mmu_oea.c revision 131658
1/*
2 * Copyright (c) 2001 The NetBSD Foundation, Inc.
3 * All rights reserved.
4 *
5 * This code is derived from software contributed to The NetBSD Foundation
6 * by Matt Thomas <matt@3am-software.com> of Allegro Networks, Inc.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 *    must display the following acknowledgement:
18 *        This product includes software developed by the NetBSD
19 *        Foundation, Inc. and its contributors.
20 * 4. Neither the name of The NetBSD Foundation nor the names of its
21 *    contributors may be used to endorse or promote products derived
22 *    from this software without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
25 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
26 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
27 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
28 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
29 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
30 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
31 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
32 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
33 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
34 * POSSIBILITY OF SUCH DAMAGE.
35 */
36/*
37 * Copyright (C) 1995, 1996 Wolfgang Solfrank.
38 * Copyright (C) 1995, 1996 TooLs GmbH.
39 * All rights reserved.
40 *
41 * Redistribution and use in source and binary forms, with or without
42 * modification, are permitted provided that the following conditions
43 * are met:
44 * 1. Redistributions of source code must retain the above copyright
45 *    notice, this list of conditions and the following disclaimer.
46 * 2. Redistributions in binary form must reproduce the above copyright
47 *    notice, this list of conditions and the following disclaimer in the
48 *    documentation and/or other materials provided with the distribution.
49 * 3. All advertising materials mentioning features or use of this software
50 *    must display the following acknowledgement:
51 *	This product includes software developed by TooLs GmbH.
52 * 4. The name of TooLs GmbH may not be used to endorse or promote products
53 *    derived from this software without specific prior written permission.
54 *
55 * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR
56 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
57 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
58 * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
59 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
60 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
61 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
62 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
63 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
64 * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
65 *
66 * $NetBSD: pmap.c,v 1.28 2000/03/26 20:42:36 kleink Exp $
67 */
68/*
69 * Copyright (C) 2001 Benno Rice.
70 * All rights reserved.
71 *
72 * Redistribution and use in source and binary forms, with or without
73 * modification, are permitted provided that the following conditions
74 * are met:
75 * 1. Redistributions of source code must retain the above copyright
76 *    notice, this list of conditions and the following disclaimer.
77 * 2. Redistributions in binary form must reproduce the above copyright
78 *    notice, this list of conditions and the following disclaimer in the
79 *    documentation and/or other materials provided with the distribution.
80 *
81 * THIS SOFTWARE IS PROVIDED BY Benno Rice ``AS IS'' AND ANY EXPRESS OR
82 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
83 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
84 * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
85 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
86 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
87 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
88 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
89 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
90 * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
91 */
92
93#include <sys/cdefs.h>
94__FBSDID("$FreeBSD: head/sys/powerpc/aim/mmu_oea.c 131658 2004-07-05 23:08:27Z alc $");
95
96/*
97 * Manages physical address maps.
98 *
99 * In addition to hardware address maps, this module is called upon to
100 * provide software-use-only maps which may or may not be stored in the
101 * same form as hardware maps.  These pseudo-maps are used to store
102 * intermediate results from copy operations to and from address spaces.
103 *
104 * Since the information managed by this module is also stored by the
105 * logical address mapping module, this module may throw away valid virtual
106 * to physical mappings at almost any time.  However, invalidations of
107 * mappings must be done as requested.
108 *
109 * In order to cope with hardware architectures which make virtual to
110 * physical map invalidates expensive, this module may delay invalidate
111 * reduced protection operations until such time as they are actually
112 * necessary.  This module is given full information as to which processors
113 * are currently using which maps, and to when physical maps must be made
114 * correct.
115 */
116
117#include "opt_kstack_pages.h"
118
119#include <sys/param.h>
120#include <sys/kernel.h>
121#include <sys/ktr.h>
122#include <sys/lock.h>
123#include <sys/msgbuf.h>
124#include <sys/mutex.h>
125#include <sys/proc.h>
126#include <sys/sysctl.h>
127#include <sys/systm.h>
128#include <sys/vmmeter.h>
129
130#include <dev/ofw/openfirm.h>
131
132#include <vm/vm.h>
133#include <vm/vm_param.h>
134#include <vm/vm_kern.h>
135#include <vm/vm_page.h>
136#include <vm/vm_map.h>
137#include <vm/vm_object.h>
138#include <vm/vm_extern.h>
139#include <vm/vm_pageout.h>
140#include <vm/vm_pager.h>
141#include <vm/uma.h>
142
143#include <machine/cpu.h>
144#include <machine/powerpc.h>
145#include <machine/bat.h>
146#include <machine/frame.h>
147#include <machine/md_var.h>
148#include <machine/psl.h>
149#include <machine/pte.h>
150#include <machine/sr.h>
151
152#define	PMAP_DEBUG
153
154#define TODO	panic("%s: not implemented", __func__);
155
156#define	PMAP_LOCK(pm)
157#define	PMAP_UNLOCK(pm)
158
159#define	TLBIE(va)	__asm __volatile("tlbie %0" :: "r"(va))
160#define	TLBSYNC()	__asm __volatile("tlbsync");
161#define	SYNC()		__asm __volatile("sync");
162#define	EIEIO()		__asm __volatile("eieio");
163
164#define	VSID_MAKE(sr, hash)	((sr) | (((hash) & 0xfffff) << 4))
165#define	VSID_TO_SR(vsid)	((vsid) & 0xf)
166#define	VSID_TO_HASH(vsid)	(((vsid) >> 4) & 0xfffff)
167
168#define	PVO_PTEGIDX_MASK	0x0007		/* which PTEG slot */
169#define	PVO_PTEGIDX_VALID	0x0008		/* slot is valid */
170#define	PVO_WIRED		0x0010		/* PVO entry is wired */
171#define	PVO_MANAGED		0x0020		/* PVO entry is managed */
172#define	PVO_EXECUTABLE		0x0040		/* PVO entry is executable */
173#define	PVO_BOOTSTRAP		0x0080		/* PVO entry allocated during
174						   bootstrap */
175#define	PVO_VADDR(pvo)		((pvo)->pvo_vaddr & ~ADDR_POFF)
176#define	PVO_ISEXECUTABLE(pvo)	((pvo)->pvo_vaddr & PVO_EXECUTABLE)
177#define	PVO_PTEGIDX_GET(pvo)	((pvo)->pvo_vaddr & PVO_PTEGIDX_MASK)
178#define	PVO_PTEGIDX_ISSET(pvo)	((pvo)->pvo_vaddr & PVO_PTEGIDX_VALID)
179#define	PVO_PTEGIDX_CLR(pvo)	\
180	((void)((pvo)->pvo_vaddr &= ~(PVO_PTEGIDX_VALID|PVO_PTEGIDX_MASK)))
181#define	PVO_PTEGIDX_SET(pvo, i)	\
182	((void)((pvo)->pvo_vaddr |= (i)|PVO_PTEGIDX_VALID))
183
184#define	PMAP_PVO_CHECK(pvo)
185
186struct ofw_map {
187	vm_offset_t	om_va;
188	vm_size_t	om_len;
189	vm_offset_t	om_pa;
190	u_int		om_mode;
191};
192
193int	pmap_bootstrapped = 0;
194
195/*
196 * Virtual and physical address of message buffer.
197 */
198struct		msgbuf *msgbufp;
199vm_offset_t	msgbuf_phys;
200
201int pmap_pagedaemon_waken;
202
203/*
204 * Map of physical memory regions.
205 */
206vm_offset_t	phys_avail[128];
207u_int		phys_avail_count;
208static struct	mem_region *regions;
209static struct	mem_region *pregions;
210int		regions_sz, pregions_sz;
211static struct	ofw_map *translations;
212
213/*
214 * First and last available kernel virtual addresses.
215 */
216vm_offset_t virtual_avail;
217vm_offset_t virtual_end;
218vm_offset_t kernel_vm_end;
219
220/*
221 * Kernel pmap.
222 */
223struct pmap kernel_pmap_store;
224extern struct pmap ofw_pmap;
225
226/*
227 * PTEG data.
228 */
229static struct	pteg *pmap_pteg_table;
230u_int		pmap_pteg_count;
231u_int		pmap_pteg_mask;
232
233/*
234 * PVO data.
235 */
236struct	pvo_head *pmap_pvo_table;		/* pvo entries by pteg index */
237struct	pvo_head pmap_pvo_kunmanaged =
238    LIST_HEAD_INITIALIZER(pmap_pvo_kunmanaged);	/* list of unmanaged pages */
239struct	pvo_head pmap_pvo_unmanaged =
240    LIST_HEAD_INITIALIZER(pmap_pvo_unmanaged);	/* list of unmanaged pages */
241
242uma_zone_t	pmap_upvo_zone;	/* zone for pvo entries for unmanaged pages */
243uma_zone_t	pmap_mpvo_zone;	/* zone for pvo entries for managed pages */
244
245#define	BPVO_POOL_SIZE	32768
246static struct	pvo_entry *pmap_bpvo_pool;
247static int	pmap_bpvo_pool_index = 0;
248
249#define	VSID_NBPW	(sizeof(u_int32_t) * 8)
250static u_int	pmap_vsid_bitmap[NPMAPS / VSID_NBPW];
251
252static boolean_t pmap_initialized = FALSE;
253
254/*
255 * Statistics.
256 */
257u_int	pmap_pte_valid = 0;
258u_int	pmap_pte_overflow = 0;
259u_int	pmap_pte_replacements = 0;
260u_int	pmap_pvo_entries = 0;
261u_int	pmap_pvo_enter_calls = 0;
262u_int	pmap_pvo_remove_calls = 0;
263u_int	pmap_pte_spills = 0;
264SYSCTL_INT(_machdep, OID_AUTO, pmap_pte_valid, CTLFLAG_RD, &pmap_pte_valid,
265    0, "");
266SYSCTL_INT(_machdep, OID_AUTO, pmap_pte_overflow, CTLFLAG_RD,
267    &pmap_pte_overflow, 0, "");
268SYSCTL_INT(_machdep, OID_AUTO, pmap_pte_replacements, CTLFLAG_RD,
269    &pmap_pte_replacements, 0, "");
270SYSCTL_INT(_machdep, OID_AUTO, pmap_pvo_entries, CTLFLAG_RD, &pmap_pvo_entries,
271    0, "");
272SYSCTL_INT(_machdep, OID_AUTO, pmap_pvo_enter_calls, CTLFLAG_RD,
273    &pmap_pvo_enter_calls, 0, "");
274SYSCTL_INT(_machdep, OID_AUTO, pmap_pvo_remove_calls, CTLFLAG_RD,
275    &pmap_pvo_remove_calls, 0, "");
276SYSCTL_INT(_machdep, OID_AUTO, pmap_pte_spills, CTLFLAG_RD,
277    &pmap_pte_spills, 0, "");
278
279struct	pvo_entry *pmap_pvo_zeropage;
280
281vm_offset_t	pmap_rkva_start = VM_MIN_KERNEL_ADDRESS;
282u_int		pmap_rkva_count = 4;
283
284/*
285 * Allocate physical memory for use in pmap_bootstrap.
