unmanaged pvo pool.
676	 */
677	pmap_bpvo_pool = (struct pvo_entry *)pmap_bootstrap_alloc(
678		BPVO_POOL_SIZE*sizeof(struct pvo_entry), 0);
679	pmap_bpvo_pool_index = 0;
680
681	/*
682	 * Make sure kernel vsid is allocated as well as VSID 0.
683	 */
684	pmap_vsid_bitmap[(KERNEL_VSIDBITS & (NPMAPS - 1)) / VSID_NBPW]
685		|= 1 << (KERNEL_VSIDBITS % VSID_NBPW);
686	pmap_vsid_bitmap[0] |= 1;
687
688	/*
689	 * Set up the Open Firmware pmap and add it's mappings.
690	 */
691	pmap_pinit(&ofw_pmap);
692	ofw_pmap.pm_sr[KERNEL_SR] = KERNEL_SEGMENT;
693	ofw_pmap.pm_sr[KERNEL2_SR] = KERNEL2_SEGMENT;
694	if ((chosen = OF_finddevice("/chosen")) == -1)
695		panic("pmap_bootstrap: can't find /chosen");
696	OF_getprop(chosen, "mmu", &mmui, 4);
697	if ((mmu = OF_instance_to_package(mmui)) == -1)
698		panic("pmap_bootstrap: can't get mmu package");
699	if ((sz = OF_getproplen(mmu, "translations")) == -1)
700		panic("pmap_bootstrap: can't get ofw translation count");
701	translations = NULL;
702	for (i = 0; phys_avail[i] != 0; i += 2) {
703		if (phys_avail[i + 1] >= sz) {
704			translations = (struct ofw_map *)phys_avail[i];
705			break;
706		}
707	}
708	if (translations == NULL)
709		panic("pmap_bootstrap: no space to copy translations");
710	bzero(translations, sz);
711	if (OF_getprop(mmu, "translations", translations, sz) == -1)
712		panic("pmap_bootstrap: can't get ofw translations");
713	CTR0(KTR_PMAP, "pmap_bootstrap: translations");
714	sz /= sizeof(*translations);
715	qsort(translations, sz, sizeof (*translations), om_cmp);
716	for (i = 0, ofw_mappings = 0; i < sz; i++) {
717		CTR3(KTR_PMAP, "translation: pa=%#x va=%#x len=%#x",
718		    translations[i].om_pa, translations[i].om_va,
719		    translations[i].om_len);
720
721		/*
722		 * If the mapping is 1:1, let the RAM and device on-demand
723		 * BAT tables take care of the translation.
724		 */
725		if (translations[i].om_va == translations[i].om_pa)
726			continue;
727
728		/* Enter the pages */
729		for (off = 0; off < translations[i].om_len; off += PAGE_SIZE) {
730			struct	vm_page m;
731
732			m.phys_addr = translations[i].om_pa + off;
733			pmap_enter(&ofw_pmap, translations[i].om_va + off, &m,
734				   VM_PROT_ALL, 1);
735			ofw_mappings++;
736		}
737	}
738#ifdef SMP
739	TLBSYNC();
740#endif
741
742	/*
743	 * Initialize the kernel pmap (which is statically allocated).
744	 */
745	PMAP_LOCK_INIT(kernel_pmap);
746	for (i = 0; i < 16; i++) {
747		kernel_pmap->pm_sr[i] = EMPTY_SEGMENT;
748	}
749	kernel_pmap->pm_sr[KERNEL_SR] = KERNEL_SEGMENT;
750	kernel_pmap->pm_sr[KERNEL2_SR] = KERNEL_SEGMENT;
751	kernel_pmap->pm_active = ~0;
752
753	/*
754	 * Allocate a kernel stack with a guard page for thread0 and map it
755	 * into the kernel page map.
756	 */
757	pa = pmap_bootstrap_alloc(KSTACK_PAGES * PAGE_SIZE, 0);
758	kstack0_phys = pa;
759	kstack0 = virtual_avail + (KSTACK_GUARD_PAGES * PAGE_SIZE);
760	CTR2(KTR_PMAP, "pmap_bootstrap: kstack0 at %#x (%#x)", kstack0_phys,
761	    kstack0);
762	virtual_avail += (KSTACK_PAGES + KSTACK_GUARD_PAGES) * PAGE_SIZE;
763	for (i = 0; i < KSTACK_PAGES; i++) {
764		pa = kstack0_phys + i * PAGE_SIZE;
765		va = kstack0 + i * PAGE_SIZE;
766		pmap_kenter(va, pa);
767		TLBIE(va);
768	}
769
770	/*
771	 * Calculate the last available physical address.
772	 */
773	for (i = 0; phys_avail[i + 2] != 0; i += 2)
774		;
775	Maxmem = powerpc_btop(phys_avail[i + 1]);
776
777	/*
778	 * Allocate virtual address space for the message buffer.
779	 */
780	msgbufp = (struct msgbuf *)virtual_avail;
781	virtual_avail += round_page(MSGBUF_SIZE);
782
783	/*
784	 * Initialize hardware.
785	 */
786	for (i = 0; i < 16; i++) {
787		mtsrin(i << ADDR_SR_SHFT, EMPTY_SEGMENT);
788	}
789	__asm __volatile ("mtsr %0,%1"
790	    :: "n"(KERNEL_SR), "r"(KERNEL_SEGMENT));
791	__asm __volatile ("sync; mtsdr1 %0; isync"
792	    :: "r"((u_int)pmap_pteg_table | (pmap_pteg_mask >> 10)));
793	tlbia();
794
795	pmap_bootstrapped++;
796}
797
798/*
799 * Activate a user pmap.  The pmap must be activated before it's address
800 * space can be accessed in any way.
801 */
802void
803pmap_activate(struct thread *td)
804{
805	pmap_t	pm, pmr;
806
807	/*
808	 * Load all the data we need up front to encourage the compiler to
809	 * not issue any loads while we have interrupts disabled below.
810	 */
811	pm = &td->td_proc->p_vmspace->vm_pmap;
812
813	if ((pmr = (pmap_t)pmap_kextract((vm_offset_t)pm)) == NULL)
814		pmr = pm;
815
816	pm->pm_active |= PCPU_GET(cpumask);
817	PCPU_SET(curpmap, pmr);
818}
819
820void
821pmap_deactivate(struct thread *td)
822{
823	pmap_t	pm;
824
825	pm = &td->td_proc->p_vmspace->vm_pmap;
826	pm->pm_active &= ~(PCPU_GET(cpumask));
827	PCPU_SET(curpmap, NULL);
828}
829
830vm_offset_t
831pmap_addr_hint(vm_object_t object, vm_offset_t va, vm_size_t size)
832{
833
834	return (va);
835}
836
837void
838pmap_change_wiring(pmap_t pm, vm_offset_t va, boolean_t wired)
839{
840	struct	pvo_entry *pvo;
841
842	PMAP_LOCK(pm);
843	pvo = pmap_pvo_find_va(pm, va & ~ADDR_POFF, NULL);
844
845	if (pvo != NULL) {
846		if (wired) {
847			if ((pvo->pvo_vaddr & PVO_WIRED) == 0)
848				pm->pm_stats.wired_count++;
849			pvo->pvo_vaddr |= PVO_WIRED;
850		} else {
851			if ((pvo->pvo_vaddr & PVO_WIRED) != 0)
852				pm->pm_stats.wired_count--;
853			pvo->pvo_vaddr &= ~PVO_WIRED;
854		}
855	}
856	PMAP_UNLOCK(pm);
857}
858
859void
860pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr,
861	  vm_size_t len, vm_offset_t src_addr)
862{
863
864	/*
865	 * This is not needed as it's mainly an optimisation.
866	 * It may want to be implemented later though.
