mmu_oea.c revision 131808
1/*
2 * Copyright (c) 2001 The NetBSD Foundation, Inc.
3 * All rights reserved.
4 *
5 * This code is derived from software contributed to The NetBSD Foundation
6 * by Matt Thomas <matt@3am-software.com> of Allegro Networks, Inc.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 *    must display the following acknowledgement:
18 *        This product includes software developed by the NetBSD
19 *        Foundation, Inc. and its contributors.
20 * 4. Neither the name of The NetBSD Foundation nor the names of its
21 *    contributors may be used to endorse or promote products derived
22 *    from this software without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
25 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
26 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
27 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
28 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
29 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
30 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
31 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
32 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
33 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
34 * POSSIBILITY OF SUCH DAMAGE.
35 */
36/*
37 * Copyright (C) 1995, 1996 Wolfgang Solfrank.
38 * Copyright (C) 1995, 1996 TooLs GmbH.
39 * All rights reserved.
40 *
41 * Redistribution and use in source and binary forms, with or without
42 * modification, are permitted provided that the following conditions
43 * are met:
44 * 1. Redistributions of source code must retain the above copyright
45 *    notice, this list of conditions and the following disclaimer.
46 * 2. Redistributions in binary form must reproduce the above copyright
47 *    notice, this list of conditions and the following disclaimer in the
48 *    documentation and/or other materials provided with the distribution.
49 * 3. All advertising materials mentioning features or use of this software
50 *    must display the following acknowledgement:
51 *	This product includes software developed by TooLs GmbH.
52 * 4. The name of TooLs GmbH may not be used to endorse or promote products
53 *    derived from this software without specific prior written permission.
54 *
55 * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR
56 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
57 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
58 * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
59 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
60 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
61 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
62 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
63 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
64 * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
65 *
66 * $NetBSD: pmap.c,v 1.28 2000/03/26 20:42:36 kleink Exp $
67 */
68/*
69 * Copyright (C) 2001 Benno Rice.
70 * All rights reserved.
71 *
72 * Redistribution and use in source and binary forms, with or without
73 * modification, are permitted provided that the following conditions
74 * are met:
75 * 1. Redistributions of source code must retain the above copyright
76 *    notice, this list of conditions and the following disclaimer.
77 * 2. Redistributions in binary form must reproduce the above copyright
78 *    notice, this list of conditions and the following disclaimer in the
79 *    documentation and/or other materials provided with the distribution.
80 *
81 * THIS SOFTWARE IS PROVIDED BY Benno Rice ``AS IS'' AND ANY EXPRESS OR
82 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
83 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
84 * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
85 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
86 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
87 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
88 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
89 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
90 * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
91 */
92
93#include <sys/cdefs.h>
94__FBSDID("$FreeBSD: head/sys/powerpc/aim/mmu_oea.c 131808 2004-07-08 12:47:36Z grehan $");
95
96/*
97 * Manages physical address maps.
98 *
99 * In addition to hardware address maps, this module is called upon to
100 * provide software-use-only maps which may or may not be stored in the
101 * same form as hardware maps.  These pseudo-maps are used to store
102 * intermediate results from copy operations to and from address spaces.
103 *
104 * Since the information managed by this module is also stored by the
105 * logical address mapping module, this module may throw away valid virtual
106 * to physical mappings at almost any time.  However, invalidations of
107 * mappings must be done as requested.
108 *
109 * In order to cope with hardware architectures which make virtual to
110 * physical map invalidates expensive, this module may delay invalidate
111 * reduced protection operations until such time as they are actually
112 * necessary.  This module is given full information as to which processors
113 * are currently using which maps, and to when physical maps must be made
114 * correct.
115 */
116
117#include "opt_kstack_pages.h"
118
119#include <sys/param.h>
120#include <sys/kernel.h>
121#include <sys/ktr.h>
122#include <sys/lock.h>
123#include <sys/msgbuf.h>
124#include <sys/mutex.h>
125#include <sys/proc.h>
126#include <sys/sysctl.h>
127#include <sys/systm.h>
128#include <sys/vmmeter.h>
129
130#include <dev/ofw/openfirm.h>
131
132#include <vm/vm.h>
133#include <vm/vm_param.h>
134#include <vm/vm_kern.h>
135#include <vm/vm_page.h>
136#include <vm/vm_map.h>
137#include <vm/vm_object.h>
138#include <vm/vm_extern.h>
139#include <vm/vm_pageout.h>
140#include <vm/vm_pager.h>
141#include <vm/uma.h>
142
143#include <machine/cpu.h>
144#include <machine/powerpc.h>
145#include <machine/bat.h>
146#include <machine/frame.h>
147#include <machine/md_var.h>
148#include <machine/psl.h>
149#include <machine/pte.h>
150#include <machine/sr.h>
151
152#define	PMAP_DEBUG
153
154#define TODO	panic("%s: not implemented", __func__);
155
156#define	PMAP_LOCK(pm)
157#define	PMAP_UNLOCK(pm)
158
159#define	TLBIE(va)	__asm __volatile("tlbie %0" :: "r"(va))
160#define	TLBSYNC()	__asm __volatile("tlbsync");
161#define	SYNC()		__asm __volatile("sync");
162#define	EIEIO()		__asm __volatile("eieio");
163
164#define	VSID_MAKE(sr, hash)	((sr) | (((hash) & 0xfffff) << 4))
165#define	VSID_TO_SR(vsid)	((vsid) & 0xf)
166#define	VSID_TO_HASH(vsid)	(((vsid) >> 4) & 0xfffff)
167
168#define	PVO_PTEGIDX_MASK	0x0007		/* which PTEG slot */
169#define	PVO_PTEGIDX_VALID	0x0008		/* slot is valid */
170#define	PVO_WIRED		0x0010		/* PVO entry is wired */
171#define	PVO_MANAGED		0x0020		/* PVO entry is managed */
172#define	PVO_EXECUTABLE		0x0040		/* PVO entry is executable */
173#define	PVO_BOOTSTRAP		0x0080		/* PVO entry allocated during
174						   bootstrap */
175#define	PVO_VADDR(pvo)		((pvo)->pvo_vaddr & ~ADDR_POFF)
176#define	PVO_ISEXECUTABLE(pvo)	((pvo)->pvo_vaddr & PVO_EXECUTABLE)
177#define	PVO_PTEGIDX_GET(pvo)	((pvo)->pvo_vaddr & PVO_PTEGIDX_MASK)
178#define	PVO_PTEGIDX_ISSET(pvo)	((pvo)->pvo_vaddr & PVO_PTEGIDX_VALID)
179#define	PVO_PTEGIDX_CLR(pvo)	\
180	((void)((pvo)->pvo_vaddr &= ~(PVO_PTEGIDX_VALID|PVO_PTEGIDX_MASK)))
181#define	PVO_PTEGIDX_SET(pvo, i)	\
182	((void)((pvo)->pvo_vaddr |= (i)|PVO_PTEGIDX_VALID))
183
184#define	PMAP_PVO_CHECK(pvo)
185
186struct ofw_map {
187	vm_offset_t	om_va;
188	vm_size_t	om_len;
189	vm_offset_t	om_pa;
190	u_int		om_mode;
191};
192
193int	pmap_bootstrapped = 0;
194
195/*
196 * Virtual and physical address of message buffer.
197 */
198struct		msgbuf *msgbufp;
199vm_offset_t	msgbuf_phys;
200
201int pmap_pagedaemon_waken;
202
203/*
204 * Map of physical memory regions.
205 */
206vm_offset_t	phys_avail[128];
207u_int		phys_avail_count;
208static struct	mem_region *regions;
209static struct	mem_region *pregions;
210int		regions_sz, pregions_sz;
211static struct	ofw_map *translations;
212
213/*
214 * First and last available kernel virtual addresses.
215 */
216vm_offset_t virtual_avail;
217vm_offset_t virtual_end;
218vm_offset_t kernel_vm_end;
219
220/*
221 * Kernel pmap.
222 */
223struct pmap kernel_pmap_store;
224extern struct pmap ofw_pmap;
225
226/*
227 * PTEG data.
228 */
229static struct	pteg *pmap_pteg_table;
230u_int		pmap_pteg_count;
231u_int		pmap_pteg_mask;
232
233/*
234 * PVO data.
235 */
236struct	pvo_head *pmap_pvo_table;		/* pvo entries by pteg index */
237struct	pvo_head pmap_pvo_kunmanaged =
238    LIST_HEAD_INITIALIZER(pmap_pvo_kunmanaged);	/* list of unmanaged pages */
239struct	pvo_head pmap_pvo_unmanaged =
240    LIST_HEAD_INITIALIZER(pmap_pvo_unmanaged);	/* list of unmanaged pages */
241
242uma_zone_t	pmap_upvo_zone;	/* zone for pvo entries for unmanaged pages */
243uma_zone_t	pmap_mpvo_zone;	/* zone for pvo entries for managed pages */
244
245#define	BPVO_POOL_SIZE	32768
246static struct	pvo_entry *pmap_bpvo_pool;
247static int	pmap_bpvo_pool_index = 0;
248
249#define	VSID_NBPW	(sizeof(u_int32_t) * 8)
250static u_int	pmap_vsid_bitmap[NPMAPS / VSID_NBPW];
251
252static boolean_t pmap_initialized = FALSE;
253
254/*
255 * Statistics.
256 */
257u_int	pmap_pte_valid = 0;
258u_int	pmap_pte_overflow = 0;
259u_int	pmap_pte_replacements = 0;
260u_int	pmap_pvo_entries = 0;
261u_int	pmap_pvo_enter_calls = 0;
262u_int	pmap_pvo_remove_calls = 0;
263u_int	pmap_pte_spills = 0;
264SYSCTL_INT(_machdep, OID_AUTO, pmap_pte_valid, CTLFLAG_RD, &pmap_pte_valid,
265    0, "");
266SYSCTL_INT(_machdep, OID_AUTO, pmap_pte_overflow, CTLFLAG_RD,
267    &pmap_pte_overflow, 0, "");
268SYSCTL_INT(_machdep, OID_AUTO, pmap_pte_replacements, CTLFLAG_RD,
269    &pmap_pte_replacements, 0, "");
270SYSCTL_INT(_machdep, OID_AUTO, pmap_pvo_entries, CTLFLAG_RD, &pmap_pvo_entries,
271    0, "");
272SYSCTL_INT(_machdep, OID_AUTO, pmap_pvo_enter_calls, CTLFLAG_RD,
273    &pmap_pvo_enter_calls, 0, "");
274SYSCTL_INT(_machdep, OID_AUTO, pmap_pvo_remove_calls, CTLFLAG_RD,
275    &pmap_pvo_remove_calls, 0, "");
276SYSCTL_INT(_machdep, OID_AUTO, pmap_pte_spills, CTLFLAG_RD,
277    &pmap_pte_spills, 0, "");
278
279struct	pvo_entry *pmap_pvo_zeropage;
280
281vm_offset_t	pmap_rkva_start = VM_MIN_KERNEL_ADDRESS;
282u_int		pmap_rkva_count = 4;
283
284/*
285 * Allocate physical memory for use in pmap_bootstrap.
