mmu_oea.c revision 123354
1169689Skan/*
2169689Skan * Copyright (c) 2001 The NetBSD Foundation, Inc.
3169689Skan * All rights reserved.
4169689Skan *
5169689Skan * This code is derived from software contributed to The NetBSD Foundation
6169689Skan * by Matt Thomas <matt@3am-software.com> of Allegro Networks, Inc.
7169689Skan *
8169689Skan * Redistribution and use in source and binary forms, with or without
9169689Skan * modification, are permitted provided that the following conditions
10169689Skan * are met:
11169689Skan * 1. Redistributions of source code must retain the above copyright
12169689Skan *    notice, this list of conditions and the following disclaimer.
13169689Skan * 2. Redistributions in binary form must reproduce the above copyright
14169689Skan *    notice, this list of conditions and the following disclaimer in the
15117395Skan *    documentation and/or other materials provided with the distribution.
16117395Skan * 3. All advertising materials mentioning features or use of this software
17132718Skan *    must display the following acknowledgement:
18117395Skan *        This product includes software developed by the NetBSD
19117395Skan *        Foundation, Inc. and its contributors.
20117395Skan * 4. Neither the name of The NetBSD Foundation nor the names of its
21117395Skan *    contributors may be used to endorse or promote products derived
22117395Skan *    from this software without specific prior written permission.
23117395Skan *
24 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
25 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
26 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
27 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
28 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
29 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
30 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
31 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
32 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
33 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
34 * POSSIBILITY OF SUCH DAMAGE.
35 */
36/*
37 * Copyright (C) 1995, 1996 Wolfgang Solfrank.
38 * Copyright (C) 1995, 1996 TooLs GmbH.
39 * All rights reserved.
40 *
41 * Redistribution and use in source and binary forms, with or without
42 * modification, are permitted provided that the following conditions
43 * are met:
44 * 1. Redistributions of source code must retain the above copyright
45 *    notice, this list of conditions and the following disclaimer.
46 * 2. Redistributions in binary form must reproduce the above copyright
47 *    notice, this list of conditions and the following disclaimer in the
48 *    documentation and/or other materials provided with the distribution.
49 * 3. All advertising materials mentioning features or use of this software
50 *    must display the following acknowledgement:
51 *	This product includes software developed by TooLs GmbH.
52 * 4. The name of TooLs GmbH may not be used to endorse or promote products
53 *    derived from this software without specific prior written permission.
54 *
55 * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR
56 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
57 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
58 * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
59 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
60 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
61 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
62 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
63 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
64 * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
65 *
66 * $NetBSD: pmap.c,v 1.28 2000/03/26 20:42:36 kleink Exp $
67 */
68/*
69 * Copyright (C) 2001 Benno Rice.
70 * All rights reserved.
71 *
72 * Redistribution and use in source and binary forms, with or without
73 * modification, are permitted provided that the following conditions
74 * are met:
75 * 1. Redistributions of source code must retain the above copyright
76 *    notice, this list of conditions and the following disclaimer.
77 * 2. Redistributions in binary form must reproduce the above copyright
78 *    notice, this list of conditions and the following disclaimer in the
79 *    documentation and/or other materials provided with the distribution.
80 *
81 * THIS SOFTWARE IS PROVIDED BY Benno Rice ``AS IS'' AND ANY EXPRESS OR
82 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
83 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
84 * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
85 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
86 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
87 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
88 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
89 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
90 * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
91 */
92
93#include <sys/cdefs.h>
94__FBSDID("$FreeBSD: head/sys/powerpc/aim/mmu_oea.c 123354 2003-12-09 14:47:33Z gallatin $");
95
96/*
97 * Manages physical address maps.
98 *
99 * In addition to hardware address maps, this module is called upon to
100 * provide software-use-only maps which may or may not be stored in the
101 * same form as hardware maps.  These pseudo-maps are used to store
102 * intermediate results from copy operations to and from address spaces.
103 *
104 * Since the information managed by this module is also stored by the
105 * logical address mapping module, this module may throw away valid virtual
106 * to physical mappings at almost any time.  However, invalidations of
107 * mappings must be done as requested.
108 *
109 * In order to cope with hardware architectures which make virtual to
110 * physical map invalidates expensive, this module may delay invalidate
111 * reduced protection operations until such time as they are actually
112 * necessary.  This module is given full information as to which processors
113 * are currently using which maps, and to when physical maps must be made
114 * correct.
115 */
116
117#include "opt_kstack_pages.h"
118
119#include <sys/param.h>
120#include <sys/kernel.h>
121#include <sys/ktr.h>
122#include <sys/lock.h>
123#include <sys/msgbuf.h>
124#include <sys/mutex.h>
125#include <sys/proc.h>
126#include <sys/sysctl.h>
127#include <sys/systm.h>
128#include <sys/vmmeter.h>
129
130#include <dev/ofw/openfirm.h>
131
132#include <vm/vm.h>
133#include <vm/vm_param.h>
134#include <vm/vm_kern.h>
135#include <vm/vm_page.h>
136#include <vm/vm_map.h>
137#include <vm/vm_object.h>
138#include <vm/vm_extern.h>
139#include <vm/vm_pageout.h>
140#include <vm/vm_pager.h>
141#include <vm/uma.h>
142
143#include <machine/powerpc.h>
144#include <machine/bat.h>
145#include <machine/frame.h>
146#include <machine/md_var.h>
147#include <machine/psl.h>
148#include <machine/pte.h>
149#include <machine/sr.h>
150
151#define	PMAP_DEBUG
152
153#define TODO	panic("%s: not implemented", __func__);
154
155#define	PMAP_LOCK(pm)
156#define	PMAP_UNLOCK(pm)
157
158#define	TLBIE(va)	__asm __volatile("tlbie %0" :: "r"(va))
159#define	TLBSYNC()	__asm __volatile("tlbsync");
160#define	SYNC()		__asm __volatile("sync");
161#define	EIEIO()		__asm __volatile("eieio");
162
163#define	VSID_MAKE(sr, hash)	((sr) | (((hash) & 0xfffff) << 4))
164#define	VSID_TO_SR(vsid)	((vsid) & 0xf)
165#define	VSID_TO_HASH(vsid)	(((vsid) >> 4) & 0xfffff)
166
167#define	PVO_PTEGIDX_MASK	0x0007		/* which PTEG slot */
168#define	PVO_PTEGIDX_VALID	0x0008		/* slot is valid */
169#define	PVO_WIRED		0x0010		/* PVO entry is wired */
170#define	PVO_MANAGED		0x0020		/* PVO entry is managed */
171#define	PVO_EXECUTABLE		0x0040		/* PVO entry is executable */
172#define	PVO_BOOTSTRAP		0x0080		/* PVO entry allocated during
173						   bootstrap */
174#define	PVO_VADDR(pvo)		((pvo)->pvo_vaddr & ~ADDR_POFF)
175#define	PVO_ISEXECUTABLE(pvo)	((pvo)->pvo_vaddr & PVO_EXECUTABLE)
176#define	PVO_PTEGIDX_GET(pvo)	((pvo)->pvo_vaddr & PVO_PTEGIDX_MASK)
177#define	PVO_PTEGIDX_ISSET(pvo)	((pvo)->pvo_vaddr & PVO_PTEGIDX_VALID)
178#define	PVO_PTEGIDX_CLR(pvo)	\
179	((void)((pvo)->pvo_vaddr &= ~(PVO_PTEGIDX_VALID|PVO_PTEGIDX_MASK)))
180#define	PVO_PTEGIDX_SET(pvo, i)	\
181	((void)((pvo)->pvo_vaddr |= (i)|PVO_PTEGIDX_VALID))
182
183#define	PMAP_PVO_CHECK(pvo)
184
185struct ofw_map {
186	vm_offset_t	om_va;
187	vm_size_t	om_len;
188	vm_offset_t	om_pa;
189	u_int		om_mode;
190};
191
192int	pmap_bootstrapped = 0;
193
194/*
195 * Virtual and physical address of message buffer.
196 */
197struct		msgbuf *msgbufp;
198vm_offset_t	msgbuf_phys;
199
200/*
201 * Physical addresses of first and last available physical page.
202 */
203vm_offset_t avail_start;
204vm_offset_t avail_end;
205
206int pmap_pagedaemon_waken;
207
208/*
209 * Map of physical memory regions.
210 */
211vm_offset_t	phys_avail[128];
212u_int		phys_avail_count;
213static struct	mem_region *regions;
214static struct	mem_region *pregions;
215int		regions_sz, pregions_sz;
216static struct	ofw_map *translations;
217
218/*
219 * First and last available kernel virtual addresses.
220 */
221vm_offset_t virtual_avail;
222vm_offset_t virtual_end;
223vm_offset_t kernel_vm_end;
224
225/*
226 * Kernel pmap.
227 */
228struct pmap kernel_pmap_store;
229extern struct pmap ofw_pmap;
230
231/*
232 * PTEG data.
233 */
234static struct	pteg *pmap_pteg_table;
235u_int		pmap_pteg_count;
236u_int		pmap_pteg_mask;
237
238/*
239 * PVO data.
240 */
241struct	pvo_head *pmap_pvo_table;		/* pvo entries by pteg index */
242struct	pvo_head pmap_pvo_kunmanaged =
243    LIST_HEAD_INITIALIZER(pmap_pvo_kunmanaged);	/* list of unmanaged pages */
244struct	pvo_head pmap_pvo_unmanaged =
245    LIST_HEAD_INITIALIZER(pmap_pvo_unmanaged);	/* list of unmanaged pages */
246
247uma_zone_t	pmap_upvo_zone;	/* zone for pvo entries for unmanaged pages */
248uma_zone_t	pmap_mpvo_zone;	/* zone for pvo entries for managed pages */
249struct		vm_object pmap_upvo_zone_obj;
250struct		vm_object pmap_mpvo_zone_obj;
251
252#define	BPVO_POOL_SIZE	32768
253static struct	pvo_entry *pmap_bpvo_pool;
254static int	pmap_bpvo_pool_index = 0;
255
256#define	VSID_NBPW	(sizeof(u_int32_t) * 8)
257static u_int	pmap_vsid_bitmap[NPMAPS / VSID_NBPW];
258
259static boolean_t pmap_initialized = FALSE;
260
261/*
262 * Statistics.
