mmu_oea.c revision 103604
1/*
2 * Copyright (c) 2001 The NetBSD Foundation, Inc.
3 * All rights reserved.
4 *
5 * This code is derived from software contributed to The NetBSD Foundation
6 * by Matt Thomas <matt@3am-software.com> of Allegro Networks, Inc.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 *    must display the following acknowledgement:
18 *        This product includes software developed by the NetBSD
19 *        Foundation, Inc. and its contributors.
20 * 4. Neither the name of The NetBSD Foundation nor the names of its
21 *    contributors may be used to endorse or promote products derived
22 *    from this software without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
25 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
26 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
27 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
28 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
29 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
30 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
31 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
32 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
33 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
34 * POSSIBILITY OF SUCH DAMAGE.
35 */
36/*
37 * Copyright (C) 1995, 1996 Wolfgang Solfrank.
38 * Copyright (C) 1995, 1996 TooLs GmbH.
39 * All rights reserved.
40 *
41 * Redistribution and use in source and binary forms, with or without
42 * modification, are permitted provided that the following conditions
43 * are met:
44 * 1. Redistributions of source code must retain the above copyright
45 *    notice, this list of conditions and the following disclaimer.
46 * 2. Redistributions in binary form must reproduce the above copyright
47 *    notice, this list of conditions and the following disclaimer in the
48 *    documentation and/or other materials provided with the distribution.
49 * 3. All advertising materials mentioning features or use of this software
50 *    must display the following acknowledgement:
51 *	This product includes software developed by TooLs GmbH.
52 * 4. The name of TooLs GmbH may not be used to endorse or promote products
53 *    derived from this software without specific prior written permission.
54 *
55 * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR
56 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
57 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
58 * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
59 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
60 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
61 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
62 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
63 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
64 * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
65 *
66 * $NetBSD: pmap.c,v 1.28 2000/03/26 20:42:36 kleink Exp $
67 */
68/*
69 * Copyright (C) 2001 Benno Rice.
70 * All rights reserved.
71 *
72 * Redistribution and use in source and binary forms, with or without
73 * modification, are permitted provided that the following conditions
74 * are met:
75 * 1. Redistributions of source code must retain the above copyright
76 *    notice, this list of conditions and the following disclaimer.
77 * 2. Redistributions in binary form must reproduce the above copyright
78 *    notice, this list of conditions and the following disclaimer in the
79 *    documentation and/or other materials provided with the distribution.
80 *
81 * THIS SOFTWARE IS PROVIDED BY Benno Rice ``AS IS'' AND ANY EXPRESS OR
82 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
83 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
84 * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
85 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
86 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
87 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
88 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
89 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
90 * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
91 */
92
93#ifndef lint
94static const char rcsid[] =
95   "$FreeBSD: head/sys/powerpc/aim/mmu_oea.c 103604 2002-09-19 04:36:20Z grehan $";
96#endif /* not lint */
97
98/*
99 * Manages physical address maps.
100 *
101 * In addition to hardware address maps, this module is called upon to
102 * provide software-use-only maps which may or may not be stored in the
103 * same form as hardware maps.  These pseudo-maps are used to store
104 * intermediate results from copy operations to and from address spaces.
105 *
106 * Since the information managed by this module is also stored by the
107 * logical address mapping module, this module may throw away valid virtual
108 * to physical mappings at almost any time.  However, invalidations of
109 * mappings must be done as requested.
110 *
111 * In order to cope with hardware architectures which make virtual to
112 * physical map invalidates expensive, this module may delay invalidate
113 * reduced protection operations until such time as they are actually
114 * necessary.  This module is given full information as to which processors
115 * are currently using which maps, and to when physical maps must be made
116 * correct.
117 */
118
119#include <sys/param.h>
120#include <sys/kernel.h>
121#include <sys/ktr.h>
122#include <sys/lock.h>
123#include <sys/msgbuf.h>
124#include <sys/mutex.h>
125#include <sys/proc.h>
126#include <sys/sysctl.h>
127#include <sys/systm.h>
128#include <sys/vmmeter.h>
129
130#include <dev/ofw/openfirm.h>
131
132#include <vm/vm.h>
133#include <vm/vm_param.h>
134#include <vm/vm_kern.h>
135#include <vm/vm_page.h>
136#include <vm/vm_map.h>
137#include <vm/vm_object.h>
138#include <vm/vm_extern.h>
139#include <vm/vm_pageout.h>
140#include <vm/vm_pager.h>
141#include <vm/uma.h>
142
143#include <machine/powerpc.h>
144#include <machine/bat.h>
145#include <machine/frame.h>
146#include <machine/md_var.h>
147#include <machine/psl.h>
148#include <machine/pte.h>
149#include <machine/sr.h>
150
151#define	PMAP_DEBUG
152
153#define TODO	panic("%s: not implemented", __func__);
154
155#define	PMAP_LOCK(pm)
156#define	PMAP_UNLOCK(pm)
157
158#define	TLBIE(va)	__asm __volatile("tlbie %0" :: "r"(va))
159#define	TLBSYNC()	__asm __volatile("tlbsync");
160#define	SYNC()		__asm __volatile("sync");
161#define	EIEIO()		__asm __volatile("eieio");
162
163#define	VSID_MAKE(sr, hash)	((sr) | (((hash) & 0xfffff) << 4))
164#define	VSID_TO_SR(vsid)	((vsid) & 0xf)
165#define	VSID_TO_HASH(vsid)	(((vsid) >> 4) & 0xfffff)
166
167#define	PVO_PTEGIDX_MASK	0x0007		/* which PTEG slot */
168#define	PVO_PTEGIDX_VALID	0x0008		/* slot is valid */
169#define	PVO_WIRED		0x0010		/* PVO entry is wired */
170#define	PVO_MANAGED		0x0020		/* PVO entry is managed */
171#define	PVO_EXECUTABLE		0x0040		/* PVO entry is executable */
172#define	PVO_BOOTSTRAP		0x0080		/* PVO entry allocated during
173						   bootstrap */
174#define	PVO_VADDR(pvo)		((pvo)->pvo_vaddr & ~ADDR_POFF)
175#define	PVO_ISEXECUTABLE(pvo)	((pvo)->pvo_vaddr & PVO_EXECUTABLE)
176#define	PVO_PTEGIDX_GET(pvo)	((pvo)->pvo_vaddr & PVO_PTEGIDX_MASK)
177#define	PVO_PTEGIDX_ISSET(pvo)	((pvo)->pvo_vaddr & PVO_PTEGIDX_VALID)
178#define	PVO_PTEGIDX_CLR(pvo)	\
179	((void)((pvo)->pvo_vaddr &= ~(PVO_PTEGIDX_VALID|PVO_PTEGIDX_MASK)))
180#define	PVO_PTEGIDX_SET(pvo, i)	\
181	((void)((pvo)->pvo_vaddr |= (i)|PVO_PTEGIDX_VALID))
182
183#define	PMAP_PVO_CHECK(pvo)
184
185struct ofw_map {
186	vm_offset_t	om_va;
187	vm_size_t	om_len;
188	vm_offset_t	om_pa;
189	u_int		om_mode;
190};
191
192int	pmap_bootstrapped = 0;
193
194/*
195 * Virtual and physical address of message buffer.
196 */
197struct		msgbuf *msgbufp;
198vm_offset_t	msgbuf_phys;
199
200/*
201 * Physical addresses of first and last available physical page.
202 */
203vm_offset_t avail_start;
204vm_offset_t avail_end;
205
206/*
207 * Map of physical memory regions.
208 */
209vm_offset_t	phys_avail[128];
210u_int		phys_avail_count;
211static struct	mem_region *regions;
212static struct	mem_region *pregions;
213int		regions_sz, pregions_sz;
214static struct	ofw_map *translations;
215
216/*
217 * First and last available kernel virtual addresses.