286 */
287static vm_offset_t	pmap_bootstrap_alloc(vm_size_t, u_int);
288
289/*
290 * PTE calls.
291 */
292static int		pmap_pte_insert(u_int, struct pte *);
293
294/*
295 * PVO calls.
296 */
297static int	pmap_pvo_enter(pmap_t, uma_zone_t, struct pvo_head *,
298		    vm_offset_t, vm_offset_t, u_int, int);
299static void	pmap_pvo_remove(struct pvo_entry *, int);
300static struct	pvo_entry *pmap_pvo_find_va(pmap_t, vm_offset_t, int *);
301static struct	pte *pmap_pvo_to_pte(const struct pvo_entry *, int);
302
303/*
304 * Utility routines.
305 */
306static struct		pvo_entry *pmap_rkva_alloc(void);
307static void		pmap_pa_map(struct pvo_entry *, vm_offset_t,
308			    struct pte *, int *);
309static void		pmap_pa_unmap(struct pvo_entry *, struct pte *, int *);
310static void		pmap_syncicache(vm_offset_t, vm_size_t);
311static boolean_t	pmap_query_bit(vm_page_t, int);
312static u_int		pmap_clear_bit(vm_page_t, int, int *);
313static void		tlbia(void);
314
315static __inline int
316va_to_sr(u_int *sr, vm_offset_t va)
317{
318	return (sr[(uintptr_t)va >> ADDR_SR_SHFT]);
319}
320
321static __inline u_int
322va_to_pteg(u_int sr, vm_offset_t addr)
323{
324	u_int hash;
325
326	hash = (sr & SR_VSID_MASK) ^ (((u_int)addr & ADDR_PIDX) >>
327	    ADDR_PIDX_SHFT);
328	return (hash & pmap_pteg_mask);
329}
330
331static __inline struct pvo_head *
332pa_to_pvoh(vm_offset_t pa, vm_page_t *pg_p)
333{
334	struct	vm_page *pg;
335
336	pg = PHYS_TO_VM_PAGE(pa);
337
338	if (pg_p != NULL)
339		*pg_p = pg;
340
341	if (pg == NULL)
342		return (&pmap_pvo_unmanaged);
343
344	return (&pg->md.mdpg_pvoh);
345}
346
347static __inline struct pvo_head *
348vm_page_to_pvoh(vm_page_t m)
349{
350
351	return (&m->md.mdpg_pvoh);
352}
353
354static __inline void
355pmap_attr_clear(vm_page_t m, int ptebit)
356{
357
358	m->md.mdpg_attrs &= ~ptebit;
359}
360
361static __inline int
362pmap_attr_fetch(vm_page_t m)
363{
364
365	return (m->md.mdpg_attrs);
366}
367
368static __inline void
369pmap_attr_save(vm_page_t m, int ptebit)
370{
371
372	m->md.mdpg_attrs |= ptebit;
373}
374
375static __inline int
376pmap_pte_compare(const struct pte *pt, const struct pte *pvo_pt)
377{
378	if (pt->pte_hi == pvo_pt->pte_hi)
379		return (1);
380
381	return (0);
382}
383
384static __inline int
385pmap_pte_match(struct pte *pt, u_int sr, vm_offset_t va, int which)
386{
387	return (pt->pte_hi & ~PTE_VALID) ==
388	    (((sr & SR_VSID_MASK) << PTE_VSID_SHFT) |
389	    ((va >> ADDR_API_SHFT) & PTE_API) | which);
390}
391
392static __inline void
393pmap_pte_create(struct pte *pt, u_int sr, vm_offset_t va, u_int pte_lo)
394{
395	/*
396	 * Construct a PTE.  Default to IMB initially.  Valid bit only gets
397	 * set when the real pte is set in memory.
398	 *
399	 * Note: Don't set the valid bit for correct operation of tlb update.
400	 */
401	pt->pte_hi = ((sr & SR_VSID_MASK) << PTE_VSID_SHFT) |
402	    (((va & ADDR_PIDX) >> ADDR_API_SHFT) & PTE_API);
403	pt->pte_lo = pte_lo;
404}
405
406static __inline void
407pmap_pte_synch(struct pte *pt, struct pte *pvo_pt)
408{
409
410	pvo_pt->pte_lo |= pt->pte_lo & (PTE_REF | PTE_CHG);
411}
412
413static __inline void
414pmap_pte_clear(struct pte *pt, vm_offset_t va, int ptebit)
415{
416
417	/*
418	 * As shown in Section 7.6.3.2.3
419	 */
420	pt->pte_lo &= ~ptebit;
421	TLBIE(va);
422	EIEIO();
423	TLBSYNC();
424	SYNC();
425}
426
427static __inline void
428pmap_pte_set(struct pte *pt, struct pte *pvo_pt)
429{
430
431	pvo_pt->pte_hi |= PTE_VALID;
432
433	/*
434	 * Update the PTE as defined in section 7.6.3.1.
435	 * Note that the REF/CHG bits are from pvo_pt and thus should havce
436	 * been saved so this routine can restore them (if desired).
437	 */
438	pt->pte_lo = pvo_pt->pte_lo;
439	EIEIO();
440	pt->pte_hi = pvo_pt->pte_hi;
441	SYNC();
442	pmap_pte_valid++;
443}
444
445static __inline void
446pmap_pte_unset(struct pte *pt, struct pte *pvo_pt, vm_offset_t va)
447{
448
449	pvo_pt->pte_hi &= ~PTE_VALID;
450
451	/*
452	 * Force the reg & chg bits back into the PTEs.
453	 */
454	SYNC();
455
456	/*
457	 * Invalidate the pte.
458	 */
459	pt->pte_hi &= ~PTE_VALID;
460
461	SYNC();
462	TLBIE(va);
463	EIEIO();
464	TLBSYNC();
465	SYNC();
466
467	/*
468	 * Save the reg & chg bits.
469	 */
470	pmap_pte_synch(pt, pvo_pt);
471	pmap_pte_valid--;
472}
473
474static __inline void
475pmap_pte_change(struct pte *pt, struct pte *pvo_pt, vm_offset_t va)
476{
477
478	/*
479	 * Invalidate the PTE
480	 */
481	pmap_pte_unset(pt, pvo_pt, va);
482	pmap_pte_set(pt, pvo_pt);
483}
484
485/*
486 * Quick sort callout for comparing memory regions.
487 */
488static int	mr_cmp(const void *a, const void *b);
489static int	om_cmp(const void *a, const void *b);
490
491static int
492mr_cmp(const void *a, const void *b)
493{
494	const struct	mem_region *regiona;
495	const struct	mem_region *regionb;
496
497	regiona = a;
498	regionb = b;
499	if (regiona->mr_start < regionb->mr_start)
500		return (-1);
501	else if (regiona->mr_start > regionb->mr_start)
502		return (1);
503	else
504		return (0);
505}
506
507static int
508om_cmp(const void *a, const void *b)
509{
510	const struct	ofw_map *mapa;
511	const struct	ofw_map *mapb;
512
513	mapa = a;
514	mapb = b;
515	if (mapa->om_pa < mapb->om_pa)
516		return (-1);
517	else if (mapa->om_pa > mapb->om_pa)
518		return (1);
519	else
520		return (0);
521}
522
523void
524pmap_bootstrap(vm_offset_t kernelstart, vm_offset_t kernelend)
525{
526	ihandle_t	mmui;
527	phandle_t	chosen, mmu;
528	int		sz;
529	int		i, j;
530	int		ofw_mappings;
531	vm_size_t	size, physsz;
532	vm_offset_t	pa, va, off;
533	u_int		batl, batu;
534
535        /*
536         * Set up BAT0 to map the lowest 256 MB area
537         */
538        battable[0x0].batl = BATL(0x00000000, BAT_M, BAT_PP_RW);
539        battable[0x0].batu = BATU(0x00000000, BAT_BL_256M, BAT_Vs);
540
541        /*
542         * Map PCI memory space.
543         */
544        battable[0x8].batl = BATL(0x80000000, BAT_I|BAT_G, BAT_PP_RW);
545        battable[0x8].batu = BATU(0x80000000, BAT_BL_256M, BAT_Vs);
546
547        battable[0x9].batl = BATL(0x90000000, BAT_I|BAT_G, BAT_PP_RW);
548        battable[0x9].batu = BATU(0x90000000, BAT_BL_256M, BAT_Vs);
549
550        battable[0xa].batl = BATL(0xa0000000, BAT_I|BAT_G, BAT_PP_RW);
551        battable[0xa].batu = BATU(0xa0000000, BAT_BL_256M, BAT_Vs);
552
553        battable[0xb].batl = BATL(0xb0000000, BAT_I|BAT_G, BAT_PP_RW);
554        battable[0xb].batu = BATU(0xb0000000, BAT_BL_256M, BAT_Vs);
555
556        /*
557         * Map obio devices.
558         */
559        battable[0xf].batl = BATL(0xf0000000, BAT_I|BAT_G, BAT_PP_RW);
560        battable[0xf].batu = BATU(0xf0000000, BAT_BL_256M, BAT_Vs);
561
562	/*
563	 * Use an IBAT and a DBAT to map the bottom segment of memory
564	 * where we are.
565	 */
566	batu = BATU(0x00000000, BAT_BL_256M, BAT_Vs);
567	batl = BATL(0x00000000, BAT_M, BAT_PP_RW);
568	__asm ("mtibatu 0,%0; mtibatl 0,%1; mtdbatu 0,%0; mtdbatl 0,%1"
569	    :: "r"(batu), "r"(batl));
570
571#if 0
572	/* map frame buffer */
573	batu = BATU(0x90000000, BAT_BL_256M, BAT_Vs);
574	batl = BATL(0x90000000, BAT_I|BAT_G, BAT_PP_RW);
575	__asm ("mtdbatu 1,%0; mtdbatl 1,%1"
576	    :: "r"(batu), "r"(batl));
577#endif
578
579#if 1
580	/* map pci space */
581	batu = BATU(0x80000000, BAT_BL_256M, BAT_Vs);
582	batl = BATL(0x80000000, BAT_I|BAT_G, BAT_PP_RW);
583	__asm ("mtdbatu 1,%0; mtdbatl 1,%1"
584	    :: "r"(batu), "r"(batl));
585#endif
586
587	/*
588	 * Set the start and end of kva.