263 */
264u_int	pmap_pte_valid = 0;
265u_int	pmap_pte_overflow = 0;
266u_int	pmap_pte_replacements = 0;
267u_int	pmap_pvo_entries = 0;
268u_int	pmap_pvo_enter_calls = 0;
269u_int	pmap_pvo_remove_calls = 0;
270u_int	pmap_pte_spills = 0;
271SYSCTL_INT(_machdep, OID_AUTO, pmap_pte_valid, CTLFLAG_RD, &pmap_pte_valid,
272    0, "");
273SYSCTL_INT(_machdep, OID_AUTO, pmap_pte_overflow, CTLFLAG_RD,
274    &pmap_pte_overflow, 0, "");
275SYSCTL_INT(_machdep, OID_AUTO, pmap_pte_replacements, CTLFLAG_RD,
276    &pmap_pte_replacements, 0, "");
277SYSCTL_INT(_machdep, OID_AUTO, pmap_pvo_entries, CTLFLAG_RD, &pmap_pvo_entries,
278    0, "");
279SYSCTL_INT(_machdep, OID_AUTO, pmap_pvo_enter_calls, CTLFLAG_RD,
280    &pmap_pvo_enter_calls, 0, "");
281SYSCTL_INT(_machdep, OID_AUTO, pmap_pvo_remove_calls, CTLFLAG_RD,
282    &pmap_pvo_remove_calls, 0, "");
283SYSCTL_INT(_machdep, OID_AUTO, pmap_pte_spills, CTLFLAG_RD,
284    &pmap_pte_spills, 0, "");
285
286struct	pvo_entry *pmap_pvo_zeropage;
287
288vm_offset_t	pmap_rkva_start = VM_MIN_KERNEL_ADDRESS;
289u_int		pmap_rkva_count = 4;
290
291/*
292 * Allocate physical memory for use in pmap_bootstrap.
293 */
294static vm_offset_t	pmap_bootstrap_alloc(vm_size_t, u_int);
295
296/*
297 * PTE calls.
298 */
299static int		pmap_pte_insert(u_int, struct pte *);
300
301/*
302 * PVO calls.
303 */
304static int	pmap_pvo_enter(pmap_t, uma_zone_t, struct pvo_head *,
305		    vm_offset_t, vm_offset_t, u_int, int);
306static void	pmap_pvo_remove(struct pvo_entry *, int);
307static struct	pvo_entry *pmap_pvo_find_va(pmap_t, vm_offset_t, int *);
308static struct	pte *pmap_pvo_to_pte(const struct pvo_entry *, int);
309
310/*
311 * Utility routines.
312 */
313static void *		pmap_pvo_allocf(uma_zone_t, int, u_int8_t *, int);
314static struct		pvo_entry *pmap_rkva_alloc(void);
315static void		pmap_pa_map(struct pvo_entry *, vm_offset_t,
316			    struct pte *, int *);
317static void		pmap_pa_unmap(struct pvo_entry *, struct pte *, int *);
318static void		pmap_syncicache(vm_offset_t, vm_size_t);
319static boolean_t	pmap_query_bit(vm_page_t, int);
320static u_int		pmap_clear_bit(vm_page_t, int, int *);
321static void		tlbia(void);
322
323static __inline int
324va_to_sr(u_int *sr, vm_offset_t va)
325{
326	return (sr[(uintptr_t)va >> ADDR_SR_SHFT]);
327}
328
329static __inline u_int
330va_to_pteg(u_int sr, vm_offset_t addr)
331{
332	u_int hash;
333
334	hash = (sr & SR_VSID_MASK) ^ (((u_int)addr & ADDR_PIDX) >>
335	    ADDR_PIDX_SHFT);
336	return (hash & pmap_pteg_mask);
337}
338
339static __inline struct pvo_head *
340pa_to_pvoh(vm_offset_t pa, vm_page_t *pg_p)
341{
342	struct	vm_page *pg;
343
344	pg = PHYS_TO_VM_PAGE(pa);
345
346	if (pg_p != NULL)
347		*pg_p = pg;
348
349	if (pg == NULL)
350		return (&pmap_pvo_unmanaged);
351
352	return (&pg->md.mdpg_pvoh);
353}
354
355static __inline struct pvo_head *
356vm_page_to_pvoh(vm_page_t m)
357{
358
359	return (&m->md.mdpg_pvoh);
360}
361
362static __inline void
363pmap_attr_clear(vm_page_t m, int ptebit)
364{
365
366	m->md.mdpg_attrs &= ~ptebit;
367}
368
369static __inline int
370pmap_attr_fetch(vm_page_t m)
371{
372
373	return (m->md.mdpg_attrs);
374}
375
376static __inline void
377pmap_attr_save(vm_page_t m, int ptebit)
378{
379
380	m->md.mdpg_attrs |= ptebit;
381}
382
383static __inline int
384pmap_pte_compare(const struct pte *pt, const struct pte *pvo_pt)
385{
386	if (pt->pte_hi == pvo_pt->pte_hi)
387		return (1);
388
389	return (0);
390}
391
392static __inline int
393pmap_pte_match(struct pte *pt, u_int sr, vm_offset_t va, int which)
394{
395	return (pt->pte_hi & ~PTE_VALID) ==
396	    (((sr & SR_VSID_MASK) << PTE_VSID_SHFT) |
397	    ((va >> ADDR_API_SHFT) & PTE_API) | which);
398}
399
400static __inline void
401pmap_pte_create(struct pte *pt, u_int sr, vm_offset_t va, u_int pte_lo)
402{
403	/*
404	 * Construct a PTE.  Default to IMB initially.  Valid bit only gets
405	 * set when the real pte is set in memory.
406	 *
407	 * Note: Don't set the valid bit for correct operation of tlb update.
408	 */
409	pt->pte_hi = ((sr & SR_VSID_MASK) << PTE_VSID_SHFT) |
410	    (((va & ADDR_PIDX) >> ADDR_API_SHFT) & PTE_API);
411	pt->pte_lo = pte_lo;
412}
413
414static __inline void
415pmap_pte_synch(struct pte *pt, struct pte *pvo_pt)
416{
417
418	pvo_pt->pte_lo |= pt->pte_lo & (PTE_REF | PTE_CHG);
419}
420
421static __inline void
422pmap_pte_clear(struct pte *pt, vm_offset_t va, int ptebit)
423{
424
425	/*
426	 * As shown in Section 7.6.3.2.3
427	 */
428	pt->pte_lo &= ~ptebit;
429	TLBIE(va);
430	EIEIO();
431	TLBSYNC();
432	SYNC();
433}
434
435static __inline void
436pmap_pte_set(struct pte *pt, struct pte *pvo_pt)
437{
438
439	pvo_pt->pte_hi |= PTE_VALID;
440
441	/*
442	 * Update the PTE as defined in section 7.6.3.1.
443	 * Note that the REF/CHG bits are from pvo_pt and thus should havce
444	 * been saved so this routine can restore them (if desired).
445	 */
446	pt->pte_lo = pvo_pt->pte_lo;
447	EIEIO();
448	pt->pte_hi = pvo_pt->pte_hi;
449	SYNC();
450	pmap_pte_valid++;
451}
452
453static __inline void
454pmap_pte_unset(struct pte *pt, struct pte *pvo_pt, vm_offset_t va)
455{
456
457	pvo_pt->pte_hi &= ~PTE_VALID;
458
459	/*
460	 * Force the reg & chg bits back into the PTEs.
461	 */
462	SYNC();
463
464	/*
465	 * Invalidate the pte.
466	 */
467	pt->pte_hi &= ~PTE_VALID;
468
469	SYNC();
470	TLBIE(va);
471	EIEIO();
472	TLBSYNC();
473	SYNC();
474
475	/*
476	 * Save the reg & chg bits.
477	 */
478	pmap_pte_synch(pt, pvo_pt);
479	pmap_pte_valid--;
480}
481
482static __inline void
483pmap_pte_change(struct pte *pt, struct pte *pvo_pt, vm_offset_t va)
484{
485
486	/*
487	 * Invalidate the PTE
488	 */
489	pmap_pte_unset(pt, pvo_pt, va);
490	pmap_pte_set(pt, pvo_pt);
491}
492
493/*
494 * Quick sort callout for comparing memory regions.
495 */
496static int	mr_cmp(const void *a, const void *b);
497static int	om_cmp(const void *a, const void *b);
498
499static int
500mr_cmp(const void *a, const void *b)
501{
502	const struct	mem_region *regiona;
503	const struct	mem_region *regionb;
504
505	regiona = a;
506	regionb = b;
507	if (regiona->mr_start < regionb->mr_start)
508		return (-1);
509	else if (regiona->mr_start > regionb->mr_start)
510		return (1);
511	else
512		return (0);
513}
514
515static int
516om_cmp(const void *a, const void *b)
517{
518	const struct	ofw_map *mapa;
519	const struct	ofw_map *mapb;
520
521	mapa = a;
522	mapb = b;
523	if (mapa->om_pa < mapb->om_pa)
524		return (-1);
525	else if (mapa->om_pa > mapb->om_pa)
526		return (1);
527	else
528		return (0);
529}
530
531void
532pmap_bootstrap(vm_offset_t kernelstart, vm_offset_t kernelend)
533{
534	ihandle_t	mmui;
535	phandle_t	chosen, mmu;
536	int		sz;
537	int		i, j;
538	int		ofw_mappings;
539	vm_size_t	size, physsz;
540	vm_offset_t	pa, va, off;
541	u_int		batl, batu;
542
543        /*
544         * Set up BAT0 to map the lowest 256 MB area
545         */
546        battable[0x0].batl = BATL(0x00000000, BAT_M, BAT_PP_RW);
547        battable[0x0].batu = BATU(0x00000000, BAT_BL_256M, BAT_Vs);
548
549        /*
550         * Map PCI memory space.
551         */
552        battable[0x8].batl = BATL(0x80000000, BAT_I|BAT_G, BAT_PP_RW);
553        battable[0x8].batu = BATU(0x80000000, BAT_BL_256M, BAT_Vs);
554
555        battable[0x9].batl = BATL(0x90000000, BAT_I|BAT_G, BAT_PP_RW);
556        battable[0x9].batu = BATU(0x90000000, BAT_BL_256M, BAT_Vs);
557
558        battable[0xa].batl = BATL(0xa0000000, BAT_I|BAT_G, BAT_PP_RW);
559        battable[0xa].batu = BATU(0xa0000000, BAT_BL_256M, BAT_Vs);
560
561        battable[0xb].batl = BATL(0xb0000000, BAT_I|BAT_G, BAT_PP_RW);
562        battable[0xb].batu = BATU(0xb0000000, BAT_BL_256M, BAT_Vs);
563
564        /*
565         * Map obio devices.
566         */
567        battable[0xf].batl = BATL(0xf0000000, BAT_I|BAT_G, BAT_PP_RW);
568        battable[0xf].batu = BATU(0xf0000000, BAT_BL_256M, BAT_Vs);
569
570	/*
571	 * Use an IBAT and a DBAT to map the bottom segment of memory
572	 * where we are.