867	 */
868}
869
870void
871pmap_copy_page(vm_page_t msrc, vm_page_t mdst)
872{
873	vm_offset_t	dst;
874	vm_offset_t	src;
875
876	dst = VM_PAGE_TO_PHYS(mdst);
877	src = VM_PAGE_TO_PHYS(msrc);
878
879	kcopy((void *)src, (void *)dst, PAGE_SIZE);
880}
881
882/*
883 * Zero a page of physical memory by temporarily mapping it into the tlb.
884 */
885void
886pmap_zero_page(vm_page_t m)
887{
888	vm_offset_t pa = VM_PAGE_TO_PHYS(m);
889	caddr_t va;
890
891	if (pa < SEGMENT_LENGTH) {
892		va = (caddr_t) pa;
893	} else if (pmap_initialized) {
894		if (pmap_pvo_zeropage == NULL)
895			pmap_pvo_zeropage = pmap_rkva_alloc();
896		pmap_pa_map(pmap_pvo_zeropage, pa, NULL, NULL);
897		va = (caddr_t)PVO_VADDR(pmap_pvo_zeropage);
898	} else {
899		panic("pmap_zero_page: can't zero pa %#x", pa);
900	}
901
902	bzero(va, PAGE_SIZE);
903
904	if (pa >= SEGMENT_LENGTH)
905		pmap_pa_unmap(pmap_pvo_zeropage, NULL, NULL);
906}
907
908void
909pmap_zero_page_area(vm_page_t m, int off, int size)
910{
911	vm_offset_t pa = VM_PAGE_TO_PHYS(m);
912	caddr_t va;
913
914	if (pa < SEGMENT_LENGTH) {
915		va = (caddr_t) pa;
916	} else if (pmap_initialized) {
917		if (pmap_pvo_zeropage == NULL)
918			pmap_pvo_zeropage = pmap_rkva_alloc();
919		pmap_pa_map(pmap_pvo_zeropage, pa, NULL, NULL);
920		va = (caddr_t)PVO_VADDR(pmap_pvo_zeropage);
921	} else {
922		panic("pmap_zero_page: can't zero pa %#x", pa);
923	}
924
925	bzero(va + off, size);
926
927	if (pa >= SEGMENT_LENGTH)
928		pmap_pa_unmap(pmap_pvo_zeropage, NULL, NULL);
929}
930
931void
932pmap_zero_page_idle(vm_page_t m)
933{
934
935	/* XXX this is called outside of Giant, is pmap_zero_page safe? */
936	/* XXX maybe have a dedicated mapping for this to avoid the problem? */
937	mtx_lock(&Giant);
938	pmap_zero_page(m);
939	mtx_unlock(&Giant);
940}
941
942/*
943 * Map the given physical page at the specified virtual address in the
944 * target pmap with the protection requested.  If specified the page
945 * will be wired down.
946 */
947void
948pmap_enter(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
949	   boolean_t wired)
950{
951	struct		pvo_head *pvo_head;
952	uma_zone_t	zone;
953	vm_page_t	pg;
954	u_int		pte_lo, pvo_flags, was_exec, i;
955	int		error;
956
957	if (!pmap_initialized) {
958		pvo_head = &pmap_pvo_kunmanaged;
959		zone = pmap_upvo_zone;
960		pvo_flags = 0;
961		pg = NULL;
962		was_exec = PTE_EXEC;
963	} else {
964		pvo_head = vm_page_to_pvoh(m);
965		pg = m;
966		zone = pmap_mpvo_zone;
967		pvo_flags = PVO_MANAGED;
968		was_exec = 0;
969	}
970	if (pmap_bootstrapped) {
971		vm_page_lock_queues();
972		PMAP_LOCK(pmap);
973	}
974
975	/*
976	 * If this is a managed page, and it's the first reference to the page,
977	 * clear the execness of the page.  Otherwise fetch the execness.
978	 */
979	if (pg != NULL) {
980		if (LIST_EMPTY(pvo_head)) {
981			pmap_attr_clear(pg, PTE_EXEC);
982		} else {
983			was_exec = pmap_attr_fetch(pg) & PTE_EXEC;
984		}
985	}
986
987
988	/*
989	 * Assume the page is cache inhibited and access is guarded unless
990	 * it's in our available memory array.
991	 */
992	pte_lo = PTE_I | PTE_G;
993	for (i = 0; i < pregions_sz; i++) {
994		if ((VM_PAGE_TO_PHYS(m) >= pregions[i].mr_start) &&
995		    (VM_PAGE_TO_PHYS(m) <
996			(pregions[i].mr_start + pregions[i].mr_size))) {
997			pte_lo &= ~(PTE_I | PTE_G);
998			break;
999		}
1000	}
1001
1002	if (prot & VM_PROT_WRITE)
1003		pte_lo |= PTE_BW;
1004	else
1005		pte_lo |= PTE_BR;
1006
1007	pvo_flags |= (prot & VM_PROT_EXECUTE);
1008
1009	if (wired)
1010		pvo_flags |= PVO_WIRED;
1011
1012	error = pmap_pvo_enter(pmap, zone, pvo_head, va, VM_PAGE_TO_PHYS(m),
1013	    pte_lo, pvo_flags);
1014
1015	/*
1016	 * Flush the real page from the instruction cache if this page is
1017	 * mapped executable and cacheable and was not previously mapped (or
1018	 * was not mapped executable).
1019	 */
1020	if (error == 0 && (pvo_flags & PVO_EXECUTABLE) &&
1021	    (pte_lo & PTE_I) == 0 && was_exec == 0) {
1022		/*
1023		 * Flush the real memory from the cache.
1024		 */
1025		pmap_syncicache(VM_PAGE_TO_PHYS(m), PAGE_SIZE);
1026		if (pg != NULL)
1027			pmap_attr_save(pg, PTE_EXEC);
1028	}
1029	if (pmap_bootstrapped)
1030		vm_page_unlock_queues();
1031
1032	/* XXX syncicache always until problems are sorted */
1033	pmap_syncicache(VM_PAGE_TO_PHYS(m), PAGE_SIZE);
1034	if (pmap_bootstrapped)
1035		PMAP_UNLOCK(pmap);
1036}
1037
1038vm_page_t
1039pmap_enter_quick(pmap_t pm, vm_offset_t va, vm_page_t m, vm_page_t mpte)
1040{
1041
1042	mtx_lock(&Giant);
1043	pmap_enter(pm, va, m, VM_PROT_READ | VM_PROT_EXECUTE, FALSE);
1044	mtx_unlock(&Giant);
1045	return (NULL);
1046}
1047
1048vm_paddr_t
1049pmap_extract(pmap_t pm, vm_offset_t va)
1050{
1051	struct	pvo_entry *pvo;
1052	vm_paddr_t pa;
1053
1054	PMAP_LOCK(pm);
1055	pvo = pmap_pvo_find_va(pm, va & ~ADDR_POFF, NULL);
1056	if (pvo == NULL)
1057		pa = 0;
1058	else
1059		pa = (pvo->pvo_pte.pte_lo & PTE_RPGN) | (va & ADDR_POFF);
1060	PMAP_UNLOCK(pm);
1061	return (pa);
1062}
1063
1064/*
1065 * Atomically extract and hold the physical page with the given
1066 * pmap and virtual address pair if that mapping permits the given
1067 * protection.
1068 */
1069vm_page_t
1070pmap_extract_and_hold(pmap_t pmap, vm_offset_t va, vm_prot_t prot)
1071{
1072	struct	pvo_entry *pvo;
1073	vm_page_t m;
1074
1075	m = NULL;
1076	mtx_lock(&Giant);
1077	vm_page_lock_queues();
1078	PMAP_LOCK(pmap);
1079	pvo = pmap_pvo_find_va(pmap, va & ~ADDR_POFF, NULL);
1080	if (pvo != NULL && (pvo->pvo_pte.pte_hi & PTE_VALID) &&
1081	    ((pvo->pvo_pte.pte_lo & PTE_PP) == PTE_RW ||
1082	     (prot & VM_PROT_WRITE) == 0)) {
1083		m = PHYS_TO_VM_PAGE(pvo->pvo_pte.pte_lo & PTE_RPGN);
1084		vm_page_hold(m);
1085	}
1086	vm_page_unlock_queues();
1087	PMAP_UNLOCK(pmap);
1088	mtx_unlock(&Giant);
1089	return (m);
1090}
1091
1092/*
1093 * Grow the number of kernel page table entries.  Unneeded.