218 */
219vm_offset_t virtual_avail;
220vm_offset_t virtual_end;
221vm_offset_t kernel_vm_end;
222
223/*
224 * Kernel pmap.
225 */
226struct pmap kernel_pmap_store;
227extern struct pmap ofw_pmap;
228
229/*
230 * PTEG data.
231 */
232static struct	pteg *pmap_pteg_table;
233u_int		pmap_pteg_count;
234u_int		pmap_pteg_mask;
235
236/*
237 * PVO data.
238 */
239struct	pvo_head *pmap_pvo_table;		/* pvo entries by pteg index */
240struct	pvo_head pmap_pvo_kunmanaged =
241    LIST_HEAD_INITIALIZER(pmap_pvo_kunmanaged);	/* list of unmanaged pages */
242struct	pvo_head pmap_pvo_unmanaged =
243    LIST_HEAD_INITIALIZER(pmap_pvo_unmanaged);	/* list of unmanaged pages */
244
245uma_zone_t	pmap_upvo_zone;	/* zone for pvo entries for unmanaged pages */
246uma_zone_t	pmap_mpvo_zone;	/* zone for pvo entries for managed pages */
247struct		vm_object pmap_upvo_zone_obj;
248struct		vm_object pmap_mpvo_zone_obj;
249static vm_object_t	pmap_pvo_obj;
250static u_int		pmap_pvo_count;
251
252#define	BPVO_POOL_SIZE	32768
253static struct	pvo_entry *pmap_bpvo_pool;
254static int	pmap_bpvo_pool_index = 0;
255
256#define	VSID_NBPW	(sizeof(u_int32_t) * 8)
257static u_int	pmap_vsid_bitmap[NPMAPS / VSID_NBPW];
258
259static boolean_t pmap_initialized = FALSE;
260
261/*
262 * Statistics.
263 */
264u_int	pmap_pte_valid = 0;
265u_int	pmap_pte_overflow = 0;
266u_int	pmap_pte_replacements = 0;
267u_int	pmap_pvo_entries = 0;
268u_int	pmap_pvo_enter_calls = 0;
269u_int	pmap_pvo_remove_calls = 0;
270u_int	pmap_pte_spills = 0;
271SYSCTL_INT(_machdep, OID_AUTO, pmap_pte_valid, CTLFLAG_RD, &pmap_pte_valid,
272    0, "");
273SYSCTL_INT(_machdep, OID_AUTO, pmap_pte_overflow, CTLFLAG_RD,
274    &pmap_pte_overflow, 0, "");
275SYSCTL_INT(_machdep, OID_AUTO, pmap_pte_replacements, CTLFLAG_RD,
276    &pmap_pte_replacements, 0, "");
277SYSCTL_INT(_machdep, OID_AUTO, pmap_pvo_entries, CTLFLAG_RD, &pmap_pvo_entries,
278    0, "");
279SYSCTL_INT(_machdep, OID_AUTO, pmap_pvo_enter_calls, CTLFLAG_RD,
280    &pmap_pvo_enter_calls, 0, "");
281SYSCTL_INT(_machdep, OID_AUTO, pmap_pvo_remove_calls, CTLFLAG_RD,
282    &pmap_pvo_remove_calls, 0, "");
283SYSCTL_INT(_machdep, OID_AUTO, pmap_pte_spills, CTLFLAG_RD,
284    &pmap_pte_spills, 0, "");
285
286struct	pvo_entry *pmap_pvo_zeropage;
287
288vm_offset_t	pmap_rkva_start = VM_MIN_KERNEL_ADDRESS;
289u_int		pmap_rkva_count = 4;
290
291/*
292 * Allocate physical memory for use in pmap_bootstrap.
293 */
294static vm_offset_t	pmap_bootstrap_alloc(vm_size_t, u_int);
295
296/*
297 * PTE calls.
298 */
299static int		pmap_pte_insert(u_int, struct pte *);
300
301/*
302 * PVO calls.
303 */
304static int	pmap_pvo_enter(pmap_t, uma_zone_t, struct pvo_head *,
305		    vm_offset_t, vm_offset_t, u_int, int);
306static void	pmap_pvo_remove(struct pvo_entry *, int);
307static struct	pvo_entry *pmap_pvo_find_va(pmap_t, vm_offset_t, int *);
308static struct	pte *pmap_pvo_to_pte(const struct pvo_entry *, int);
309
310/*
311 * Utility routines.
312 */
313static void *		pmap_pvo_allocf(uma_zone_t, int, u_int8_t *, int);
314static struct		pvo_entry *pmap_rkva_alloc(void);
315static void		pmap_pa_map(struct pvo_entry *, vm_offset_t,
316			    struct pte *, int *);
317static void		pmap_pa_unmap(struct pvo_entry *, struct pte *, int *);
318static void		pmap_syncicache(vm_offset_t, vm_size_t);
319static boolean_t	pmap_query_bit(vm_page_t, int);
320static boolean_t	pmap_clear_bit(vm_page_t, int);
321static void		tlbia(void);
322
323static __inline int
324va_to_sr(u_int *sr, vm_offset_t va)
325{
326	return (sr[(uintptr_t)va >> ADDR_SR_SHFT]);
327}
328
329static __inline u_int
330va_to_pteg(u_int sr, vm_offset_t addr)
331{
332	u_int hash;
333
334	hash = (sr & SR_VSID_MASK) ^ (((u_int)addr & ADDR_PIDX) >>
335	    ADDR_PIDX_SHFT);
336	return (hash & pmap_pteg_mask);
337}
338
339static __inline struct pvo_head *
340pa_to_pvoh(vm_offset_t pa, vm_page_t *pg_p)
341{
342	struct	vm_page *pg;
343
344	pg = PHYS_TO_VM_PAGE(pa);
345
346	if (pg_p != NULL)
347		*pg_p = pg;
348
349	if (pg == NULL)
350		return (&pmap_pvo_unmanaged);
351
352	return (&pg->md.mdpg_pvoh);
353}
354
355static __inline struct pvo_head *
356vm_page_to_pvoh(vm_page_t m)
357{
358
359	return (&m->md.mdpg_pvoh);
360}
361
362static __inline void
363pmap_attr_clear(vm_page_t m, int ptebit)
364{
365
366	m->md.mdpg_attrs &= ~ptebit;
367}
368
369static __inline int
370pmap_attr_fetch(vm_page_t m)
371{
372
373	return (m->md.mdpg_attrs);
374}
375
376static __inline void
377pmap_attr_save(vm_page_t m, int ptebit)
378{
379
380	m->md.mdpg_attrs |= ptebit;
381}
382
383static __inline int
384pmap_pte_compare(const struct pte *pt, const struct pte *pvo_pt)
385{
386	if (pt->pte_hi == pvo_pt->pte_hi)
387		return (1);
388
389	return (0);
390}
391
392static __inline int
393pmap_pte_match(struct pte *pt, u_int sr, vm_offset_t va, int which)
394{
395	return (pt->pte_hi & ~PTE_VALID) ==
396	    (((sr & SR_VSID_MASK) << PTE_VSID_SHFT) |
397	    ((va >> ADDR_API_SHFT) & PTE_API) | which);
398}
399
400static __inline void
401pmap_pte_create(struct pte *pt, u_int sr, vm_offset_t va, u_int pte_lo)
402{
403	/*
404	 * Construct a PTE.  Default to IMB initially.  Valid bit only gets
405	 * set when the real pte is set in memory.
406	 *
407	 * Note: Don't set the valid bit for correct operation of tlb update.