573	 */
574	batu = BATU(0x00000000, BAT_BL_256M, BAT_Vs);
575	batl = BATL(0x00000000, BAT_M, BAT_PP_RW);
576	__asm ("mtibatu 0,%0; mtibatl 0,%1; mtdbatu 0,%0; mtdbatl 0,%1"
577	    :: "r"(batu), "r"(batl));
578
579#if 0
580	/* map frame buffer */
581	batu = BATU(0x90000000, BAT_BL_256M, BAT_Vs);
582	batl = BATL(0x90000000, BAT_I|BAT_G, BAT_PP_RW);
583	__asm ("mtdbatu 1,%0; mtdbatl 1,%1"
584	    :: "r"(batu), "r"(batl));
585#endif
586
587#if 1
588	/* map pci space */
589	batu = BATU(0x80000000, BAT_BL_256M, BAT_Vs);
590	batl = BATL(0x80000000, BAT_I|BAT_G, BAT_PP_RW);
591	__asm ("mtdbatu 1,%0; mtdbatl 1,%1"
592	    :: "r"(batu), "r"(batl));
593#endif
594
595	/*
596	 * Set the start and end of kva.
597	 */
598	virtual_avail = VM_MIN_KERNEL_ADDRESS;
599	virtual_end = VM_MAX_KERNEL_ADDRESS;
600
601	mem_regions(&pregions, &pregions_sz, &regions, &regions_sz);
602	CTR0(KTR_PMAP, "pmap_bootstrap: physical memory");
603
604	qsort(pregions, pregions_sz, sizeof(*pregions), mr_cmp);
605	for (i = 0; i < pregions_sz; i++) {
606		vm_offset_t pa;
607		vm_offset_t end;
608
609		CTR3(KTR_PMAP, "physregion: %#x - %#x (%#x)",
610			pregions[i].mr_start,
611			pregions[i].mr_start + pregions[i].mr_size,
612			pregions[i].mr_size);
613		/*
614		 * Install entries into the BAT table to allow all
615		 * of physmem to be convered by on-demand BAT entries.
616		 * The loop will sometimes set the same battable element
617		 * twice, but that's fine since they won't be used for
618		 * a while yet.
619		 */
620		pa = pregions[i].mr_start & 0xf0000000;
621		end = pregions[i].mr_start + pregions[i].mr_size;
622		do {
623                        u_int n = pa >> ADDR_SR_SHFT;
624
625			battable[n].batl = BATL(pa, BAT_M, BAT_PP_RW);
626			battable[n].batu = BATU(pa, BAT_BL_256M, BAT_Vs);
627			pa += SEGMENT_LENGTH;
628		} while (pa < end);
629	}
630
631	if (sizeof(phys_avail)/sizeof(phys_avail[0]) < regions_sz)
632		panic("pmap_bootstrap: phys_avail too small");
633	qsort(regions, regions_sz, sizeof(*regions), mr_cmp);
634	phys_avail_count = 0;
635	physsz = 0;
636	for (i = 0, j = 0; i < regions_sz; i++, j += 2) {
637		CTR3(KTR_PMAP, "region: %#x - %#x (%#x)", regions[i].mr_start,
638		    regions[i].mr_start + regions[i].mr_size,
639		    regions[i].mr_size);
640		phys_avail[j] = regions[i].mr_start;
641		phys_avail[j + 1] = regions[i].mr_start + regions[i].mr_size;
642		phys_avail_count++;
643		physsz += regions[i].mr_size;
644	}
645	physmem = btoc(physsz);
646
647	/*
648	 * Allocate PTEG table.
649	 */
650#ifdef PTEGCOUNT
651	pmap_pteg_count = PTEGCOUNT;
652#else
653	pmap_pteg_count = 0x1000;
654
655	while (pmap_pteg_count < physmem)
656		pmap_pteg_count <<= 1;
657
658	pmap_pteg_count >>= 1;
659#endif /* PTEGCOUNT */
660
661	size = pmap_pteg_count * sizeof(struct pteg);
662	CTR2(KTR_PMAP, "pmap_bootstrap: %d PTEGs, %d bytes", pmap_pteg_count,
663	    size);
664	pmap_pteg_table = (struct pteg *)pmap_bootstrap_alloc(size, size);
665	CTR1(KTR_PMAP, "pmap_bootstrap: PTEG table at %p", pmap_pteg_table);
666	bzero((void *)pmap_pteg_table, pmap_pteg_count * sizeof(struct pteg));
667	pmap_pteg_mask = pmap_pteg_count - 1;
668
669	/*
670	 * Allocate pv/overflow lists.
671	 */
672	size = sizeof(struct pvo_head) * pmap_pteg_count;
673	pmap_pvo_table = (struct pvo_head *)pmap_bootstrap_alloc(size,
674	    PAGE_SIZE);
675	CTR1(KTR_PMAP, "pmap_bootstrap: PVO table at %p", pmap_pvo_table);
676	for (i = 0; i < pmap_pteg_count; i++)
677		LIST_INIT(&pmap_pvo_table[i]);
678
679	/*
680	 * Allocate the message buffer.
681	 */
682	msgbuf_phys = pmap_bootstrap_alloc(MSGBUF_SIZE, 0);
683
684	/*
685	 * Initialise the unmanaged pvo pool.
686	 */
687	pmap_bpvo_pool = (struct pvo_entry *)pmap_bootstrap_alloc(
688		BPVO_POOL_SIZE*sizeof(struct pvo_entry), 0);
689	pmap_bpvo_pool_index = 0;
690
691	/*
692	 * Make sure kernel vsid is allocated as well as VSID 0.
693	 */
694	pmap_vsid_bitmap[(KERNEL_VSIDBITS & (NPMAPS - 1)) / VSID_NBPW]
695		|= 1 << (KERNEL_VSIDBITS % VSID_NBPW);
696	pmap_vsid_bitmap[0] |= 1;
697
698	/*
699	 * Set up the OpenFirmware pmap and add it's mappings.
700	 */
701	pmap_pinit(&ofw_pmap);
702	ofw_pmap.pm_sr[KERNEL_SR] = KERNEL_SEGMENT;
703	if ((chosen = OF_finddevice("/chosen")) == -1)
704		panic("pmap_bootstrap: can't find /chosen");
705	OF_getprop(chosen, "mmu", &mmui, 4);
706	if ((mmu = OF_instance_to_package(mmui)) == -1)
707		panic("pmap_bootstrap: can't get mmu package");
708	if ((sz = OF_getproplen(mmu, "translations")) == -1)
709		panic("pmap_bootstrap: can't get ofw translation count");
710	translations = NULL;
711	for (i = 0; phys_avail[i + 2] != 0; i += 2) {
712		if (phys_avail[i + 1] >= sz)
713			translations = (struct ofw_map *)phys_avail[i];
714	}
715	if (translations == NULL)
716		panic("pmap_bootstrap: no space to copy translations");
717	bzero(translations, sz);
718	if (OF_getprop(mmu, "translations", translations, sz) == -1)
719		panic("pmap_bootstrap: can't get ofw translations");
720	CTR0(KTR_PMAP, "pmap_bootstrap: translations");
721	sz /= sizeof(*translations);
722	qsort(translations, sz, sizeof (*translations), om_cmp);
723	for (i = 0, ofw_mappings = 0; i < sz; i++) {
724		CTR3(KTR_PMAP, "translation: pa=%#x va=%#x len=%#x",
725		    translations[i].om_pa, translations[i].om_va,
726		    translations[i].om_len);
727
728		/*
729		 * If the mapping is 1:1, let the RAM and device on-demand
730		 * BAT tables take care of the translation.
731		 */
732		if (translations[i].om_va == translations[i].om_pa)
733			continue;
734
735		/* Enter the pages */
736		for (off = 0; off < translations[i].om_len; off += PAGE_SIZE) {
737			struct	vm_page m;
738
739			m.phys_addr = translations[i].om_pa + off;
740			pmap_enter(&ofw_pmap, translations[i].om_va + off, &m,
741				   VM_PROT_ALL, 1);
742			ofw_mappings++;
743		}
744	}
745#ifdef SMP
746	TLBSYNC();
747#endif
748
749	/*
750	 * Initialize the kernel pmap (which is statically allocated).
751	 */
752	for (i = 0; i < 16; i++) {
753		kernel_pmap->pm_sr[i] = EMPTY_SEGMENT;
754	}
755	kernel_pmap->pm_sr[KERNEL_SR] = KERNEL_SEGMENT;
756	kernel_pmap->pm_active = ~0;
757
758	/*
759	 * Allocate a kernel stack with a guard page for thread0 and map it
760	 * into the kernel page map.
761	 */
762	pa = pmap_bootstrap_alloc(KSTACK_PAGES * PAGE_SIZE, 0);
763	kstack0_phys = pa;
764	kstack0 = virtual_avail + (KSTACK_GUARD_PAGES * PAGE_SIZE);
765	CTR2(KTR_PMAP, "pmap_bootstrap: kstack0 at %#x (%#x)", kstack0_phys,
766	    kstack0);
767	virtual_avail += (KSTACK_PAGES + KSTACK_GUARD_PAGES) * PAGE_SIZE;
768	for (i = 0; i < KSTACK_PAGES; i++) {
769		pa = kstack0_phys + i * PAGE_SIZE;
770		va = kstack0 + i * PAGE_SIZE;
771		pmap_kenter(va, pa);
772		TLBIE(va);
773	}
774
775	/*
776	 * Calculate the first and last available physical addresses.
777	 */
778	avail_start = phys_avail[0];
779	for (i = 0; phys_avail[i + 2] != 0; i += 2)
780		;
781	avail_end = phys_avail[i + 1];
782	Maxmem = powerpc_btop(avail_end);
783
784	/*
785	 * Allocate virtual address space for the message buffer.
786	 */
787	msgbufp = (struct msgbuf *)virtual_avail;
788	virtual_avail += round_page(MSGBUF_SIZE);
789
790	/*
791	 * Initialize hardware.
792	 */
793	for (i = 0; i < 16; i++) {
794		mtsrin(i << ADDR_SR_SHFT, EMPTY_SEGMENT);
795	}
796	__asm __volatile ("mtsr %0,%1"
797	    :: "n"(KERNEL_SR), "r"(KERNEL_SEGMENT));
798	__asm __volatile ("sync; mtsdr1 %0; isync"
799	    :: "r"((u_int)pmap_pteg_table | (pmap_pteg_mask >> 10)));
800	tlbia();
801
802	pmap_bootstrapped++;
803}
804
805/*
806 * Activate a user pmap.  The pmap must be activated before it's address
807 * space can be accessed in any way.
808 */
809void
810pmap_activate(struct thread *td)
811{
812	pmap_t	pm, pmr;
813
814	/*
815	 * Load all the data we need up front to encourage the compiler to
816	 * not issue any loads while we have interrupts disabled below.