1094 */
1095void
1096pmap_growkernel(vm_offset_t addr)
1097{
1098}
1099
1100void
1101pmap_init(void)
1102{
1103
1104	CTR0(KTR_PMAP, "pmap_init");
1105
1106	pmap_upvo_zone = uma_zcreate("UPVO entry", sizeof (struct pvo_entry),
1107	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
1108	    UMA_ZONE_VM | UMA_ZONE_NOFREE);
1109	pmap_mpvo_zone = uma_zcreate("MPVO entry", sizeof(struct pvo_entry),
1110	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
1111	    UMA_ZONE_VM | UMA_ZONE_NOFREE);
1112	pmap_initialized = TRUE;
1113}
1114
1115void
1116pmap_init2(void)
1117{
1118
1119	CTR0(KTR_PMAP, "pmap_init2");
1120}
1121
1122boolean_t
1123pmap_is_modified(vm_page_t m)
1124{
1125
1126	if ((m->flags & (PG_FICTITIOUS |PG_UNMANAGED)) != 0)
1127		return (FALSE);
1128
1129	return (pmap_query_bit(m, PTE_CHG));
1130}
1131
1132/*
1133 *	pmap_is_prefaultable:
1134 *
1135 *	Return whether or not the specified virtual address is elgible
1136 *	for prefault.
1137 */
1138boolean_t
1139pmap_is_prefaultable(pmap_t pmap, vm_offset_t addr)
1140{
1141
1142	return (FALSE);
1143}
1144
1145void
1146pmap_clear_reference(vm_page_t m)
1147{
1148
1149	if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) != 0)
1150		return;
1151	pmap_clear_bit(m, PTE_REF, NULL);
1152}
1153
1154void
1155pmap_clear_modify(vm_page_t m)
1156{
1157
1158	if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) != 0)
1159		return;
1160	pmap_clear_bit(m, PTE_CHG, NULL);
1161}
1162
1163/*
1164 *	pmap_ts_referenced:
1165 *
1166 *	Return a count of reference bits for a page, clearing those bits.
1167 *	It is not necessary for every reference bit to be cleared, but it
1168 *	is necessary that 0 only be returned when there are truly no
1169 *	reference bits set.
1170 *
1171 *	XXX: The exact number of bits to check and clear is a matter that
1172 *	should be tested and standardized at some point in the future for
1173 *	optimal aging of shared pages.
1174 */
1175int
1176pmap_ts_referenced(vm_page_t m)
1177{
1178	int count;
1179
1180	if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) != 0)
1181		return (0);
1182
1183	count = pmap_clear_bit(m, PTE_REF, NULL);
1184
1185	return (count);
1186}
1187
1188/*
1189 * Map a wired page into kernel virtual address space.
1190 */
1191void
1192pmap_kenter(vm_offset_t va, vm_offset_t pa)
1193{
1194	u_int		pte_lo;
1195	int		error;
1196	int		i;
1197
1198#if 0
1199	if (va < VM_MIN_KERNEL_ADDRESS)
1200		panic("pmap_kenter: attempt to enter non-kernel address %#x",
1201		    va);
1202#endif
1203
1204	pte_lo = PTE_I | PTE_G;
1205	for (i = 0; i < pregions_sz; i++) {
1206		if ((pa >= pregions[i].mr_start) &&
1207		    (pa < (pregions[i].mr_start + pregions[i].mr_size))) {
1208			pte_lo &= ~(PTE_I | PTE_G);
1209			break;
1210		}
1211	}
1212
1213	error = pmap_pvo_enter(kernel_pmap, pmap_upvo_zone,
1214	    &pmap_pvo_kunmanaged, va, pa, pte_lo, PVO_WIRED);
1215
1216	if (error != 0 && error != ENOENT)
1217		panic("pmap_kenter: failed to enter va %#x pa %#x: %d", va,
1218		    pa, error);
1219
1220	/*
1221	 * Flush the real memory from the instruction cache.
1222	 */
1223	if ((pte_lo & (PTE_I | PTE_G)) == 0) {
1224		pmap_syncicache(pa, PAGE_SIZE);
1225	}
1226}
1227
1228/*
1229 * Extract the physical page address associated with the given kernel virtual
1230 * address.
1231 */
1232vm_offset_t
1233pmap_kextract(vm_offset_t va)
1234{
1235	struct		pvo_entry *pvo;
1236	vm_paddr_t pa;
1237
1238#ifdef UMA_MD_SMALL_ALLOC
1239	/*
1240	 * Allow direct mappings
1241	 */
1242	if (va < VM_MIN_KERNEL_ADDRESS) {
1243		return (va);
1244	}
1245#endif
1246
1247	PMAP_LOCK(kernel_pmap);
1248	pvo = pmap_pvo_find_va(kernel_pmap, va & ~ADDR_POFF, NULL);
1249	KASSERT(pvo != NULL, ("pmap_kextract: no addr found"));
1250	pa = (pvo->pvo_pte.pte_lo & PTE_RPGN) | (va & ADDR_POFF);
1251	PMAP_UNLOCK(kernel_pmap);
1252	return (pa);
1253}
1254
1255/*
1256 * Remove a wired page from kernel virtual address space.
1257 */
1258void
1259pmap_kremove(vm_offset_t va)
1260{
1261
1262	pmap_remove(kernel_pmap, va, va + PAGE_SIZE);
1263}
1264
1265/*
1266 * Map a range of physical addresses into kernel virtual address space.
1267 *
1268 * The value passed in *virt is a suggested virtual address for the mapping.
1269 * Architectures which can support a direct-mapped physical to virtual region
1270 * can return the appropriate address within that region, leaving '*virt'
1271 * unchanged.  We cannot and therefore do not; *virt is updated with the
1272 * first usable address after the mapped region.
1273 */
1274vm_offset_t
1275pmap_map(vm_offset_t *virt, vm_offset_t pa_start, vm_offset_t pa_end, int prot)
1276{
1277	vm_offset_t	sva, va;
1278
1279	sva = *virt;
1280	va = sva;
1281	for (; pa_start < pa_end; pa_start += PAGE_SIZE, va += PAGE_SIZE)
1282		pmap_kenter(va, pa_start);
1283	*virt = va;
1284	return (sva);
1285}
1286
1287int
1288pmap_mincore(pmap_t pmap, vm_offset_t addr)
1289{
1290	TODO;
1291	return (0);
1292}
1293
1294void
1295pmap_object_init_pt(pmap_t pm, vm_offset_t addr, vm_object_t object,
1296		    vm_pindex_t pindex, vm_size_t size)
1297{
1298
1299	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1300	KASSERT(object->type == OBJT_DEVICE,
1301	    ("pmap_object_init_pt: non-device object"));
1302	KASSERT(pm == &curproc->p_vmspace->vm_pmap || pm == kernel_pmap,
1303	    ("pmap_object_init_pt: non current pmap"));
1304}
1305
1306/*
1307 * Lower the permission for all mappings to a given page.
1308 */
1309void
1310pmap_page_protect(vm_page_t m, vm_prot_t prot)
1311{
1312	struct	pvo_head *pvo_head;
1313	struct	pvo_entry *pvo, *next_pvo;
1314	struct	pte *pt;
1315	pmap_t	pmap;
1316
1317	/*
1318	 * Since the routine only downgrades protection, if the
1319	 * maximal protection is desired, there isn't any change
1320	 * to be made.