408	 */
409	pt->pte_hi = ((sr & SR_VSID_MASK) << PTE_VSID_SHFT) |
410	    (((va & ADDR_PIDX) >> ADDR_API_SHFT) & PTE_API);
411	pt->pte_lo = pte_lo;
412}
413
414static __inline void
415pmap_pte_synch(struct pte *pt, struct pte *pvo_pt)
416{
417
418	pvo_pt->pte_lo |= pt->pte_lo & (PTE_REF | PTE_CHG);
419}
420
421static __inline void
422pmap_pte_clear(struct pte *pt, vm_offset_t va, int ptebit)
423{
424
425	/*
426	 * As shown in Section 7.6.3.2.3
427	 */
428	pt->pte_lo &= ~ptebit;
429	TLBIE(va);
430	EIEIO();
431	TLBSYNC();
432	SYNC();
433}
434
435static __inline void
436pmap_pte_set(struct pte *pt, struct pte *pvo_pt)
437{
438
439	pvo_pt->pte_hi |= PTE_VALID;
440
441	/*
442	 * Update the PTE as defined in section 7.6.3.1.
443	 * Note that the REF/CHG bits are from pvo_pt and thus should havce
444	 * been saved so this routine can restore them (if desired).
445	 */
446	pt->pte_lo = pvo_pt->pte_lo;
447	EIEIO();
448	pt->pte_hi = pvo_pt->pte_hi;
449	SYNC();
450	pmap_pte_valid++;
451}
452
453static __inline void
454pmap_pte_unset(struct pte *pt, struct pte *pvo_pt, vm_offset_t va)
455{
456
457	pvo_pt->pte_hi &= ~PTE_VALID;
458
459	/*
460	 * Force the reg & chg bits back into the PTEs.
461	 */
462	SYNC();
463
464	/*
465	 * Invalidate the pte.
466	 */
467	pt->pte_hi &= ~PTE_VALID;
468
469	SYNC();
470	TLBIE(va);
471	EIEIO();
472	TLBSYNC();
473	SYNC();
474
475	/*
476	 * Save the reg & chg bits.
477	 */
478	pmap_pte_synch(pt, pvo_pt);
479	pmap_pte_valid--;
480}
481
482static __inline void
483pmap_pte_change(struct pte *pt, struct pte *pvo_pt, vm_offset_t va)
484{
485
486	/*
487	 * Invalidate the PTE
488	 */
489	pmap_pte_unset(pt, pvo_pt, va);
490	pmap_pte_set(pt, pvo_pt);
491}
492
493/*
494 * Quick sort callout for comparing memory regions.
495 */
496static int	mr_cmp(const void *a, const void *b);
497static int	om_cmp(const void *a, const void *b);
498
499static int
500mr_cmp(const void *a, const void *b)
501{
502	const struct	mem_region *regiona;
503	const struct	mem_region *regionb;
504
505	regiona = a;
506	regionb = b;
507	if (regiona->mr_start < regionb->mr_start)
508		return (-1);
509	else if (regiona->mr_start > regionb->mr_start)
510		return (1);
511	else
512		return (0);
513}
514
515static int
516om_cmp(const void *a, const void *b)
517{
518	const struct	ofw_map *mapa;
519	const struct	ofw_map *mapb;
520
521	mapa = a;
522	mapb = b;
523	if (mapa->om_pa < mapb->om_pa)
524		return (-1);
525	else if (mapa->om_pa > mapb->om_pa)
526		return (1);
527	else
528		return (0);
529}
530
531void
532pmap_bootstrap(vm_offset_t kernelstart, vm_offset_t kernelend)
533{
534	ihandle_t	mmui;
535	phandle_t	chosen, mmu;
536	int		sz;
537	int		i, j;
538	int		ofw_mappings;
539	vm_size_t	size, physsz;
540	vm_offset_t	pa, va, off;
541	u_int		batl, batu;
542
543        /*
544         * Set up BAT0 to map the lowest 256 MB area
545         */
546        battable[0x0].batl = BATL(0x00000000, BAT_M, BAT_PP_RW);
547        battable[0x0].batu = BATU(0x00000000, BAT_BL_256M, BAT_Vs);
548
549        /*
550         * Map PCI memory space.
551         */
552        battable[0x8].batl = BATL(0x80000000, BAT_I|BAT_G, BAT_PP_RW);
553        battable[0x8].batu = BATU(0x80000000, BAT_BL_256M, BAT_Vs);
554
555        battable[0x9].batl = BATL(0x90000000, BAT_I|BAT_G, BAT_PP_RW);
556        battable[0x9].batu = BATU(0x90000000, BAT_BL_256M, BAT_Vs);
557
558        battable[0xa].batl = BATL(0xa0000000, BAT_I|BAT_G, BAT_PP_RW);
559        battable[0xa].batu = BATU(0xa0000000, BAT_BL_256M, BAT_Vs);
560
561        battable[0xb].batl = BATL(0xb0000000, BAT_I|BAT_G, BAT_PP_RW);
562        battable[0xb].batu = BATU(0xb0000000, BAT_BL_256M, BAT_Vs);
563
564        /*
565         * Map obio devices.
566         */
567        battable[0xf].batl = BATL(0xf0000000, BAT_I|BAT_G, BAT_PP_RW);
568        battable[0xf].batu = BATU(0xf0000000, BAT_BL_256M, BAT_Vs);
569
570	/*
571	 * Use an IBAT and a DBAT to map the bottom segment of memory
572	 * where we are.
573	 */
574	batu = BATU(0x00000000, BAT_BL_256M, BAT_Vs);
575	batl = BATL(0x00000000, BAT_M, BAT_PP_RW);
576	__asm ("mtibatu 0,%0; mtibatl 0,%1; mtdbatu 0,%0; mtdbatl 0,%1"
577	    :: "r"(batu), "r"(batl));
578
579#if 0
580	/* map frame buffer */
581	batu = BATU(0x90000000, BAT_BL_256M, BAT_Vs);
582	batl = BATL(0x90000000, BAT_I|BAT_G, BAT_PP_RW);
583	__asm ("mtdbatu 1,%0; mtdbatl 1,%1"
584	    :: "r"(batu), "r"(batl));
585#endif
586
587#if 1
588	/* map pci space */
589	batu = BATU(0x80000000, BAT_BL_256M, BAT_Vs);
590	batl = BATL(0x80000000, BAT_I|BAT_G, BAT_PP_RW);
591	__asm ("mtdbatu 1,%0; mtdbatl 1,%1"
592	    :: "r"(batu), "r"(batl));
593#endif
594
595	/*
596	 * Set the start and end of kva.
597	 */
598	virtual_avail = VM_MIN_KERNEL_ADDRESS;
599	virtual_end = VM_MAX_KERNEL_ADDRESS;
600
601	mem_regions(&pregions, &pregions_sz, &regions, &regions_sz);
602	CTR0(KTR_PMAP, "pmap_bootstrap: physical memory");
603
604	qsort(pregions, pregions_sz, sizeof(*pregions), mr_cmp);
605	for (i = 0; i < pregions_sz; i++) {
606		vm_offset_t pa;
607		vm_offset_t end;
608
609		CTR3(KTR_PMAP, "physregion: %#x - %#x (%#x)",
610			pregions[i].mr_start,
611			pregions[i].mr_start + pregions[i].mr_size,
612			pregions[i].mr_size);
613		/*
614		 * Install entries into the BAT table to allow all
615		 * of physmem to be convered by on-demand BAT entries.
616		 * The loop will sometimes set the same battable element
617		 * twice, but that's fine since they won't be used for
618		 * a while yet.