286 */
287static vm_offset_t	pmap_bootstrap_alloc(vm_size_t, u_int);
288
289/*
290 * PTE calls.
291 */
292static int		pmap_pte_insert(u_int, struct pte *);
293
294/*
295 * PVO calls.
296 */
297static int	pmap_pvo_enter(pmap_t, uma_zone_t, struct pvo_head *,
298		    vm_offset_t, vm_offset_t, u_int, int);
299static void	pmap_pvo_remove(struct pvo_entry *, int);
300static struct	pvo_entry *pmap_pvo_find_va(pmap_t, vm_offset_t, int *);
301static struct	pte *pmap_pvo_to_pte(const struct pvo_entry *, int);
302
303/*
304 * Utility routines.
305 */
306static struct		pvo_entry *pmap_rkva_alloc(void);
307static void		pmap_pa_map(struct pvo_entry *, vm_offset_t,
308			    struct pte *, int *);
309static void		pmap_pa_unmap(struct pvo_entry *, struct pte *, int *);
310static void		pmap_syncicache(vm_offset_t, vm_size_t);
311static boolean_t	pmap_query_bit(vm_page_t, int);
312static u_int		pmap_clear_bit(vm_page_t, int, int *);
313static void		tlbia(void);
314
315static __inline int
316va_to_sr(u_int *sr, vm_offset_t va)
317{
318	return (sr[(uintptr_t)va >> ADDR_SR_SHFT]);
319}
320
321static __inline u_int
322va_to_pteg(u_int sr, vm_offset_t addr)
323{
324	u_int hash;
325
326	hash = (sr & SR_VSID_MASK) ^ (((u_int)addr & ADDR_PIDX) >>
327	    ADDR_PIDX_SHFT);
328	return (hash & pmap_pteg_mask);
329}
330
331static __inline struct pvo_head *
332pa_to_pvoh(vm_offset_t pa, vm_page_t *pg_p)
333{
334	struct	vm_page *pg;
335
336	pg = PHYS_TO_VM_PAGE(pa);
337
338	if (pg_p != NULL)
339		*pg_p = pg;
340
341	if (pg == NULL)
342		return (&pmap_pvo_unmanaged);
343
344	return (&pg->md.mdpg_pvoh);
345}
346
347static __inline struct pvo_head *
348vm_page_to_pvoh(vm_page_t m)
349{
350
351	return (&m->md.mdpg_pvoh);
352}
353
354static __inline void
355pmap_attr_clear(vm_page_t m, int ptebit)
356{
357
358	m->md.mdpg_attrs &= ~ptebit;
359}
360
361static __inline int
362pmap_attr_fetch(vm_page_t m)
363{
364
365	return (m->md.mdpg_attrs);
366}
367
368static __inline void
369pmap_attr_save(vm_page_t m, int ptebit)
370{
371
372	m->md.mdpg_attrs |= ptebit;
373}
374
375static __inline int
376pmap_pte_compare(const struct pte *pt, const struct pte *pvo_pt)
377{
378	if (pt->pte_hi == pvo_pt->pte_hi)
379		return (1);
380
381	return (0);
382}
383
384static __inline int
385pmap_pte_match(struct pte *pt, u_int sr, vm_offset_t va, int which)
386{
387	return (pt->pte_hi & ~PTE_VALID) ==
388	    (((sr & SR_VSID_MASK) << PTE_VSID_SHFT) |
389	    ((va >> ADDR_API_SHFT) & PTE_API) | which);
390}
391
392static __inline void
393pmap_pte_create(struct pte *pt, u_int sr, vm_offset_t va, u_int pte_lo)
394{
395	/*
396	 * Construct a PTE.  Default to IMB initially.  Valid bit only gets
397	 * set when the real pte is set in memory.
398	 *
399	 * Note: Don't set the valid bit for correct operation of tlb update.
400	 */
401	pt->pte_hi = ((sr & SR_VSID_MASK) << PTE_VSID_SHFT) |
402	    (((va & ADDR_PIDX) >> ADDR_API_SHFT) & PTE_API);
403	pt->pte_lo = pte_lo;
404}
405
406static __inline void
407pmap_pte_synch(struct pte *pt, struct pte *pvo_pt)
408{
409
410	pvo_pt->pte_lo |= pt->pte_lo & (PTE_REF | PTE_CHG);
411}
412
413static __inline void
414pmap_pte_clear(struct pte *pt, vm_offset_t va, int ptebit)
415{
416
417	/*
418	 * As shown in Section 7.6.3.2.3
419	 */
420	pt->pte_lo &= ~ptebit;
421	TLBIE(va);
422	EIEIO();
423	TLBSYNC();
424	SYNC();
425}
426
427static __inline void
428pmap_pte_set(struct pte *pt, struct pte *pvo_pt)
429{
430
431	pvo_pt->pte_hi |= PTE_VALID;
432
433	/*
434	 * Update the PTE as defined in section 7.6.3.1.
435	 * Note that the REF/CHG bits are from pvo_pt and thus should havce
436	 * been saved so this routine can restore them (if desired).
437	 */
438	pt->pte_lo = pvo_pt->pte_lo;
439	EIEIO();
440	pt->pte_hi = pvo_pt->pte_hi;
441	SYNC();
442	pmap_pte_valid++;
443}
444
445static __inline void
446pmap_pte_unset(struct pte *pt, struct pte *pvo_pt, vm_offset_t va)
447{
448
449	pvo_pt->pte_hi &= ~PTE_VALID;
450
451	/*
452	 * Force the reg & chg bits back into the PTEs.
453	 */
454	SYNC();
455
456	/*
457	 * Invalidate the pte.
458	 */
459	pt->pte_hi &= ~PTE_VALID;
460
461	SYNC();
462	TLBIE(va);
463	EIEIO();
464	TLBSYNC();
465	SYNC();
466
467	/*
468	 * Save the reg & chg bits.
469	 */
470	pmap_pte_synch(pt, pvo_pt);
471	pmap_pte_valid--;
472}
473
474static __inline void
475pmap_pte_change(struct pte *pt, struct pte *pvo_pt, vm_offset_t va)
476{
477
478	/*
479	 * Invalidate the PTE
480	 */
481	pmap_pte_unset(pt, pvo_pt, va);
482	pmap_pte_set(pt, pvo_pt);
483}
484
485/*
486 * Quick sort callout for comparing memory regions.
487 */
488static int	mr_cmp(const void *a, const void *b);
489static int	om_cmp(const void *a, const void *b);
490
491static int
492mr_cmp(const void *a, const void *b)
493{
494	const struct	mem_region *regiona;
495	const struct	mem_region *regionb;
496
497	regiona = a;
498	regionb = b;
499	if (regiona->mr_start < regionb->mr_start)
500		return (-1);
501	else if (regiona->mr_start > regionb->mr_start)
502		return (1);
503	else
504		return (0);
505}
506
507static int
508om_cmp(const void *a, const void *b)
509{
510	const struct	ofw_map *mapa;
511	const struct	ofw_map *mapb;
512
513	mapa = a;
514	mapb = b;
515	if (mapa->om_pa < mapb->om_pa)
516		return (-1);
517	else if (mapa->om_pa > mapb->om_pa)
518		return (1);
519	else
520		return (0);
521}
522
523void
524pmap_bootstrap(vm_offset_t kernelstart, vm_offset_t kernelend)
525{
526	ihandle_t	mmui;
527	phandle_t	chosen, mmu;
528	int		sz;
529	int		i, j;
530	int		ofw_mappings;
531	vm_size_t	size, physsz;
532	vm_offset_t	pa, va, off;
533	u_int		batl, batu;
534
535        /*
536         * Set up BAT0 to map the lowest 256 MB area
537         */
538        battable[0x0].batl = BATL(0x00000000, BAT_M, BAT_PP_RW);
539        battable[0x0].batu = BATU(0x00000000, BAT_BL_256M, BAT_Vs);
540
541        /*
542         * Map PCI memory space.
543         */
544        battable[0x8].batl = BATL(0x80000000, BAT_I|BAT_G, BAT_PP_RW);
545        battable[0x8].batu = BATU(0x80000000, BAT_BL_256M, BAT_Vs);
546
547        battable[0x9].batl = BATL(0x90000000, BAT_I|BAT_G, BAT_PP_RW);
548        battable[0x9].batu = BATU(0x90000000, BAT_BL_256M, BAT_Vs);
549
550        battable[0xa].batl = BATL(0xa0000000, BAT_I|BAT_G, BAT_PP_RW);
551        battable[0xa].batu = BATU(0xa0000000, BAT_BL_256M, BAT_Vs);
552
553        battable[0xb].batl = BATL(0xb0000000, BAT_I|BAT_G, BAT_PP_RW);
554        battable[0xb].batu = BATU(0xb0000000, BAT_BL_256M, BAT_Vs);
555
556        /*
557         * Map obio devices.
558         */
559        battable[0xf].batl = BATL(0xf0000000, BAT_I|BAT_G, BAT_PP_RW);
560        battable[0xf].batu = BATU(0xf0000000, BAT_BL_256M, BAT_Vs);
561
562	/*
563	 * Use an IBAT and a DBAT to map the bottom segment of memory
564	 * where we are.
565	 */
566	batu = BATU(0x00000000, BAT_BL_256M, BAT_Vs);
567	batl = BATL(0x00000000, BAT_M, BAT_PP_RW);
568	__asm ("mtibatu 0,%0; mtibatl 0,%1; isync; \n"
569	       "mtdbatu 0,%0; mtdbatl 0,%1; isync"
570	    :: "r"(batu), "r"(batl));
571
572#if 0
573	/* map frame buffer */
574	batu = BATU(0x90000000, BAT_BL_256M, BAT_Vs);
575	batl = BATL(0x90000000, BAT_I|BAT_G, BAT_PP_RW);
576	__asm ("mtdbatu 1,%0; mtdbatl 1,%1; isync"
577	    :: "r"(batu), "r"(batl));
578#endif
579
580#if 1
581	/* map pci space */
582	batu = BATU(0x80000000, BAT_BL_256M, BAT_Vs);
583	batl = BATL(0x80000000, BAT_I|BAT_G, BAT_PP_RW);
584	__asm ("mtdbatu 1,%0; mtdbatl 1,%1; isync"
585	    :: "r"(batu), "r"(batl));
586#endif
587
588	/*
589	 * Set the start and end of kva.