1321	 */
1322	if ((prot & (VM_PROT_READ|VM_PROT_WRITE)) ==
1323	    (VM_PROT_READ|VM_PROT_WRITE))
1324		return;
1325
1326	pvo_head = vm_page_to_pvoh(m);
1327	for (pvo = LIST_FIRST(pvo_head); pvo != NULL; pvo = next_pvo) {
1328		next_pvo = LIST_NEXT(pvo, pvo_vlink);
1329		PMAP_PVO_CHECK(pvo);	/* sanity check */
1330		pmap = pvo->pvo_pmap;
1331		PMAP_LOCK(pmap);
1332
1333		/*
1334		 * Downgrading to no mapping at all, we just remove the entry.
1335		 */
1336		if ((prot & VM_PROT_READ) == 0) {
1337			pmap_pvo_remove(pvo, -1);
1338			PMAP_UNLOCK(pmap);
1339			continue;
1340		}
1341
1342		/*
1343		 * If EXEC permission is being revoked, just clear the flag
1344		 * in the PVO.
1345		 */
1346		if ((prot & VM_PROT_EXECUTE) == 0)
1347			pvo->pvo_vaddr &= ~PVO_EXECUTABLE;
1348
1349		/*
1350		 * If this entry is already RO, don't diddle with the page
1351		 * table.
1352		 */
1353		if ((pvo->pvo_pte.pte_lo & PTE_PP) == PTE_BR) {
1354			PMAP_UNLOCK(pmap);
1355			PMAP_PVO_CHECK(pvo);
1356			continue;
1357		}
1358
1359		/*
1360		 * Grab the PTE before we diddle the bits so pvo_to_pte can
1361		 * verify the pte contents are as expected.
1362		 */
1363		pt = pmap_pvo_to_pte(pvo, -1);
1364		pvo->pvo_pte.pte_lo &= ~PTE_PP;
1365		pvo->pvo_pte.pte_lo |= PTE_BR;
1366		if (pt != NULL)
1367			pmap_pte_change(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
1368		PMAP_UNLOCK(pmap);
1369		PMAP_PVO_CHECK(pvo);	/* sanity check */
1370	}
1371
1372	/*
1373	 * Downgrading from writeable: clear the VM page flag
1374	 */
1375	if ((prot & VM_PROT_WRITE) != VM_PROT_WRITE)
1376		vm_page_flag_clear(m, PG_WRITEABLE);
1377}
1378
1379/*
1380 * Returns true if the pmap's pv is one of the first
1381 * 16 pvs linked to from this page.  This count may
1382 * be changed upwards or downwards in the future; it
1383 * is only necessary that true be returned for a small
1384 * subset of pmaps for proper page aging.
1385 */
1386boolean_t
1387pmap_page_exists_quick(pmap_t pmap, vm_page_t m)
1388{
1389        int loops;
1390	struct pvo_entry *pvo;
1391
1392        if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
1393                return FALSE;
1394
1395	loops = 0;
1396	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
1397		if (pvo->pvo_pmap == pmap)
1398			return (TRUE);
1399		if (++loops >= 16)
1400			break;
1401	}
1402
1403	return (FALSE);
1404}
1405
1406static u_int	pmap_vsidcontext;
1407
1408void
1409pmap_pinit(pmap_t pmap)
1410{
1411	int	i, mask;
1412	u_int	entropy;
1413
1414	KASSERT((int)pmap < VM_MIN_KERNEL_ADDRESS, ("pmap_pinit: virt pmap"));
1415	PMAP_LOCK_INIT(pmap);
1416
1417	entropy = 0;
1418	__asm __volatile("mftb %0" : "=r"(entropy));
1419
1420	/*
1421	 * Allocate some segment registers for this pmap.
1422	 */
1423	for (i = 0; i < NPMAPS; i += VSID_NBPW) {
1424		u_int	hash, n;
1425
1426		/*
1427		 * Create a new value by mutiplying by a prime and adding in
1428		 * entropy from the timebase register.  This is to make the
1429		 * VSID more random so that the PT hash function collides
1430		 * less often.  (Note that the prime casues gcc to do shifts
1431		 * instead of a multiply.)
1432		 */
1433		pmap_vsidcontext = (pmap_vsidcontext * 0x1105) + entropy;
1434		hash = pmap_vsidcontext & (NPMAPS - 1);
1435		if (hash == 0)		/* 0 is special, avoid it */
1436			continue;
1437		n = hash >> 5;
1438		mask = 1 << (hash & (VSID_NBPW - 1));
1439		hash = (pmap_vsidcontext & 0xfffff);
1440		if (pmap_vsid_bitmap[n] & mask) {	/* collision? */
1441			/* anything free in this bucket? */
1442			if (pmap_vsid_bitmap[n] == 0xffffffff) {
1443				entropy = (pmap_vsidcontext >> 20);
1444				continue;
1445			}
1446			i = ffs(~pmap_vsid_bitmap[i]) - 1;
1447			mask = 1 << i;
1448			hash &= 0xfffff & ~(VSID_NBPW - 1);
1449			hash |= i;
1450		}
1451		pmap_vsid_bitmap[n] |= mask;
1452		for (i = 0; i < 16; i++)
1453			pmap->pm_sr[i] = VSID_MAKE(i, hash);
1454		return;
1455	}
1456
1457	panic("pmap_pinit: out of segments");
1458}
1459
1460/*
1461 * Initialize the pmap associated with process 0.
1462 */
1463void
1464pmap_pinit0(pmap_t pm)
1465{
1466
1467	pmap_pinit(pm);
1468	bzero(&pm->pm_stats, sizeof(pm->pm_stats));
1469}
1470
1471/*
1472 * Set the physical protection on the specified range of this map as requested.
1473 */
1474void
1475pmap_protect(pmap_t pm, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot)
1476{
1477	struct	pvo_entry *pvo;
1478	struct	pte *pt;
1479	int	pteidx;
1480
1481	CTR4(KTR_PMAP, "pmap_protect: pm=%p sva=%#x eva=%#x prot=%#x", pm, sva,
1482	    eva, prot);
1483
1484
1485	KASSERT(pm == &curproc->p_vmspace->vm_pmap || pm == kernel_pmap,
1486	    ("pmap_protect: non current pmap"));
1487
1488	if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
1489		mtx_lock(&Giant);
1490		pmap_remove(pm, sva, eva);
1491		mtx_unlock(&Giant);
1492		return;
1493	}
1494
1495	mtx_lock(&Giant);
1496	vm_page_lock_queues();
1497	PMAP_LOCK(pm);
1498	for (; sva < eva; sva += PAGE_SIZE) {
1499		pvo = pmap_pvo_find_va(pm, sva, &pteidx);
1500		if (pvo == NULL)
1501			continue;
1502
1503		if ((prot & VM_PROT_EXECUTE) == 0)
1504			pvo->pvo_vaddr &= ~PVO_EXECUTABLE;
1505
1506		/*
1507		 * Grab the PTE pointer before we diddle with the cached PTE
1508		 * copy.
1509		 */
1510		pt = pmap_pvo_to_pte(pvo, pteidx);
1511		/*
1512		 * Change the protection of the page.
1513		 */
1514		pvo->pvo_pte.pte_lo &= ~PTE_PP;
1515		pvo->pvo_pte.pte_lo |= PTE_BR;
1516
1517		/*
1518		 * If the PVO is in the page table, update that pte as well.
1519		 */
1520		if (pt != NULL)
1521			pmap_pte_change(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
1522	}
1523	vm_page_unlock_queues();
1524	PMAP_UNLOCK(pm);
1525	mtx_unlock(&Giant);
1526}
1527
1528/*
1529 * Map a list of wired pages into kernel virtual address space.  This is
1530 * intended for temporary mappings which do not need page modification or
1531 * references recorded.  Existing mappings in the region are overwritten.
1532 */
1533void
1534pmap_qenter(vm_offset_t sva, vm_page_t *m, int count)
1535{
1536	vm_offset_t va;
1537
1538	va = sva;
1539	while (count-- > 0) {
1540		pmap_kenter(va, VM_PAGE_TO_PHYS(*m));
1541		va += PAGE_SIZE;
1542		m++;
1543	}
1544}
1545
1546/*
1547 * Remove page mappings from kernel virtual address space.  Intended for
1548 * temporary mappings entered by pmap_qenter.