817	 */
818	pm = &td->td_proc->p_vmspace->vm_pmap;
819
820	if ((pmr = (pmap_t)pmap_kextract((vm_offset_t)pm)) == NULL)
821		pmr = pm;
822
823	pm->pm_active |= PCPU_GET(cpumask);
824	PCPU_SET(curpmap, pmr);
825}
826
827void
828pmap_deactivate(struct thread *td)
829{
830	pmap_t	pm;
831
832	pm = &td->td_proc->p_vmspace->vm_pmap;
833	pm->pm_active &= ~(PCPU_GET(cpumask));
834	PCPU_SET(curpmap, NULL);
835}
836
837vm_offset_t
838pmap_addr_hint(vm_object_t object, vm_offset_t va, vm_size_t size)
839{
840
841	return (va);
842}
843
844void
845pmap_change_wiring(pmap_t pm, vm_offset_t va, boolean_t wired)
846{
847	struct	pvo_entry *pvo;
848
849	pvo = pmap_pvo_find_va(pm, va & ~ADDR_POFF, NULL);
850
851	if (pvo != NULL) {
852		if (wired) {
853			if ((pvo->pvo_vaddr & PVO_WIRED) == 0)
854				pm->pm_stats.wired_count++;
855			pvo->pvo_vaddr |= PVO_WIRED;
856		} else {
857			if ((pvo->pvo_vaddr & PVO_WIRED) != 0)
858				pm->pm_stats.wired_count--;
859			pvo->pvo_vaddr &= ~PVO_WIRED;
860		}
861	}
862}
863
864void
865pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr,
866	  vm_size_t len, vm_offset_t src_addr)
867{
868
869	/*
870	 * This is not needed as it's mainly an optimisation.
871	 * It may want to be implemented later though.
872	 */
873}
874
875void
876pmap_copy_page(vm_page_t msrc, vm_page_t mdst)
877{
878	vm_offset_t	dst;
879	vm_offset_t	src;
880
881	dst = VM_PAGE_TO_PHYS(mdst);
882	src = VM_PAGE_TO_PHYS(msrc);
883
884	kcopy((void *)src, (void *)dst, PAGE_SIZE);
885}
886
887/*
888 * Zero a page of physical memory by temporarily mapping it into the tlb.
889 */
890void
891pmap_zero_page(vm_page_t m)
892{
893	vm_offset_t pa = VM_PAGE_TO_PHYS(m);
894	caddr_t va;
895
896	if (pa < SEGMENT_LENGTH) {
897		va = (caddr_t) pa;
898	} else if (pmap_initialized) {
899		if (pmap_pvo_zeropage == NULL)
900			pmap_pvo_zeropage = pmap_rkva_alloc();
901		pmap_pa_map(pmap_pvo_zeropage, pa, NULL, NULL);
902		va = (caddr_t)PVO_VADDR(pmap_pvo_zeropage);
903	} else {
904		panic("pmap_zero_page: can't zero pa %#x", pa);
905	}
906
907	bzero(va, PAGE_SIZE);
908
909	if (pa >= SEGMENT_LENGTH)
910		pmap_pa_unmap(pmap_pvo_zeropage, NULL, NULL);
911}
912
913void
914pmap_zero_page_area(vm_page_t m, int off, int size)
915{
916	vm_offset_t pa = VM_PAGE_TO_PHYS(m);
917	caddr_t va;
918
919	if (pa < SEGMENT_LENGTH) {
920		va = (caddr_t) pa;
921	} else if (pmap_initialized) {
922		if (pmap_pvo_zeropage == NULL)
923			pmap_pvo_zeropage = pmap_rkva_alloc();
924		pmap_pa_map(pmap_pvo_zeropage, pa, NULL, NULL);
925		va = (caddr_t)PVO_VADDR(pmap_pvo_zeropage);
926	} else {
927		panic("pmap_zero_page: can't zero pa %#x", pa);
928	}
929
930	bzero(va + off, size);
931
932	if (pa >= SEGMENT_LENGTH)
933		pmap_pa_unmap(pmap_pvo_zeropage, NULL, NULL);
934}
935
936void
937pmap_zero_page_idle(vm_page_t m)
938{
939
940	/* XXX this is called outside of Giant, is pmap_zero_page safe? */
941	/* XXX maybe have a dedicated mapping for this to avoid the problem? */
942	mtx_lock(&Giant);
943	pmap_zero_page(m);
944	mtx_unlock(&Giant);
945}
946
947/*
948 * Map the given physical page at the specified virtual address in the
949 * target pmap with the protection requested.  If specified the page
950 * will be wired down.
951 */
952void
953pmap_enter(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
954	   boolean_t wired)
955{
956	struct		pvo_head *pvo_head;
957	uma_zone_t	zone;
958	vm_page_t	pg;
959	u_int		pte_lo, pvo_flags, was_exec, i;
960	int		error;
961
962	if (!pmap_initialized) {
963		pvo_head = &pmap_pvo_kunmanaged;
964		zone = pmap_upvo_zone;
965		pvo_flags = 0;
966		pg = NULL;
967		was_exec = PTE_EXEC;
968	} else {
969		pvo_head = vm_page_to_pvoh(m);
970		pg = m;
971		zone = pmap_mpvo_zone;
972		pvo_flags = PVO_MANAGED;
973		was_exec = 0;
974	}
975
976	/*
977	 * If this is a managed page, and it's the first reference to the page,
978	 * clear the execness of the page.  Otherwise fetch the execness.
979	 */
980	if (pg != NULL) {
981		if (LIST_EMPTY(pvo_head)) {
982			pmap_attr_clear(pg, PTE_EXEC);
983		} else {
984			was_exec = pmap_attr_fetch(pg) & PTE_EXEC;
985		}
986	}
987
988
989	/*
990	 * Assume the page is cache inhibited and access is guarded unless
991	 * it's in our available memory array.
992	 */
993	pte_lo = PTE_I | PTE_G;
994	for (i = 0; i < pregions_sz; i++) {
995		if ((VM_PAGE_TO_PHYS(m) >= pregions[i].mr_start) &&
996		    (VM_PAGE_TO_PHYS(m) <
997			(pregions[i].mr_start + pregions[i].mr_size))) {
998			pte_lo &= ~(PTE_I | PTE_G);
999			break;
1000		}
1001	}
1002
1003	if (prot & VM_PROT_WRITE)
1004		pte_lo |= PTE_BW;
1005	else
1006		pte_lo |= PTE_BR;
1007
1008	pvo_flags |= (prot & VM_PROT_EXECUTE);
1009
1010	if (wired)
1011		pvo_flags |= PVO_WIRED;
1012
1013	error = pmap_pvo_enter(pmap, zone, pvo_head, va, VM_PAGE_TO_PHYS(m),
1014	    pte_lo, pvo_flags);
1015
1016	/*
1017	 * Flush the real page from the instruction cache if this page is
1018	 * mapped executable and cacheable and was not previously mapped (or
1019	 * was not mapped executable).
1020	 */
1021	if (error == 0 && (pvo_flags & PVO_EXECUTABLE) &&
1022	    (pte_lo & PTE_I) == 0 && was_exec == 0) {
1023		/*
1024		 * Flush the real memory from the cache.
1025		 */
1026		pmap_syncicache(VM_PAGE_TO_PHYS(m), PAGE_SIZE);
1027		if (pg != NULL)
1028			pmap_attr_save(pg, PTE_EXEC);
1029	}
1030
1031	/* XXX syncicache always until problems are sorted */
1032	pmap_syncicache(VM_PAGE_TO_PHYS(m), PAGE_SIZE);
1033}
1034
1035vm_page_t
1036pmap_enter_quick(pmap_t pm, vm_offset_t va, vm_page_t m, vm_page_t mpte)
1037{
1038
1039	pmap_enter(pm, va, m, VM_PROT_READ | VM_PROT_EXECUTE, FALSE);
1040	return (NULL);
1041}
1042
1043vm_offset_t
1044pmap_extract(pmap_t pm, vm_offset_t va)
1045{
1046	struct	pvo_entry *pvo;
1047
1048	pvo = pmap_pvo_find_va(pm, va & ~ADDR_POFF, NULL);
1049
1050	if (pvo != NULL) {
1051		return ((pvo->pvo_pte.pte_lo & PTE_RPGN) | (va & ADDR_POFF));
1052	}
1053
1054	return (0);
1055}
1056
1057/*
1058 * Atomically extract and hold the physical page with the given
1059 * pmap and virtual address pair if that mapping permits the given
1060 * protection.
1061 */
1062vm_page_t
1063pmap_extract_and_hold(pmap_t pmap, vm_offset_t va, vm_prot_t prot)
1064{
1065	vm_paddr_t pa;
1066	vm_page_t m;
1067
1068	m = NULL;
1069	mtx_lock(&Giant);
1070	if ((pa = pmap_extract(pmap, va)) != 0) {
1071		m = PHYS_TO_VM_PAGE(pa);
1072		vm_page_lock_queues();
1073		vm_page_hold(m);
1074		vm_page_unlock_queues();
1075	}
1076	mtx_unlock(&Giant);
1077	return (m);
1078}
1079
1080/*
1081 * Grow the number of kernel page table entries.  Unneeded.
1082 */
1083void
1084pmap_growkernel(vm_offset_t addr)
1085{
1086}
1087
1088void
1089pmap_init(vm_offset_t phys_start, vm_offset_t phys_end)
1090{
1091
1092	CTR0(KTR_PMAP, "pmap_init");
1093
1094	pmap_upvo_zone = uma_zcreate("UPVO entry", sizeof (struct pvo_entry),
1095	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_VM | UMA_ZONE_NOFREE);
1096	uma_zone_set_allocf(pmap_upvo_zone, pmap_pvo_allocf);
1097	pmap_mpvo_zone = uma_zcreate("MPVO entry", sizeof(struct pvo_entry),
1098	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_VM | UMA_ZONE_NOFREE);
1099	uma_zone_set_allocf(pmap_mpvo_zone, pmap_pvo_allocf);
1100	pmap_initialized = TRUE;
1101}
1102
1103void
1104pmap_init2(void)
1105{
1106
1107	CTR0(KTR_PMAP, "pmap_init2");
1108}
1109
1110boolean_t
1111pmap_is_modified(vm_page_t m)
1112{
1113
1114	if ((m->flags & (PG_FICTITIOUS |PG_UNMANAGED)) != 0)
1115		return (FALSE);
1116
1117	return (pmap_query_bit(m, PTE_CHG));
1118}
1119
1120/*
1121 *	pmap_is_prefaultable:
1122 *
1123 *	Return whether or not the specified virtual address is elgible
1124 *	for prefault.
1125 */
1126boolean_t
1127pmap_is_prefaultable(pmap_t pmap, vm_offset_t addr)
1128{
1129
1130	return (FALSE);
1131}
1132
1133void
1134pmap_clear_reference(vm_page_t m)
1135{
1136
1137	if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) != 0)
1138		return;
1139	pmap_clear_bit(m, PTE_REF, NULL);
1140}
1141
1142void
1143pmap_clear_modify(vm_page_t m)
1144{
1145
1146	if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) != 0)
1147		return;
1148	pmap_clear_bit(m, PTE_CHG, NULL);
1149}
1150
1151/*
1152 *	pmap_ts_referenced:
1153 *
1154 *	Return a count of reference bits for a page, clearing those bits.
1155 *	It is not necessary for every reference bit to be cleared, but it
1156 *	is necessary that 0 only be returned when there are truly no
1157 *	reference bits set.