590	 */
591	virtual_avail = VM_MIN_KERNEL_ADDRESS;
592	virtual_end = VM_MAX_KERNEL_ADDRESS;
593
594	mem_regions(&pregions, &pregions_sz, &regions, &regions_sz);
595	CTR0(KTR_PMAP, "pmap_bootstrap: physical memory");
596
597	qsort(pregions, pregions_sz, sizeof(*pregions), mr_cmp);
598	for (i = 0; i < pregions_sz; i++) {
599		vm_offset_t pa;
600		vm_offset_t end;
601
602		CTR3(KTR_PMAP, "physregion: %#x - %#x (%#x)",
603			pregions[i].mr_start,
604			pregions[i].mr_start + pregions[i].mr_size,
605			pregions[i].mr_size);
606		/*
607		 * Install entries into the BAT table to allow all
608		 * of physmem to be convered by on-demand BAT entries.
609		 * The loop will sometimes set the same battable element
610		 * twice, but that's fine since they won't be used for
611		 * a while yet.
612		 */
613		pa = pregions[i].mr_start & 0xf0000000;
614		end = pregions[i].mr_start + pregions[i].mr_size;
615		do {
616                        u_int n = pa >> ADDR_SR_SHFT;
617
618			battable[n].batl = BATL(pa, BAT_M, BAT_PP_RW);
619			battable[n].batu = BATU(pa, BAT_BL_256M, BAT_Vs);
620			pa += SEGMENT_LENGTH;
621		} while (pa < end);
622	}
623
624	if (sizeof(phys_avail)/sizeof(phys_avail[0]) < regions_sz)
625		panic("pmap_bootstrap: phys_avail too small");
626	qsort(regions, regions_sz, sizeof(*regions), mr_cmp);
627	phys_avail_count = 0;
628	physsz = 0;
629	for (i = 0, j = 0; i < regions_sz; i++, j += 2) {
630		CTR3(KTR_PMAP, "region: %#x - %#x (%#x)", regions[i].mr_start,
631		    regions[i].mr_start + regions[i].mr_size,
632		    regions[i].mr_size);
633		phys_avail[j] = regions[i].mr_start;
634		phys_avail[j + 1] = regions[i].mr_start + regions[i].mr_size;
635		phys_avail_count++;
636		physsz += regions[i].mr_size;
637	}
638	physmem = btoc(physsz);
639
640	/*
641	 * Allocate PTEG table.
642	 */
643#ifdef PTEGCOUNT
644	pmap_pteg_count = PTEGCOUNT;
645#else
646	pmap_pteg_count = 0x1000;
647
648	while (pmap_pteg_count < physmem)
649		pmap_pteg_count <<= 1;
650
651	pmap_pteg_count >>= 1;
652#endif /* PTEGCOUNT */
653
654	size = pmap_pteg_count * sizeof(struct pteg);
655	CTR2(KTR_PMAP, "pmap_bootstrap: %d PTEGs, %d bytes", pmap_pteg_count,
656	    size);
657	pmap_pteg_table = (struct pteg *)pmap_bootstrap_alloc(size, size);
658	CTR1(KTR_PMAP, "pmap_bootstrap: PTEG table at %p", pmap_pteg_table);
659	bzero((void *)pmap_pteg_table, pmap_pteg_count * sizeof(struct pteg));
660	pmap_pteg_mask = pmap_pteg_count - 1;
661
662	/*
663	 * Allocate pv/overflow lists.
664	 */
665	size = sizeof(struct pvo_head) * pmap_pteg_count;
666	pmap_pvo_table = (struct pvo_head *)pmap_bootstrap_alloc(size,
667	    PAGE_SIZE);
668	CTR1(KTR_PMAP, "pmap_bootstrap: PVO table at %p", pmap_pvo_table);
669	for (i = 0; i < pmap_pteg_count; i++)
670		LIST_INIT(&pmap_pvo_table[i]);
671
672	/*
673	 * Allocate the message buffer.
674	 */
675	msgbuf_phys = pmap_bootstrap_alloc(MSGBUF_SIZE, 0);
676
677	/*
678	 * Initialise the unmanaged pvo pool.
679	 */
680	pmap_bpvo_pool = (struct pvo_entry *)pmap_bootstrap_alloc(
681		BPVO_POOL_SIZE*sizeof(struct pvo_entry), 0);
682	pmap_bpvo_pool_index = 0;
683
684	/*
685	 * Make sure kernel vsid is allocated as well as VSID 0.
686	 */
687	pmap_vsid_bitmap[(KERNEL_VSIDBITS & (NPMAPS - 1)) / VSID_NBPW]
688		|= 1 << (KERNEL_VSIDBITS % VSID_NBPW);
689	pmap_vsid_bitmap[0] |= 1;
690
691	/*
692	 * Set up the OpenFirmware pmap and add it's mappings.
693	 */
694	pmap_pinit(&ofw_pmap);
695	ofw_pmap.pm_sr[KERNEL_SR] = KERNEL_SEGMENT;
696	ofw_pmap.pm_sr[KERNEL2_SR] = KERNEL2_SEGMENT;
697	if ((chosen = OF_finddevice("/chosen")) == -1)
698		panic("pmap_bootstrap: can't find /chosen");
699	OF_getprop(chosen, "mmu", &mmui, 4);
700	if ((mmu = OF_instance_to_package(mmui)) == -1)
701		panic("pmap_bootstrap: can't get mmu package");
702	if ((sz = OF_getproplen(mmu, "translations")) == -1)
703		panic("pmap_bootstrap: can't get ofw translation count");
704	translations = NULL;
705	for (i = 0; phys_avail[i] != 0; i += 2) {
706		if (phys_avail[i + 1] >= sz) {
707			translations = (struct ofw_map *)phys_avail[i];
708			break;
709		}
710	}
711	if (translations == NULL)
712		panic("pmap_bootstrap: no space to copy translations");
713	bzero(translations, sz);
714	if (OF_getprop(mmu, "translations", translations, sz) == -1)
715		panic("pmap_bootstrap: can't get ofw translations");
716	CTR0(KTR_PMAP, "pmap_bootstrap: translations");
717	sz /= sizeof(*translations);
718	qsort(translations, sz, sizeof (*translations), om_cmp);
719	for (i = 0, ofw_mappings = 0; i < sz; i++) {
720		CTR3(KTR_PMAP, "translation: pa=%#x va=%#x len=%#x",
721		    translations[i].om_pa, translations[i].om_va,
722		    translations[i].om_len);
723
724		/*
725		 * If the mapping is 1:1, let the RAM and device on-demand
726		 * BAT tables take care of the translation.
727		 */
728		if (translations[i].om_va == translations[i].om_pa)
729			continue;
730
731		/* Enter the pages */
732		for (off = 0; off < translations[i].om_len; off += PAGE_SIZE) {
733			struct	vm_page m;
734
735			m.phys_addr = translations[i].om_pa + off;
736			pmap_enter(&ofw_pmap, translations[i].om_va + off, &m,
737				   VM_PROT_ALL, 1);
738			ofw_mappings++;
739		}
740	}
741#ifdef SMP
742	TLBSYNC();
743#endif
744
745	/*
746	 * Initialize the kernel pmap (which is statically allocated).
747	 */
748	for (i = 0; i < 16; i++) {
749		kernel_pmap->pm_sr[i] = EMPTY_SEGMENT;
750	}
751	kernel_pmap->pm_sr[KERNEL_SR] = KERNEL_SEGMENT;
752	kernel_pmap->pm_sr[KERNEL2_SR] = KERNEL_SEGMENT;
753	kernel_pmap->pm_active = ~0;
754
755	/*
756	 * Allocate a kernel stack with a guard page for thread0 and map it
757	 * into the kernel page map.
758	 */
759	pa = pmap_bootstrap_alloc(KSTACK_PAGES * PAGE_SIZE, 0);
760	kstack0_phys = pa;
761	kstack0 = virtual_avail + (KSTACK_GUARD_PAGES * PAGE_SIZE);
762	CTR2(KTR_PMAP, "pmap_bootstrap: kstack0 at %#x (%#x)", kstack0_phys,
763	    kstack0);
764	virtual_avail += (KSTACK_PAGES + KSTACK_GUARD_PAGES) * PAGE_SIZE;
765	for (i = 0; i < KSTACK_PAGES; i++) {
766		pa = kstack0_phys + i * PAGE_SIZE;
767		va = kstack0 + i * PAGE_SIZE;
768		pmap_kenter(va, pa);
769		TLBIE(va);
770	}
771
772	/*
773	 * Calculate the last available physical address.
774	 */
775	for (i = 0; phys_avail[i + 2] != 0; i += 2)
776		;
777	Maxmem = powerpc_btop(phys_avail[i + 1]);
778
779	/*
780	 * Allocate virtual address space for the message buffer.
781	 */
782	msgbufp = (struct msgbuf *)virtual_avail;
783	virtual_avail += round_page(MSGBUF_SIZE);
784
785	/*
786	 * Initialize hardware.
787	 */
788	for (i = 0; i < 16; i++) {
789		mtsrin(i << ADDR_SR_SHFT, EMPTY_SEGMENT);
790	}
791	__asm __volatile ("mtsr %0,%1"
792	    :: "n"(KERNEL_SR), "r"(KERNEL_SEGMENT));
793	__asm __volatile ("sync; mtsdr1 %0; isync"
794	    :: "r"((u_int)pmap_pteg_table | (pmap_pteg_mask >> 10)));
795	tlbia();
796
797	pmap_bootstrapped++;
798}
799
800/*
801 * Activate a user pmap.  The pmap must be activated before it's address
802 * space can be accessed in any way.
803 */
804void
805pmap_activate(struct thread *td)
806{
807	pmap_t	pm, pmr;
808
809	/*
810	 * Load all the data we need up front to encourage the compiler to
811	 * not issue any loads while we have interrupts disabled below.
812	 */
813	pm = &td->td_proc->p_vmspace->vm_pmap;
814
815	if ((pmr = (pmap_t)pmap_kextract((vm_offset_t)pm)) == NULL)
816		pmr = pm;
817
818	pm->pm_active |= PCPU_GET(cpumask);
819	PCPU_SET(curpmap, pmr);
820}
821
822void
823pmap_deactivate(struct thread *td)
824{
825	pmap_t	pm;
826
827	pm = &td->td_proc->p_vmspace->vm_pmap;
828	pm->pm_active &= ~(PCPU_GET(cpumask));
829	PCPU_SET(curpmap, NULL);
830}
831
832vm_offset_t
833pmap_addr_hint(vm_object_t object, vm_offset_t va, vm_size_t size)
834{
835
836	return (va);
837}
838
839void
840pmap_change_wiring(pmap_t pm, vm_offset_t va, boolean_t wired)
841{
842	struct	pvo_entry *pvo;
843
844	pvo = pmap_pvo_find_va(pm, va & ~ADDR_POFF, NULL);
845
846	if (pvo != NULL) {
847		if (wired) {
848			if ((pvo->pvo_vaddr & PVO_WIRED) == 0)
849				pm->pm_stats.wired_count++;
850			pvo->pvo_vaddr |= PVO_WIRED;
851		} else {
852			if ((pvo->pvo_vaddr & PVO_WIRED) != 0)
853				pm->pm_stats.wired_count--;
854			pvo->pvo_vaddr &= ~PVO_WIRED;
855		}
856	}
857}
858
859void
860pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr,
861	  vm_size_t len, vm_offset_t src_addr)
862{
863
864	/*
865	 * This is not needed as it's mainly an optimisation.