619		 */
620		pa = pregions[i].mr_start & 0xf0000000;
621		end = pregions[i].mr_start + pregions[i].mr_size;
622		do {
623                        u_int n = pa >> ADDR_SR_SHFT;
624
625			battable[n].batl = BATL(pa, BAT_M, BAT_PP_RW);
626			battable[n].batu = BATU(pa, BAT_BL_256M, BAT_Vs);
627			pa += SEGMENT_LENGTH;
628		} while (pa < end);
629	}
630
631	if (sizeof(phys_avail)/sizeof(phys_avail[0]) < regions_sz)
632		panic("pmap_bootstrap: phys_avail too small");
633	qsort(regions, regions_sz, sizeof(*regions), mr_cmp);
634	phys_avail_count = 0;
635	physsz = 0;
636	for (i = 0, j = 0; i < regions_sz; i++, j += 2) {
637		CTR3(KTR_PMAP, "region: %#x - %#x (%#x)", regions[i].mr_start,
638		    regions[i].mr_start + regions[i].mr_size,
639		    regions[i].mr_size);
640		phys_avail[j] = regions[i].mr_start;
641		phys_avail[j + 1] = regions[i].mr_start + regions[i].mr_size;
642		phys_avail_count++;
643		physsz += regions[i].mr_size;
644	}
645	physmem = btoc(physsz);
646
647	/*
648	 * Allocate PTEG table.
649	 */
650#ifdef PTEGCOUNT
651	pmap_pteg_count = PTEGCOUNT;
652#else
653	pmap_pteg_count = 0x1000;
654
655	while (pmap_pteg_count < physmem)
656		pmap_pteg_count <<= 1;
657
658	pmap_pteg_count >>= 1;
659#endif /* PTEGCOUNT */
660
661	size = pmap_pteg_count * sizeof(struct pteg);
662	CTR2(KTR_PMAP, "pmap_bootstrap: %d PTEGs, %d bytes", pmap_pteg_count,
663	    size);
664	pmap_pteg_table = (struct pteg *)pmap_bootstrap_alloc(size, size);
665	CTR1(KTR_PMAP, "pmap_bootstrap: PTEG table at %p", pmap_pteg_table);
666	bzero((void *)pmap_pteg_table, pmap_pteg_count * sizeof(struct pteg));
667	pmap_pteg_mask = pmap_pteg_count - 1;
668
669	/*
670	 * Allocate pv/overflow lists.
671	 */
672	size = sizeof(struct pvo_head) * pmap_pteg_count;
673	pmap_pvo_table = (struct pvo_head *)pmap_bootstrap_alloc(size,
674	    PAGE_SIZE);
675	CTR1(KTR_PMAP, "pmap_bootstrap: PVO table at %p", pmap_pvo_table);
676	for (i = 0; i < pmap_pteg_count; i++)
677		LIST_INIT(&pmap_pvo_table[i]);
678
679	/*
680	 * Allocate the message buffer.
681	 */
682	msgbuf_phys = pmap_bootstrap_alloc(MSGBUF_SIZE, 0);
683
684	/*
685	 * Initialise the unmanaged pvo pool.
686	 */
687	pmap_bpvo_pool = (struct pvo_entry *)pmap_bootstrap_alloc(
688		BPVO_POOL_SIZE*sizeof(struct pvo_entry), 0);
689	pmap_bpvo_pool_index = 0;
690
691	/*
692	 * Make sure kernel vsid is allocated as well as VSID 0.
693	 */
694	pmap_vsid_bitmap[(KERNEL_VSIDBITS & (NPMAPS - 1)) / VSID_NBPW]
695		|= 1 << (KERNEL_VSIDBITS % VSID_NBPW);
696	pmap_vsid_bitmap[0] |= 1;
697
698	/*
699	 * Set up the OpenFirmware pmap and add it's mappings.
700	 */
701	pmap_pinit(&ofw_pmap);
702	ofw_pmap.pm_sr[KERNEL_SR] = KERNEL_SEGMENT;
703	if ((chosen = OF_finddevice("/chosen")) == -1)
704		panic("pmap_bootstrap: can't find /chosen");
705	OF_getprop(chosen, "mmu", &mmui, 4);
706	if ((mmu = OF_instance_to_package(mmui)) == -1)
707		panic("pmap_bootstrap: can't get mmu package");
708	if ((sz = OF_getproplen(mmu, "translations")) == -1)
709		panic("pmap_bootstrap: can't get ofw translation count");
710	translations = NULL;
711	for (i = 0; phys_avail[i + 2] != 0; i += 2) {
712		if (phys_avail[i + 1] >= sz)
713			translations = (struct ofw_map *)phys_avail[i];
714	}
715	if (translations == NULL)
716		panic("pmap_bootstrap: no space to copy translations");
717	bzero(translations, sz);
718	if (OF_getprop(mmu, "translations", translations, sz) == -1)
719		panic("pmap_bootstrap: can't get ofw translations");
720	CTR0(KTR_PMAP, "pmap_bootstrap: translations");
721	sz /= sizeof(*translations);
722	qsort(translations, sz, sizeof (*translations), om_cmp);
723	for (i = 0, ofw_mappings = 0; i < sz; i++) {
724		CTR3(KTR_PMAP, "translation: pa=%#x va=%#x len=%#x",
725		    translations[i].om_pa, translations[i].om_va,
726		    translations[i].om_len);
727
728		/*
729		 * If the mapping is 1:1, let the RAM and device on-demand
730		 * BAT tables take care of the translation.
731		 */
732		if (translations[i].om_va == translations[i].om_pa)
733			continue;
734
735		/* Enter the pages */
736		for (off = 0; off < translations[i].om_len; off += PAGE_SIZE) {
737			struct	vm_page m;
738
739			m.phys_addr = translations[i].om_pa + off;
740			pmap_enter(&ofw_pmap, translations[i].om_va + off, &m,
741				   VM_PROT_ALL, 1);
742			ofw_mappings++;
743		}
744	}
745#ifdef SMP
746	TLBSYNC();
747#endif
748
749	/*
750	 * Initialize the kernel pmap (which is statically allocated).
751	 */
752	for (i = 0; i < 16; i++) {
753		kernel_pmap->pm_sr[i] = EMPTY_SEGMENT;
754	}
755	kernel_pmap->pm_sr[KERNEL_SR] = KERNEL_SEGMENT;
756	kernel_pmap->pm_active = ~0;
757
758	/*
759	 * Allocate a kernel stack with a guard page for thread0 and map it
760	 * into the kernel page map.
761	 */
762	pa = pmap_bootstrap_alloc(KSTACK_PAGES * PAGE_SIZE, 0);
763	kstack0_phys = pa;
764	kstack0 = virtual_avail + (KSTACK_GUARD_PAGES * PAGE_SIZE);
765	CTR2(KTR_PMAP, "pmap_bootstrap: kstack0 at %#x (%#x)", kstack0_phys,
766	    kstack0);
767	virtual_avail += (KSTACK_PAGES + KSTACK_GUARD_PAGES) * PAGE_SIZE;
768	for (i = 0; i < KSTACK_PAGES; i++) {
769		pa = kstack0_phys + i * PAGE_SIZE;
770		va = kstack0 + i * PAGE_SIZE;
771		pmap_kenter(va, pa);
772		TLBIE(va);
773	}
774
775	/*
776	 * Calculate the first and last available physical addresses.
777	 */
778	avail_start = phys_avail[0];
779	for (i = 0; phys_avail[i + 2] != 0; i += 2)
780		;
781	avail_end = phys_avail[i + 1];
782	Maxmem = powerpc_btop(avail_end);
783
784	/*
785	 * Allocate virtual address space for the message buffer.
786	 */
787	msgbufp = (struct msgbuf *)virtual_avail;
788	virtual_avail += round_page(MSGBUF_SIZE);
789
790	/*
791	 * Initialize hardware.
792	 */
793	for (i = 0; i < 16; i++) {
794		mtsrin(i << ADDR_SR_SHFT, EMPTY_SEGMENT);
795	}
796	__asm __volatile ("mtsr %0,%1"
797	    :: "n"(KERNEL_SR), "r"(KERNEL_SEGMENT));
798	__asm __volatile ("sync; mtsdr1 %0; isync"
799	    :: "r"((u_int)pmap_pteg_table | (pmap_pteg_mask >> 10)));
800	tlbia();
801
802	pmap_bootstrapped++;
803}
804
805/*
806 * Activate a user pmap.  The pmap must be activated before it's address
807 * space can be accessed in any way.