1158 *
1159 *	XXX: The exact number of bits to check and clear is a matter that
1160 *	should be tested and standardized at some point in the future for
1161 *	optimal aging of shared pages.
1162 */
1163int
1164pmap_ts_referenced(vm_page_t m)
1165{
1166	int count;
1167
1168	if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) != 0)
1169		return (0);
1170
1171	count = pmap_clear_bit(m, PTE_REF, NULL);
1172
1173	return (count);
1174}
1175
1176/*
1177 * Map a wired page into kernel virtual address space.
1178 */
1179void
1180pmap_kenter(vm_offset_t va, vm_offset_t pa)
1181{
1182	u_int		pte_lo;
1183	int		error;
1184	int		i;
1185
1186#if 0
1187	if (va < VM_MIN_KERNEL_ADDRESS)
1188		panic("pmap_kenter: attempt to enter non-kernel address %#x",
1189		    va);
1190#endif
1191
1192	pte_lo = PTE_I | PTE_G;
1193	for (i = 0; i < pregions_sz; i++) {
1194		if ((pa >= pregions[i].mr_start) &&
1195		    (pa < (pregions[i].mr_start + pregions[i].mr_size))) {
1196			pte_lo &= ~(PTE_I | PTE_G);
1197			break;
1198		}
1199	}
1200
1201	error = pmap_pvo_enter(kernel_pmap, pmap_upvo_zone,
1202	    &pmap_pvo_kunmanaged, va, pa, pte_lo, PVO_WIRED);
1203
1204	if (error != 0 && error != ENOENT)
1205		panic("pmap_kenter: failed to enter va %#x pa %#x: %d", va,
1206		    pa, error);
1207
1208	/*
1209	 * Flush the real memory from the instruction cache.
1210	 */
1211	if ((pte_lo & (PTE_I | PTE_G)) == 0) {
1212		pmap_syncicache(pa, PAGE_SIZE);
1213	}
1214}
1215
1216/*
1217 * Extract the physical page address associated with the given kernel virtual
1218 * address.
1219 */
1220vm_offset_t
1221pmap_kextract(vm_offset_t va)
1222{
1223	struct		pvo_entry *pvo;
1224
1225	pvo = pmap_pvo_find_va(kernel_pmap, va & ~ADDR_POFF, NULL);
1226	if (pvo == NULL) {
1227		return (0);
1228	}
1229
1230	return ((pvo->pvo_pte.pte_lo & PTE_RPGN) | (va & ADDR_POFF));
1231}
1232
1233/*
1234 * Remove a wired page from kernel virtual address space.
1235 */
1236void
1237pmap_kremove(vm_offset_t va)
1238{
1239
1240	pmap_remove(kernel_pmap, va, va + PAGE_SIZE);
1241}
1242
1243/*
1244 * Map a range of physical addresses into kernel virtual address space.
1245 *
1246 * The value passed in *virt is a suggested virtual address for the mapping.
1247 * Architectures which can support a direct-mapped physical to virtual region
1248 * can return the appropriate address within that region, leaving '*virt'
1249 * unchanged.  We cannot and therefore do not; *virt is updated with the
1250 * first usable address after the mapped region.
1251 */
1252vm_offset_t
1253pmap_map(vm_offset_t *virt, vm_offset_t pa_start, vm_offset_t pa_end, int prot)
1254{
1255	vm_offset_t	sva, va;
1256
1257	sva = *virt;
1258	va = sva;
1259	for (; pa_start < pa_end; pa_start += PAGE_SIZE, va += PAGE_SIZE)
1260		pmap_kenter(va, pa_start);
1261	*virt = va;
1262	return (sva);
1263}
1264
1265int
1266pmap_mincore(pmap_t pmap, vm_offset_t addr)
1267{
1268	TODO;
1269	return (0);
1270}
1271
1272void
1273pmap_object_init_pt(pmap_t pm, vm_offset_t addr, vm_object_t object,
1274		    vm_pindex_t pindex, vm_size_t size)
1275{
1276
1277	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1278	KASSERT(object->type == OBJT_DEVICE,
1279	    ("pmap_object_init_pt: non-device object"));
1280	KASSERT(pm == &curproc->p_vmspace->vm_pmap || pm == kernel_pmap,
1281	    ("pmap_object_init_pt: non current pmap"));
1282}
1283
1284/*
1285 * Lower the permission for all mappings to a given page.
1286 */
1287void
1288pmap_page_protect(vm_page_t m, vm_prot_t prot)
1289{
1290	struct	pvo_head *pvo_head;
1291	struct	pvo_entry *pvo, *next_pvo;
1292	struct	pte *pt;
1293
1294	/*
1295	 * Since the routine only downgrades protection, if the
1296	 * maximal protection is desired, there isn't any change
1297	 * to be made.
1298	 */
1299	if ((prot & (VM_PROT_READ|VM_PROT_WRITE)) ==
1300	    (VM_PROT_READ|VM_PROT_WRITE))
1301		return;
1302
1303	pvo_head = vm_page_to_pvoh(m);
1304	for (pvo = LIST_FIRST(pvo_head); pvo != NULL; pvo = next_pvo) {
1305		next_pvo = LIST_NEXT(pvo, pvo_vlink);
1306		PMAP_PVO_CHECK(pvo);	/* sanity check */
1307
1308		/*
1309		 * Downgrading to no mapping at all, we just remove the entry.
1310		 */
1311		if ((prot & VM_PROT_READ) == 0) {
1312			pmap_pvo_remove(pvo, -1);
1313			continue;
1314		}
1315
1316		/*
1317		 * If EXEC permission is being revoked, just clear the flag
1318		 * in the PVO.
1319		 */
1320		if ((prot & VM_PROT_EXECUTE) == 0)
1321			pvo->pvo_vaddr &= ~PVO_EXECUTABLE;
1322
1323		/*
1324		 * If this entry is already RO, don't diddle with the page
1325		 * table.
1326		 */
1327		if ((pvo->pvo_pte.pte_lo & PTE_PP) == PTE_BR) {
1328			PMAP_PVO_CHECK(pvo);
1329			continue;
1330		}
1331
1332		/*
1333		 * Grab the PTE before we diddle the bits so pvo_to_pte can
1334		 * verify the pte contents are as expected.
1335		 */
1336		pt = pmap_pvo_to_pte(pvo, -1);
1337		pvo->pvo_pte.pte_lo &= ~PTE_PP;
1338		pvo->pvo_pte.pte_lo |= PTE_BR;
1339		if (pt != NULL)
1340			pmap_pte_change(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
1341		PMAP_PVO_CHECK(pvo);	/* sanity check */
1342	}
1343}
1344
1345/*
1346 * Returns true if the pmap's pv is one of the first
1347 * 16 pvs linked to from this page.  This count may
1348 * be changed upwards or downwards in the future; it
1349 * is only necessary that true be returned for a small
1350 * subset of pmaps for proper page aging.
1351 */
1352boolean_t
1353pmap_page_exists_quick(pmap_t pmap, vm_page_t m)
1354{
1355        int loops;
1356	struct pvo_entry *pvo;
1357
1358        if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
1359                return FALSE;
1360
1361	loops = 0;
1362	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
1363		if (pvo->pvo_pmap == pmap)
1364			return (TRUE);
1365		if (++loops >= 16)
1366			break;
1367	}
1368
1369	return (FALSE);
1370}
1371
1372static u_int	pmap_vsidcontext;
1373
1374void
1375pmap_pinit(pmap_t pmap)
1376{
1377	int	i, mask;
1378	u_int	entropy;
1379
1380	entropy = 0;
1381	__asm __volatile("mftb %0" : "=r"(entropy));
1382
1383	/*
1384	 * Allocate some segment registers for this pmap.
1385	 */
1386	for (i = 0; i < NPMAPS; i += VSID_NBPW) {
1387		u_int	hash, n;
1388
1389		/*
1390		 * Create a new value by mutiplying by a prime and adding in
1391		 * entropy from the timebase register.  This is to make the
1392		 * VSID more random so that the PT hash function collides
1393		 * less often.  (Note that the prime casues gcc to do shifts
1394		 * instead of a multiply.)
1395		 */
1396		pmap_vsidcontext = (pmap_vsidcontext * 0x1105) + entropy;
1397		hash = pmap_vsidcontext & (NPMAPS - 1);
1398		if (hash == 0)		/* 0 is special, avoid it */
1399			continue;
1400		n = hash >> 5;
1401		mask = 1 << (hash & (VSID_NBPW - 1));
1402		hash = (pmap_vsidcontext & 0xfffff);
1403		if (pmap_vsid_bitmap[n] & mask) {	/* collision? */
1404			/* anything free in this bucket? */
1405			if (pmap_vsid_bitmap[n] == 0xffffffff) {
1406				entropy = (pmap_vsidcontext >> 20);
1407				continue;
1408			}
1409			i = ffs(~pmap_vsid_bitmap[i]) - 1;
1410			mask = 1 << i;
1411			hash &= 0xfffff & ~(VSID_NBPW - 1);
1412			hash |= i;
1413		}
1414		pmap_vsid_bitmap[n] |= mask;
1415		for (i = 0; i < 16; i++)
1416			pmap->pm_sr[i] = VSID_MAKE(i, hash);
1417		return;
1418	}
1419
1420	panic("pmap_pinit: out of segments");
1421}
1422
1423/*
1424 * Initialize the pmap associated with process 0.
1425 */
1426void
1427pmap_pinit0(pmap_t pm)
1428{
1429
1430	pmap_pinit(pm);
1431	bzero(&pm->pm_stats, sizeof(pm->pm_stats));
1432}
1433
1434void
1435pmap_pinit2(pmap_t pmap)
1436{
1437	/* XXX: Remove this stub when no longer called */
1438}
1439
1440/*
1441 * Set the physical protection on the specified range of this map as requested.
1442 */
1443void
1444pmap_protect(pmap_t pm, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot)
1445{
1446	struct	pvo_entry *pvo;
1447	struct	pte *pt;
1448	int	pteidx;
1449
1450	CTR4(KTR_PMAP, "pmap_protect: pm=%p sva=%#x eva=%#x prot=%#x", pm, sva,
1451	    eva, prot);
1452
1453
1454	KASSERT(pm == &curproc->p_vmspace->vm_pmap || pm == kernel_pmap,
1455	    ("pmap_protect: non current pmap"));
1456
1457	if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
1458		pmap_remove(pm, sva, eva);
1459		return;
1460	}
1461
1462	for (; sva < eva; sva += PAGE_SIZE) {
1463		pvo = pmap_pvo_find_va(pm, sva, &pteidx);
1464		if (pvo == NULL)
1465			continue;
1466
1467		if ((prot & VM_PROT_EXECUTE) == 0)
1468			pvo->pvo_vaddr &= ~PVO_EXECUTABLE;
1469
1470		/*
1471		 * Grab the PTE pointer before we diddle with the cached PTE
1472		 * copy.