866	 * It may want to be implemented later though.
867	 */
868}
869
870void
871pmap_copy_page(vm_page_t msrc, vm_page_t mdst)
872{
873	vm_offset_t	dst;
874	vm_offset_t	src;
875
876	dst = VM_PAGE_TO_PHYS(mdst);
877	src = VM_PAGE_TO_PHYS(msrc);
878
879	kcopy((void *)src, (void *)dst, PAGE_SIZE);
880}
881
882/*
883 * Zero a page of physical memory by temporarily mapping it into the tlb.
884 */
885void
886pmap_zero_page(vm_page_t m)
887{
888	vm_offset_t pa = VM_PAGE_TO_PHYS(m);
889	caddr_t va;
890
891	if (pa < SEGMENT_LENGTH) {
892		va = (caddr_t) pa;
893	} else if (pmap_initialized) {
894		if (pmap_pvo_zeropage == NULL)
895			pmap_pvo_zeropage = pmap_rkva_alloc();
896		pmap_pa_map(pmap_pvo_zeropage, pa, NULL, NULL);
897		va = (caddr_t)PVO_VADDR(pmap_pvo_zeropage);
898	} else {
899		panic("pmap_zero_page: can't zero pa %#x", pa);
900	}
901
902	bzero(va, PAGE_SIZE);
903
904	if (pa >= SEGMENT_LENGTH)
905		pmap_pa_unmap(pmap_pvo_zeropage, NULL, NULL);
906}
907
908void
909pmap_zero_page_area(vm_page_t m, int off, int size)
910{
911	vm_offset_t pa = VM_PAGE_TO_PHYS(m);
912	caddr_t va;
913
914	if (pa < SEGMENT_LENGTH) {
915		va = (caddr_t) pa;
916	} else if (pmap_initialized) {
917		if (pmap_pvo_zeropage == NULL)
918			pmap_pvo_zeropage = pmap_rkva_alloc();
919		pmap_pa_map(pmap_pvo_zeropage, pa, NULL, NULL);
920		va = (caddr_t)PVO_VADDR(pmap_pvo_zeropage);
921	} else {
922		panic("pmap_zero_page: can't zero pa %#x", pa);
923	}
924
925	bzero(va + off, size);
926
927	if (pa >= SEGMENT_LENGTH)
928		pmap_pa_unmap(pmap_pvo_zeropage, NULL, NULL);
929}
930
931void
932pmap_zero_page_idle(vm_page_t m)
933{
934
935	/* XXX this is called outside of Giant, is pmap_zero_page safe? */
936	/* XXX maybe have a dedicated mapping for this to avoid the problem? */
937	mtx_lock(&Giant);
938	pmap_zero_page(m);
939	mtx_unlock(&Giant);
940}
941
942/*
943 * Map the given physical page at the specified virtual address in the
944 * target pmap with the protection requested.  If specified the page
945 * will be wired down.
946 */
947void
948pmap_enter(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
949	   boolean_t wired)
950{
951	struct		pvo_head *pvo_head;
952	uma_zone_t	zone;
953	vm_page_t	pg;
954	u_int		pte_lo, pvo_flags, was_exec, i;
955	int		error;
956
957	if (!pmap_initialized) {
958		pvo_head = &pmap_pvo_kunmanaged;
959		zone = pmap_upvo_zone;
960		pvo_flags = 0;
961		pg = NULL;
962		was_exec = PTE_EXEC;
963	} else {
964		pvo_head = vm_page_to_pvoh(m);
965		pg = m;
966		zone = pmap_mpvo_zone;
967		pvo_flags = PVO_MANAGED;
968		was_exec = 0;
969	}
970
971	/*
972	 * If this is a managed page, and it's the first reference to the page,
973	 * clear the execness of the page.  Otherwise fetch the execness.
974	 */
975	if (pg != NULL) {
976		if (LIST_EMPTY(pvo_head)) {
977			pmap_attr_clear(pg, PTE_EXEC);
978		} else {
979			was_exec = pmap_attr_fetch(pg) & PTE_EXEC;
980		}
981	}
982
983
984	/*
985	 * Assume the page is cache inhibited and access is guarded unless
986	 * it's in our available memory array.
987	 */
988	pte_lo = PTE_I | PTE_G;
989	for (i = 0; i < pregions_sz; i++) {
990		if ((VM_PAGE_TO_PHYS(m) >= pregions[i].mr_start) &&
991		    (VM_PAGE_TO_PHYS(m) <
992			(pregions[i].mr_start + pregions[i].mr_size))) {
993			pte_lo &= ~(PTE_I | PTE_G);
994			break;
995		}
996	}
997
998	if (prot & VM_PROT_WRITE)
999		pte_lo |= PTE_BW;
1000	else
1001		pte_lo |= PTE_BR;
1002
1003	pvo_flags |= (prot & VM_PROT_EXECUTE);
1004
1005	if (wired)
1006		pvo_flags |= PVO_WIRED;
1007
1008	error = pmap_pvo_enter(pmap, zone, pvo_head, va, VM_PAGE_TO_PHYS(m),
1009	    pte_lo, pvo_flags);
1010
1011	/*
1012	 * Flush the real page from the instruction cache if this page is
1013	 * mapped executable and cacheable and was not previously mapped (or
1014	 * was not mapped executable).
1015	 */
1016	if (error == 0 && (pvo_flags & PVO_EXECUTABLE) &&
1017	    (pte_lo & PTE_I) == 0 && was_exec == 0) {
1018		/*
1019		 * Flush the real memory from the cache.
1020		 */
1021		pmap_syncicache(VM_PAGE_TO_PHYS(m), PAGE_SIZE);
1022		if (pg != NULL)
1023			pmap_attr_save(pg, PTE_EXEC);
1024	}
1025
1026	/* XXX syncicache always until problems are sorted */
1027	pmap_syncicache(VM_PAGE_TO_PHYS(m), PAGE_SIZE);
1028}
1029
1030vm_page_t
1031pmap_enter_quick(pmap_t pm, vm_offset_t va, vm_page_t m, vm_page_t mpte)
1032{
1033
1034	pmap_enter(pm, va, m, VM_PROT_READ | VM_PROT_EXECUTE, FALSE);
1035	return (NULL);
1036}
1037
1038vm_paddr_t
1039pmap_extract(pmap_t pm, vm_offset_t va)
1040{
1041	struct	pvo_entry *pvo;
1042
1043	pvo = pmap_pvo_find_va(pm, va & ~ADDR_POFF, NULL);
1044
1045	if (pvo != NULL) {
1046		return ((pvo->pvo_pte.pte_lo & PTE_RPGN) | (va & ADDR_POFF));
1047	}
1048
1049	return (0);
1050}
1051
1052/*
1053 * Atomically extract and hold the physical page with the given
1054 * pmap and virtual address pair if that mapping permits the given
1055 * protection.
1056 */
1057vm_page_t
1058pmap_extract_and_hold(pmap_t pmap, vm_offset_t va, vm_prot_t prot)
1059{
1060	vm_paddr_t pa;
1061	vm_page_t m;
1062
1063	m = NULL;
1064	mtx_lock(&Giant);
1065	if ((pa = pmap_extract(pmap, va)) != 0) {
1066		m = PHYS_TO_VM_PAGE(pa);
1067		vm_page_lock_queues();
1068		vm_page_hold(m);
1069		vm_page_unlock_queues();
1070	}
1071	mtx_unlock(&Giant);
1072	return (m);
1073}
1074
1075/*
1076 * Grow the number of kernel page table entries.  Unneeded.
1077 */
1078void
1079pmap_growkernel(vm_offset_t addr)
1080{
1081}
1082
1083void
1084pmap_init(void)
1085{
1086
1087	CTR0(KTR_PMAP, "pmap_init");
1088
1089	pmap_upvo_zone = uma_zcreate("UPVO entry", sizeof (struct pvo_entry),
1090	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
1091	    UMA_ZONE_VM | UMA_ZONE_NOFREE);
1092	pmap_mpvo_zone = uma_zcreate("MPVO entry", sizeof(struct pvo_entry),
1093	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
1094	    UMA_ZONE_VM | UMA_ZONE_NOFREE);
1095	pmap_initialized = TRUE;
1096}
1097
1098void
1099pmap_init2(void)
1100{
1101
1102	CTR0(KTR_PMAP, "pmap_init2");
1103}
1104
1105boolean_t
1106pmap_is_modified(vm_page_t m)
1107{
1108
1109	if ((m->flags & (PG_FICTITIOUS |PG_UNMANAGED)) != 0)
1110		return (FALSE);
1111
1112	return (pmap_query_bit(m, PTE_CHG));
1113}
1114
1115/*
1116 *	pmap_is_prefaultable:
1117 *
1118 *	Return whether or not the specified virtual address is elgible
1119 *	for prefault.
1120 */
1121boolean_t
1122pmap_is_prefaultable(pmap_t pmap, vm_offset_t addr)
1123{
1124
1125	return (FALSE);
1126}
1127
1128void
1129pmap_clear_reference(vm_page_t m)
1130{
1131
1132	if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) != 0)
1133		return;
1134	pmap_clear_bit(m, PTE_REF, NULL);
1135}
1136
1137void
1138pmap_clear_modify(vm_page_t m)
1139{
1140
1141	if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) != 0)
1142		return;
1143	pmap_clear_bit(m, PTE_CHG, NULL);
1144}
1145
1146/*
1147 *	pmap_ts_referenced:
1148 *
1149 *	Return a count of reference bits for a page, clearing those bits.
1150 *	It is not necessary for every reference bit to be cleared, but it
1151 *	is necessary that 0 only be returned when there are truly no
1152 *	reference bits set.
1153 *
1154 *	XXX: The exact number of bits to check and clear is a matter that
1155 *	should be tested and standardized at some point in the future for
1156 *	optimal aging of shared pages.