808 */
809void
810pmap_activate(struct thread *td)
811{
812	pmap_t	pm, pmr;
813
814	/*
815	 * Load all the data we need up front to encourage the compiler to
816	 * not issue any loads while we have interrupts disabled below.
817	 */
818	pm = &td->td_proc->p_vmspace->vm_pmap;
819
820	if ((pmr = (pmap_t)pmap_kextract((vm_offset_t)pm)) == NULL)
821		pmr = pm;
822
823	pm->pm_active |= PCPU_GET(cpumask);
824	PCPU_SET(curpmap, pmr);
825}
826
827void
828pmap_deactivate(struct thread *td)
829{
830	pmap_t	pm;
831
832	pm = &td->td_proc->p_vmspace->vm_pmap;
833	pm->pm_active &= ~(PCPU_GET(cpumask));
834	PCPU_SET(curpmap, NULL);
835}
836
837vm_offset_t
838pmap_addr_hint(vm_object_t object, vm_offset_t va, vm_size_t size)
839{
840
841	return (va);
842}
843
844void
845pmap_change_wiring(pmap_t pm, vm_offset_t va, boolean_t wired)
846{
847	struct	pvo_entry *pvo;
848
849	pvo = pmap_pvo_find_va(pm, va & ~ADDR_POFF, NULL);
850
851	if (pvo != NULL) {
852		if (wired) {
853			if ((pvo->pvo_vaddr & PVO_WIRED) == 0)
854				pm->pm_stats.wired_count++;
855			pvo->pvo_vaddr |= PVO_WIRED;
856		} else {
857			if ((pvo->pvo_vaddr & PVO_WIRED) != 0)
858				pm->pm_stats.wired_count--;
859			pvo->pvo_vaddr &= ~PVO_WIRED;
860		}
861	}
862}
863
864void
865pmap_clear_modify(vm_page_t m)
866{
867
868	if (m->flags * PG_FICTITIOUS)
869		return;
870	pmap_clear_bit(m, PTE_CHG);
871}
872
873void
874pmap_collect(void)
875{
876	TODO;
877}
878
879void
880pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr,
881	  vm_size_t len, vm_offset_t src_addr)
882{
883
884	/*
885	 * This is not needed as it's mainly an optimisation.
886	 * It may want to be implemented later though.
887	 */
888}
889
890void
891pmap_copy_page(vm_page_t msrc, vm_page_t mdst)
892{
893	vm_offset_t	dst;
894	vm_offset_t	src;
895
896	dst = VM_PAGE_TO_PHYS(mdst);
897	src = VM_PAGE_TO_PHYS(msrc);
898
899	kcopy((void *)src, (void *)dst, PAGE_SIZE);
900}
901
902/*
903 * Zero a page of physical memory by temporarily mapping it into the tlb.
904 */
905void
906pmap_zero_page(vm_page_t m)
907{
908	vm_offset_t pa = VM_PAGE_TO_PHYS(m);
909	caddr_t	va;
910	int	i;
911
912	if (pa < SEGMENT_LENGTH) {
913		va = (caddr_t) pa;
914	} else if (pmap_initialized) {
915		if (pmap_pvo_zeropage == NULL)
916			pmap_pvo_zeropage = pmap_rkva_alloc();
917		pmap_pa_map(pmap_pvo_zeropage, pa, NULL, NULL);
918		va = (caddr_t)PVO_VADDR(pmap_pvo_zeropage);
919	} else {
920		panic("pmap_zero_page: can't zero pa %#x", pa);
921	}
922
923	bzero(va, PAGE_SIZE);
924
925#if 0
926	for (i = PAGE_SIZE / CACHELINESIZE; i > 0; i--) {
927		__asm __volatile("dcbz 0,%0" :: "r"(va));
928		va += CACHELINESIZE;
929	}
930#endif
931
932	if (pa >= SEGMENT_LENGTH)
933		pmap_pa_unmap(pmap_pvo_zeropage, NULL, NULL);
934}
935
936void
937pmap_zero_page_area(vm_page_t m, int off, int size)
938{
939	vm_offset_t pa = VM_PAGE_TO_PHYS(m);
940	caddr_t va;
941	int     i;
942
943	if (pa < SEGMENT_LENGTH) {
944		va = (caddr_t) pa;
945	} else if (pmap_initialized) {
946		if (pmap_pvo_zeropage == NULL)
947			pmap_pvo_zeropage = pmap_rkva_alloc();
948		pmap_pa_map(pmap_pvo_zeropage, pa, NULL, NULL);
949		va = (caddr_t)PVO_VADDR(pmap_pvo_zeropage);
950	} else {
951		panic("pmap_zero_page: can't zero pa %#x", pa);
952	}
953
954	bzero(va + off, size);
955
956#if 0
957	for (i = size / CACHELINESIZE; i > 0; i--) {
958		__asm __volatile("dcbz 0,%0" :: "r"(va));
959		va += CACHELINESIZE;
960	}
961#endif
962
963	if (pa >= SEGMENT_LENGTH)
964		pmap_pa_unmap(pmap_pvo_zeropage, NULL, NULL);
965}
966
967void
968pmap_zero_page_idle(vm_page_t m)
969{
970
971	/* XXX this is called outside of Giant, is pmap_zero_page safe? */
972	/* XXX maybe have a dedicated mapping for this to avoid the problem? */
973	mtx_lock(&Giant);
974	pmap_zero_page(m);
975	mtx_unlock(&Giant);
976}
977
978/*
979 * Map the given physical page at the specified virtual address in the
980 * target pmap with the protection requested.  If specified the page
981 * will be wired down.
982 */
983void
984pmap_enter(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
985	   boolean_t wired)
986{
987	struct		pvo_head *pvo_head;
988	uma_zone_t	zone;
989	vm_page_t	pg;
990	u_int		pte_lo, pvo_flags, was_exec, i;
991	int		error;
992
993	if (!pmap_initialized) {
994		pvo_head = &pmap_pvo_kunmanaged;
995		zone = pmap_upvo_zone;
996		pvo_flags = 0;
997		pg = NULL;
998		was_exec = PTE_EXEC;
999	} else {
1000		pvo_head = pa_to_pvoh(VM_PAGE_TO_PHYS(m), &pg);
1001		zone = pmap_mpvo_zone;
1002		pvo_flags = PVO_MANAGED;
1003		was_exec = 0;
1004	}
1005
1006	/*
1007	 * If this is a managed page, and it's the first reference to the page,
1008	 * clear the execness of the page.  Otherwise fetch the execness.
1009	 */
1010	if (pg != NULL) {
1011		if (LIST_EMPTY(pvo_head)) {
1012			pmap_attr_clear(pg, PTE_EXEC);
1013		} else {
1014			was_exec = pmap_attr_fetch(pg) & PTE_EXEC;
1015		}
1016	}
1017
1018
1019	/*
1020	 * Assume the page is cache inhibited and access is guarded unless
1021	 * it's in our available memory array.
1022	 */
1023	pte_lo = PTE_I | PTE_G;
1024	for (i = 0; i < pregions_sz; i++) {
1025		if ((VM_PAGE_TO_PHYS(m) >= pregions[i].mr_start) &&
1026		    (VM_PAGE_TO_PHYS(m) <
1027			(pregions[i].mr_start + pregions[i].mr_size))) {
1028			pte_lo &= ~(PTE_I | PTE_G);
1029			break;
1030		}
1031	}
1032
1033	if (prot & VM_PROT_WRITE)
1034		pte_lo |= PTE_BW;
1035	else
1036		pte_lo |= PTE_BR;
1037
1038	pvo_flags |= (prot & VM_PROT_EXECUTE);
1039
1040	if (wired)
1041		pvo_flags |= PVO_WIRED;
1042
1043	error = pmap_pvo_enter(pmap, zone, pvo_head, va, VM_PAGE_TO_PHYS(m),
1044	    pte_lo, pvo_flags);
1045
1046	/*
1047	 * Flush the real page from the instruction cache if this page is
1048	 * mapped executable and cacheable and was not previously mapped (or
1049	 * was not mapped executable).