1473		 */
1474		pt = pmap_pvo_to_pte(pvo, pteidx);
1475		/*
1476		 * Change the protection of the page.
1477		 */
1478		pvo->pvo_pte.pte_lo &= ~PTE_PP;
1479		pvo->pvo_pte.pte_lo |= PTE_BR;
1480
1481		/*
1482		 * If the PVO is in the page table, update that pte as well.
1483		 */
1484		if (pt != NULL)
1485			pmap_pte_change(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
1486	}
1487}
1488
1489/*
1490 * Map a list of wired pages into kernel virtual address space.  This is
1491 * intended for temporary mappings which do not need page modification or
1492 * references recorded.  Existing mappings in the region are overwritten.
1493 */
1494void
1495pmap_qenter(vm_offset_t sva, vm_page_t *m, int count)
1496{
1497	vm_offset_t va;
1498
1499	va = sva;
1500	while (count-- > 0) {
1501		pmap_kenter(va, VM_PAGE_TO_PHYS(*m));
1502		va += PAGE_SIZE;
1503		m++;
1504	}
1505}
1506
1507/*
1508 * Remove page mappings from kernel virtual address space.  Intended for
1509 * temporary mappings entered by pmap_qenter.
1510 */
1511void
1512pmap_qremove(vm_offset_t sva, int count)
1513{
1514	vm_offset_t va;
1515
1516	va = sva;
1517	while (count-- > 0) {
1518		pmap_kremove(va);
1519		va += PAGE_SIZE;
1520	}
1521}
1522
1523void
1524pmap_release(pmap_t pmap)
1525{
1526        int idx, mask;
1527
1528	/*
1529	 * Free segment register's VSID
1530	 */
1531        if (pmap->pm_sr[0] == 0)
1532                panic("pmap_release");
1533
1534        idx = VSID_TO_HASH(pmap->pm_sr[0]) & (NPMAPS-1);
1535        mask = 1 << (idx % VSID_NBPW);
1536        idx /= VSID_NBPW;
1537        pmap_vsid_bitmap[idx] &= ~mask;
1538}
1539
1540/*
1541 * Remove the given range of addresses from the specified map.
1542 */
1543void
1544pmap_remove(pmap_t pm, vm_offset_t sva, vm_offset_t eva)
1545{
1546	struct	pvo_entry *pvo;
1547	int	pteidx;
1548
1549	for (; sva < eva; sva += PAGE_SIZE) {
1550		pvo = pmap_pvo_find_va(pm, sva, &pteidx);
1551		if (pvo != NULL) {
1552			pmap_pvo_remove(pvo, pteidx);
1553		}
1554	}
1555}
1556
1557/*
1558 * Remove physical page from all pmaps in which it resides. pmap_pvo_remove()
1559 * will reflect changes in pte's back to the vm_page.
1560 */
1561void
1562pmap_remove_all(vm_page_t m)
1563{
1564	struct  pvo_head *pvo_head;
1565	struct	pvo_entry *pvo, *next_pvo;
1566
1567	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1568
1569	pvo_head = vm_page_to_pvoh(m);
1570	for (pvo = LIST_FIRST(pvo_head); pvo != NULL; pvo = next_pvo) {
1571		next_pvo = LIST_NEXT(pvo, pvo_vlink);
1572
1573		PMAP_PVO_CHECK(pvo);	/* sanity check */
1574		pmap_pvo_remove(pvo, -1);
1575	}
1576	vm_page_flag_clear(m, PG_WRITEABLE);
1577}
1578
1579/*
1580 * Remove all pages from specified address space, this aids process exit
1581 * speeds.  This is much faster than pmap_remove in the case of running down
1582 * an entire address space.  Only works for the current pmap.
1583 */
1584void
1585pmap_remove_pages(pmap_t pm, vm_offset_t sva, vm_offset_t eva)
1586{
1587
1588	KASSERT(pm == &curproc->p_vmspace->vm_pmap || pm == kernel_pmap,
1589	    ("pmap_remove_pages: non current pmap"));
1590	pmap_remove(pm, sva, eva);
1591}
1592
1593/*
1594 * Allocate a physical page of memory directly from the phys_avail map.
1595 * Can only be called from pmap_bootstrap before avail start and end are
1596 * calculated.
1597 */
1598static vm_offset_t
1599pmap_bootstrap_alloc(vm_size_t size, u_int align)
1600{
1601	vm_offset_t	s, e;
1602	int		i, j;
1603
1604	size = round_page(size);
1605	for (i = 0; phys_avail[i + 1] != 0; i += 2) {
1606		if (align != 0)
1607			s = (phys_avail[i] + align - 1) & ~(align - 1);
1608		else
1609			s = phys_avail[i];
1610		e = s + size;
1611
1612		if (s < phys_avail[i] || e > phys_avail[i + 1])
1613			continue;
1614
1615		if (s == phys_avail[i]) {
1616			phys_avail[i] += size;
1617		} else if (e == phys_avail[i + 1]) {
1618			phys_avail[i + 1] -= size;
1619		} else {
1620			for (j = phys_avail_count * 2; j > i; j -= 2) {
1621				phys_avail[j] = phys_avail[j - 2];
1622				phys_avail[j + 1] = phys_avail[j - 1];
1623			}
1624
1625			phys_avail[i + 3] = phys_avail[i + 1];
1626			phys_avail[i + 1] = s;
1627			phys_avail[i + 2] = e;
1628			phys_avail_count++;
1629		}
1630
1631		return (s);
1632	}
1633	panic("pmap_bootstrap_alloc: could not allocate memory");
1634}
1635
1636/*
1637 * Return an unmapped pvo for a kernel virtual address.
1638 * Used by pmap functions that operate on physical pages.
1639 */
1640static struct pvo_entry *
1641pmap_rkva_alloc(void)
1642{
1643	struct		pvo_entry *pvo;
1644	struct		pte *pt;
1645	vm_offset_t	kva;
1646	int		pteidx;
1647
1648	if (pmap_rkva_count == 0)
1649		panic("pmap_rkva_alloc: no more reserved KVAs");
1650
1651	kva = pmap_rkva_start + (PAGE_SIZE * --pmap_rkva_count);
1652	pmap_kenter(kva, 0);
1653
1654	pvo = pmap_pvo_find_va(kernel_pmap, kva, &pteidx);
1655
1656	if (pvo == NULL)
1657		panic("pmap_kva_alloc: pmap_pvo_find_va failed");
1658
1659	pt = pmap_pvo_to_pte(pvo, pteidx);
1660
1661	if (pt == NULL)
1662		panic("pmap_kva_alloc: pmap_pvo_to_pte failed");
1663
1664	pmap_pte_unset(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
1665	PVO_PTEGIDX_CLR(pvo);
1666
1667	pmap_pte_overflow++;
1668
1669	return (pvo);
1670}
1671
1672static void
1673pmap_pa_map(struct pvo_entry *pvo, vm_offset_t pa, struct pte *saved_pt,
1674    int *depth_p)
1675{
1676	struct	pte *pt;
1677
1678	/*
1679	 * If this pvo already has a valid pte, we need to save it so it can
1680	 * be restored later.  We then just reload the new PTE over the old
1681	 * slot.
1682	 */
1683	if (saved_pt != NULL) {
1684		pt = pmap_pvo_to_pte(pvo, -1);
1685
1686		if (pt != NULL) {
1687			pmap_pte_unset(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
1688			PVO_PTEGIDX_CLR(pvo);
1689			pmap_pte_overflow++;
1690		}
1691
1692		*saved_pt = pvo->pvo_pte;
1693
1694		pvo->pvo_pte.pte_lo &= ~PTE_RPGN;
1695	}
1696
1697	pvo->pvo_pte.pte_lo |= pa;
1698
1699	if (!pmap_pte_spill(pvo->pvo_vaddr))
1700		panic("pmap_pa_map: could not spill pvo %p", pvo);
1701
1702	if (depth_p != NULL)
1703		(*depth_p)++;
1704}
1705
1706static void
1707pmap_pa_unmap(struct pvo_entry *pvo, struct pte *saved_pt, int *depth_p)
1708{
1709	struct	pte *pt;
1710
1711	pt = pmap_pvo_to_pte(pvo, -1);
1712
1713	if (pt != NULL) {
1714		pmap_pte_unset(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
1715		PVO_PTEGIDX_CLR(pvo);
1716		pmap_pte_overflow++;
1717	}
1718
1719	pvo->pvo_pte.pte_lo &= ~PTE_RPGN;
1720
1721	/*
1722	 * If there is a saved PTE and it's valid, restore it and return.
1723	 */
1724	if (saved_pt != NULL && (saved_pt->pte_lo & PTE_RPGN) != 0) {
1725		if (depth_p != NULL && --(*depth_p) == 0)
1726			panic("pmap_pa_unmap: restoring but depth == 0");
1727
1728		pvo->pvo_pte = *saved_pt;
1729
1730		if (!pmap_pte_spill(pvo->pvo_vaddr))
1731			panic("pmap_pa_unmap: could not spill pvo %p", pvo);
1732	}
1733}
1734
1735static void
1736pmap_syncicache(vm_offset_t pa, vm_size_t len)
1737{
1738	__syncicache((void *)pa, len);
1739}
1740
1741static void
1742tlbia(void)
1743{
1744	caddr_t	i;
1745
1746	SYNC();
1747	for (i = 0; i < (caddr_t)0x00040000; i += 0x00001000) {
1748		TLBIE(i);
1749		EIEIO();
1750	}
1751	TLBSYNC();
1752	SYNC();
1753}
1754
1755static int
1756pmap_pvo_enter(pmap_t pm, uma_zone_t zone, struct pvo_head *pvo_head,
1757    vm_offset_t va, vm_offset_t pa, u_int pte_lo, int flags)
1758{
1759	struct	pvo_entry *pvo;
1760	u_int	sr;
1761	int	first;
1762	u_int	ptegidx;
1763	int	i;
1764	int     bootstrap;
1765
1766	pmap_pvo_enter_calls++;
1767	first = 0;
1768
1769	bootstrap = 0;
1770
1771	/*
1772	 * Compute the PTE Group index.
1773	 */
1774	va &= ~ADDR_POFF;
1775	sr = va_to_sr(pm->pm_sr, va);
1776	ptegidx = va_to_pteg(sr, va);
1777
1778	/*
1779	 * Remove any existing mapping for this page.  Reuse the pvo entry if
1780	 * there is a mapping.
1781	 */
1782	LIST_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
1783		if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) {
1784			if ((pvo->pvo_pte.pte_lo & PTE_RPGN) == pa &&
1785			    (pvo->pvo_pte.pte_lo & PTE_PP) ==
1786			    (pte_lo & PTE_PP)) {
1787				return (0);
1788			}
1789			pmap_pvo_remove(pvo, -1);
1790			break;
1791		}
1792	}
1793
1794	/*
1795	 * If we aren't overwriting a mapping, try to allocate.