1157 */
1158int
1159pmap_ts_referenced(vm_page_t m)
1160{
1161	int count;
1162
1163	if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) != 0)
1164		return (0);
1165
1166	count = pmap_clear_bit(m, PTE_REF, NULL);
1167
1168	return (count);
1169}
1170
1171/*
1172 * Map a wired page into kernel virtual address space.
1173 */
1174void
1175pmap_kenter(vm_offset_t va, vm_offset_t pa)
1176{
1177	u_int		pte_lo;
1178	int		error;
1179	int		i;
1180
1181#if 0
1182	if (va < VM_MIN_KERNEL_ADDRESS)
1183		panic("pmap_kenter: attempt to enter non-kernel address %#x",
1184		    va);
1185#endif
1186
1187	pte_lo = PTE_I | PTE_G;
1188	for (i = 0; i < pregions_sz; i++) {
1189		if ((pa >= pregions[i].mr_start) &&
1190		    (pa < (pregions[i].mr_start + pregions[i].mr_size))) {
1191			pte_lo &= ~(PTE_I | PTE_G);
1192			break;
1193		}
1194	}
1195
1196	error = pmap_pvo_enter(kernel_pmap, pmap_upvo_zone,
1197	    &pmap_pvo_kunmanaged, va, pa, pte_lo, PVO_WIRED);
1198
1199	if (error != 0 && error != ENOENT)
1200		panic("pmap_kenter: failed to enter va %#x pa %#x: %d", va,
1201		    pa, error);
1202
1203	/*
1204	 * Flush the real memory from the instruction cache.
1205	 */
1206	if ((pte_lo & (PTE_I | PTE_G)) == 0) {
1207		pmap_syncicache(pa, PAGE_SIZE);
1208	}
1209}
1210
1211/*
1212 * Extract the physical page address associated with the given kernel virtual
1213 * address.
1214 */
1215vm_offset_t
1216pmap_kextract(vm_offset_t va)
1217{
1218	struct		pvo_entry *pvo;
1219
1220#ifdef UMA_MD_SMALL_ALLOC
1221	/*
1222	 * Allow direct mappings
1223	 */
1224	if (va < VM_MIN_KERNEL_ADDRESS) {
1225		return (va);
1226	}
1227#endif
1228
1229	pvo = pmap_pvo_find_va(kernel_pmap, va & ~ADDR_POFF, NULL);
1230	KASSERT(pvo != NULL, ("pmap_kextract: no addr found"));
1231	if (pvo == NULL) {
1232		return (0);
1233	}
1234
1235	return ((pvo->pvo_pte.pte_lo & PTE_RPGN) | (va & ADDR_POFF));
1236}
1237
1238/*
1239 * Remove a wired page from kernel virtual address space.
1240 */
1241void
1242pmap_kremove(vm_offset_t va)
1243{
1244
1245	pmap_remove(kernel_pmap, va, va + PAGE_SIZE);
1246}
1247
1248/*
1249 * Map a range of physical addresses into kernel virtual address space.
1250 *
1251 * The value passed in *virt is a suggested virtual address for the mapping.
1252 * Architectures which can support a direct-mapped physical to virtual region
1253 * can return the appropriate address within that region, leaving '*virt'
1254 * unchanged.  We cannot and therefore do not; *virt is updated with the
1255 * first usable address after the mapped region.
1256 */
1257vm_offset_t
1258pmap_map(vm_offset_t *virt, vm_offset_t pa_start, vm_offset_t pa_end, int prot)
1259{
1260	vm_offset_t	sva, va;
1261
1262	sva = *virt;
1263	va = sva;
1264	for (; pa_start < pa_end; pa_start += PAGE_SIZE, va += PAGE_SIZE)
1265		pmap_kenter(va, pa_start);
1266	*virt = va;
1267	return (sva);
1268}
1269
1270int
1271pmap_mincore(pmap_t pmap, vm_offset_t addr)
1272{
1273	TODO;
1274	return (0);
1275}
1276
1277void
1278pmap_object_init_pt(pmap_t pm, vm_offset_t addr, vm_object_t object,
1279		    vm_pindex_t pindex, vm_size_t size)
1280{
1281
1282	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1283	KASSERT(object->type == OBJT_DEVICE,
1284	    ("pmap_object_init_pt: non-device object"));
1285	KASSERT(pm == &curproc->p_vmspace->vm_pmap || pm == kernel_pmap,
1286	    ("pmap_object_init_pt: non current pmap"));
1287}
1288
1289/*
1290 * Lower the permission for all mappings to a given page.
1291 */
1292void
1293pmap_page_protect(vm_page_t m, vm_prot_t prot)
1294{
1295	struct	pvo_head *pvo_head;
1296	struct	pvo_entry *pvo, *next_pvo;
1297	struct	pte *pt;
1298
1299	/*
1300	 * Since the routine only downgrades protection, if the
1301	 * maximal protection is desired, there isn't any change
1302	 * to be made.
1303	 */
1304	if ((prot & (VM_PROT_READ|VM_PROT_WRITE)) ==
1305	    (VM_PROT_READ|VM_PROT_WRITE))
1306		return;
1307
1308	pvo_head = vm_page_to_pvoh(m);
1309	for (pvo = LIST_FIRST(pvo_head); pvo != NULL; pvo = next_pvo) {
1310		next_pvo = LIST_NEXT(pvo, pvo_vlink);
1311		PMAP_PVO_CHECK(pvo);	/* sanity check */
1312
1313		/*
1314		 * Downgrading to no mapping at all, we just remove the entry.
1315		 */
1316		if ((prot & VM_PROT_READ) == 0) {
1317			pmap_pvo_remove(pvo, -1);
1318			continue;
1319		}
1320
1321		/*
1322		 * If EXEC permission is being revoked, just clear the flag
1323		 * in the PVO.
1324		 */
1325		if ((prot & VM_PROT_EXECUTE) == 0)
1326			pvo->pvo_vaddr &= ~PVO_EXECUTABLE;
1327
1328		/*
1329		 * If this entry is already RO, don't diddle with the page
1330		 * table.
1331		 */
1332		if ((pvo->pvo_pte.pte_lo & PTE_PP) == PTE_BR) {
1333			PMAP_PVO_CHECK(pvo);
1334			continue;
1335		}
1336
1337		/*
1338		 * Grab the PTE before we diddle the bits so pvo_to_pte can
1339		 * verify the pte contents are as expected.
1340		 */
1341		pt = pmap_pvo_to_pte(pvo, -1);
1342		pvo->pvo_pte.pte_lo &= ~PTE_PP;
1343		pvo->pvo_pte.pte_lo |= PTE_BR;
1344		if (pt != NULL)
1345			pmap_pte_change(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
1346		PMAP_PVO_CHECK(pvo);	/* sanity check */
1347	}
1348}
1349
1350/*
1351 * Returns true if the pmap's pv is one of the first
1352 * 16 pvs linked to from this page.  This count may
1353 * be changed upwards or downwards in the future; it
1354 * is only necessary that true be returned for a small
1355 * subset of pmaps for proper page aging.
1356 */
1357boolean_t
1358pmap_page_exists_quick(pmap_t pmap, vm_page_t m)
1359{
1360        int loops;
1361	struct pvo_entry *pvo;
1362
1363        if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
1364                return FALSE;
1365
1366	loops = 0;
1367	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
1368		if (pvo->pvo_pmap == pmap)
1369			return (TRUE);
1370		if (++loops >= 16)
1371			break;
1372	}
1373
1374	return (FALSE);
1375}
1376
1377static u_int	pmap_vsidcontext;
1378
1379void
1380pmap_pinit(pmap_t pmap)
1381{
1382	int	i, mask;
1383	u_int	entropy;
1384
1385	KASSERT((int)pmap < VM_MIN_KERNEL_ADDRESS, ("pmap_pinit: virt pmap"));
1386
1387	entropy = 0;
1388	__asm __volatile("mftb %0" : "=r"(entropy));
1389
1390	/*
1391	 * Allocate some segment registers for this pmap.
1392	 */
1393	for (i = 0; i < NPMAPS; i += VSID_NBPW) {
1394		u_int	hash, n;
1395
1396		/*
1397		 * Create a new value by mutiplying by a prime and adding in
1398		 * entropy from the timebase register.  This is to make the
1399		 * VSID more random so that the PT hash function collides
1400		 * less often.  (Note that the prime casues gcc to do shifts
1401		 * instead of a multiply.)
1402		 */
1403		pmap_vsidcontext = (pmap_vsidcontext * 0x1105) + entropy;
1404		hash = pmap_vsidcontext & (NPMAPS - 1);
1405		if (hash == 0)		/* 0 is special, avoid it */
1406			continue;
1407		n = hash >> 5;
1408		mask = 1 << (hash & (VSID_NBPW - 1));
1409		hash = (pmap_vsidcontext & 0xfffff);
1410		if (pmap_vsid_bitmap[n] & mask) {	/* collision? */
1411			/* anything free in this bucket? */
1412			if (pmap_vsid_bitmap[n] == 0xffffffff) {
1413				entropy = (pmap_vsidcontext >> 20);
1414				continue;
1415			}
1416			i = ffs(~pmap_vsid_bitmap[i]) - 1;
1417			mask = 1 << i;
1418			hash &= 0xfffff & ~(VSID_NBPW - 1);
1419			hash |= i;
1420		}
1421		pmap_vsid_bitmap[n] |= mask;
1422		for (i = 0; i < 16; i++)
1423			pmap->pm_sr[i] = VSID_MAKE(i, hash);
1424		return;
1425	}
1426
1427	panic("pmap_pinit: out of segments");
1428}
1429
1430/*
1431 * Initialize the pmap associated with process 0.
1432 */
1433void
1434pmap_pinit0(pmap_t pm)
1435{
1436
1437	pmap_pinit(pm);
1438	bzero(&pm->pm_stats, sizeof(pm->pm_stats));
1439}
1440
1441/*
1442 * Set the physical protection on the specified range of this map as requested.
1443 */
1444void
1445pmap_protect(pmap_t pm, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot)
1446{
1447	struct	pvo_entry *pvo;
1448	struct	pte *pt;
1449	int	pteidx;
1450
1451	CTR4(KTR_PMAP, "pmap_protect: pm=%p sva=%#x eva=%#x prot=%#x", pm, sva,
1452	    eva, prot);
1453
1454
1455	KASSERT(pm == &curproc->p_vmspace->vm_pmap || pm == kernel_pmap,
1456	    ("pmap_protect: non current pmap"));
1457
1458	if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
1459		pmap_remove(pm, sva, eva);
1460		return;
1461	}
1462
1463	for (; sva < eva; sva += PAGE_SIZE) {
1464		pvo = pmap_pvo_find_va(pm, sva, &pteidx);
1465		if (pvo == NULL)
1466			continue;
1467
1468		if ((prot & VM_PROT_EXECUTE) == 0)
1469			pvo->pvo_vaddr &= ~PVO_EXECUTABLE;
1470
1471		/*
1472		 * Grab the PTE pointer before we diddle with the cached PTE
1473		 * copy.