1050	 */
1051	if (error == 0 && (pvo_flags & PVO_EXECUTABLE) &&
1052	    (pte_lo & PTE_I) == 0 && was_exec == 0) {
1053		/*
1054		 * Flush the real memory from the cache.
1055		 */
1056		pmap_syncicache(VM_PAGE_TO_PHYS(m), PAGE_SIZE);
1057		if (pg != NULL)
1058			pmap_attr_save(pg, PTE_EXEC);
1059	}
1060
1061	/* XXX syncicache always until problems are sorted */
1062	pmap_syncicache(VM_PAGE_TO_PHYS(m), PAGE_SIZE);
1063}
1064
1065vm_offset_t
1066pmap_extract(pmap_t pm, vm_offset_t va)
1067{
1068	struct	pvo_entry *pvo;
1069
1070	pvo = pmap_pvo_find_va(pm, va & ~ADDR_POFF, NULL);
1071
1072	if (pvo != NULL) {
1073		return ((pvo->pvo_pte.pte_lo & PTE_RPGN) | (va & ADDR_POFF));
1074	}
1075
1076	return (0);
1077}
1078
1079/*
1080 * Grow the number of kernel page table entries.  Unneeded.
1081 */
1082void
1083pmap_growkernel(vm_offset_t addr)
1084{
1085}
1086
1087void
1088pmap_init(vm_offset_t phys_start, vm_offset_t phys_end)
1089{
1090
1091	CTR0(KTR_PMAP, "pmap_init");
1092
1093	pmap_pvo_obj = vm_object_allocate(OBJT_PHYS, 16);
1094	pmap_pvo_count = 0;
1095	pmap_upvo_zone = uma_zcreate("UPVO entry", sizeof (struct pvo_entry),
1096	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_VM);
1097	uma_zone_set_allocf(pmap_upvo_zone, pmap_pvo_allocf);
1098	pmap_mpvo_zone = uma_zcreate("MPVO entry", sizeof(struct pvo_entry),
1099	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_VM);
1100	uma_zone_set_allocf(pmap_mpvo_zone, pmap_pvo_allocf);
1101	pmap_initialized = TRUE;
1102}
1103
1104void
1105pmap_init2(void)
1106{
1107
1108	CTR0(KTR_PMAP, "pmap_init2");
1109}
1110
1111boolean_t
1112pmap_is_modified(vm_page_t m)
1113{
1114
1115	if (m->flags & PG_FICTITIOUS)
1116		return (FALSE);
1117
1118	return (pmap_query_bit(m, PTE_CHG));
1119}
1120
1121void
1122pmap_clear_reference(vm_page_t m)
1123{
1124	TODO;
1125}
1126
1127/*
1128 *	pmap_ts_referenced:
1129 *
1130 *	Return a count of reference bits for a page, clearing those bits.
1131 *	It is not necessary for every reference bit to be cleared, but it
1132 *	is necessary that 0 only be returned when there are truly no
1133 *	reference bits set.
1134 *
1135 *	XXX: The exact number of bits to check and clear is a matter that
1136 *	should be tested and standardized at some point in the future for
1137 *	optimal aging of shared pages.
1138 */
1139
1140int
1141pmap_ts_referenced(vm_page_t m)
1142{
1143	TODO;
1144	return (0);
1145}
1146
1147/*
1148 * Map a wired page into kernel virtual address space.
1149 */
1150void
1151pmap_kenter(vm_offset_t va, vm_offset_t pa)
1152{
1153	u_int		pte_lo;
1154	int		error;
1155	int		i;
1156
1157#if 0
1158	if (va < VM_MIN_KERNEL_ADDRESS)
1159		panic("pmap_kenter: attempt to enter non-kernel address %#x",
1160		    va);
1161#endif
1162
1163	pte_lo = PTE_I | PTE_G;
1164	for (i = 0; i < pregions_sz; i++) {
1165		if ((pa >= pregions[i].mr_start) &&
1166		    (pa < (pregions[i].mr_start + pregions[i].mr_size))) {
1167			pte_lo &= ~(PTE_I | PTE_G);
1168			break;
1169		}
1170	}
1171
1172	error = pmap_pvo_enter(kernel_pmap, pmap_upvo_zone,
1173	    &pmap_pvo_kunmanaged, va, pa, pte_lo, PVO_WIRED);
1174
1175	if (error != 0 && error != ENOENT)
1176		panic("pmap_kenter: failed to enter va %#x pa %#x: %d", va,
1177		    pa, error);
1178
1179	/*
1180	 * Flush the real memory from the instruction cache.
1181	 */
1182	if ((pte_lo & (PTE_I | PTE_G)) == 0) {
1183		pmap_syncicache(pa, PAGE_SIZE);
1184	}
1185}
1186
1187/*
1188 * Extract the physical page address associated with the given kernel virtual
1189 * address.
1190 */
1191vm_offset_t
1192pmap_kextract(vm_offset_t va)
1193{
1194	struct		pvo_entry *pvo;
1195
1196	pvo = pmap_pvo_find_va(kernel_pmap, va & ~ADDR_POFF, NULL);
1197	if (pvo == NULL) {
1198		return (0);
1199	}
1200
1201	return ((pvo->pvo_pte.pte_lo & PTE_RPGN) | (va & ADDR_POFF));
1202}
1203
1204/*
1205 * Remove a wired page from kernel virtual address space.
1206 */
1207void
1208pmap_kremove(vm_offset_t va)
1209{
1210
1211	pmap_remove(kernel_pmap, va, va + PAGE_SIZE);
1212}
1213
1214/*
1215 * Map a range of physical addresses into kernel virtual address space.
1216 *
1217 * The value passed in *virt is a suggested virtual address for the mapping.
1218 * Architectures which can support a direct-mapped physical to virtual region
1219 * can return the appropriate address within that region, leaving '*virt'
1220 * unchanged.  We cannot and therefore do not; *virt is updated with the
1221 * first usable address after the mapped region.
1222 */
1223vm_offset_t
1224pmap_map(vm_offset_t *virt, vm_offset_t pa_start, vm_offset_t pa_end, int prot)
1225{
1226	vm_offset_t	sva, va;
1227
1228	sva = *virt;
1229	va = sva;
1230	for (; pa_start < pa_end; pa_start += PAGE_SIZE, va += PAGE_SIZE)
1231		pmap_kenter(va, pa_start);
1232	*virt = va;
1233	return (sva);
1234}
1235
1236int
1237pmap_mincore(pmap_t pmap, vm_offset_t addr)
1238{
1239	TODO;
1240	return (0);
1241}
1242
1243void
1244pmap_object_init_pt(pmap_t pm, vm_offset_t addr, vm_object_t object,
1245		    vm_pindex_t pindex, vm_size_t size, int limit)
1246{
1247
1248	KASSERT(pm == &curproc->p_vmspace->vm_pmap || pm == kernel_pmap,
1249	    ("pmap_remove_pages: non current pmap"));
1250	/* XXX */
1251}
1252
1253/*
1254 * Lower the permission for all mappings to a given page.
1255 */
1256void
1257pmap_page_protect(vm_page_t m, vm_prot_t prot)
1258{
1259	struct	pvo_head *pvo_head;
1260	struct	pvo_entry *pvo, *next_pvo;
1261	struct	pte *pt;
1262
1263	/*
1264	 * Since the routine only downgrades protection, if the
1265	 * maximal protection is desired, there isn't any change
1266	 * to be made.