1796	 */
1797	if (pmap_initialized) {
1798		pvo = uma_zalloc(zone, M_NOWAIT);
1799	} else {
1800		if (pmap_bpvo_pool_index >= BPVO_POOL_SIZE) {
1801			panic("pmap_enter: bpvo pool exhausted, %d, %d, %d",
1802			      pmap_bpvo_pool_index, BPVO_POOL_SIZE,
1803			      BPVO_POOL_SIZE * sizeof(struct pvo_entry));
1804		}
1805		pvo = &pmap_bpvo_pool[pmap_bpvo_pool_index];
1806		pmap_bpvo_pool_index++;
1807		bootstrap = 1;
1808	}
1809
1810	if (pvo == NULL) {
1811		return (ENOMEM);
1812	}
1813
1814	pmap_pvo_entries++;
1815	pvo->pvo_vaddr = va;
1816	pvo->pvo_pmap = pm;
1817	LIST_INSERT_HEAD(&pmap_pvo_table[ptegidx], pvo, pvo_olink);
1818	pvo->pvo_vaddr &= ~ADDR_POFF;
1819	if (flags & VM_PROT_EXECUTE)
1820		pvo->pvo_vaddr |= PVO_EXECUTABLE;
1821	if (flags & PVO_WIRED)
1822		pvo->pvo_vaddr |= PVO_WIRED;
1823	if (pvo_head != &pmap_pvo_kunmanaged)
1824		pvo->pvo_vaddr |= PVO_MANAGED;
1825	if (bootstrap)
1826		pvo->pvo_vaddr |= PVO_BOOTSTRAP;
1827	pmap_pte_create(&pvo->pvo_pte, sr, va, pa | pte_lo);
1828
1829	/*
1830	 * Remember if the list was empty and therefore will be the first
1831	 * item.
1832	 */
1833	if (LIST_FIRST(pvo_head) == NULL)
1834		first = 1;
1835
1836	LIST_INSERT_HEAD(pvo_head, pvo, pvo_vlink);
1837	if (pvo->pvo_pte.pte_lo & PVO_WIRED)
1838		pvo->pvo_pmap->pm_stats.wired_count++;
1839	pvo->pvo_pmap->pm_stats.resident_count++;
1840
1841	/*
1842	 * We hope this succeeds but it isn't required.
1843	 */
1844	i = pmap_pte_insert(ptegidx, &pvo->pvo_pte);
1845	if (i >= 0) {
1846		PVO_PTEGIDX_SET(pvo, i);
1847	} else {
1848		panic("pmap_pvo_enter: overflow");
1849		pmap_pte_overflow++;
1850	}
1851
1852	return (first ? ENOENT : 0);
1853}
1854
1855static void
1856pmap_pvo_remove(struct pvo_entry *pvo, int pteidx)
1857{
1858	struct	pte *pt;
1859
1860	/*
1861	 * If there is an active pte entry, we need to deactivate it (and
1862	 * save the ref & cfg bits).
1863	 */
1864	pt = pmap_pvo_to_pte(pvo, pteidx);
1865	if (pt != NULL) {
1866		pmap_pte_unset(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
1867		PVO_PTEGIDX_CLR(pvo);
1868	} else {
1869		pmap_pte_overflow--;
1870	}
1871
1872	/*
1873	 * Update our statistics.
1874	 */
1875	pvo->pvo_pmap->pm_stats.resident_count--;
1876	if (pvo->pvo_pte.pte_lo & PVO_WIRED)
1877		pvo->pvo_pmap->pm_stats.wired_count--;
1878
1879	/*
1880	 * Save the REF/CHG bits into their cache if the page is managed.
1881	 */
1882	if (pvo->pvo_vaddr & PVO_MANAGED) {
1883		struct	vm_page *pg;
1884
1885		pg = PHYS_TO_VM_PAGE(pvo->pvo_pte.pte_lo & PTE_RPGN);
1886		if (pg != NULL) {
1887			pmap_attr_save(pg, pvo->pvo_pte.pte_lo &
1888			    (PTE_REF | PTE_CHG));
1889		}
1890	}
1891
1892	/*
1893	 * Remove this PVO from the PV list.
1894	 */
1895	LIST_REMOVE(pvo, pvo_vlink);
1896
1897	/*
1898	 * Remove this from the overflow list and return it to the pool
1899	 * if we aren't going to reuse it.
1900	 */
1901	LIST_REMOVE(pvo, pvo_olink);
1902	if (!(pvo->pvo_vaddr & PVO_BOOTSTRAP))
1903		uma_zfree(pvo->pvo_vaddr & PVO_MANAGED ? pmap_mpvo_zone :
1904		    pmap_upvo_zone, pvo);
1905	pmap_pvo_entries--;
1906	pmap_pvo_remove_calls++;
1907}
1908
1909static __inline int
1910pmap_pvo_pte_index(const struct pvo_entry *pvo, int ptegidx)
1911{
1912	int	pteidx;
1913
1914	/*
1915	 * We can find the actual pte entry without searching by grabbing
1916	 * the PTEG index from 3 unused bits in pte_lo[11:9] and by
1917	 * noticing the HID bit.
1918	 */
1919	pteidx = ptegidx * 8 + PVO_PTEGIDX_GET(pvo);
1920	if (pvo->pvo_pte.pte_hi & PTE_HID)
1921		pteidx ^= pmap_pteg_mask * 8;
1922
1923	return (pteidx);
1924}
1925
1926static struct pvo_entry *
1927pmap_pvo_find_va(pmap_t pm, vm_offset_t va, int *pteidx_p)
1928{
1929	struct	pvo_entry *pvo;
1930	int	ptegidx;
1931	u_int	sr;
1932
1933	va &= ~ADDR_POFF;
1934	sr = va_to_sr(pm->pm_sr, va);
1935	ptegidx = va_to_pteg(sr, va);
1936
1937	LIST_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
1938		if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) {
1939			if (pteidx_p)
1940				*pteidx_p = pmap_pvo_pte_index(pvo, ptegidx);
1941			return (pvo);
1942		}
1943	}
1944
1945	return (NULL);
1946}
1947
1948static struct pte *
1949pmap_pvo_to_pte(const struct pvo_entry *pvo, int pteidx)
1950{
1951	struct	pte *pt;
1952
1953	/*
1954	 * If we haven't been supplied the ptegidx, calculate it.
1955	 */
1956	if (pteidx == -1) {
1957		int	ptegidx;
1958		u_int	sr;
1959
1960		sr = va_to_sr(pvo->pvo_pmap->pm_sr, pvo->pvo_vaddr);
1961		ptegidx = va_to_pteg(sr, pvo->pvo_vaddr);
1962		pteidx = pmap_pvo_pte_index(pvo, ptegidx);
1963	}
1964
1965	pt = &pmap_pteg_table[pteidx >> 3].pt[pteidx & 7];
1966
1967	if ((pvo->pvo_pte.pte_hi & PTE_VALID) && !PVO_PTEGIDX_ISSET(pvo)) {
1968		panic("pmap_pvo_to_pte: pvo %p has valid pte in pvo but no "
1969		    "valid pte index", pvo);
1970	}
1971
1972	if ((pvo->pvo_pte.pte_hi & PTE_VALID) == 0 && PVO_PTEGIDX_ISSET(pvo)) {
1973		panic("pmap_pvo_to_pte: pvo %p has valid pte index in pvo "
1974		    "pvo but no valid pte", pvo);
1975	}
1976
1977	if ((pt->pte_hi ^ (pvo->pvo_pte.pte_hi & ~PTE_VALID)) == PTE_VALID) {
1978		if ((pvo->pvo_pte.pte_hi & PTE_VALID) == 0) {
1979			panic("pmap_pvo_to_pte: pvo %p has valid pte in "
1980			    "pmap_pteg_table %p but invalid in pvo", pvo, pt);
1981		}
1982
1983		if (((pt->pte_lo ^ pvo->pvo_pte.pte_lo) & ~(PTE_CHG|PTE_REF))
1984		    != 0) {
1985			panic("pmap_pvo_to_pte: pvo %p pte does not match "
1986			    "pte %p in pmap_pteg_table", pvo, pt);
1987		}
1988
1989		return (pt);
1990	}
1991
1992	if (pvo->pvo_pte.pte_hi & PTE_VALID) {
1993		panic("pmap_pvo_to_pte: pvo %p has invalid pte %p in "
1994		    "pmap_pteg_table but valid in pvo", pvo, pt);
1995	}
1996
1997	return (NULL);
1998}
1999
2000static void *
2001pmap_pvo_allocf(uma_zone_t zone, int bytes, u_int8_t *flags, int wait)
2002{
2003	static vm_pindex_t color;
2004	vm_page_t	m;
2005
2006	if (bytes != PAGE_SIZE)
2007		panic("pmap_pvo_allocf: benno was shortsighted.  hit him.");
2008
2009	*flags = UMA_SLAB_PRIV;
2010	/*
2011	 * The color is only a hint.  Thus, a data race in the read-
2012	 * modify-write operation below isn't a catastrophe.
2013	 */
2014	m = vm_page_alloc(NULL, color++, VM_ALLOC_NOOBJ | VM_ALLOC_SYSTEM);
2015	if (m == NULL)
2016		return (NULL);
2017	return ((void *)VM_PAGE_TO_PHYS(m));
2018}
2019
2020/*
2021 * XXX: THIS STUFF SHOULD BE IN pte.c?
2022 */
2023int
2024pmap_pte_spill(vm_offset_t addr)
2025{
2026	struct	pvo_entry *source_pvo, *victim_pvo;
2027	struct	pvo_entry *pvo;
2028	int	ptegidx, i, j;
2029	u_int	sr;
2030	struct	pteg *pteg;
2031	struct	pte *pt;
2032
2033	pmap_pte_spills++;
2034
2035	sr = mfsrin(addr);
2036	ptegidx = va_to_pteg(sr, addr);
2037
2038	/*
2039	 * Have to substitute some entry.  Use the primary hash for this.
2040	 * Use low bits of timebase as random generator.
2041	 */
2042	pteg = &pmap_pteg_table[ptegidx];
2043	__asm __volatile("mftb %0" : "=r"(i));
2044	i &= 7;
2045	pt = &pteg->pt[i];
2046
2047	source_pvo = NULL;
2048	victim_pvo = NULL;
2049	LIST_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
2050		/*
2051		 * We need to find a pvo entry for this address.
2052		 */
2053		PMAP_PVO_CHECK(pvo);
2054		if (source_pvo == NULL &&
2055		    pmap_pte_match(&pvo->pvo_pte, sr, addr,
2056		    pvo->pvo_pte.pte_hi & PTE_HID)) {
2057			/*
2058			 * Now found an entry to be spilled into the pteg.
2059			 * The PTE is now valid, so we know it's active.