1474		 */
1475		pt = pmap_pvo_to_pte(pvo, pteidx);
1476		/*
1477		 * Change the protection of the page.
1478		 */
1479		pvo->pvo_pte.pte_lo &= ~PTE_PP;
1480		pvo->pvo_pte.pte_lo |= PTE_BR;
1481
1482		/*
1483		 * If the PVO is in the page table, update that pte as well.
1484		 */
1485		if (pt != NULL)
1486			pmap_pte_change(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
1487	}
1488}
1489
1490/*
1491 * Map a list of wired pages into kernel virtual address space.  This is
1492 * intended for temporary mappings which do not need page modification or
1493 * references recorded.  Existing mappings in the region are overwritten.
1494 */
1495void
1496pmap_qenter(vm_offset_t sva, vm_page_t *m, int count)
1497{
1498	vm_offset_t va;
1499
1500	va = sva;
1501	while (count-- > 0) {
1502		pmap_kenter(va, VM_PAGE_TO_PHYS(*m));
1503		va += PAGE_SIZE;
1504		m++;
1505	}
1506}
1507
1508/*
1509 * Remove page mappings from kernel virtual address space.  Intended for
1510 * temporary mappings entered by pmap_qenter.
1511 */
1512void
1513pmap_qremove(vm_offset_t sva, int count)
1514{
1515	vm_offset_t va;
1516
1517	va = sva;
1518	while (count-- > 0) {
1519		pmap_kremove(va);
1520		va += PAGE_SIZE;
1521	}
1522}
1523
1524void
1525pmap_release(pmap_t pmap)
1526{
1527        int idx, mask;
1528
1529	/*
1530	 * Free segment register's VSID
1531	 */
1532        if (pmap->pm_sr[0] == 0)
1533                panic("pmap_release");
1534
1535        idx = VSID_TO_HASH(pmap->pm_sr[0]) & (NPMAPS-1);
1536        mask = 1 << (idx % VSID_NBPW);
1537        idx /= VSID_NBPW;
1538        pmap_vsid_bitmap[idx] &= ~mask;
1539}
1540
1541/*
1542 * Remove the given range of addresses from the specified map.
1543 */
1544void
1545pmap_remove(pmap_t pm, vm_offset_t sva, vm_offset_t eva)
1546{
1547	struct	pvo_entry *pvo;
1548	int	pteidx;
1549
1550	for (; sva < eva; sva += PAGE_SIZE) {
1551		pvo = pmap_pvo_find_va(pm, sva, &pteidx);
1552		if (pvo != NULL) {
1553			pmap_pvo_remove(pvo, pteidx);
1554		}
1555	}
1556}
1557
1558/*
1559 * Remove physical page from all pmaps in which it resides. pmap_pvo_remove()
1560 * will reflect changes in pte's back to the vm_page.
1561 */
1562void
1563pmap_remove_all(vm_page_t m)
1564{
1565	struct  pvo_head *pvo_head;
1566	struct	pvo_entry *pvo, *next_pvo;
1567
1568	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1569
1570	pvo_head = vm_page_to_pvoh(m);
1571	for (pvo = LIST_FIRST(pvo_head); pvo != NULL; pvo = next_pvo) {
1572		next_pvo = LIST_NEXT(pvo, pvo_vlink);
1573
1574		PMAP_PVO_CHECK(pvo);	/* sanity check */
1575		pmap_pvo_remove(pvo, -1);
1576	}
1577	vm_page_flag_clear(m, PG_WRITEABLE);
1578}
1579
1580/*
1581 * Remove all pages from specified address space, this aids process exit
1582 * speeds.  This is much faster than pmap_remove in the case of running down
1583 * an entire address space.  Only works for the current pmap.
1584 */
1585void
1586pmap_remove_pages(pmap_t pm, vm_offset_t sva, vm_offset_t eva)
1587{
1588
1589	KASSERT(pm == &curproc->p_vmspace->vm_pmap || pm == kernel_pmap,
1590	    ("pmap_remove_pages: non current pmap"));
1591	pmap_remove(pm, sva, eva);
1592}
1593
1594/*
1595 * Allocate a physical page of memory directly from the phys_avail map.
1596 * Can only be called from pmap_bootstrap before avail start and end are
1597 * calculated.
1598 */
1599static vm_offset_t
1600pmap_bootstrap_alloc(vm_size_t size, u_int align)
1601{
1602	vm_offset_t	s, e;
1603	int		i, j;
1604
1605	size = round_page(size);
1606	for (i = 0; phys_avail[i + 1] != 0; i += 2) {
1607		if (align != 0)
1608			s = (phys_avail[i] + align - 1) & ~(align - 1);
1609		else
1610			s = phys_avail[i];
1611		e = s + size;
1612
1613		if (s < phys_avail[i] || e > phys_avail[i + 1])
1614			continue;
1615
1616		if (s == phys_avail[i]) {
1617			phys_avail[i] += size;
1618		} else if (e == phys_avail[i + 1]) {
1619			phys_avail[i + 1] -= size;
1620		} else {
1621			for (j = phys_avail_count * 2; j > i; j -= 2) {
1622				phys_avail[j] = phys_avail[j - 2];
1623				phys_avail[j + 1] = phys_avail[j - 1];
1624			}
1625
1626			phys_avail[i + 3] = phys_avail[i + 1];
1627			phys_avail[i + 1] = s;
1628			phys_avail[i + 2] = e;
1629			phys_avail_count++;
1630		}
1631
1632		return (s);
1633	}
1634	panic("pmap_bootstrap_alloc: could not allocate memory");
1635}
1636
1637/*
1638 * Return an unmapped pvo for a kernel virtual address.
1639 * Used by pmap functions that operate on physical pages.
1640 */
1641static struct pvo_entry *
1642pmap_rkva_alloc(void)
1643{
1644	struct		pvo_entry *pvo;
1645	struct		pte *pt;
1646	vm_offset_t	kva;
1647	int		pteidx;
1648
1649	if (pmap_rkva_count == 0)
1650		panic("pmap_rkva_alloc: no more reserved KVAs");
1651
1652	kva = pmap_rkva_start + (PAGE_SIZE * --pmap_rkva_count);
1653	pmap_kenter(kva, 0);
1654
1655	pvo = pmap_pvo_find_va(kernel_pmap, kva, &pteidx);
1656
1657	if (pvo == NULL)
1658		panic("pmap_kva_alloc: pmap_pvo_find_va failed");
1659
1660	pt = pmap_pvo_to_pte(pvo, pteidx);
1661
1662	if (pt == NULL)
1663		panic("pmap_kva_alloc: pmap_pvo_to_pte failed");
1664
1665	pmap_pte_unset(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
1666	PVO_PTEGIDX_CLR(pvo);
1667
1668	pmap_pte_overflow++;
1669
1670	return (pvo);
1671}
1672
1673static void
1674pmap_pa_map(struct pvo_entry *pvo, vm_offset_t pa, struct pte *saved_pt,
1675    int *depth_p)
1676{
1677	struct	pte *pt;
1678
1679	/*
1680	 * If this pvo already has a valid pte, we need to save it so it can
1681	 * be restored later.  We then just reload the new PTE over the old
1682	 * slot.
1683	 */
1684	if (saved_pt != NULL) {
1685		pt = pmap_pvo_to_pte(pvo, -1);
1686
1687		if (pt != NULL) {
1688			pmap_pte_unset(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
1689			PVO_PTEGIDX_CLR(pvo);
1690			pmap_pte_overflow++;
1691		}
1692
1693		*saved_pt = pvo->pvo_pte;
1694
1695		pvo->pvo_pte.pte_lo &= ~PTE_RPGN;
1696	}
1697
1698	pvo->pvo_pte.pte_lo |= pa;
1699
1700	if (!pmap_pte_spill(pvo->pvo_vaddr))
1701		panic("pmap_pa_map: could not spill pvo %p", pvo);
1702
1703	if (depth_p != NULL)
1704		(*depth_p)++;
1705}
1706
1707static void
1708pmap_pa_unmap(struct pvo_entry *pvo, struct pte *saved_pt, int *depth_p)
1709{
1710	struct	pte *pt;
1711
1712	pt = pmap_pvo_to_pte(pvo, -1);
1713
1714	if (pt != NULL) {
1715		pmap_pte_unset(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
1716		PVO_PTEGIDX_CLR(pvo);
1717		pmap_pte_overflow++;
1718	}
1719
1720	pvo->pvo_pte.pte_lo &= ~PTE_RPGN;
1721
1722	/*
1723	 * If there is a saved PTE and it's valid, restore it and return.
1724	 */
1725	if (saved_pt != NULL && (saved_pt->pte_lo & PTE_RPGN) != 0) {
1726		if (depth_p != NULL && --(*depth_p) == 0)
1727			panic("pmap_pa_unmap: restoring but depth == 0");
1728
1729		pvo->pvo_pte = *saved_pt;
1730
1731		if (!pmap_pte_spill(pvo->pvo_vaddr))
1732			panic("pmap_pa_unmap: could not spill pvo %p", pvo);
1733	}
1734}
1735
1736static void
1737pmap_syncicache(vm_offset_t pa, vm_size_t len)
1738{
1739	__syncicache((void *)pa, len);
1740}
1741
1742static void
1743tlbia(void)
1744{
1745	caddr_t	i;
1746
1747	SYNC();
1748	for (i = 0; i < (caddr_t)0x00040000; i += 0x00001000) {
1749		TLBIE(i);
1750		EIEIO();
1751	}
1752	TLBSYNC();
1753	SYNC();
1754}
1755
1756static int
1757pmap_pvo_enter(pmap_t pm, uma_zone_t zone, struct pvo_head *pvo_head,
1758    vm_offset_t va, vm_offset_t pa, u_int pte_lo, int flags)
1759{
1760	struct	pvo_entry *pvo;
1761	u_int	sr;
1762	int	first;
1763	u_int	ptegidx;
1764	int	i;
1765	int     bootstrap;
1766
1767	pmap_pvo_enter_calls++;
1768	first = 0;
1769
1770	bootstrap = 0;
1771
1772	/*
1773	 * Compute the PTE Group index.
1774	 */
1775	va &= ~ADDR_POFF;
1776	sr = va_to_sr(pm->pm_sr, va);
1777	ptegidx = va_to_pteg(sr, va);
1778
1779	/*
1780	 * Remove any existing mapping for this page.  Reuse the pvo entry if
1781	 * there is a mapping.