589	 */
590	virtual_avail = VM_MIN_KERNEL_ADDRESS;
591	virtual_end = VM_MAX_KERNEL_ADDRESS;
592
593	mem_regions(&pregions, &pregions_sz, &regions, &regions_sz);
594	CTR0(KTR_PMAP, "pmap_bootstrap: physical memory");
595
596	qsort(pregions, pregions_sz, sizeof(*pregions), mr_cmp);
597	for (i = 0; i < pregions_sz; i++) {
598		vm_offset_t pa;
599		vm_offset_t end;
600
601		CTR3(KTR_PMAP, "physregion: %#x - %#x (%#x)",
602			pregions[i].mr_start,
603			pregions[i].mr_start + pregions[i].mr_size,
604			pregions[i].mr_size);
605		/*
606		 * Install entries into the BAT table to allow all
607		 * of physmem to be convered by on-demand BAT entries.
608		 * The loop will sometimes set the same battable element
609		 * twice, but that's fine since they won't be used for
610		 * a while yet.
611		 */
612		pa = pregions[i].mr_start & 0xf0000000;
613		end = pregions[i].mr_start + pregions[i].mr_size;
614		do {
615                        u_int n = pa >> ADDR_SR_SHFT;
616
617			battable[n].batl = BATL(pa, BAT_M, BAT_PP_RW);
618			battable[n].batu = BATU(pa, BAT_BL_256M, BAT_Vs);
619			pa += SEGMENT_LENGTH;
620		} while (pa < end);
621	}
622
623	if (sizeof(phys_avail)/sizeof(phys_avail[0]) < regions_sz)
624		panic("pmap_bootstrap: phys_avail too small");
625	qsort(regions, regions_sz, sizeof(*regions), mr_cmp);
626	phys_avail_count = 0;
627	physsz = 0;
628	for (i = 0, j = 0; i < regions_sz; i++, j += 2) {
629		CTR3(KTR_PMAP, "region: %#x - %#x (%#x)", regions[i].mr_start,
630		    regions[i].mr_start + regions[i].mr_size,
631		    regions[i].mr_size);
632		phys_avail[j] = regions[i].mr_start;
633		phys_avail[j + 1] = regions[i].mr_start + regions[i].mr_size;
634		phys_avail_count++;
635		physsz += regions[i].mr_size;
636	}
637	physmem = btoc(physsz);
638
639	/*
640	 * Allocate PTEG table.
641	 */
642#ifdef PTEGCOUNT
643	pmap_pteg_count = PTEGCOUNT;
644#else
645	pmap_pteg_count = 0x1000;
646
647	while (pmap_pteg_count < physmem)
648		pmap_pteg_count <<= 1;
649
650	pmap_pteg_count >>= 1;
651#endif /* PTEGCOUNT */
652
653	size = pmap_pteg_count * sizeof(struct pteg);
654	CTR2(KTR_PMAP, "pmap_bootstrap: %d PTEGs, %d bytes", pmap_pteg_count,
655	    size);
656	pmap_pteg_table = (struct pteg *)pmap_bootstrap_alloc(size, size);
657	CTR1(KTR_PMAP, "pmap_bootstrap: PTEG table at %p", pmap_pteg_table);
658	bzero((void *)pmap_pteg_table, pmap_pteg_count * sizeof(struct pteg));
659	pmap_pteg_mask = pmap_pteg_count - 1;
660
661	/*
662	 * Allocate pv/overflow lists.
663	 */
664	size = sizeof(struct pvo_head) * pmap_pteg_count;
665	pmap_pvo_table = (struct pvo_head *)pmap_bootstrap_alloc(size,
666	    PAGE_SIZE);
667	CTR1(KTR_PMAP, "pmap_bootstrap: PVO table at %p", pmap_pvo_table);
668	for (i = 0; i < pmap_pteg_count; i++)
669		LIST_INIT(&pmap_pvo_table[i]);
670
671	/*
672	 * Allocate the message buffer.
673	 */
674	msgbuf_phys = pmap_bootstrap_alloc(MSGBUF_SIZE, 0);
675
676	/*
677	 * Initialise the unmanaged pvo pool.
678	 */
679	pmap_bpvo_pool = (struct pvo_entry *)pmap_bootstrap_alloc(
680		BPVO_POOL_SIZE*sizeof(struct pvo_entry), 0);
681	pmap_bpvo_pool_index = 0;
682
683	/*
684	 * Make sure kernel vsid is allocated as well as VSID 0.
685	 */
686	pmap_vsid_bitmap[(KERNEL_VSIDBITS & (NPMAPS - 1)) / VSID_NBPW]
687		|= 1 << (KERNEL_VSIDBITS % VSID_NBPW);
688	pmap_vsid_bitmap[0] |= 1;
689
690	/*
691	 * Set up the OpenFirmware pmap and add it's mappings.
692	 */
693	pmap_pinit(&ofw_pmap);
694	ofw_pmap.pm_sr[KERNEL_SR] = KERNEL_SEGMENT;
695	ofw_pmap.pm_sr[KERNEL2_SR] = KERNEL2_SEGMENT;
696	if ((chosen = OF_finddevice("/chosen")) == -1)
697		panic("pmap_bootstrap: can't find /chosen");
698	OF_getprop(chosen, "mmu", &mmui, 4);
699	if ((mmu = OF_instance_to_package(mmui)) == -1)
700		panic("pmap_bootstrap: can't get mmu package");
701	if ((sz = OF_getproplen(mmu, "translations")) == -1)
702		panic("pmap_bootstrap: can't get ofw translation count");
703	translations = NULL;
704	for (i = 0; phys_avail[i] != 0; i += 2) {
705		if (phys_avail[i + 1] >= sz) {
706			translations = (struct ofw_map *)phys_avail[i];
707			break;
708		}
709	}
710	if (translations == NULL)
711		panic("pmap_bootstrap: no space to copy translations");
712	bzero(translations, sz);
713	if (OF_getprop(mmu, "translations", translations, sz) == -1)
714		panic("pmap_bootstrap: can't get ofw translations");
715	CTR0(KTR_PMAP, "pmap_bootstrap: translations");
716	sz /= sizeof(*translations);
717	qsort(translations, sz, sizeof (*translations), om_cmp);
718	for (i = 0, ofw_mappings = 0; i < sz; i++) {
719		CTR3(KTR_PMAP, "translation: pa=%#x va=%#x len=%#x",
720		    translations[i].om_pa, translations[i].om_va,
721		    translations[i].om_len);
722
723		/*
724		 * If the mapping is 1:1, let the RAM and device on-demand
725		 * BAT tables take care of the translation.
726		 */
727		if (translations[i].om_va == translations[i].om_pa)
728			continue;
729
730		/* Enter the pages */
731		for (off = 0; off < translations[i].om_len; off += PAGE_SIZE) {
732			struct	vm_page m;
733
734			m.phys_addr = translations[i].om_pa + off;
735			pmap_enter(&ofw_pmap, translations[i].om_va + off, &m,
736				   VM_PROT_ALL, 1);
737			ofw_mappings++;
738		}
739	}
740#ifdef SMP
741	TLBSYNC();
742#endif
743
744	/*
745	 * Initialize the kernel pmap (which is statically allocated).
746	 */
747	for (i = 0; i < 16; i++) {
748		kernel_pmap->pm_sr[i] = EMPTY_SEGMENT;
749	}
750	kernel_pmap->pm_sr[KERNEL_SR] = KERNEL_SEGMENT;
751	kernel_pmap->pm_sr[KERNEL2_SR] = KERNEL_SEGMENT;
752	kernel_pmap->pm_active = ~0;
753
754	/*
755	 * Allocate a kernel stack with a guard page for thread0 and map it
756	 * into the kernel page map.
757	 */
758	pa = pmap_bootstrap_alloc(KSTACK_PAGES * PAGE_SIZE, 0);
759	kstack0_phys = pa;
760	kstack0 = virtual_avail + (KSTACK_GUARD_PAGES * PAGE_SIZE);
761	CTR2(KTR_PMAP, "pmap_bootstrap: kstack0 at %#x (%#x)", kstack0_phys,
762	    kstack0);
763	virtual_avail += (KSTACK_PAGES + KSTACK_GUARD_PAGES) * PAGE_SIZE;
764	for (i = 0; i < KSTACK_PAGES; i++) {
765		pa = kstack0_phys + i * PAGE_SIZE;
766		va = kstack0 + i * PAGE_SIZE;
767		pmap_kenter(va, pa);
768		TLBIE(va);
769	}
770
771	/*
772	 * Calculate the last available physical address.
773	 */
774	for (i = 0; phys_avail[i + 2] != 0; i += 2)
775		;
776	Maxmem = powerpc_btop(phys_avail[i + 1]);
777
778	/*
779	 * Allocate virtual address space for the message buffer.
780	 */
781	msgbufp = (struct msgbuf *)virtual_avail;
782	virtual_avail += round_page(MSGBUF_SIZE);
783
784	/*
785	 * Initialize hardware.
786	 */
787	for (i = 0; i < 16; i++) {
788		mtsrin(i << ADDR_SR_SHFT, EMPTY_SEGMENT);
789	}
790	__asm __volatile ("mtsr %0,%1"
791	    :: "n"(KERNEL_SR), "r"(KERNEL_SEGMENT));
792	__asm __volatile ("sync; mtsdr1 %0; isync"
793	    :: "r"((u_int)pmap_pteg_table | (pmap_pteg_mask >> 10)));
794	tlbia();
795
796	pmap_bootstrapped++;
797}
798
799/*
800 * Activate a user pmap.  The pmap must be activated before it's address
801 * space can be accessed in any way.
802 */
803void
804pmap_activate(struct thread *td)
805{
806	pmap_t	pm, pmr;
807
808	/*
809	 * Load all the data we need up front to encourage the compiler to
810	 * not issue any loads while we have interrupts disabled below.
811	 */
812	pm = &td->td_proc->p_vmspace->vm_pmap;
813
814	if ((pmr = (pmap_t)pmap_kextract((vm_offset_t)pm)) == NULL)
815		pmr = pm;
816
817	pm->pm_active |= PCPU_GET(cpumask);
818	PCPU_SET(curpmap, pmr);
819}
820
821void
822pmap_deactivate(struct thread *td)
823{
824	pmap_t	pm;
825
826	pm = &td->td_proc->p_vmspace->vm_pmap;
827	pm->pm_active &= ~(PCPU_GET(cpumask));
828	PCPU_SET(curpmap, NULL);
829}
830
831vm_offset_t
832pmap_addr_hint(vm_object_t object, vm_offset_t va, vm_size_t size)
833{
834
835	return (va);
836}
837
838void
839pmap_change_wiring(pmap_t pm, vm_offset_t va, boolean_t wired)
840{
841	struct	pvo_entry *pvo;
842
843	pvo = pmap_pvo_find_va(pm, va & ~ADDR_POFF, NULL);
844
845	if (pvo != NULL) {
846		if (wired) {
847			if ((pvo->pvo_vaddr & PVO_WIRED) == 0)
848				pm->pm_stats.wired_count++;
849			pvo->pvo_vaddr |= PVO_WIRED;
850		} else {
851			if ((pvo->pvo_vaddr & PVO_WIRED) != 0)
852				pm->pm_stats.wired_count--;
853			pvo->pvo_vaddr &= ~PVO_WIRED;
854		}
855	}
856}
857
858void
859pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr,
860	  vm_size_t len, vm_offset_t src_addr)
861{
862
863	/*
864	 * This is not needed as it's mainly an optimisation.