1549 */
1550void
1551pmap_qremove(vm_offset_t sva, int count)
1552{
1553	vm_offset_t va;
1554
1555	va = sva;
1556	while (count-- > 0) {
1557		pmap_kremove(va);
1558		va += PAGE_SIZE;
1559	}
1560}
1561
1562void
1563pmap_release(pmap_t pmap)
1564{
1565        int idx, mask;
1566
1567	/*
1568	 * Free segment register's VSID
1569	 */
1570        if (pmap->pm_sr[0] == 0)
1571                panic("pmap_release");
1572
1573        idx = VSID_TO_HASH(pmap->pm_sr[0]) & (NPMAPS-1);
1574        mask = 1 << (idx % VSID_NBPW);
1575        idx /= VSID_NBPW;
1576        pmap_vsid_bitmap[idx] &= ~mask;
1577	PMAP_LOCK_DESTROY(pmap);
1578}
1579
1580/*
1581 * Remove the given range of addresses from the specified map.
1582 */
1583void
1584pmap_remove(pmap_t pm, vm_offset_t sva, vm_offset_t eva)
1585{
1586	struct	pvo_entry *pvo;
1587	int	pteidx;
1588
1589	vm_page_lock_queues();
1590	PMAP_LOCK(pm);
1591	for (; sva < eva; sva += PAGE_SIZE) {
1592		pvo = pmap_pvo_find_va(pm, sva, &pteidx);
1593		if (pvo != NULL) {
1594			pmap_pvo_remove(pvo, pteidx);
1595		}
1596	}
1597	vm_page_unlock_queues();
1598	PMAP_UNLOCK(pm);
1599}
1600
1601/*
1602 * Remove physical page from all pmaps in which it resides. pmap_pvo_remove()
1603 * will reflect changes in pte's back to the vm_page.
1604 */
1605void
1606pmap_remove_all(vm_page_t m)
1607{
1608	struct  pvo_head *pvo_head;
1609	struct	pvo_entry *pvo, *next_pvo;
1610	pmap_t	pmap;
1611
1612	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1613
1614	pvo_head = vm_page_to_pvoh(m);
1615	for (pvo = LIST_FIRST(pvo_head); pvo != NULL; pvo = next_pvo) {
1616		next_pvo = LIST_NEXT(pvo, pvo_vlink);
1617
1618		PMAP_PVO_CHECK(pvo);	/* sanity check */
1619		pmap = pvo->pvo_pmap;
1620		PMAP_LOCK(pmap);
1621		pmap_pvo_remove(pvo, -1);
1622		PMAP_UNLOCK(pmap);
1623	}
1624	vm_page_flag_clear(m, PG_WRITEABLE);
1625}
1626
1627/*
1628 * Remove all pages from specified address space, this aids process exit
1629 * speeds.  This is much faster than pmap_remove in the case of running down
1630 * an entire address space.  Only works for the current pmap.
1631 */
1632void
1633pmap_remove_pages(pmap_t pm, vm_offset_t sva, vm_offset_t eva)
1634{
1635}
1636
1637/*
1638 * Allocate a physical page of memory directly from the phys_avail map.
1639 * Can only be called from pmap_bootstrap before avail start and end are
1640 * calculated.
1641 */
1642static vm_offset_t
1643pmap_bootstrap_alloc(vm_size_t size, u_int align)
1644{
1645	vm_offset_t	s, e;
1646	int		i, j;
1647
1648	size = round_page(size);
1649	for (i = 0; phys_avail[i + 1] != 0; i += 2) {
1650		if (align != 0)
1651			s = (phys_avail[i] + align - 1) & ~(align - 1);
1652		else
1653			s = phys_avail[i];
1654		e = s + size;
1655
1656		if (s < phys_avail[i] || e > phys_avail[i + 1])
1657			continue;
1658
1659		if (s == phys_avail[i]) {
1660			phys_avail[i] += size;
1661		} else if (e == phys_avail[i + 1]) {
1662			phys_avail[i + 1] -= size;
1663		} else {
1664			for (j = phys_avail_count * 2; j > i; j -= 2) {
1665				phys_avail[j] = phys_avail[j - 2];
1666				phys_avail[j + 1] = phys_avail[j - 1];
1667			}
1668
1669			phys_avail[i + 3] = phys_avail[i + 1];
1670			phys_avail[i + 1] = s;
1671			phys_avail[i + 2] = e;
1672			phys_avail_count++;
1673		}
1674
1675		return (s);
1676	}
1677	panic("pmap_bootstrap_alloc: could not allocate memory");
1678}
1679
1680/*
1681 * Return an unmapped pvo for a kernel virtual address.
1682 * Used by pmap functions that operate on physical pages.
1683 */
1684static struct pvo_entry *
1685pmap_rkva_alloc(void)
1686{
1687	struct		pvo_entry *pvo;
1688	struct		pte *pt;
1689	vm_offset_t	kva;
1690	int		pteidx;
1691
1692	if (pmap_rkva_count == 0)
1693		panic("pmap_rkva_alloc: no more reserved KVAs");
1694
1695	kva = pmap_rkva_start + (PAGE_SIZE * --pmap_rkva_count);
1696	pmap_kenter(kva, 0);
1697
1698	pvo = pmap_pvo_find_va(kernel_pmap, kva, &pteidx);
1699
1700	if (pvo == NULL)
1701		panic("pmap_kva_alloc: pmap_pvo_find_va failed");
1702
1703	pt = pmap_pvo_to_pte(pvo, pteidx);
1704
1705	if (pt == NULL)
1706		panic("pmap_kva_alloc: pmap_pvo_to_pte failed");
1707
1708	pmap_pte_unset(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
1709	PVO_PTEGIDX_CLR(pvo);
1710
1711	pmap_pte_overflow++;
1712
1713	return (pvo);
1714}
1715
1716static void
1717pmap_pa_map(struct pvo_entry *pvo, vm_offset_t pa, struct pte *saved_pt,
1718    int *depth_p)
1719{
1720	struct	pte *pt;
1721
1722	/*
1723	 * If this pvo already has a valid pte, we need to save it so it can
1724	 * be restored later.  We then just reload the new PTE over the old
1725	 * slot.
1726	 */
1727	if (saved_pt != NULL) {
1728		pt = pmap_pvo_to_pte(pvo, -1);
1729
1730		if (pt != NULL) {
1731			pmap_pte_unset(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
1732			PVO_PTEGIDX_CLR(pvo);
1733			pmap_pte_overflow++;
1734		}
1735
1736		*saved_pt = pvo->pvo_pte;
1737
1738		pvo->pvo_pte.pte_lo &= ~PTE_RPGN;
1739	}
1740
1741	pvo->pvo_pte.pte_lo |= pa;
1742
1743	if (!pmap_pte_spill(pvo->pvo_vaddr))
1744		panic("pmap_pa_map: could not spill pvo %p", pvo);
1745
1746	if (depth_p != NULL)
1747		(*depth_p)++;
1748}
1749
1750static void
1751pmap_pa_unmap(struct pvo_entry *pvo, struct pte *saved_pt, int *depth_p)
1752{
1753	struct	pte *pt;
1754
1755	pt = pmap_pvo_to_pte(pvo, -1);
1756
1757	if (pt != NULL) {
1758		pmap_pte_unset(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
1759		PVO_PTEGIDX_CLR(pvo);
1760		pmap_pte_overflow++;
1761	}
1762
1763	pvo->pvo_pte.pte_lo &= ~PTE_RPGN;
1764
1765	/*
1766	 * If there is a saved PTE and it's valid, restore it and return.