1782	 */
1783	LIST_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
1784		if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) {
1785			if ((pvo->pvo_pte.pte_lo & PTE_RPGN) == pa &&
1786			    (pvo->pvo_pte.pte_lo & PTE_PP) ==
1787			    (pte_lo & PTE_PP)) {
1788				return (0);
1789			}
1790			pmap_pvo_remove(pvo, -1);
1791			break;
1792		}
1793	}
1794
1795	/*
1796	 * If we aren't overwriting a mapping, try to allocate.
1797	 */
1798	if (pmap_initialized) {
1799		pvo = uma_zalloc(zone, M_NOWAIT);
1800	} else {
1801		if (pmap_bpvo_pool_index >= BPVO_POOL_SIZE) {
1802			panic("pmap_enter: bpvo pool exhausted, %d, %d, %d",
1803			      pmap_bpvo_pool_index, BPVO_POOL_SIZE,
1804			      BPVO_POOL_SIZE * sizeof(struct pvo_entry));
1805		}
1806		pvo = &pmap_bpvo_pool[pmap_bpvo_pool_index];
1807		pmap_bpvo_pool_index++;
1808		bootstrap = 1;
1809	}
1810
1811	if (pvo == NULL) {
1812		return (ENOMEM);
1813	}
1814
1815	pmap_pvo_entries++;
1816	pvo->pvo_vaddr = va;
1817	pvo->pvo_pmap = pm;
1818	LIST_INSERT_HEAD(&pmap_pvo_table[ptegidx], pvo, pvo_olink);
1819	pvo->pvo_vaddr &= ~ADDR_POFF;
1820	if (flags & VM_PROT_EXECUTE)
1821		pvo->pvo_vaddr |= PVO_EXECUTABLE;
1822	if (flags & PVO_WIRED)
1823		pvo->pvo_vaddr |= PVO_WIRED;
1824	if (pvo_head != &pmap_pvo_kunmanaged)
1825		pvo->pvo_vaddr |= PVO_MANAGED;
1826	if (bootstrap)
1827		pvo->pvo_vaddr |= PVO_BOOTSTRAP;
1828	pmap_pte_create(&pvo->pvo_pte, sr, va, pa | pte_lo);
1829
1830	/*
1831	 * Remember if the list was empty and therefore will be the first
1832	 * item.
1833	 */
1834	if (LIST_FIRST(pvo_head) == NULL)
1835		first = 1;
1836
1837	LIST_INSERT_HEAD(pvo_head, pvo, pvo_vlink);
1838	if (pvo->pvo_pte.pte_lo & PVO_WIRED)
1839		pvo->pvo_pmap->pm_stats.wired_count++;
1840	pvo->pvo_pmap->pm_stats.resident_count++;
1841
1842	/*
1843	 * We hope this succeeds but it isn't required.
1844	 */
1845	i = pmap_pte_insert(ptegidx, &pvo->pvo_pte);
1846	if (i >= 0) {
1847		PVO_PTEGIDX_SET(pvo, i);
1848	} else {
1849		panic("pmap_pvo_enter: overflow");
1850		pmap_pte_overflow++;
1851	}
1852
1853	return (first ? ENOENT : 0);
1854}
1855
1856static void
1857pmap_pvo_remove(struct pvo_entry *pvo, int pteidx)
1858{
1859	struct	pte *pt;
1860
1861	/*
1862	 * If there is an active pte entry, we need to deactivate it (and
1863	 * save the ref & cfg bits).
1864	 */
1865	pt = pmap_pvo_to_pte(pvo, pteidx);
1866	if (pt != NULL) {
1867		pmap_pte_unset(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
1868		PVO_PTEGIDX_CLR(pvo);
1869	} else {
1870		pmap_pte_overflow--;
1871	}
1872
1873	/*
1874	 * Update our statistics.
1875	 */
1876	pvo->pvo_pmap->pm_stats.resident_count--;
1877	if (pvo->pvo_pte.pte_lo & PVO_WIRED)
1878		pvo->pvo_pmap->pm_stats.wired_count--;
1879
1880	/*
1881	 * Save the REF/CHG bits into their cache if the page is managed.
1882	 */
1883	if (pvo->pvo_vaddr & PVO_MANAGED) {
1884		struct	vm_page *pg;
1885
1886		pg = PHYS_TO_VM_PAGE(pvo->pvo_pte.pte_lo & PTE_RPGN);
1887		if (pg != NULL) {
1888			pmap_attr_save(pg, pvo->pvo_pte.pte_lo &
1889			    (PTE_REF | PTE_CHG));
1890		}
1891	}
1892
1893	/*
1894	 * Remove this PVO from the PV list.
1895	 */
1896	LIST_REMOVE(pvo, pvo_vlink);
1897
1898	/*
1899	 * Remove this from the overflow list and return it to the pool
1900	 * if we aren't going to reuse it.
1901	 */
1902	LIST_REMOVE(pvo, pvo_olink);
1903	if (!(pvo->pvo_vaddr & PVO_BOOTSTRAP))
1904		uma_zfree(pvo->pvo_vaddr & PVO_MANAGED ? pmap_mpvo_zone :
1905		    pmap_upvo_zone, pvo);
1906	pmap_pvo_entries--;
1907	pmap_pvo_remove_calls++;
1908}
1909
1910static __inline int
1911pmap_pvo_pte_index(const struct pvo_entry *pvo, int ptegidx)
1912{
1913	int	pteidx;
1914
1915	/*
1916	 * We can find the actual pte entry without searching by grabbing
1917	 * the PTEG index from 3 unused bits in pte_lo[11:9] and by
1918	 * noticing the HID bit.
1919	 */
1920	pteidx = ptegidx * 8 + PVO_PTEGIDX_GET(pvo);
1921	if (pvo->pvo_pte.pte_hi & PTE_HID)
1922		pteidx ^= pmap_pteg_mask * 8;
1923
1924	return (pteidx);
1925}
1926
1927static struct pvo_entry *
1928pmap_pvo_find_va(pmap_t pm, vm_offset_t va, int *pteidx_p)
1929{
1930	struct	pvo_entry *pvo;
1931	int	ptegidx;
1932	u_int	sr;
1933
1934	va &= ~ADDR_POFF;
1935	sr = va_to_sr(pm->pm_sr, va);
1936	ptegidx = va_to_pteg(sr, va);
1937
1938	LIST_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
1939		if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) {
1940			if (pteidx_p)
1941				*pteidx_p = pmap_pvo_pte_index(pvo, ptegidx);
1942			return (pvo);
1943		}
1944	}
1945
1946	return (NULL);
1947}
1948
1949static struct pte *
1950pmap_pvo_to_pte(const struct pvo_entry *pvo, int pteidx)
1951{
1952	struct	pte *pt;
1953
1954	/*
1955	 * If we haven't been supplied the ptegidx, calculate it.
1956	 */
1957	if (pteidx == -1) {
1958		int	ptegidx;
1959		u_int	sr;
1960
1961		sr = va_to_sr(pvo->pvo_pmap->pm_sr, pvo->pvo_vaddr);
1962		ptegidx = va_to_pteg(sr, pvo->pvo_vaddr);
1963		pteidx = pmap_pvo_pte_index(pvo, ptegidx);
1964	}
1965
1966	pt = &pmap_pteg_table[pteidx >> 3].pt[pteidx & 7];
1967
1968	if ((pvo->pvo_pte.pte_hi & PTE_VALID) && !PVO_PTEGIDX_ISSET(pvo)) {
1969		panic("pmap_pvo_to_pte: pvo %p has valid pte in pvo but no "
1970		    "valid pte index", pvo);
1971	}
1972
1973	if ((pvo->pvo_pte.pte_hi & PTE_VALID) == 0 && PVO_PTEGIDX_ISSET(pvo)) {
1974		panic("pmap_pvo_to_pte: pvo %p has valid pte index in pvo "
1975		    "pvo but no valid pte", pvo);
1976	}
1977
1978	if ((pt->pte_hi ^ (pvo->pvo_pte.pte_hi & ~PTE_VALID)) == PTE_VALID) {
1979		if ((pvo->pvo_pte.pte_hi & PTE_VALID) == 0) {
1980			panic("pmap_pvo_to_pte: pvo %p has valid pte in "
1981			    "pmap_pteg_table %p but invalid in pvo", pvo, pt);
1982		}
1983
1984		if (((pt->pte_lo ^ pvo->pvo_pte.pte_lo) & ~(PTE_CHG|PTE_REF))
1985		    != 0) {
1986			panic("pmap_pvo_to_pte: pvo %p pte does not match "
1987			    "pte %p in pmap_pteg_table", pvo, pt);
1988		}
1989
1990		return (pt);
1991	}
1992
1993	if (pvo->pvo_pte.pte_hi & PTE_VALID) {
1994		panic("pmap_pvo_to_pte: pvo %p has invalid pte %p in "
1995		    "pmap_pteg_table but valid in pvo", pvo, pt);
1996	}
1997
1998	return (NULL);
1999}
2000
2001/*
2002 * XXX: THIS STUFF SHOULD BE IN pte.c?
2003 */
2004int
2005pmap_pte_spill(vm_offset_t addr)
2006{
2007	struct	pvo_entry *source_pvo, *victim_pvo;
2008	struct	pvo_entry *pvo;
2009	int	ptegidx, i, j;
2010	u_int	sr;
2011	struct	pteg *pteg;
2012	struct	pte *pt;
2013
2014	pmap_pte_spills++;
2015
2016	sr = mfsrin(addr);
2017	ptegidx = va_to_pteg(sr, addr);
2018
2019	/*
2020	 * Have to substitute some entry.  Use the primary hash for this.
2021	 * Use low bits of timebase as random generator.
2022	 */
2023	pteg = &pmap_pteg_table[ptegidx];
2024	__asm __volatile("mftb %0" : "=r"(i));
2025	i &= 7;
2026	pt = &pteg->pt[i];
2027
2028	source_pvo = NULL;
2029	victim_pvo = NULL;
2030	LIST_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
2031		/*
2032		 * We need to find a pvo entry for this address.
2033		 */
2034		PMAP_PVO_CHECK(pvo);
2035		if (source_pvo == NULL &&
2036		    pmap_pte_match(&pvo->pvo_pte, sr, addr,
2037		    pvo->pvo_pte.pte_hi & PTE_HID)) {
2038			/*
2039			 * Now found an entry to be spilled into the pteg.
2040			 * The PTE is now valid, so we know it's active.
2041			 */
2042			j = pmap_pte_insert(ptegidx, &pvo->pvo_pte);
2043
2044			if (j >= 0) {
2045				PVO_PTEGIDX_SET(pvo, j);
2046				pmap_pte_overflow--;
2047				PMAP_PVO_CHECK(pvo);
2048				return (1);
2049			}
2050
2051			source_pvo = pvo;
2052
2053			if (victim_pvo != NULL)
2054				break;
2055		}
2056
2057		/*
2058		 * We also need the pvo entry of the victim we are replacing
2059		 * so save the R & C bits of the PTE.