865	 * It may want to be implemented later though.
866	 */
867}
868
869void
870pmap_copy_page(vm_page_t msrc, vm_page_t mdst)
871{
872	vm_offset_t	dst;
873	vm_offset_t	src;
874
875	dst = VM_PAGE_TO_PHYS(mdst);
876	src = VM_PAGE_TO_PHYS(msrc);
877
878	kcopy((void *)src, (void *)dst, PAGE_SIZE);
879}
880
881/*
882 * Zero a page of physical memory by temporarily mapping it into the tlb.
883 */
884void
885pmap_zero_page(vm_page_t m)
886{
887	vm_offset_t pa = VM_PAGE_TO_PHYS(m);
888	caddr_t va;
889
890	if (pa < SEGMENT_LENGTH) {
891		va = (caddr_t) pa;
892	} else if (pmap_initialized) {
893		if (pmap_pvo_zeropage == NULL)
894			pmap_pvo_zeropage = pmap_rkva_alloc();
895		pmap_pa_map(pmap_pvo_zeropage, pa, NULL, NULL);
896		va = (caddr_t)PVO_VADDR(pmap_pvo_zeropage);
897	} else {
898		panic("pmap_zero_page: can't zero pa %#x", pa);
899	}
900
901	bzero(va, PAGE_SIZE);
902
903	if (pa >= SEGMENT_LENGTH)
904		pmap_pa_unmap(pmap_pvo_zeropage, NULL, NULL);
905}
906
907void
908pmap_zero_page_area(vm_page_t m, int off, int size)
909{
910	vm_offset_t pa = VM_PAGE_TO_PHYS(m);
911	caddr_t va;
912
913	if (pa < SEGMENT_LENGTH) {
914		va = (caddr_t) pa;
915	} else if (pmap_initialized) {
916		if (pmap_pvo_zeropage == NULL)
917			pmap_pvo_zeropage = pmap_rkva_alloc();
918		pmap_pa_map(pmap_pvo_zeropage, pa, NULL, NULL);
919		va = (caddr_t)PVO_VADDR(pmap_pvo_zeropage);
920	} else {
921		panic("pmap_zero_page: can't zero pa %#x", pa);
922	}
923
924	bzero(va + off, size);
925
926	if (pa >= SEGMENT_LENGTH)
927		pmap_pa_unmap(pmap_pvo_zeropage, NULL, NULL);
928}
929
930void
931pmap_zero_page_idle(vm_page_t m)
932{
933
934	/* XXX this is called outside of Giant, is pmap_zero_page safe? */
935	/* XXX maybe have a dedicated mapping for this to avoid the problem? */
936	mtx_lock(&Giant);
937	pmap_zero_page(m);
938	mtx_unlock(&Giant);
939}
940
941/*
942 * Map the given physical page at the specified virtual address in the
943 * target pmap with the protection requested.  If specified the page
944 * will be wired down.
945 */
946void
947pmap_enter(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
948	   boolean_t wired)
949{
950	struct		pvo_head *pvo_head;
951	uma_zone_t	zone;
952	vm_page_t	pg;
953	u_int		pte_lo, pvo_flags, was_exec, i;
954	int		error;
955
956	if (!pmap_initialized) {
957		pvo_head = &pmap_pvo_kunmanaged;
958		zone = pmap_upvo_zone;
959		pvo_flags = 0;
960		pg = NULL;
961		was_exec = PTE_EXEC;
962	} else {
963		pvo_head = vm_page_to_pvoh(m);
964		pg = m;
965		zone = pmap_mpvo_zone;
966		pvo_flags = PVO_MANAGED;
967		was_exec = 0;
968	}
969
970	/*
971	 * If this is a managed page, and it's the first reference to the page,
972	 * clear the execness of the page.  Otherwise fetch the execness.
973	 */
974	if (pg != NULL) {
975		if (LIST_EMPTY(pvo_head)) {
976			pmap_attr_clear(pg, PTE_EXEC);
977		} else {
978			was_exec = pmap_attr_fetch(pg) & PTE_EXEC;
979		}
980	}
981
982
983	/*
984	 * Assume the page is cache inhibited and access is guarded unless
985	 * it's in our available memory array.
986	 */
987	pte_lo = PTE_I | PTE_G;
988	for (i = 0; i < pregions_sz; i++) {
989		if ((VM_PAGE_TO_PHYS(m) >= pregions[i].mr_start) &&
990		    (VM_PAGE_TO_PHYS(m) <
991			(pregions[i].mr_start + pregions[i].mr_size))) {
992			pte_lo &= ~(PTE_I | PTE_G);
993			break;
994		}
995	}
996
997	if (prot & VM_PROT_WRITE)
998		pte_lo |= PTE_BW;
999	else
1000		pte_lo |= PTE_BR;
1001
1002	pvo_flags |= (prot & VM_PROT_EXECUTE);
1003
1004	if (wired)
1005		pvo_flags |= PVO_WIRED;
1006
1007	error = pmap_pvo_enter(pmap, zone, pvo_head, va, VM_PAGE_TO_PHYS(m),
1008	    pte_lo, pvo_flags);
1009
1010	/*
1011	 * Flush the real page from the instruction cache if this page is
1012	 * mapped executable and cacheable and was not previously mapped (or
1013	 * was not mapped executable).
1014	 */
1015	if (error == 0 && (pvo_flags & PVO_EXECUTABLE) &&
1016	    (pte_lo & PTE_I) == 0 && was_exec == 0) {
1017		/*
1018		 * Flush the real memory from the cache.
1019		 */
1020		pmap_syncicache(VM_PAGE_TO_PHYS(m), PAGE_SIZE);
1021		if (pg != NULL)
1022			pmap_attr_save(pg, PTE_EXEC);
1023	}
1024
1025	/* XXX syncicache always until problems are sorted */
1026	pmap_syncicache(VM_PAGE_TO_PHYS(m), PAGE_SIZE);
1027}
1028
1029vm_page_t
1030pmap_enter_quick(pmap_t pm, vm_offset_t va, vm_page_t m, vm_page_t mpte)
1031{
1032
1033	pmap_enter(pm, va, m, VM_PROT_READ | VM_PROT_EXECUTE, FALSE);
1034	return (NULL);
1035}
1036
1037vm_paddr_t
1038pmap_extract(pmap_t pm, vm_offset_t va)
1039{
1040	struct	pvo_entry *pvo;
1041
1042	pvo = pmap_pvo_find_va(pm, va & ~ADDR_POFF, NULL);
1043
1044	if (pvo != NULL) {
1045		return ((pvo->pvo_pte.pte_lo & PTE_RPGN) | (va & ADDR_POFF));
1046	}
1047
1048	return (0);
1049}
1050
1051/*
1052 * Atomically extract and hold the physical page with the given
1053 * pmap and virtual address pair if that mapping permits the given
1054 * protection.
1055 */
1056vm_page_t
1057pmap_extract_and_hold(pmap_t pmap, vm_offset_t va, vm_prot_t prot)
1058{
1059	vm_paddr_t pa;
1060	vm_page_t m;
1061
1062	m = NULL;
1063	mtx_lock(&Giant);
1064	if ((pa = pmap_extract(pmap, va)) != 0) {
1065		m = PHYS_TO_VM_PAGE(pa);
1066		vm_page_lock_queues();
1067		vm_page_hold(m);
1068		vm_page_unlock_queues();
1069	}
1070	mtx_unlock(&Giant);
1071	return (m);
1072}
1073
1074/*
1075 * Grow the number of kernel page table entries.  Unneeded.
1076 */
1077void
1078pmap_growkernel(vm_offset_t addr)
1079{
1080}
1081
1082void
1083pmap_init(void)
1084{
1085
1086	CTR0(KTR_PMAP, "pmap_init");
1087
1088	pmap_upvo_zone = uma_zcreate("UPVO entry", sizeof (struct pvo_entry),
1089	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
1090	    UMA_ZONE_VM | UMA_ZONE_NOFREE);
1091	pmap_mpvo_zone = uma_zcreate("MPVO entry", sizeof(struct pvo_entry),
1092	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
1093	    UMA_ZONE_VM | UMA_ZONE_NOFREE);
1094	pmap_initialized = TRUE;
1095}
1096
1097void
1098pmap_init2(void)
1099{
1100
1101	CTR0(KTR_PMAP, "pmap_init2");
1102}
1103
1104boolean_t
1105pmap_is_modified(vm_page_t m)
1106{
1107
1108	if ((m->flags & (PG_FICTITIOUS |PG_UNMANAGED)) != 0)
1109		return (FALSE);
1110
1111	return (pmap_query_bit(m, PTE_CHG));
1112}
1113
1114/*
1115 *	pmap_is_prefaultable:
1116 *
1117 *	Return whether or not the specified virtual address is elgible
1118 *	for prefault.
1119 */
1120boolean_t
1121pmap_is_prefaultable(pmap_t pmap, vm_offset_t addr)
1122{
1123
1124	return (FALSE);
1125}
1126
1127void
1128pmap_clear_reference(vm_page_t m)
1129{
1130
1131	if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) != 0)
1132		return;
1133	pmap_clear_bit(m, PTE_REF, NULL);
1134}
1135
1136void
1137pmap_clear_modify(vm_page_t m)
1138{
1139
1140	if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) != 0)
1141		return;
1142	pmap_clear_bit(m, PTE_CHG, NULL);
1143}
1144
1145/*
1146 *	pmap_ts_referenced:
1147 *
1148 *	Return a count of reference bits for a page, clearing those bits.
1149 *	It is not necessary for every reference bit to be cleared, but it
1150 *	is necessary that 0 only be returned when there are truly no
1151 *	reference bits set.
1152 *
1153 *	XXX: The exact number of bits to check and clear is a matter that
1154 *	should be tested and standardized at some point in the future for
1155 *	optimal aging of shared pages.