1767	 */
1768	if (saved_pt != NULL && (saved_pt->pte_lo & PTE_RPGN) != 0) {
1769		if (depth_p != NULL && --(*depth_p) == 0)
1770			panic("pmap_pa_unmap: restoring but depth == 0");
1771
1772		pvo->pvo_pte = *saved_pt;
1773
1774		if (!pmap_pte_spill(pvo->pvo_vaddr))
1775			panic("pmap_pa_unmap: could not spill pvo %p", pvo);
1776	}
1777}
1778
1779static void
1780pmap_syncicache(vm_offset_t pa, vm_size_t len)
1781{
1782	__syncicache((void *)pa, len);
1783}
1784
1785static void
1786tlbia(void)
1787{
1788	caddr_t	i;
1789
1790	SYNC();
1791	for (i = 0; i < (caddr_t)0x00040000; i += 0x00001000) {
1792		TLBIE(i);
1793		EIEIO();
1794	}
1795	TLBSYNC();
1796	SYNC();
1797}
1798
1799static int
1800pmap_pvo_enter(pmap_t pm, uma_zone_t zone, struct pvo_head *pvo_head,
1801    vm_offset_t va, vm_offset_t pa, u_int pte_lo, int flags)
1802{
1803	struct	pvo_entry *pvo;
1804	u_int	sr;
1805	int	first;
1806	u_int	ptegidx;
1807	int	i;
1808	int     bootstrap;
1809
1810	pmap_pvo_enter_calls++;
1811	first = 0;
1812
1813	bootstrap = 0;
1814
1815	/*
1816	 * Compute the PTE Group index.
1817	 */
1818	va &= ~ADDR_POFF;
1819	sr = va_to_sr(pm->pm_sr, va);
1820	ptegidx = va_to_pteg(sr, va);
1821
1822	/*
1823	 * Remove any existing mapping for this page.  Reuse the pvo entry if
1824	 * there is a mapping.
1825	 */
1826	LIST_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
1827		if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) {
1828			if ((pvo->pvo_pte.pte_lo & PTE_RPGN) == pa &&
1829			    (pvo->pvo_pte.pte_lo & PTE_PP) ==
1830			    (pte_lo & PTE_PP)) {
1831				return (0);
1832			}
1833			pmap_pvo_remove(pvo, -1);
1834			break;
1835		}
1836	}
1837
1838	/*
1839	 * If we aren't overwriting a mapping, try to allocate.
1840	 */
1841	if (pmap_initialized) {
1842		pvo = uma_zalloc(zone, M_NOWAIT);
1843	} else {
1844		if (pmap_bpvo_pool_index >= BPVO_POOL_SIZE) {
1845			panic("pmap_enter: bpvo pool exhausted, %d, %d, %d",
1846			      pmap_bpvo_pool_index, BPVO_POOL_SIZE,
1847			      BPVO_POOL_SIZE * sizeof(struct pvo_entry));
1848		}
1849		pvo = &pmap_bpvo_pool[pmap_bpvo_pool_index];
1850		pmap_bpvo_pool_index++;
1851		bootstrap = 1;
1852	}
1853
1854	if (pvo == NULL) {
1855		return (ENOMEM);
1856	}
1857
1858	pmap_pvo_entries++;
1859	pvo->pvo_vaddr = va;
1860	pvo->pvo_pmap = pm;
1861	LIST_INSERT_HEAD(&pmap_pvo_table[ptegidx], pvo, pvo_olink);
1862	pvo->pvo_vaddr &= ~ADDR_POFF;
1863	if (flags & VM_PROT_EXECUTE)
1864		pvo->pvo_vaddr |= PVO_EXECUTABLE;
1865	if (flags & PVO_WIRED)
1866		pvo->pvo_vaddr |= PVO_WIRED;
1867	if (pvo_head != &pmap_pvo_kunmanaged)
1868		pvo->pvo_vaddr |= PVO_MANAGED;
1869	if (bootstrap)
1870		pvo->pvo_vaddr |= PVO_BOOTSTRAP;
1871	pmap_pte_create(&pvo->pvo_pte, sr, va, pa | pte_lo);
1872
1873	/*
1874	 * Remember if the list was empty and therefore will be the first
1875	 * item.
1876	 */
1877	if (LIST_FIRST(pvo_head) == NULL)
1878		first = 1;
1879
1880	LIST_INSERT_HEAD(pvo_head, pvo, pvo_vlink);
1881	if (pvo->pvo_pte.pte_lo & PVO_WIRED)
1882		pm->pm_stats.wired_count++;
1883	pm->pm_stats.resident_count++;
1884
1885	/*
1886	 * We hope this succeeds but it isn't required.
1887	 */
1888	i = pmap_pte_insert(ptegidx, &pvo->pvo_pte);
1889	if (i >= 0) {
1890		PVO_PTEGIDX_SET(pvo, i);
1891	} else {
1892		panic("pmap_pvo_enter: overflow");
1893		pmap_pte_overflow++;
1894	}
1895
1896	return (first ? ENOENT : 0);
1897}
1898
1899static void
1900pmap_pvo_remove(struct pvo_entry *pvo, int pteidx)
1901{
1902	struct	pte *pt;
1903
1904	/*
1905	 * If there is an active pte entry, we need to deactivate it (and
1906	 * save the ref & cfg bits).
1907	 */
1908	pt = pmap_pvo_to_pte(pvo, pteidx);
1909	if (pt != NULL) {
1910		pmap_pte_unset(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
1911		PVO_PTEGIDX_CLR(pvo);
1912	} else {
1913		pmap_pte_overflow--;
1914	}
1915
1916	/*
1917	 * Update our statistics.
1918	 */
1919	pvo->pvo_pmap->pm_stats.resident_count--;
1920	if (pvo->pvo_pte.pte_lo & PVO_WIRED)
1921		pvo->pvo_pmap->pm_stats.wired_count--;
1922
1923	/*
1924	 * Save the REF/CHG bits into their cache if the page is managed.
1925	 */
1926	if (pvo->pvo_vaddr & PVO_MANAGED) {
1927		struct	vm_page *pg;
1928
1929		pg = PHYS_TO_VM_PAGE(pvo->pvo_pte.pte_lo & PTE_RPGN);
1930		if (pg != NULL) {
1931			pmap_attr_save(pg, pvo->pvo_pte.pte_lo &
1932			    (PTE_REF | PTE_CHG));
1933		}
1934	}
1935
1936	/*
1937	 * Remove this PVO from the PV list.
1938	 */
1939	LIST_REMOVE(pvo, pvo_vlink);
1940
1941	/*
1942	 * Remove this from the overflow list and return it to the pool
1943	 * if we aren't going to reuse it.
1944	 */
1945	LIST_REMOVE(pvo, pvo_olink);
1946	if (!(pvo->pvo_vaddr & PVO_BOOTSTRAP))
1947		uma_zfree(pvo->pvo_vaddr & PVO_MANAGED ? pmap_mpvo_zone :
1948		    pmap_upvo_zone, pvo);
1949	pmap_pvo_entries--;
1950	pmap_pvo_remove_calls++;
1951}
1952
1953static __inline int
1954pmap_pvo_pte_index(const struct pvo_entry *pvo, int ptegidx)
1955{
1956	int	pteidx;
1957
1958	/*
1959	 * We can find the actual pte entry without searching by grabbing
1960	 * the PTEG index from 3 unused bits in pte_lo[11:9] and by
1961	 * noticing the HID bit.
1962	 */
1963	pteidx = ptegidx * 8 + PVO_PTEGIDX_GET(pvo);
1964	if (pvo->pvo_pte.pte_hi & PTE_HID)
1965		pteidx ^= pmap_pteg_mask * 8;
1966
1967	return (pteidx);
1968}
1969
1970static struct pvo_entry *
1971pmap_pvo_find_va(pmap_t pm, vm_offset_t va, int *pteidx_p)
1972{
1973	struct	pvo_entry *pvo;
1974	int	ptegidx;
1975	u_int	sr;
1976
1977	va &= ~ADDR_POFF;
1978	sr = va_to_sr(pm->pm_sr, va);
1979	ptegidx = va_to_pteg(sr, va);
1980
1981	LIST_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
1982		if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) {
1983			if (pteidx_p)
1984				*pteidx_p = pmap_pvo_pte_index(pvo, ptegidx);
1985			return (pvo);
1986		}
1987	}
1988
1989	return (NULL);
1990}
1991
1992static struct pte *
1993pmap_pvo_to_pte(const struct pvo_entry *pvo, int pteidx)
1994{
1995	struct	pte *pt;
1996
1997	/*
1998	 * If we haven't been supplied the ptegidx, calculate it.