1267	 */
1268	if ((prot & (VM_PROT_READ|VM_PROT_WRITE)) ==
1269	    (VM_PROT_READ|VM_PROT_WRITE))
1270		return;
1271
1272	pvo_head = vm_page_to_pvoh(m);
1273	for (pvo = LIST_FIRST(pvo_head); pvo != NULL; pvo = next_pvo) {
1274		next_pvo = LIST_NEXT(pvo, pvo_vlink);
1275		PMAP_PVO_CHECK(pvo);	/* sanity check */
1276
1277		/*
1278		 * Downgrading to no mapping at all, we just remove the entry.
1279		 */
1280		if ((prot & VM_PROT_READ) == 0) {
1281			pmap_pvo_remove(pvo, -1);
1282			continue;
1283		}
1284
1285		/*
1286		 * If EXEC permission is being revoked, just clear the flag
1287		 * in the PVO.
1288		 */
1289		if ((prot & VM_PROT_EXECUTE) == 0)
1290			pvo->pvo_vaddr &= ~PVO_EXECUTABLE;
1291
1292		/*
1293		 * If this entry is already RO, don't diddle with the page
1294		 * table.
1295		 */
1296		if ((pvo->pvo_pte.pte_lo & PTE_PP) == PTE_BR) {
1297			PMAP_PVO_CHECK(pvo);
1298			continue;
1299		}
1300
1301		/*
1302		 * Grab the PTE before we diddle the bits so pvo_to_pte can
1303		 * verify the pte contents are as expected.
1304		 */
1305		pt = pmap_pvo_to_pte(pvo, -1);
1306		pvo->pvo_pte.pte_lo &= ~PTE_PP;
1307		pvo->pvo_pte.pte_lo |= PTE_BR;
1308		if (pt != NULL)
1309			pmap_pte_change(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
1310		PMAP_PVO_CHECK(pvo);	/* sanity check */
1311	}
1312}
1313
1314/*
1315 * Returns true if the pmap's pv is one of the first
1316 * 16 pvs linked to from this page.  This count may
1317 * be changed upwards or downwards in the future; it
1318 * is only necessary that true be returned for a small
1319 * subset of pmaps for proper page aging.
1320 */
1321boolean_t
1322pmap_page_exists_quick(pmap_t pmap, vm_page_t m)
1323{
1324	TODO;
1325	return (0);
1326}
1327
1328static u_int	pmap_vsidcontext;
1329
1330void
1331pmap_pinit(pmap_t pmap)
1332{
1333	int	i, mask;
1334	u_int	entropy;
1335
1336	entropy = 0;
1337	__asm __volatile("mftb %0" : "=r"(entropy));
1338
1339	/*
1340	 * Allocate some segment registers for this pmap.
1341	 */
1342	for (i = 0; i < NPMAPS; i += VSID_NBPW) {
1343		u_int	hash, n;
1344
1345		/*
1346		 * Create a new value by mutiplying by a prime and adding in
1347		 * entropy from the timebase register.  This is to make the
1348		 * VSID more random so that the PT hash function collides
1349		 * less often.  (Note that the prime casues gcc to do shifts
1350		 * instead of a multiply.)
1351		 */
1352		pmap_vsidcontext = (pmap_vsidcontext * 0x1105) + entropy;
1353		hash = pmap_vsidcontext & (NPMAPS - 1);
1354		if (hash == 0)		/* 0 is special, avoid it */
1355			continue;
1356		n = hash >> 5;
1357		mask = 1 << (hash & (VSID_NBPW - 1));
1358		hash = (pmap_vsidcontext & 0xfffff);
1359		if (pmap_vsid_bitmap[n] & mask) {	/* collision? */
1360			/* anything free in this bucket? */
1361			if (pmap_vsid_bitmap[n] == 0xffffffff) {
1362				entropy = (pmap_vsidcontext >> 20);
1363				continue;
1364			}
1365			i = ffs(~pmap_vsid_bitmap[i]) - 1;
1366			mask = 1 << i;
1367			hash &= 0xfffff & ~(VSID_NBPW - 1);
1368			hash |= i;
1369		}
1370		pmap_vsid_bitmap[n] |= mask;
1371		for (i = 0; i < 16; i++)
1372			pmap->pm_sr[i] = VSID_MAKE(i, hash);
1373		return;
1374	}
1375
1376	panic("pmap_pinit: out of segments");
1377}
1378
1379/*
1380 * Initialize the pmap associated with process 0.
1381 */
1382void
1383pmap_pinit0(pmap_t pm)
1384{
1385
1386	pmap_pinit(pm);
1387	bzero(&pm->pm_stats, sizeof(pm->pm_stats));
1388}
1389
1390void
1391pmap_pinit2(pmap_t pmap)
1392{
1393	/* XXX: Remove this stub when no longer called */
1394}
1395
1396void
1397pmap_prefault(pmap_t pm, vm_offset_t va, vm_map_entry_t entry)
1398{
1399	KASSERT(pm == &curproc->p_vmspace->vm_pmap || pm == kernel_pmap,
1400	    ("pmap_prefault: non current pmap"));
1401	/* XXX */
1402}
1403
1404/*
1405 * Set the physical protection on the specified range of this map as requested.
1406 */
1407void
1408pmap_protect(pmap_t pm, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot)
1409{
1410	struct	pvo_entry *pvo;
1411	struct	pte *pt;
1412	int	pteidx;
1413
1414	CTR4(KTR_PMAP, "pmap_protect: pm=%p sva=%#x eva=%#x prot=%#x", pm, sva,
1415	    eva, prot);
1416
1417
1418	KASSERT(pm == &curproc->p_vmspace->vm_pmap || pm == kernel_pmap,
1419	    ("pmap_protect: non current pmap"));
1420
1421	if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
1422		pmap_remove(pm, sva, eva);
1423		return;
1424	}
1425
1426	for (; sva < eva; sva += PAGE_SIZE) {
1427		pvo = pmap_pvo_find_va(pm, sva, &pteidx);
1428		if (pvo == NULL)
1429			continue;
1430
1431		if ((prot & VM_PROT_EXECUTE) == 0)
1432			pvo->pvo_vaddr &= ~PVO_EXECUTABLE;
1433
1434		/*
1435		 * Grab the PTE pointer before we diddle with the cached PTE
1436		 * copy.
1437		 */
1438		pt = pmap_pvo_to_pte(pvo, pteidx);
1439		/*
1440		 * Change the protection of the page.
1441		 */
1442		pvo->pvo_pte.pte_lo &= ~PTE_PP;
1443		pvo->pvo_pte.pte_lo |= PTE_BR;
1444
1445		/*
1446		 * If the PVO is in the page table, update that pte as well.
1447		 */
1448		if (pt != NULL)
1449			pmap_pte_change(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
1450	}
1451}
1452
1453vm_offset_t
1454pmap_phys_address(int ppn)
1455{
1456	TODO;
1457	return (0);
1458}
1459
1460/*
1461 * Map a list of wired pages into kernel virtual address space.  This is
1462 * intended for temporary mappings which do not need page modification or
1463 * references recorded.  Existing mappings in the region are overwritten.
1464 */
1465void
1466pmap_qenter(vm_offset_t va, vm_page_t *m, int count)
1467{
1468	int	i;
1469
1470	for (i = 0; i < count; i++, va += PAGE_SIZE)
1471		pmap_kenter(va, VM_PAGE_TO_PHYS(m[i]));
1472}
1473
1474/*
1475 * Remove page mappings from kernel virtual address space.  Intended for
1476 * temporary mappings entered by pmap_qenter.
1477 */
1478void
1479pmap_qremove(vm_offset_t va, int count)
1480{
1481	int	i;
1482
1483	for (i = 0; i < count; i++, va += PAGE_SIZE)
1484		pmap_kremove(va);
1485}
1486
1487void
1488pmap_release(pmap_t pmap)
1489{
1490        int idx, mask;
1491
1492	/*
1493	 * Free segment register's VSID
1494	 */
1495        if (pmap->pm_sr[0] == 0)
1496                panic("pmap_release");
1497
1498        idx = VSID_TO_HASH(pmap->pm_sr[0]) & (NPMAPS-1);
1499        mask = 1 << (idx % VSID_NBPW);
1500        idx /= VSID_NBPW;
1501        pmap_vsid_bitmap[idx] &= ~mask;
1502}
1503
1504/*
1505 * Remove the given range of addresses from the specified map.