1156 */
1157int
1158pmap_ts_referenced(vm_page_t m)
1159{
1160	int count;
1161
1162	if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) != 0)
1163		return (0);
1164
1165	count = pmap_clear_bit(m, PTE_REF, NULL);
1166
1167	return (count);
1168}
1169
1170/*
1171 * Map a wired page into kernel virtual address space.
1172 */
1173void
1174pmap_kenter(vm_offset_t va, vm_offset_t pa)
1175{
1176	u_int		pte_lo;
1177	int		error;
1178	int		i;
1179
1180#if 0
1181	if (va < VM_MIN_KERNEL_ADDRESS)
1182		panic("pmap_kenter: attempt to enter non-kernel address %#x",
1183		    va);
1184#endif
1185
1186	pte_lo = PTE_I | PTE_G;
1187	for (i = 0; i < pregions_sz; i++) {
1188		if ((pa >= pregions[i].mr_start) &&
1189		    (pa < (pregions[i].mr_start + pregions[i].mr_size))) {
1190			pte_lo &= ~(PTE_I | PTE_G);
1191			break;
1192		}
1193	}
1194
1195	error = pmap_pvo_enter(kernel_pmap, pmap_upvo_zone,
1196	    &pmap_pvo_kunmanaged, va, pa, pte_lo, PVO_WIRED);
1197
1198	if (error != 0 && error != ENOENT)
1199		panic("pmap_kenter: failed to enter va %#x pa %#x: %d", va,
1200		    pa, error);
1201
1202	/*
1203	 * Flush the real memory from the instruction cache.
1204	 */
1205	if ((pte_lo & (PTE_I | PTE_G)) == 0) {
1206		pmap_syncicache(pa, PAGE_SIZE);
1207	}
1208}
1209
1210/*
1211 * Extract the physical page address associated with the given kernel virtual
1212 * address.
1213 */
1214vm_offset_t
1215pmap_kextract(vm_offset_t va)
1216{
1217	struct		pvo_entry *pvo;
1218
1219#ifdef UMA_MD_SMALL_ALLOC
1220	/*
1221	 * Allow direct mappings
1222	 */
1223	if (va < VM_MIN_KERNEL_ADDRESS) {
1224		return (va);
1225	}
1226#endif
1227
1228	pvo = pmap_pvo_find_va(kernel_pmap, va & ~ADDR_POFF, NULL);
1229	KASSERT(pvo != NULL, ("pmap_kextract: no addr found"));
1230	if (pvo == NULL) {
1231		return (0);
1232	}
1233
1234	return ((pvo->pvo_pte.pte_lo & PTE_RPGN) | (va & ADDR_POFF));
1235}
1236
1237/*
1238 * Remove a wired page from kernel virtual address space.
1239 */
1240void
1241pmap_kremove(vm_offset_t va)
1242{
1243
1244	pmap_remove(kernel_pmap, va, va + PAGE_SIZE);
1245}
1246
1247/*
1248 * Map a range of physical addresses into kernel virtual address space.
1249 *
1250 * The value passed in *virt is a suggested virtual address for the mapping.
1251 * Architectures which can support a direct-mapped physical to virtual region
1252 * can return the appropriate address within that region, leaving '*virt'
1253 * unchanged.  We cannot and therefore do not; *virt is updated with the
1254 * first usable address after the mapped region.
1255 */
1256vm_offset_t
1257pmap_map(vm_offset_t *virt, vm_offset_t pa_start, vm_offset_t pa_end, int prot)
1258{
1259	vm_offset_t	sva, va;
1260
1261	sva = *virt;
1262	va = sva;
1263	for (; pa_start < pa_end; pa_start += PAGE_SIZE, va += PAGE_SIZE)
1264		pmap_kenter(va, pa_start);
1265	*virt = va;
1266	return (sva);
1267}
1268
1269int
1270pmap_mincore(pmap_t pmap, vm_offset_t addr)
1271{
1272	TODO;
1273	return (0);
1274}
1275
1276void
1277pmap_object_init_pt(pmap_t pm, vm_offset_t addr, vm_object_t object,
1278		    vm_pindex_t pindex, vm_size_t size)
1279{
1280
1281	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1282	KASSERT(object->type == OBJT_DEVICE,
1283	    ("pmap_object_init_pt: non-device object"));
1284	KASSERT(pm == &curproc->p_vmspace->vm_pmap || pm == kernel_pmap,
1285	    ("pmap_object_init_pt: non current pmap"));
1286}
1287
1288/*
1289 * Lower the permission for all mappings to a given page.
1290 */
1291void
1292pmap_page_protect(vm_page_t m, vm_prot_t prot)
1293{
1294	struct	pvo_head *pvo_head;
1295	struct	pvo_entry *pvo, *next_pvo;
1296	struct	pte *pt;
1297
1298	/*
1299	 * Since the routine only downgrades protection, if the
1300	 * maximal protection is desired, there isn't any change
1301	 * to be made.
1302	 */
1303	if ((prot & (VM_PROT_READ|VM_PROT_WRITE)) ==
1304	    (VM_PROT_READ|VM_PROT_WRITE))
1305		return;
1306
1307	pvo_head = vm_page_to_pvoh(m);
1308	for (pvo = LIST_FIRST(pvo_head); pvo != NULL; pvo = next_pvo) {
1309		next_pvo = LIST_NEXT(pvo, pvo_vlink);
1310		PMAP_PVO_CHECK(pvo);	/* sanity check */
1311
1312		/*
1313		 * Downgrading to no mapping at all, we just remove the entry.
1314		 */
1315		if ((prot & VM_PROT_READ) == 0) {
1316			pmap_pvo_remove(pvo, -1);
1317			continue;
1318		}
1319
1320		/*
1321		 * If EXEC permission is being revoked, just clear the flag
1322		 * in the PVO.
1323		 */
1324		if ((prot & VM_PROT_EXECUTE) == 0)
1325			pvo->pvo_vaddr &= ~PVO_EXECUTABLE;
1326
1327		/*
1328		 * If this entry is already RO, don't diddle with the page
1329		 * table.
1330		 */
1331		if ((pvo->pvo_pte.pte_lo & PTE_PP) == PTE_BR) {
1332			PMAP_PVO_CHECK(pvo);
1333			continue;
1334		}
1335
1336		/*
1337		 * Grab the PTE before we diddle the bits so pvo_to_pte can
1338		 * verify the pte contents are as expected.
1339		 */
1340		pt = pmap_pvo_to_pte(pvo, -1);
1341		pvo->pvo_pte.pte_lo &= ~PTE_PP;
1342		pvo->pvo_pte.pte_lo |= PTE_BR;
1343		if (pt != NULL)
1344			pmap_pte_change(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
1345		PMAP_PVO_CHECK(pvo);	/* sanity check */
1346	}
1347}
1348
1349/*
1350 * Returns true if the pmap's pv is one of the first
1351 * 16 pvs linked to from this page.  This count may
1352 * be changed upwards or downwards in the future; it
1353 * is only necessary that true be returned for a small
1354 * subset of pmaps for proper page aging.
1355 */
1356boolean_t
1357pmap_page_exists_quick(pmap_t pmap, vm_page_t m)
1358{
1359        int loops;
1360	struct pvo_entry *pvo;
1361
1362        if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
1363                return FALSE;
1364
1365	loops = 0;
1366	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
1367		if (pvo->pvo_pmap == pmap)
1368			return (TRUE);
1369		if (++loops >= 16)
1370			break;
1371	}
1372
1373	return (FALSE);
1374}
1375
1376static u_int	pmap_vsidcontext;
1377
1378void
1379pmap_pinit(pmap_t pmap)
1380{
1381	int	i, mask;
1382	u_int	entropy;
1383
1384	KASSERT((int)pmap < VM_MIN_KERNEL_ADDRESS, ("pmap_pinit: virt pmap"));
1385
1386	entropy = 0;
1387	__asm __volatile("mftb %0" : "=r"(entropy));
1388
1389	/*
1390	 * Allocate some segment registers for this pmap.
1391	 */
1392	for (i = 0; i < NPMAPS; i += VSID_NBPW) {
1393		u_int	hash, n;
1394
1395		/*
1396		 * Create a new value by mutiplying by a prime and adding in
1397		 * entropy from the timebase register.  This is to make the
1398		 * VSID more random so that the PT hash function collides
1399		 * less often.  (Note that the prime casues gcc to do shifts
1400		 * instead of a multiply.)
1401		 */
1402		pmap_vsidcontext = (pmap_vsidcontext * 0x1105) + entropy;
1403		hash = pmap_vsidcontext & (NPMAPS - 1);
1404		if (hash == 0)		/* 0 is special, avoid it */
1405			continue;
1406		n = hash >> 5;
1407		mask = 1 << (hash & (VSID_NBPW - 1));
1408		hash = (pmap_vsidcontext & 0xfffff);
1409		if (pmap_vsid_bitmap[n] & mask) {	/* collision? */
1410			/* anything free in this bucket? */
1411			if (pmap_vsid_bitmap[n] == 0xffffffff) {
1412				entropy = (pmap_vsidcontext >> 20);
1413				continue;
1414			}
1415			i = ffs(~pmap_vsid_bitmap[i]) - 1;
1416			mask = 1 << i;
1417			hash &= 0xfffff & ~(VSID_NBPW - 1);
1418			hash |= i;
1419		}
1420		pmap_vsid_bitmap[n] |= mask;
1421		for (i = 0; i < 16; i++)
1422			pmap->pm_sr[i] = VSID_MAKE(i, hash);
1423		return;
1424	}
1425
1426	panic("pmap_pinit: out of segments");
1427}
1428
1429/*
1430 * Initialize the pmap associated with process 0.
1431 */
1432void
1433pmap_pinit0(pmap_t pm)
1434{
1435
1436	pmap_pinit(pm);
1437	bzero(&pm->pm_stats, sizeof(pm->pm_stats));
1438}
1439
1440/*
1441 * Set the physical protection on the specified range of this map as requested.
1442 */
1443void
1444pmap_protect(pmap_t pm, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot)
1445{
1446	struct	pvo_entry *pvo;
1447	struct	pte *pt;
1448	int	pteidx;
1449
1450	CTR4(KTR_PMAP, "pmap_protect: pm=%p sva=%#x eva=%#x prot=%#x", pm, sva,
1451	    eva, prot);
1452
1453
1454	KASSERT(pm == &curproc->p_vmspace->vm_pmap || pm == kernel_pmap,
1455	    ("pmap_protect: non current pmap"));
1456
1457	if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
1458		pmap_remove(pm, sva, eva);
1459		return;
1460	}
1461
1462	for (; sva < eva; sva += PAGE_SIZE) {
1463		pvo = pmap_pvo_find_va(pm, sva, &pteidx);
1464		if (pvo == NULL)
1465			continue;
1466
1467		if ((prot & VM_PROT_EXECUTE) == 0)
1468			pvo->pvo_vaddr &= ~PVO_EXECUTABLE;
1469
1470		/*
1471		 * Grab the PTE pointer before we diddle with the cached PTE
1472		 * copy.