2060		 */
2061		if ((pt->pte_hi & PTE_HID) == 0 && victim_pvo == NULL &&
2062		    pmap_pte_compare(pt, &pvo->pvo_pte)) {
2063			victim_pvo = pvo;
2064			if (source_pvo != NULL)
2065				break;
2066		}
2067	}
2068
2069	if (source_pvo == NULL)
2070		return (0);
2071
2072	if (victim_pvo == NULL) {
2073		if ((pt->pte_hi & PTE_HID) == 0)
2074			panic("pmap_pte_spill: victim p-pte (%p) has no pvo"
2075			    "entry", pt);
2076
2077		/*
2078		 * If this is a secondary PTE, we need to search it's primary
2079		 * pvo bucket for the matching PVO.
2080		 */
2081		LIST_FOREACH(pvo, &pmap_pvo_table[ptegidx ^ pmap_pteg_mask],
2082		    pvo_olink) {
2083			PMAP_PVO_CHECK(pvo);
2084			/*
2085			 * We also need the pvo entry of the victim we are
2086			 * replacing so save the R & C bits of the PTE.
2087			 */
2088			if (pmap_pte_compare(pt, &pvo->pvo_pte)) {
2089				victim_pvo = pvo;
2090				break;
2091			}
2092		}
2093
2094		if (victim_pvo == NULL)
2095			panic("pmap_pte_spill: victim s-pte (%p) has no pvo"
2096			    "entry", pt);
2097	}
2098
2099	/*
2100	 * We are invalidating the TLB entry for the EA we are replacing even
2101	 * though it's valid.  If we don't, we lose any ref/chg bit changes
2102	 * contained in the TLB entry.
2103	 */
2104	source_pvo->pvo_pte.pte_hi &= ~PTE_HID;
2105
2106	pmap_pte_unset(pt, &victim_pvo->pvo_pte, victim_pvo->pvo_vaddr);
2107	pmap_pte_set(pt, &source_pvo->pvo_pte);
2108
2109	PVO_PTEGIDX_CLR(victim_pvo);
2110	PVO_PTEGIDX_SET(source_pvo, i);
2111	pmap_pte_replacements++;
2112
2113	PMAP_PVO_CHECK(victim_pvo);
2114	PMAP_PVO_CHECK(source_pvo);
2115
2116	return (1);
2117}
2118
2119static int
2120pmap_pte_insert(u_int ptegidx, struct pte *pvo_pt)
2121{
2122	struct	pte *pt;
2123	int	i;
2124
2125	/*
2126	 * First try primary hash.
2127	 */
2128	for (pt = pmap_pteg_table[ptegidx].pt, i = 0; i < 8; i++, pt++) {
2129		if ((pt->pte_hi & PTE_VALID) == 0) {
2130			pvo_pt->pte_hi &= ~PTE_HID;
2131			pmap_pte_set(pt, pvo_pt);
2132			return (i);
2133		}
2134	}
2135
2136	/*
2137	 * Now try secondary hash.
2138	 */
2139	ptegidx ^= pmap_pteg_mask;
2140	ptegidx++;
2141	for (pt = pmap_pteg_table[ptegidx].pt, i = 0; i < 8; i++, pt++) {
2142		if ((pt->pte_hi & PTE_VALID) == 0) {
2143			pvo_pt->pte_hi |= PTE_HID;
2144			pmap_pte_set(pt, pvo_pt);
2145			return (i);
2146		}
2147	}
2148
2149	panic("pmap_pte_insert: overflow");
2150	return (-1);
2151}
2152
2153static boolean_t
2154pmap_query_bit(vm_page_t m, int ptebit)
2155{
2156	struct	pvo_entry *pvo;
2157	struct	pte *pt;
2158
2159#if 0
2160	if (pmap_attr_fetch(m) & ptebit)
2161		return (TRUE);
2162#endif
2163
2164	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
2165		PMAP_PVO_CHECK(pvo);	/* sanity check */
2166
2167		/*
2168		 * See if we saved the bit off.  If so, cache it and return
2169		 * success.
2170		 */
2171		if (pvo->pvo_pte.pte_lo & ptebit) {
2172			pmap_attr_save(m, ptebit);
2173			PMAP_PVO_CHECK(pvo);	/* sanity check */
2174			return (TRUE);
2175		}
2176	}
2177
2178	/*
2179	 * No luck, now go through the hard part of looking at the PTEs
2180	 * themselves.  Sync so that any pending REF/CHG bits are flushed to
2181	 * the PTEs.
2182	 */
2183	SYNC();
2184	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
2185		PMAP_PVO_CHECK(pvo);	/* sanity check */
2186
2187		/*
2188		 * See if this pvo has a valid PTE.  if so, fetch the
2189		 * REF/CHG bits from the valid PTE.  If the appropriate
2190		 * ptebit is set, cache it and return success.
2191		 */
2192		pt = pmap_pvo_to_pte(pvo, -1);
2193		if (pt != NULL) {
2194			pmap_pte_synch(pt, &pvo->pvo_pte);
2195			if (pvo->pvo_pte.pte_lo & ptebit) {
2196				pmap_attr_save(m, ptebit);
2197				PMAP_PVO_CHECK(pvo);	/* sanity check */
2198				return (TRUE);
2199			}
2200		}
2201	}
2202
2203	return (FALSE);
2204}
2205
2206static u_int
2207pmap_clear_bit(vm_page_t m, int ptebit, int *origbit)
2208{
2209	u_int	count;
2210	struct	pvo_entry *pvo;
2211	struct	pte *pt;
2212	int	rv;
2213
2214	/*
2215	 * Clear the cached value.
2216	 */
2217	rv = pmap_attr_fetch(m);
2218	pmap_attr_clear(m, ptebit);
2219
2220	/*
2221	 * Sync so that any pending REF/CHG bits are flushed to the PTEs (so
2222	 * we can reset the right ones).  note that since the pvo entries and
2223	 * list heads are accessed via BAT0 and are never placed in the page
2224	 * table, we don't have to worry about further accesses setting the
2225	 * REF/CHG bits.
2226	 */
2227	SYNC();
2228
2229	/*
2230	 * For each pvo entry, clear the pvo's ptebit.  If this pvo has a
2231	 * valid pte clear the ptebit from the valid pte.
2232	 */
2233	count = 0;
2234	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
2235		PMAP_PVO_CHECK(pvo);	/* sanity check */
2236		pt = pmap_pvo_to_pte(pvo, -1);
2237		if (pt != NULL) {
2238			pmap_pte_synch(pt, &pvo->pvo_pte);
2239			if (pvo->pvo_pte.pte_lo & ptebit) {
2240				count++;
2241				pmap_pte_clear(pt, PVO_VADDR(pvo), ptebit);
2242			}
2243		}
2244		rv |= pvo->pvo_pte.pte_lo;
2245		pvo->pvo_pte.pte_lo &= ~ptebit;
2246		PMAP_PVO_CHECK(pvo);	/* sanity check */
2247	}
2248
2249	if (origbit != NULL) {
2250		*origbit = rv;
2251	}
2252
2253	return (count);
2254}
2255
2256/*
2257 * Return true if the physical range is encompassed by the battable[idx]
2258 */
2259static int
2260pmap_bat_mapped(int idx, vm_offset_t pa, vm_size_t size)
2261{
2262	u_int prot;
2263	u_int32_t start;
2264	u_int32_t end;
2265	u_int32_t bat_ble;
2266
2267	/*
2268	 * Return immediately if not a valid mapping
2269	 */
2270	if (!battable[idx].batu & BAT_Vs)
2271		return (EINVAL);
2272
2273	/*
2274	 * The BAT entry must be cache-inhibited, guarded, and r/w
2275	 * so it can function as an i/o page
2276	 */
2277	prot = battable[idx].batl & (BAT_I|BAT_G|BAT_PP_RW);
2278	if (prot != (BAT_I|BAT_G|BAT_PP_RW))
2279		return (EPERM);
2280
2281	/*
2282	 * The address should be within the BAT range. Assume that the
2283	 * start address in the BAT has the correct alignment (thus
2284	 * not requiring masking)
2285	 */
2286	start = battable[idx].batl & BAT_PBS;
2287	bat_ble = (battable[idx].batu & ~(BAT_EBS)) | 0x03;
2288	end = start | (bat_ble << 15) | 0x7fff;
2289
2290	if ((pa < start) || ((pa + size) > end))
2291		return (ERANGE);
2292
2293	return (0);
2294}
2295
2296
2297/*
2298 * Map a set of physical memory pages into the kernel virtual
2299 * address space. Return a pointer to where it is mapped. This
2300 * routine is intended to be used for mapping device memory,
2301 * NOT real memory.
2302 */
2303void *
2304pmap_mapdev(vm_offset_t pa, vm_size_t size)
2305{
2306	vm_offset_t va, tmpva, ppa, offset;
2307	int i;
2308
2309	ppa = trunc_page(pa);
2310	offset = pa & PAGE_MASK;
2311	size = roundup(offset + size, PAGE_SIZE);
2312
2313	GIANT_REQUIRED;
2314
2315	/*
2316	 * If the physical address lies within a valid BAT table entry,
2317	 * return the 1:1 mapping. This currently doesn't work
2318	 * for regions that overlap 256M BAT segments.
2319	 */
2320	for (i = 0; i < 16; i++) {
2321		if (pmap_bat_mapped(i, pa, size) == 0)
2322			return ((void *) pa);
2323	}
2324
2325	va = kmem_alloc_nofault(kernel_map, size);
2326	if (!va)
2327		panic("pmap_mapdev: Couldn't alloc kernel virtual memory");
2328
2329	for (tmpva = va; size > 0;) {
2330		pmap_kenter(tmpva, ppa);
2331		TLBIE(tmpva); /* XXX or should it be invalidate-all ? */
2332		size -= PAGE_SIZE;
2333		tmpva += PAGE_SIZE;
2334		ppa += PAGE_SIZE;
2335	}
2336
2337	return ((void *)(va + offset));
2338}
2339
2340void
2341pmap_unmapdev(vm_offset_t va, vm_size_t size)
2342{
2343	vm_offset_t base, offset;
2344
2345	/*
2346	 * If this is outside kernel virtual space, then it's a
2347	 * battable entry and doesn't require unmapping
2348	 */
2349	if ((va >= VM_MIN_KERNEL_ADDRESS) && (va <= VM_MAX_KERNEL_ADDRESS)) {
2350		base = trunc_page(va);
2351		offset = va & PAGE_MASK;
2352		size = roundup(offset + size, PAGE_SIZE);
2353		kmem_free(kernel_map, base, size);
2354	}
2355}
2356