1999	 */
2000	if (pteidx == -1) {
2001		int	ptegidx;
2002		u_int	sr;
2003
2004		sr = va_to_sr(pvo->pvo_pmap->pm_sr, pvo->pvo_vaddr);
2005		ptegidx = va_to_pteg(sr, pvo->pvo_vaddr);
2006		pteidx = pmap_pvo_pte_index(pvo, ptegidx);
2007	}
2008
2009	pt = &pmap_pteg_table[pteidx >> 3].pt[pteidx & 7];
2010
2011	if ((pvo->pvo_pte.pte_hi & PTE_VALID) && !PVO_PTEGIDX_ISSET(pvo)) {
2012		panic("pmap_pvo_to_pte: pvo %p has valid pte in pvo but no "
2013		    "valid pte index", pvo);
2014	}
2015
2016	if ((pvo->pvo_pte.pte_hi & PTE_VALID) == 0 && PVO_PTEGIDX_ISSET(pvo)) {
2017		panic("pmap_pvo_to_pte: pvo %p has valid pte index in pvo "
2018		    "pvo but no valid pte", pvo);
2019	}
2020
2021	if ((pt->pte_hi ^ (pvo->pvo_pte.pte_hi & ~PTE_VALID)) == PTE_VALID) {
2022		if ((pvo->pvo_pte.pte_hi & PTE_VALID) == 0) {
2023			panic("pmap_pvo_to_pte: pvo %p has valid pte in "
2024			    "pmap_pteg_table %p but invalid in pvo", pvo, pt);
2025		}
2026
2027		if (((pt->pte_lo ^ pvo->pvo_pte.pte_lo) & ~(PTE_CHG|PTE_REF))
2028		    != 0) {
2029			panic("pmap_pvo_to_pte: pvo %p pte does not match "
2030			    "pte %p in pmap_pteg_table", pvo, pt);
2031		}
2032
2033		return (pt);
2034	}
2035
2036	if (pvo->pvo_pte.pte_hi & PTE_VALID) {
2037		panic("pmap_pvo_to_pte: pvo %p has invalid pte %p in "
2038		    "pmap_pteg_table but valid in pvo", pvo, pt);
2039	}
2040
2041	return (NULL);
2042}
2043
2044/*
2045 * XXX: THIS STUFF SHOULD BE IN pte.c?
2046 */
2047int
2048pmap_pte_spill(vm_offset_t addr)
2049{
2050	struct	pvo_entry *source_pvo, *victim_pvo;
2051	struct	pvo_entry *pvo;
2052	int	ptegidx, i, j;
2053	u_int	sr;
2054	struct	pteg *pteg;
2055	struct	pte *pt;
2056
2057	pmap_pte_spills++;
2058
2059	sr = mfsrin(addr);
2060	ptegidx = va_to_pteg(sr, addr);
2061
2062	/*
2063	 * Have to substitute some entry.  Use the primary hash for this.
2064	 * Use low bits of timebase as random generator.
2065	 */
2066	pteg = &pmap_pteg_table[ptegidx];
2067	__asm __volatile("mftb %0" : "=r"(i));
2068	i &= 7;
2069	pt = &pteg->pt[i];
2070
2071	source_pvo = NULL;
2072	victim_pvo = NULL;
2073	LIST_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
2074		/*
2075		 * We need to find a pvo entry for this address.
2076		 */
2077		PMAP_PVO_CHECK(pvo);
2078		if (source_pvo == NULL &&
2079		    pmap_pte_match(&pvo->pvo_pte, sr, addr,
2080		    pvo->pvo_pte.pte_hi & PTE_HID)) {
2081			/*
2082			 * Now found an entry to be spilled into the pteg.
2083			 * The PTE is now valid, so we know it's active.
2084			 */
2085			j = pmap_pte_insert(ptegidx, &pvo->pvo_pte);
2086
2087			if (j >= 0) {
2088				PVO_PTEGIDX_SET(pvo, j);
2089				pmap_pte_overflow--;
2090				PMAP_PVO_CHECK(pvo);
2091				return (1);
2092			}
2093
2094			source_pvo = pvo;
2095
2096			if (victim_pvo != NULL)
2097				break;
2098		}
2099
2100		/*
2101		 * We also need the pvo entry of the victim we are replacing
2102		 * so save the R & C bits of the PTE.
2103		 */
2104		if ((pt->pte_hi & PTE_HID) == 0 && victim_pvo == NULL &&
2105		    pmap_pte_compare(pt, &pvo->pvo_pte)) {
2106			victim_pvo = pvo;
2107			if (source_pvo != NULL)
2108				break;
2109		}
2110	}
2111
2112	if (source_pvo == NULL)
2113		return (0);
2114
2115	if (victim_pvo == NULL) {
2116		if ((pt->pte_hi & PTE_HID) == 0)
2117			panic("pmap_pte_spill: victim p-pte (%p) has no pvo"
2118			    "entry", pt);
2119
2120		/*
2121		 * If this is a secondary PTE, we need to search it's primary
2122		 * pvo bucket for the matching PVO.
2123		 */
2124		LIST_FOREACH(pvo, &pmap_pvo_table[ptegidx ^ pmap_pteg_mask],
2125		    pvo_olink) {
2126			PMAP_PVO_CHECK(pvo);
2127			/*
2128			 * We also need the pvo entry of the victim we are
2129			 * replacing so save the R & C bits of the PTE.
2130			 */
2131			if (pmap_pte_compare(pt, &pvo->pvo_pte)) {
2132				victim_pvo = pvo;
2133				break;
2134			}
2135		}
2136
2137		if (victim_pvo == NULL)
2138			panic("pmap_pte_spill: victim s-pte (%p) has no pvo"
2139			    "entry", pt);
2140	}
2141
2142	/*
2143	 * We are invalidating the TLB entry for the EA we are replacing even
2144	 * though it's valid.  If we don't, we lose any ref/chg bit changes
2145	 * contained in the TLB entry.
2146	 */
2147	source_pvo->pvo_pte.pte_hi &= ~PTE_HID;
2148
2149	pmap_pte_unset(pt, &victim_pvo->pvo_pte, victim_pvo->pvo_vaddr);
2150	pmap_pte_set(pt, &source_pvo->pvo_pte);
2151
2152	PVO_PTEGIDX_CLR(victim_pvo);
2153	PVO_PTEGIDX_SET(source_pvo, i);
2154	pmap_pte_replacements++;
2155
2156	PMAP_PVO_CHECK(victim_pvo);
2157	PMAP_PVO_CHECK(source_pvo);
2158
2159	return (1);
2160}
2161
2162static int
2163pmap_pte_insert(u_int ptegidx, struct pte *pvo_pt)
2164{
2165	struct	pte *pt;
2166	int	i;
2167
2168	/*
2169	 * First try primary hash.
2170	 */
2171	for (pt = pmap_pteg_table[ptegidx].pt, i = 0; i < 8; i++, pt++) {
2172		if ((pt->pte_hi & PTE_VALID) == 0) {
2173			pvo_pt->pte_hi &= ~PTE_HID;
2174			pmap_pte_set(pt, pvo_pt);
2175			return (i);
2176		}
2177	}
2178
2179	/*
2180	 * Now try secondary hash.