1473		 */
1474		pt = pmap_pvo_to_pte(pvo, pteidx);
1475		/*
1476		 * Change the protection of the page.
1477		 */
1478		pvo->pvo_pte.pte_lo &= ~PTE_PP;
1479		pvo->pvo_pte.pte_lo |= PTE_BR;
1480
1481		/*
1482		 * If the PVO is in the page table, update that pte as well.
1483		 */
1484		if (pt != NULL)
1485			pmap_pte_change(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
1486	}
1487}
1488
1489/*
1490 * Map a list of wired pages into kernel virtual address space.  This is
1491 * intended for temporary mappings which do not need page modification or
1492 * references recorded.  Existing mappings in the region are overwritten.
1493 */
1494void
1495pmap_qenter(vm_offset_t sva, vm_page_t *m, int count)
1496{
1497	vm_offset_t va;
1498
1499	va = sva;
1500	while (count-- > 0) {
1501		pmap_kenter(va, VM_PAGE_TO_PHYS(*m));
1502		va += PAGE_SIZE;
1503		m++;
1504	}
1505}
1506
1507/*
1508 * Remove page mappings from kernel virtual address space.  Intended for
1509 * temporary mappings entered by pmap_qenter.
1510 */
1511void
1512pmap_qremove(vm_offset_t sva, int count)
1513{
1514	vm_offset_t va;
1515
1516	va = sva;
1517	while (count-- > 0) {
1518		pmap_kremove(va);
1519		va += PAGE_SIZE;
1520	}
1521}
1522
1523void
1524pmap_release(pmap_t pmap)
1525{
1526        int idx, mask;
1527
1528	/*
1529	 * Free segment register's VSID
1530	 */
1531        if (pmap->pm_sr[0] == 0)
1532                panic("pmap_release");
1533
1534        idx = VSID_TO_HASH(pmap->pm_sr[0]) & (NPMAPS-1);
1535        mask = 1 << (idx % VSID_NBPW);
1536        idx /= VSID_NBPW;
1537        pmap_vsid_bitmap[idx] &= ~mask;
1538}
1539
1540/*
1541 * Remove the given range of addresses from the specified map.
1542 */
1543void
1544pmap_remove(pmap_t pm, vm_offset_t sva, vm_offset_t eva)
1545{
1546	struct	pvo_entry *pvo;
1547	int	pteidx;
1548
1549	for (; sva < eva; sva += PAGE_SIZE) {
1550		pvo = pmap_pvo_find_va(pm, sva, &pteidx);
1551		if (pvo != NULL) {
1552			pmap_pvo_remove(pvo, pteidx);
1553		}
1554	}
1555}
1556
1557/*
1558 * Remove physical page from all pmaps in which it resides. pmap_pvo_remove()
1559 * will reflect changes in pte's back to the vm_page.
1560 */
1561void
1562pmap_remove_all(vm_page_t m)
1563{
1564	struct  pvo_head *pvo_head;
1565	struct	pvo_entry *pvo, *next_pvo;
1566
1567	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1568
1569	pvo_head = vm_page_to_pvoh(m);
1570	for (pvo = LIST_FIRST(pvo_head); pvo != NULL; pvo = next_pvo) {
1571		next_pvo = LIST_NEXT(pvo, pvo_vlink);
1572
1573		PMAP_PVO_CHECK(pvo);	/* sanity check */
1574		pmap_pvo_remove(pvo, -1);
1575	}
1576	vm_page_flag_clear(m, PG_WRITEABLE);
1577}
1578
1579/*
1580 * Remove all pages from specified address space, this aids process exit
1581 * speeds.  This is much faster than pmap_remove in the case of running down
1582 * an entire address space.  Only works for the current pmap.
1583 */
1584void
1585pmap_remove_pages(pmap_t pm, vm_offset_t sva, vm_offset_t eva)
1586{
1587
1588	KASSERT(pm == &curproc->p_vmspace->vm_pmap || pm == kernel_pmap,
1589	    ("pmap_remove_pages: non current pmap"));
1590	pmap_remove(pm, sva, eva);
1591}
1592
1593/*
1594 * Allocate a physical page of memory directly from the phys_avail map.
1595 * Can only be called from pmap_bootstrap before avail start and end are
1596 * calculated.
1597 */
1598static vm_offset_t
1599pmap_bootstrap_alloc(vm_size_t size, u_int align)
1600{
1601	vm_offset_t	s, e;
1602	int		i, j;
1603
1604	size = round_page(size);
1605	for (i = 0; phys_avail[i + 1] != 0; i += 2) {
1606		if (align != 0)
1607			s = (phys_avail[i] + align - 1) & ~(align - 1);
1608		else
1609			s = phys_avail[i];
1610		e = s + size;
1611
1612		if (s < phys_avail[i] || e > phys_avail[i + 1])
1613			continue;
1614
1615		if (s == phys_avail[i]) {
1616			phys_avail[i] += size;
1617		} else if (e == phys_avail[i + 1]) {
1618			phys_avail[i + 1] -= size;
1619		} else {
1620			for (j = phys_avail_count * 2; j > i; j -= 2) {
1621				phys_avail[j] = phys_avail[j - 2];
1622				phys_avail[j + 1] = phys_avail[j - 1];
1623			}
1624
1625			phys_avail[i + 3] = phys_avail[i + 1];
1626			phys_avail[i + 1] = s;
1627			phys_avail[i + 2] = e;
1628			phys_avail_count++;
1629		}
1630
1631		return (s);
1632	}
1633	panic("pmap_bootstrap_alloc: could not allocate memory");
1634}
1635
1636/*
1637 * Return an unmapped pvo for a kernel virtual address.
1638 * Used by pmap functions that operate on physical pages.
1639 */
1640static struct pvo_entry *
1641pmap_rkva_alloc(void)
1642{
1643	struct		pvo_entry *pvo;
1644	struct		pte *pt;
1645	vm_offset_t	kva;
1646	int		pteidx;
1647
1648	if (pmap_rkva_count == 0)
1649		panic("pmap_rkva_alloc: no more reserved KVAs");
1650
1651	kva = pmap_rkva_start + (PAGE_SIZE * --pmap_rkva_count);
1652	pmap_kenter(kva, 0);
1653
1654	pvo = pmap_pvo_find_va(kernel_pmap, kva, &pteidx);
1655
1656	if (pvo == NULL)
1657		panic("pmap_kva_alloc: pmap_pvo_find_va failed");
1658
1659	pt = pmap_pvo_to_pte(pvo, pteidx);
1660
1661	if (pt == NULL)
1662		panic("pmap_kva_alloc: pmap_pvo_to_pte failed");
1663
1664	pmap_pte_unset(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
1665	PVO_PTEGIDX_CLR(pvo);
1666
1667	pmap_pte_overflow++;
1668
1669	return (pvo);
1670}
1671
1672static void
1673pmap_pa_map(struct pvo_entry *pvo, vm_offset_t pa, struct pte *saved_pt,
1674    int *depth_p)
1675{
1676	struct	pte *pt;
1677
1678	/*
1679	 * If this pvo already has a valid pte, we need to save it so it can
1680	 * be restored later.  We then just reload the new PTE over the old
1681	 * slot.
1682	 */
1683	if (saved_pt != NULL) {
1684		pt = pmap_pvo_to_pte(pvo, -1);
1685
1686		if (pt != NULL) {
1687			pmap_pte_unset(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
1688			PVO_PTEGIDX_CLR(pvo);
1689			pmap_pte_overflow++;
1690		}
1691
1692		*saved_pt = pvo->pvo_pte;
1693
1694		pvo->pvo_pte.pte_lo &= ~PTE_RPGN;
1695	}
1696
1697	pvo->pvo_pte.pte_lo |= pa;
1698
1699	if (!pmap_pte_spill(pvo->pvo_vaddr))
1700		panic("pmap_pa_map: could not spill pvo %p", pvo);
1701
1702	if (depth_p != NULL)
1703		(*depth_p)++;
1704}
1705
1706static void
1707pmap_pa_unmap(struct pvo_entry *pvo, struct pte *saved_pt, int *depth_p)
1708{
1709	struct	pte *pt;
1710
1711	pt = pmap_pvo_to_pte(pvo, -1);
1712
1713	if (pt != NULL) {
1714		pmap_pte_unset(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
1715		PVO_PTEGIDX_CLR(pvo);
1716		pmap_pte_overflow++;
1717	}
1718
1719	pvo->pvo_pte.pte_lo &= ~PTE_RPGN;
1720
1721	/*
1722	 * If there is a saved PTE and it's valid, restore it and return.
1723	 */
1724	if (saved_pt != NULL && (saved_pt->pte_lo & PTE_RPGN) != 0) {
1725		if (depth_p != NULL && --(*depth_p) == 0)
1726			panic("pmap_pa_unmap: restoring but depth == 0");
1727
1728		pvo->pvo_pte = *saved_pt;
1729
1730		if (!pmap_pte_spill(pvo->pvo_vaddr))
1731			panic("pmap_pa_unmap: could not spill pvo %p", pvo);
1732	}
1733}
1734
1735static void
1736pmap_syncicache(vm_offset_t pa, vm_size_t len)
1737{
1738	__syncicache((void *)pa, len);
1739}
1740
1741static void
1742tlbia(void)
1743{
1744	caddr_t	i;
1745
1746	SYNC();
1747	for (i = 0; i < (caddr_t)0x00040000; i += 0x00001000) {
1748		TLBIE(i);
1749		EIEIO();
1750	}
1751	TLBSYNC();
1752	SYNC();
1753}
1754
1755static int
1756pmap_pvo_enter(pmap_t pm, uma_zone_t zone, struct pvo_head *pvo_head,
1757    vm_offset_t va, vm_offset_t pa, u_int pte_lo, int flags)
1758{
1759	struct	pvo_entry *pvo;
1760	u_int	sr;
1761	int	first;
1762	u_int	ptegidx;
1763	int	i;
1764	int     bootstrap;
1765
1766	pmap_pvo_enter_calls++;
1767	first = 0;
1768
1769	bootstrap = 0;
1770
1771	/*
1772	 * Compute the PTE Group index.
1773	 */
1774	va &= ~ADDR_POFF;
1775	sr = va_to_sr(pm->pm_sr, va);
1776	ptegidx = va_to_pteg(sr, va);
1777
1778	/*
1779	 * Remove any existing mapping for this page.  Reuse the pvo entry if
1780	 * there is a mapping.