2060			 */
2061			j = pmap_pte_insert(ptegidx, &pvo->pvo_pte);
2062
2063			if (j >= 0) {
2064				PVO_PTEGIDX_SET(pvo, j);
2065				pmap_pte_overflow--;
2066				PMAP_PVO_CHECK(pvo);
2067				return (1);
2068			}
2069
2070			source_pvo = pvo;
2071
2072			if (victim_pvo != NULL)
2073				break;
2074		}
2075
2076		/*
2077		 * We also need the pvo entry of the victim we are replacing
2078		 * so save the R & C bits of the PTE.
2079		 */
2080		if ((pt->pte_hi & PTE_HID) == 0 && victim_pvo == NULL &&
2081		    pmap_pte_compare(pt, &pvo->pvo_pte)) {
2082			victim_pvo = pvo;
2083			if (source_pvo != NULL)
2084				break;
2085		}
2086	}
2087
2088	if (source_pvo == NULL)
2089		return (0);
2090
2091	if (victim_pvo == NULL) {
2092		if ((pt->pte_hi & PTE_HID) == 0)
2093			panic("pmap_pte_spill: victim p-pte (%p) has no pvo"
2094			    "entry", pt);
2095
2096		/*
2097		 * If this is a secondary PTE, we need to search it's primary
2098		 * pvo bucket for the matching PVO.
2099		 */
2100		LIST_FOREACH(pvo, &pmap_pvo_table[ptegidx ^ pmap_pteg_mask],
2101		    pvo_olink) {
2102			PMAP_PVO_CHECK(pvo);
2103			/*
2104			 * We also need the pvo entry of the victim we are
2105			 * replacing so save the R & C bits of the PTE.
2106			 */
2107			if (pmap_pte_compare(pt, &pvo->pvo_pte)) {
2108				victim_pvo = pvo;
2109				break;
2110			}
2111		}
2112
2113		if (victim_pvo == NULL)
2114			panic("pmap_pte_spill: victim s-pte (%p) has no pvo"
2115			    "entry", pt);
2116	}
2117
2118	/*
2119	 * We are invalidating the TLB entry for the EA we are replacing even
2120	 * though it's valid.  If we don't, we lose any ref/chg bit changes
2121	 * contained in the TLB entry.
2122	 */
2123	source_pvo->pvo_pte.pte_hi &= ~PTE_HID;
2124
2125	pmap_pte_unset(pt, &victim_pvo->pvo_pte, victim_pvo->pvo_vaddr);
2126	pmap_pte_set(pt, &source_pvo->pvo_pte);
2127
2128	PVO_PTEGIDX_CLR(victim_pvo);
2129	PVO_PTEGIDX_SET(source_pvo, i);
2130	pmap_pte_replacements++;
2131
2132	PMAP_PVO_CHECK(victim_pvo);
2133	PMAP_PVO_CHECK(source_pvo);
2134
2135	return (1);
2136}
2137
2138static int
2139pmap_pte_insert(u_int ptegidx, struct pte *pvo_pt)
2140{
2141	struct	pte *pt;
2142	int	i;
2143
2144	/*
2145	 * First try primary hash.
2146	 */
2147	for (pt = pmap_pteg_table[ptegidx].pt, i = 0; i < 8; i++, pt++) {
2148		if ((pt->pte_hi & PTE_VALID) == 0) {
2149			pvo_pt->pte_hi &= ~PTE_HID;
2150			pmap_pte_set(pt, pvo_pt);
2151			return (i);
2152		}
2153	}
2154
2155	/*
2156	 * Now try secondary hash.
2157	 */
2158	ptegidx ^= pmap_pteg_mask;
2159	ptegidx++;
2160	for (pt = pmap_pteg_table[ptegidx].pt, i = 0; i < 8; i++, pt++) {
2161		if ((pt->pte_hi & PTE_VALID) == 0) {
2162			pvo_pt->pte_hi |= PTE_HID;
2163			pmap_pte_set(pt, pvo_pt);
2164			return (i);
2165		}
2166	}
2167
2168	panic("pmap_pte_insert: overflow");
2169	return (-1);
2170}
2171
2172static boolean_t
2173pmap_query_bit(vm_page_t m, int ptebit)
2174{
2175	struct	pvo_entry *pvo;
2176	struct	pte *pt;
2177
2178	if (pmap_attr_fetch(m) & ptebit)
2179		return (TRUE);
2180
2181	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
2182		PMAP_PVO_CHECK(pvo);	/* sanity check */
2183
2184		/*
2185		 * See if we saved the bit off.  If so, cache it and return
2186		 * success.
2187		 */
2188		if (pvo->pvo_pte.pte_lo & ptebit) {
2189			pmap_attr_save(m, ptebit);
2190			PMAP_PVO_CHECK(pvo);	/* sanity check */
2191			return (TRUE);
2192		}
2193	}
2194
2195	/*
2196	 * No luck, now go through the hard part of looking at the PTEs
2197	 * themselves.  Sync so that any pending REF/CHG bits are flushed to
2198	 * the PTEs.
2199	 */
2200	SYNC();
2201	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
2202		PMAP_PVO_CHECK(pvo);	/* sanity check */
2203
2204		/*
2205		 * See if this pvo has a valid PTE.  if so, fetch the
2206		 * REF/CHG bits from the valid PTE.  If the appropriate
2207		 * ptebit is set, cache it and return success.
2208		 */
2209		pt = pmap_pvo_to_pte(pvo, -1);
2210		if (pt != NULL) {
2211			pmap_pte_synch(pt, &pvo->pvo_pte);
2212			if (pvo->pvo_pte.pte_lo & ptebit) {
2213				pmap_attr_save(m, ptebit);
2214				PMAP_PVO_CHECK(pvo);	/* sanity check */
2215				return (TRUE);
2216			}
2217		}
2218	}
2219
2220	return (FALSE);
2221}
2222
2223static u_int
2224pmap_clear_bit(vm_page_t m, int ptebit, int *origbit)
2225{
2226	u_int	count;
2227	struct	pvo_entry *pvo;
2228	struct	pte *pt;
2229	int	rv;
2230
2231	/*
2232	 * Clear the cached value.
2233	 */
2234	rv = pmap_attr_fetch(m);
2235	pmap_attr_clear(m, ptebit);
2236
2237	/*
2238	 * Sync so that any pending REF/CHG bits are flushed to the PTEs (so
2239	 * we can reset the right ones).  note that since the pvo entries and
2240	 * list heads are accessed via BAT0 and are never placed in the page
2241	 * table, we don't have to worry about further accesses setting the
2242	 * REF/CHG bits.
2243	 */
2244	SYNC();
2245
2246	/*
2247	 * For each pvo entry, clear the pvo's ptebit.  If this pvo has a
2248	 * valid pte clear the ptebit from the valid pte.
2249	 */
2250	count = 0;
2251	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
2252		PMAP_PVO_CHECK(pvo);	/* sanity check */
2253		pt = pmap_pvo_to_pte(pvo, -1);
2254		if (pt != NULL) {
2255			pmap_pte_synch(pt, &pvo->pvo_pte);
2256			if (pvo->pvo_pte.pte_lo & ptebit) {
2257				count++;
2258				pmap_pte_clear(pt, PVO_VADDR(pvo), ptebit);
2259			}
2260		}
2261		rv |= pvo->pvo_pte.pte_lo;
2262		pvo->pvo_pte.pte_lo &= ~ptebit;
2263		PMAP_PVO_CHECK(pvo);	/* sanity check */
2264	}
2265
2266	if (origbit != NULL) {
2267		*origbit = rv;
2268	}
2269
2270	return (count);
2271}
2272
2273/*
2274 * Return true if the physical range is encompassed by the battable[idx]
2275 */
2276static int
2277pmap_bat_mapped(int idx, vm_offset_t pa, vm_size_t size)
2278{
2279	u_int prot;
2280	u_int32_t start;
2281	u_int32_t end;
2282	u_int32_t bat_ble;
2283
2284	/*
2285	 * Return immediately if not a valid mapping
2286	 */
2287	if (!battable[idx].batu & BAT_Vs)
2288		return (EINVAL);
2289
2290	/*
2291	 * The BAT entry must be cache-inhibited, guarded, and r/w
2292	 * so it can function as an i/o page
2293	 */
2294	prot = battable[idx].batl & (BAT_I|BAT_G|BAT_PP_RW);
2295	if (prot != (BAT_I|BAT_G|BAT_PP_RW))
2296		return (EPERM);
2297
2298	/*
2299	 * The address should be within the BAT range. Assume that the
2300	 * start address in the BAT has the correct alignment (thus
2301	 * not requiring masking)
2302	 */
2303	start = battable[idx].batl & BAT_PBS;
2304	bat_ble = (battable[idx].batu & ~(BAT_EBS)) | 0x03;
2305	end = start | (bat_ble << 15) | 0x7fff;
2306
2307	if ((pa < start) || ((pa + size) > end))
2308		return (ERANGE);
2309
2310	return (0);
2311}
2312
2313
2314/*
2315 * Map a set of physical memory pages into the kernel virtual
2316 * address space. Return a pointer to where it is mapped. This
2317 * routine is intended to be used for mapping device memory,
2318 * NOT real memory.
2319 */
2320void *
2321pmap_mapdev(vm_offset_t pa, vm_size_t size)
2322{
2323	vm_offset_t va, tmpva, ppa, offset;
2324	int i;
2325
2326	ppa = trunc_page(pa);
2327	offset = pa & PAGE_MASK;
2328	size = roundup(offset + size, PAGE_SIZE);
2329
2330	GIANT_REQUIRED;
2331
2332	/*
2333	 * If the physical address lies within a valid BAT table entry,
2334	 * return the 1:1 mapping. This currently doesn't work
2335	 * for regions that overlap 256M BAT segments.
2336	 */
2337	for (i = 0; i < 16; i++) {
2338		if (pmap_bat_mapped(i, pa, size) == 0)
2339			return ((void *) pa);
2340	}
2341
2342	va = kmem_alloc_nofault(kernel_map, size);
2343	if (!va)
2344		panic("pmap_mapdev: Couldn't alloc kernel virtual memory");
2345
2346	for (tmpva = va; size > 0;) {
2347		pmap_kenter(tmpva, ppa);
2348		TLBIE(tmpva); /* XXX or should it be invalidate-all ? */
2349		size -= PAGE_SIZE;
2350		tmpva += PAGE_SIZE;
2351		ppa += PAGE_SIZE;
2352	}
2353
2354	return ((void *)(va + offset));
2355}
2356
2357void
2358pmap_unmapdev(vm_offset_t va, vm_size_t size)
2359{
2360	vm_offset_t base, offset;
2361
2362	/*
2363	 * If this is outside kernel virtual space, then it's a
2364	 * battable entry and doesn't require unmapping
2365	 */
2366	if ((va >= VM_MIN_KERNEL_ADDRESS) && (va <= VM_MAX_KERNEL_ADDRESS)) {
2367		base = trunc_page(va);
2368		offset = va & PAGE_MASK;
2369		size = roundup(offset + size, PAGE_SIZE);
2370		kmem_free(kernel_map, base, size);
2371	}
2372}
2373