2181	 */
2182	ptegidx ^= pmap_pteg_mask;
2183	ptegidx++;
2184	for (pt = pmap_pteg_table[ptegidx].pt, i = 0; i < 8; i++, pt++) {
2185		if ((pt->pte_hi & PTE_VALID) == 0) {
2186			pvo_pt->pte_hi |= PTE_HID;
2187			pmap_pte_set(pt, pvo_pt);
2188			return (i);
2189		}
2190	}
2191
2192	panic("pmap_pte_insert: overflow");
2193	return (-1);
2194}
2195
2196static boolean_t
2197pmap_query_bit(vm_page_t m, int ptebit)
2198{
2199	struct	pvo_entry *pvo;
2200	struct	pte *pt;
2201
2202#if 0
2203	if (pmap_attr_fetch(m) & ptebit)
2204		return (TRUE);
2205#endif
2206
2207	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
2208		PMAP_PVO_CHECK(pvo);	/* sanity check */
2209
2210		/*
2211		 * See if we saved the bit off.  If so, cache it and return
2212		 * success.
2213		 */
2214		if (pvo->pvo_pte.pte_lo & ptebit) {
2215			pmap_attr_save(m, ptebit);
2216			PMAP_PVO_CHECK(pvo);	/* sanity check */
2217			return (TRUE);
2218		}
2219	}
2220
2221	/*
2222	 * No luck, now go through the hard part of looking at the PTEs
2223	 * themselves.  Sync so that any pending REF/CHG bits are flushed to
2224	 * the PTEs.
2225	 */
2226	SYNC();
2227	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
2228		PMAP_PVO_CHECK(pvo);	/* sanity check */
2229
2230		/*
2231		 * See if this pvo has a valid PTE.  if so, fetch the
2232		 * REF/CHG bits from the valid PTE.  If the appropriate
2233		 * ptebit is set, cache it and return success.
2234		 */
2235		pt = pmap_pvo_to_pte(pvo, -1);
2236		if (pt != NULL) {
2237			pmap_pte_synch(pt, &pvo->pvo_pte);
2238			if (pvo->pvo_pte.pte_lo & ptebit) {
2239				pmap_attr_save(m, ptebit);
2240				PMAP_PVO_CHECK(pvo);	/* sanity check */
2241				return (TRUE);
2242			}
2243		}
2244	}
2245
2246	return (FALSE);
2247}
2248
2249static u_int
2250pmap_clear_bit(vm_page_t m, int ptebit, int *origbit)
2251{
2252	u_int	count;
2253	struct	pvo_entry *pvo;
2254	struct	pte *pt;
2255	int	rv;
2256
2257	/*
2258	 * Clear the cached value.
2259	 */
2260	rv = pmap_attr_fetch(m);
2261	pmap_attr_clear(m, ptebit);
2262
2263	/*
2264	 * Sync so that any pending REF/CHG bits are flushed to the PTEs (so
2265	 * we can reset the right ones).  note that since the pvo entries and
2266	 * list heads are accessed via BAT0 and are never placed in the page
2267	 * table, we don't have to worry about further accesses setting the
2268	 * REF/CHG bits.
2269	 */
2270	SYNC();
2271
2272	/*
2273	 * For each pvo entry, clear the pvo's ptebit.  If this pvo has a
2274	 * valid pte clear the ptebit from the valid pte.
2275	 */
2276	count = 0;
2277	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
2278		PMAP_PVO_CHECK(pvo);	/* sanity check */
2279		pt = pmap_pvo_to_pte(pvo, -1);
2280		if (pt != NULL) {
2281			pmap_pte_synch(pt, &pvo->pvo_pte);
2282			if (pvo->pvo_pte.pte_lo & ptebit) {
2283				count++;
2284				pmap_pte_clear(pt, PVO_VADDR(pvo), ptebit);
2285			}
2286		}
2287		rv |= pvo->pvo_pte.pte_lo;
2288		pvo->pvo_pte.pte_lo &= ~ptebit;
2289		PMAP_PVO_CHECK(pvo);	/* sanity check */
2290	}
2291
2292	if (origbit != NULL) {
2293		*origbit = rv;
2294	}
2295
2296	return (count);
2297}
2298
2299/*
2300 * Return true if the physical range is encompassed by the battable[idx]
2301 */
2302static int
2303pmap_bat_mapped(int idx, vm_offset_t pa, vm_size_t size)
2304{
2305	u_int prot;
2306	u_int32_t start;
2307	u_int32_t end;
2308	u_int32_t bat_ble;
2309
2310	/*
2311	 * Return immediately if not a valid mapping
2312	 */
2313	if (!battable[idx].batu & BAT_Vs)
2314		return (EINVAL);
2315
2316	/*
2317	 * The BAT entry must be cache-inhibited, guarded, and r/w
2318	 * so it can function as an i/o page
2319	 */
2320	prot = battable[idx].batl & (BAT_I|BAT_G|BAT_PP_RW);
2321	if (prot != (BAT_I|BAT_G|BAT_PP_RW))
2322		return (EPERM);
2323
2324	/*
2325	 * The address should be within the BAT range. Assume that the
2326	 * start address in the BAT has the correct alignment (thus
2327	 * not requiring masking)
2328	 */
2329	start = battable[idx].batl & BAT_PBS;
2330	bat_ble = (battable[idx].batu & ~(BAT_EBS)) | 0x03;
2331	end = start | (bat_ble << 15) | 0x7fff;
2332
2333	if ((pa < start) || ((pa + size) > end))
2334		return (ERANGE);
2335
2336	return (0);
2337}
2338
2339int
2340pmap_dev_direct_mapped(vm_offset_t pa, vm_size_t size)
2341{
2342	int i;
2343
2344	/*
2345	 * This currently does not work for entries that
2346	 * overlap 256M BAT segments.
2347	 */
2348
2349	for(i = 0; i < 16; i++)
2350		if (pmap_bat_mapped(i, pa, size) == 0)
2351			return (0);
2352
2353	return (EFAULT);
2354}
2355
2356/*
2357 * Map a set of physical memory pages into the kernel virtual
2358 * address space. Return a pointer to where it is mapped. This
2359 * routine is intended to be used for mapping device memory,
2360 * NOT real memory.
2361 */
2362void *
2363pmap_mapdev(vm_offset_t pa, vm_size_t size)
2364{
2365	vm_offset_t va, tmpva, ppa, offset;
2366	int i;
2367
2368	ppa = trunc_page(pa);
2369	offset = pa & PAGE_MASK;
2370	size = roundup(offset + size, PAGE_SIZE);
2371
2372	GIANT_REQUIRED;
2373
2374	/*
2375	 * If the physical address lies within a valid BAT table entry,
2376	 * return the 1:1 mapping. This currently doesn't work
2377	 * for regions that overlap 256M BAT segments.
2378	 */
2379	for (i = 0; i < 16; i++) {
2380		if (pmap_bat_mapped(i, pa, size) == 0)
2381			return ((void *) pa);
2382	}
2383
2384	va = kmem_alloc_nofault(kernel_map, size);
2385	if (!va)
2386		panic("pmap_mapdev: Couldn't alloc kernel virtual memory");
2387
2388	for (tmpva = va; size > 0;) {
2389		pmap_kenter(tmpva, ppa);
2390		TLBIE(tmpva); /* XXX or should it be invalidate-all ? */
2391		size -= PAGE_SIZE;
2392		tmpva += PAGE_SIZE;
2393		ppa += PAGE_SIZE;
2394	}
2395
2396	return ((void *)(va + offset));
2397}
2398
2399void
2400pmap_unmapdev(vm_offset_t va, vm_size_t size)
2401{
2402	vm_offset_t base, offset;
2403
2404	/*
2405	 * If this is outside kernel virtual space, then it's a
2406	 * battable entry and doesn't require unmapping
2407	 */
2408	if ((va >= VM_MIN_KERNEL_ADDRESS) && (va <= VM_MAX_KERNEL_ADDRESS)) {
2409		base = trunc_page(va);
2410		offset = va & PAGE_MASK;
2411		size = roundup(offset + size, PAGE_SIZE);
2412		kmem_free(kernel_map, base, size);
2413	}
2414}
2415