1781	 */
1782	LIST_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
1783		if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) {
1784			if ((pvo->pvo_pte.pte_lo & PTE_RPGN) == pa &&
1785			    (pvo->pvo_pte.pte_lo & PTE_PP) ==
1786			    (pte_lo & PTE_PP)) {
1787				return (0);
1788			}
1789			pmap_pvo_remove(pvo, -1);
1790			break;
1791		}
1792	}
1793
1794	/*
1795	 * If we aren't overwriting a mapping, try to allocate.
1796	 */
1797	if (pmap_initialized) {
1798		pvo = uma_zalloc(zone, M_NOWAIT);
1799	} else {
1800		if (pmap_bpvo_pool_index >= BPVO_POOL_SIZE) {
1801			panic("pmap_enter: bpvo pool exhausted, %d, %d, %d",
1802			      pmap_bpvo_pool_index, BPVO_POOL_SIZE,
1803			      BPVO_POOL_SIZE * sizeof(struct pvo_entry));
1804		}
1805		pvo = &pmap_bpvo_pool[pmap_bpvo_pool_index];
1806		pmap_bpvo_pool_index++;
1807		bootstrap = 1;
1808	}
1809
1810	if (pvo == NULL) {
1811		return (ENOMEM);
1812	}
1813
1814	pmap_pvo_entries++;
1815	pvo->pvo_vaddr = va;
1816	pvo->pvo_pmap = pm;
1817	LIST_INSERT_HEAD(&pmap_pvo_table[ptegidx], pvo, pvo_olink);
1818	pvo->pvo_vaddr &= ~ADDR_POFF;
1819	if (flags & VM_PROT_EXECUTE)
1820		pvo->pvo_vaddr |= PVO_EXECUTABLE;
1821	if (flags & PVO_WIRED)
1822		pvo->pvo_vaddr |= PVO_WIRED;
1823	if (pvo_head != &pmap_pvo_kunmanaged)
1824		pvo->pvo_vaddr |= PVO_MANAGED;
1825	if (bootstrap)
1826		pvo->pvo_vaddr |= PVO_BOOTSTRAP;
1827	pmap_pte_create(&pvo->pvo_pte, sr, va, pa | pte_lo);
1828
1829	/*
1830	 * Remember if the list was empty and therefore will be the first
1831	 * item.
1832	 */
1833	if (LIST_FIRST(pvo_head) == NULL)
1834		first = 1;
1835
1836	LIST_INSERT_HEAD(pvo_head, pvo, pvo_vlink);
1837	if (pvo->pvo_pte.pte_lo & PVO_WIRED)
1838		pvo->pvo_pmap->pm_stats.wired_count++;
1839	pvo->pvo_pmap->pm_stats.resident_count++;
1840
1841	/*
1842	 * We hope this succeeds but it isn't required.
1843	 */
1844	i = pmap_pte_insert(ptegidx, &pvo->pvo_pte);
1845	if (i >= 0) {
1846		PVO_PTEGIDX_SET(pvo, i);
1847	} else {
1848		panic("pmap_pvo_enter: overflow");
1849		pmap_pte_overflow++;
1850	}
1851
1852	return (first ? ENOENT : 0);
1853}
1854
1855static void
1856pmap_pvo_remove(struct pvo_entry *pvo, int pteidx)
1857{
1858	struct	pte *pt;
1859
1860	/*
1861	 * If there is an active pte entry, we need to deactivate it (and
1862	 * save the ref & cfg bits).
1863	 */
1864	pt = pmap_pvo_to_pte(pvo, pteidx);
1865	if (pt != NULL) {
1866		pmap_pte_unset(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
1867		PVO_PTEGIDX_CLR(pvo);
1868	} else {
1869		pmap_pte_overflow--;
1870	}
1871
1872	/*
1873	 * Update our statistics.
1874	 */
1875	pvo->pvo_pmap->pm_stats.resident_count--;
1876	if (pvo->pvo_pte.pte_lo & PVO_WIRED)
1877		pvo->pvo_pmap->pm_stats.wired_count--;
1878
1879	/*
1880	 * Save the REF/CHG bits into their cache if the page is managed.
1881	 */
1882	if (pvo->pvo_vaddr & PVO_MANAGED) {
1883		struct	vm_page *pg;
1884
1885		pg = PHYS_TO_VM_PAGE(pvo->pvo_pte.pte_lo & PTE_RPGN);
1886		if (pg != NULL) {
1887			pmap_attr_save(pg, pvo->pvo_pte.pte_lo &
1888			    (PTE_REF | PTE_CHG));
1889		}
1890	}
1891
1892	/*
1893	 * Remove this PVO from the PV list.
1894	 */
1895	LIST_REMOVE(pvo, pvo_vlink);
1896
1897	/*
1898	 * Remove this from the overflow list and return it to the pool
1899	 * if we aren't going to reuse it.
1900	 */
1901	LIST_REMOVE(pvo, pvo_olink);
1902	if (!(pvo->pvo_vaddr & PVO_BOOTSTRAP))
1903		uma_zfree(pvo->pvo_vaddr & PVO_MANAGED ? pmap_mpvo_zone :
1904		    pmap_upvo_zone, pvo);
1905	pmap_pvo_entries--;
1906	pmap_pvo_remove_calls++;
1907}
1908
1909static __inline int
1910pmap_pvo_pte_index(const struct pvo_entry *pvo, int ptegidx)
1911{
1912	int	pteidx;
1913
1914	/*
1915	 * We can find the actual pte entry without searching by grabbing
1916	 * the PTEG index from 3 unused bits in pte_lo[11:9] and by
1917	 * noticing the HID bit.
1918	 */
1919	pteidx = ptegidx * 8 + PVO_PTEGIDX_GET(pvo);
1920	if (pvo->pvo_pte.pte_hi & PTE_HID)
1921		pteidx ^= pmap_pteg_mask * 8;
1922
1923	return (pteidx);
1924}
1925
1926static struct pvo_entry *
1927pmap_pvo_find_va(pmap_t pm, vm_offset_t va, int *pteidx_p)
1928{
1929	struct	pvo_entry *pvo;
1930	int	ptegidx;
1931	u_int	sr;
1932
1933	va &= ~ADDR_POFF;
1934	sr = va_to_sr(pm->pm_sr, va);
1935	ptegidx = va_to_pteg(sr, va);
1936
1937	LIST_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
1938		if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) {
1939			if (pteidx_p)
1940				*pteidx_p = pmap_pvo_pte_index(pvo, ptegidx);
1941			return (pvo);
1942		}
1943	}
1944
1945	return (NULL);
1946}
1947
1948static struct pte *
1949pmap_pvo_to_pte(const struct pvo_entry *pvo, int pteidx)
1950{
1951	struct	pte *pt;
1952
1953	/*
1954	 * If we haven't been supplied the ptegidx, calculate it.
1955	 */
1956	if (pteidx == -1) {
1957		int	ptegidx;
1958		u_int	sr;
1959
1960		sr = va_to_sr(pvo->pvo_pmap->pm_sr, pvo->pvo_vaddr);
1961		ptegidx = va_to_pteg(sr, pvo->pvo_vaddr);
1962		pteidx = pmap_pvo_pte_index(pvo, ptegidx);
1963	}
1964
1965	pt = &pmap_pteg_table[pteidx >> 3].pt[pteidx & 7];
1966
1967	if ((pvo->pvo_pte.pte_hi & PTE_VALID) && !PVO_PTEGIDX_ISSET(pvo)) {
1968		panic("pmap_pvo_to_pte: pvo %p has valid pte in pvo but no "
1969		    "valid pte index", pvo);
1970	}
1971
1972	if ((pvo->pvo_pte.pte_hi & PTE_VALID) == 0 && PVO_PTEGIDX_ISSET(pvo)) {
1973		panic("pmap_pvo_to_pte: pvo %p has valid pte index in pvo "
1974		    "pvo but no valid pte", pvo);
1975	}
1976
1977	if ((pt->pte_hi ^ (pvo->pvo_pte.pte_hi & ~PTE_VALID)) == PTE_VALID) {
1978		if ((pvo->pvo_pte.pte_hi & PTE_VALID) == 0) {
1979			panic("pmap_pvo_to_pte: pvo %p has valid pte in "
1980			    "pmap_pteg_table %p but invalid in pvo", pvo, pt);
1981		}
1982
1983		if (((pt->pte_lo ^ pvo->pvo_pte.pte_lo) & ~(PTE_CHG|PTE_REF))
1984		    != 0) {
1985			panic("pmap_pvo_to_pte: pvo %p pte does not match "
1986			    "pte %p in pmap_pteg_table", pvo, pt);
1987		}
1988
1989		return (pt);
1990	}
1991
1992	if (pvo->pvo_pte.pte_hi & PTE_VALID) {
1993		panic("pmap_pvo_to_pte: pvo %p has invalid pte %p in "
1994		    "pmap_pteg_table but valid in pvo", pvo, pt);
1995	}
1996
1997	return (NULL);
1998}
1999
2000/*
2001 * XXX: THIS STUFF SHOULD BE IN pte.c?
2002 */
2003int
2004pmap_pte_spill(vm_offset_t addr)
2005{
2006	struct	pvo_entry *source_pvo, *victim_pvo;
2007	struct	pvo_entry *pvo;
2008	int	ptegidx, i, j;
2009	u_int	sr;
2010	struct	pteg *pteg;
2011	struct	pte *pt;
2012
2013	pmap_pte_spills++;
2014
2015	sr = mfsrin(addr);
2016	ptegidx = va_to_pteg(sr, addr);
2017
2018	/*
2019	 * Have to substitute some entry.  Use the primary hash for this.
2020	 * Use low bits of timebase as random generator.
2021	 */
2022	pteg = &pmap_pteg_table[ptegidx];
2023	__asm __volatile("mftb %0" : "=r"(i));
2024	i &= 7;
2025	pt = &pteg->pt[i];
2026
2027	source_pvo = NULL;
2028	victim_pvo = NULL;
2029	LIST_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
2030		/*
2031		 * We need to find a pvo entry for this address.
2032		 */
2033		PMAP_PVO_CHECK(pvo);
2034		if (source_pvo == NULL &&
2035		    pmap_pte_match(&pvo->pvo_pte, sr, addr,
2036		    pvo->pvo_pte.pte_hi & PTE_HID)) {
2037			/*
2038			 * Now found an entry to be spilled into the pteg.
2039			 * The PTE is now valid, so we know it's active.
2040			 */
2041			j = pmap_pte_insert(ptegidx, &pvo->pvo_pte);
2042
2043			if (j >= 0) {
2044				PVO_PTEGIDX_SET(pvo, j);
2045				pmap_pte_overflow--;
2046				PMAP_PVO_CHECK(pvo);
2047				return (1);
2048			}
2049
2050			source_pvo = pvo;
2051
2052			if (victim_pvo != NULL)
2053				break;
2054		}
2055
2056		/*
2057		 * We also need the pvo entry of the victim we are replacing
2058		 * so save the R & C bits of the PTE.
2059		 */
2060		if ((pt->pte_hi & PTE_HID) == 0 && victim_pvo == NULL &&
2061		    pmap_pte_compare(pt, &pvo->pvo_pte)) {
2062			victim_pvo = pvo;
2063			if (source_pvo != NULL)
2064				break;
2065		}
2066	}
2067
2068	if (source_pvo == NULL)
2069		return (0);
2070
2071	if (victim_pvo == NULL) {
2072		if ((pt->pte_hi & PTE_HID) == 0)
2073			panic("pmap_pte_spill: victim p-pte (%p) has no pvo"
2074			    "entry", pt);
2075
2076		/*
2077		 * If this is a secondary PTE, we need to search it's primary
2078		 * pvo bucket for the matching PVO.
2079		 */
2080		LIST_FOREACH(pvo, &pmap_pvo_table[ptegidx ^ pmap_pteg_mask],
2081		    pvo_olink) {
2082			PMAP_PVO_CHECK(pvo);
2083			/*
2084			 * We also need the pvo entry of the victim we are
2085			 * replacing so save the R & C bits of the PTE.
2086			 */
2087			if (pmap_pte_compare(pt, &pvo->pvo_pte)) {
2088				victim_pvo = pvo;
2089				break;
2090			}
2091		}
2092
2093		if (victim_pvo == NULL)
2094			panic("pmap_pte_spill: victim s-pte (%p) has no pvo"
2095			    "entry", pt);
2096	}
2097
2098	/*
2099	 * We are invalidating the TLB entry for the EA we are replacing even
2100	 * though it's valid.  If we don't, we lose any ref/chg bit changes
2101	 * contained in the TLB entry.
2102	 */
2103	source_pvo->pvo_pte.pte_hi &= ~PTE_HID;
2104
2105	pmap_pte_unset(pt, &victim_pvo->pvo_pte, victim_pvo->pvo_vaddr);
2106	pmap_pte_set(pt, &source_pvo->pvo_pte);
2107
2108	PVO_PTEGIDX_CLR(victim_pvo);
2109	PVO_PTEGIDX_SET(source_pvo, i);
2110	pmap_pte_replacements++;
2111
2112	PMAP_PVO_CHECK(victim_pvo);
2113	PMAP_PVO_CHECK(source_pvo);
2114
2115	return (1);
2116}
2117
2118static int
2119pmap_pte_insert(u_int ptegidx, struct pte *pvo_pt)
2120{
2121	struct	pte *pt;
2122	int	i;
2123
2124	/*
2125	 * First try primary hash.
2126	 */
2127	for (pt = pmap_pteg_table[ptegidx].pt, i = 0; i < 8; i++, pt++) {
2128		if ((pt->pte_hi & PTE_VALID) == 0) {
2129			pvo_pt->pte_hi &= ~PTE_HID;
2130			pmap_pte_set(pt, pvo_pt);
2131			return (i);
2132		}
2133	}
2134
2135	/*
2136	 * Now try secondary hash.
2137	 */
2138	ptegidx ^= pmap_pteg_mask;
2139	ptegidx++;
2140	for (pt = pmap_pteg_table[ptegidx].pt, i = 0; i < 8; i++, pt++) {
2141		if ((pt->pte_hi & PTE_VALID) == 0) {
2142			pvo_pt->pte_hi |= PTE_HID;
2143			pmap_pte_set(pt, pvo_pt);
2144			return (i);
2145		}
2146	}
2147
2148	panic("pmap_pte_insert: overflow");
2149	return (-1);
2150}
2151
2152static boolean_t
2153pmap_query_bit(vm_page_t m, int ptebit)
2154{
2155	struct	pvo_entry *pvo;
2156	struct	pte *pt;
2157
2158#if 0
2159	if (pmap_attr_fetch(m) & ptebit)
2160		return (TRUE);
2161#endif
2162
2163	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
2164		PMAP_PVO_CHECK(pvo);	/* sanity check */
2165
2166		/*
2167		 * See if we saved the bit off.  If so, cache it and return
2168		 * success.
2169		 */
2170		if (pvo->pvo_pte.pte_lo & ptebit) {
2171			pmap_attr_save(m, ptebit);
2172			PMAP_PVO_CHECK(pvo);	/* sanity check */
2173			return (TRUE);
2174		}
2175	}
2176
2177	/*
2178	 * No luck, now go through the hard part of looking at the PTEs
2179	 * themselves.  Sync so that any pending REF/CHG bits are flushed to
2180	 * the PTEs.
2181	 */
2182	SYNC();
2183	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
2184		PMAP_PVO_CHECK(pvo);	/* sanity check */
2185
2186		/*
2187		 * See if this pvo has a valid PTE.  if so, fetch the
2188		 * REF/CHG bits from the valid PTE.  If the appropriate
2189		 * ptebit is set, cache it and return success.
2190		 */
2191		pt = pmap_pvo_to_pte(pvo, -1);
2192		if (pt != NULL) {
2193			pmap_pte_synch(pt, &pvo->pvo_pte);
2194			if (pvo->pvo_pte.pte_lo & ptebit) {
2195				pmap_attr_save(m, ptebit);
2196				PMAP_PVO_CHECK(pvo);	/* sanity check */
2197				return (TRUE);
2198			}
2199		}
2200	}
2201
2202	return (FALSE);
2203}
2204
2205static u_int
2206pmap_clear_bit(vm_page_t m, int ptebit, int *origbit)
2207{
2208	u_int	count;
2209	struct	pvo_entry *pvo;
2210	struct	pte *pt;
2211	int	rv;
2212
2213	/*
2214	 * Clear the cached value.
2215	 */
2216	rv = pmap_attr_fetch(m);
2217	pmap_attr_clear(m, ptebit);
2218
2219	/*
2220	 * Sync so that any pending REF/CHG bits are flushed to the PTEs (so
2221	 * we can reset the right ones).  note that since the pvo entries and
2222	 * list heads are accessed via BAT0 and are never placed in the page
2223	 * table, we don't have to worry about further accesses setting the
2224	 * REF/CHG bits.
2225	 */
2226	SYNC();
2227
2228	/*
2229	 * For each pvo entry, clear the pvo's ptebit.  If this pvo has a
2230	 * valid pte clear the ptebit from the valid pte.
2231	 */
2232	count = 0;
2233	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
2234		PMAP_PVO_CHECK(pvo);	/* sanity check */
2235		pt = pmap_pvo_to_pte(pvo, -1);
2236		if (pt != NULL) {
2237			pmap_pte_synch(pt, &pvo->pvo_pte);
2238			if (pvo->pvo_pte.pte_lo & ptebit) {
2239				count++;
2240				pmap_pte_clear(pt, PVO_VADDR(pvo), ptebit);
2241			}
2242		}
2243		rv |= pvo->pvo_pte.pte_lo;
2244		pvo->pvo_pte.pte_lo &= ~ptebit;
2245		PMAP_PVO_CHECK(pvo);	/* sanity check */
2246	}
2247
2248	if (origbit != NULL) {
2249		*origbit = rv;
2250	}
2251
2252	return (count);
2253}
2254
2255/*
2256 * Return true if the physical range is encompassed by the battable[idx]
2257 */
2258static int
2259pmap_bat_mapped(int idx, vm_offset_t pa, vm_size_t size)
2260{
2261	u_int prot;
2262	u_int32_t start;
2263	u_int32_t end;
2264	u_int32_t bat_ble;
2265
2266	/*
2267	 * Return immediately if not a valid mapping
2268	 */
2269	if (!battable[idx].batu & BAT_Vs)
2270		return (EINVAL);
2271
2272	/*
2273	 * The BAT entry must be cache-inhibited, guarded, and r/w
2274	 * so it can function as an i/o page
2275	 */
2276	prot = battable[idx].batl & (BAT_I|BAT_G|BAT_PP_RW);
2277	if (prot != (BAT_I|BAT_G|BAT_PP_RW))
2278		return (EPERM);
2279
2280	/*
2281	 * The address should be within the BAT range. Assume that the
2282	 * start address in the BAT has the correct alignment (thus
2283	 * not requiring masking)
2284	 */
2285	start = battable[idx].batl & BAT_PBS;
2286	bat_ble = (battable[idx].batu & ~(BAT_EBS)) | 0x03;
2287	end = start | (bat_ble << 15) | 0x7fff;
2288
2289	if ((pa < start) || ((pa + size) > end))
2290		return (ERANGE);
2291
2292	return (0);
2293}
2294
2295
2296/*
2297 * Map a set of physical memory pages into the kernel virtual
2298 * address space. Return a pointer to where it is mapped. This
2299 * routine is intended to be used for mapping device memory,
2300 * NOT real memory.
2301 */
2302void *
2303pmap_mapdev(vm_offset_t pa, vm_size_t size)
2304{
2305	vm_offset_t va, tmpva, ppa, offset;
2306	int i;
2307
2308	ppa = trunc_page(pa);
2309	offset = pa & PAGE_MASK;
2310	size = roundup(offset + size, PAGE_SIZE);
2311
2312	GIANT_REQUIRED;
2313
2314	/*
2315	 * If the physical address lies within a valid BAT table entry,
2316	 * return the 1:1 mapping. This currently doesn't work
2317	 * for regions that overlap 256M BAT segments.
2318	 */
2319	for (i = 0; i < 16; i++) {
2320		if (pmap_bat_mapped(i, pa, size) == 0)
2321			return ((void *) pa);
2322	}
2323
2324	va = kmem_alloc_nofault(kernel_map, size);
2325	if (!va)
2326		panic("pmap_mapdev: Couldn't alloc kernel virtual memory");
2327
2328	for (tmpva = va; size > 0;) {
2329		pmap_kenter(tmpva, ppa);
2330		TLBIE(tmpva); /* XXX or should it be invalidate-all ? */
2331		size -= PAGE_SIZE;
2332		tmpva += PAGE_SIZE;
2333		ppa += PAGE_SIZE;
2334	}
2335
2336	return ((void *)(va + offset));
2337}
2338
2339void
2340pmap_unmapdev(vm_offset_t va, vm_size_t size)
2341{
2342	vm_offset_t base, offset;
2343
2344	/*
2345	 * If this is outside kernel virtual space, then it's a
2346	 * battable entry and doesn't require unmapping
2347	 */
2348	if ((va >= VM_MIN_KERNEL_ADDRESS) && (va <= VM_MAX_KERNEL_ADDRESS)) {
2349		base = trunc_page(va);
2350		offset = va & PAGE_MASK;
2351		size = roundup(offset + size, PAGE_SIZE);
2352		kmem_free(kernel_map, base, size);
2353	}
2354}
2355