1506 */
1507void
1508pmap_remove(pmap_t pm, vm_offset_t sva, vm_offset_t eva)
1509{
1510	struct	pvo_entry *pvo;
1511	int	pteidx;
1512
1513	for (; sva < eva; sva += PAGE_SIZE) {
1514		pvo = pmap_pvo_find_va(pm, sva, &pteidx);
1515		if (pvo != NULL) {
1516			pmap_pvo_remove(pvo, pteidx);
1517		}
1518	}
1519}
1520
1521/*
1522 * Remove all pages from specified address space, this aids process exit
1523 * speeds.  This is much faster than pmap_remove in the case of running down
1524 * an entire address space.  Only works for the current pmap.
1525 */
1526void
1527pmap_remove_pages(pmap_t pm, vm_offset_t sva, vm_offset_t eva)
1528{
1529
1530	KASSERT(pm == &curproc->p_vmspace->vm_pmap || pm == kernel_pmap,
1531	    ("pmap_remove_pages: non current pmap"));
1532	pmap_remove(pm, sva, eva);
1533}
1534
1535/*
1536 * Create the kernel stack and pcb for a new thread.
1537 * This routine directly affects the fork perf for a process and
1538 * create performance for a thread.
1539 */
1540void
1541pmap_new_thread(struct thread *td)
1542{
1543	vm_object_t	ksobj;
1544	vm_offset_t	ks;
1545	vm_page_t	m;
1546	u_int		i;
1547
1548	/*
1549	 * Allocate object for the kstack.
1550	 */
1551	ksobj = vm_object_allocate(OBJT_DEFAULT, KSTACK_PAGES);
1552	td->td_kstack_obj = ksobj;
1553
1554	/*
1555	 * Get a kernel virtual address for the kstack for this thread.
1556	 */
1557	ks = kmem_alloc_nofault(kernel_map,
1558	    (KSTACK_PAGES + KSTACK_GUARD_PAGES) * PAGE_SIZE);
1559	if (ks == 0)
1560		panic("pmap_new_thread: kstack allocation failed");
1561	TLBIE(ks);
1562	ks += KSTACK_GUARD_PAGES * PAGE_SIZE;
1563	td->td_kstack = ks;
1564
1565	for (i = 0; i < KSTACK_PAGES; i++) {
1566		/*
1567		 * Get a kernel stack page.
1568		 */
1569		m = vm_page_grab(ksobj, i,
1570		    VM_ALLOC_NORMAL | VM_ALLOC_RETRY | VM_ALLOC_WIRED);
1571
1572		/*
1573		 * Enter the page into the kernel address space.
1574		 */
1575		pmap_kenter(ks + i * PAGE_SIZE, VM_PAGE_TO_PHYS(m));
1576
1577		vm_page_wakeup(m);
1578		vm_page_flag_clear(m, PG_ZERO);
1579		m->valid = VM_PAGE_BITS_ALL;
1580	}
1581}
1582
1583void
1584pmap_dispose_thread(struct thread *td)
1585{
1586	TODO;
1587}
1588
1589void
1590pmap_swapin_thread(struct thread *td)
1591{
1592	TODO;
1593}
1594
1595void
1596pmap_swapout_thread(struct thread *td)
1597{
1598	TODO;
1599}
1600
1601/*
1602 * Allocate a physical page of memory directly from the phys_avail map.
1603 * Can only be called from pmap_bootstrap before avail start and end are
1604 * calculated.
1605 */
1606static vm_offset_t
1607pmap_bootstrap_alloc(vm_size_t size, u_int align)
1608{
1609	vm_offset_t	s, e;
1610	int		i, j;
1611
1612	size = round_page(size);
1613	for (i = 0; phys_avail[i + 1] != 0; i += 2) {
1614		if (align != 0)
1615			s = (phys_avail[i] + align - 1) & ~(align - 1);
1616		else
1617			s = phys_avail[i];
1618		e = s + size;
1619
1620		if (s < phys_avail[i] || e > phys_avail[i + 1])
1621			continue;
1622
1623		if (s == phys_avail[i]) {
1624			phys_avail[i] += size;
1625		} else if (e == phys_avail[i + 1]) {
1626			phys_avail[i + 1] -= size;
1627		} else {
1628			for (j = phys_avail_count * 2; j > i; j -= 2) {
1629				phys_avail[j] = phys_avail[j - 2];
1630				phys_avail[j + 1] = phys_avail[j - 1];
1631			}
1632
1633			phys_avail[i + 3] = phys_avail[i + 1];
1634			phys_avail[i + 1] = s;
1635			phys_avail[i + 2] = e;
1636			phys_avail_count++;
1637		}
1638
1639		return (s);
1640	}
1641	panic("pmap_bootstrap_alloc: could not allocate memory");
1642}
1643
1644/*
1645 * Return an unmapped pvo for a kernel virtual address.
1646 * Used by pmap functions that operate on physical pages.
1647 */
1648static struct pvo_entry *
1649pmap_rkva_alloc(void)
1650{
1651	struct		pvo_entry *pvo;
1652	struct		pte *pt;
1653	vm_offset_t	kva;
1654	int		pteidx;
1655
1656	if (pmap_rkva_count == 0)
1657		panic("pmap_rkva_alloc: no more reserved KVAs");
1658
1659	kva = pmap_rkva_start + (PAGE_SIZE * --pmap_rkva_count);
1660	pmap_kenter(kva, 0);
1661
1662	pvo = pmap_pvo_find_va(kernel_pmap, kva, &pteidx);
1663
1664	if (pvo == NULL)
1665		panic("pmap_kva_alloc: pmap_pvo_find_va failed");
1666
1667	pt = pmap_pvo_to_pte(pvo, pteidx);
1668
1669	if (pt == NULL)
1670		panic("pmap_kva_alloc: pmap_pvo_to_pte failed");
1671
1672	pmap_pte_unset(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
1673	PVO_PTEGIDX_CLR(pvo);
1674
1675	pmap_pte_overflow++;
1676
1677	return (pvo);
1678}
1679
1680static void
1681pmap_pa_map(struct pvo_entry *pvo, vm_offset_t pa, struct pte *saved_pt,
1682    int *depth_p)
1683{
1684	struct	pte *pt;
1685
1686	/*
1687	 * If this pvo already has a valid pte, we need to save it so it can
1688	 * be restored later.  We then just reload the new PTE over the old
1689	 * slot.
1690	 */
1691	if (saved_pt != NULL) {
1692		pt = pmap_pvo_to_pte(pvo, -1);
1693
1694		if (pt != NULL) {
1695			pmap_pte_unset(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
1696			PVO_PTEGIDX_CLR(pvo);
1697			pmap_pte_overflow++;
1698		}
1699
1700		*saved_pt = pvo->pvo_pte;
1701
1702		pvo->pvo_pte.pte_lo &= ~PTE_RPGN;
1703	}
1704
1705	pvo->pvo_pte.pte_lo |= pa;
1706
1707	if (!pmap_pte_spill(pvo->pvo_vaddr))
1708		panic("pmap_pa_map: could not spill pvo %p", pvo);
1709
1710	if (depth_p != NULL)
1711		(*depth_p)++;
1712}
1713
1714static void
1715pmap_pa_unmap(struct pvo_entry *pvo, struct pte *saved_pt, int *depth_p)
1716{
1717	struct	pte *pt;
1718
1719	pt = pmap_pvo_to_pte(pvo, -1);
1720
1721	if (pt != NULL) {
1722		pmap_pte_unset(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
1723		PVO_PTEGIDX_CLR(pvo);
1724		pmap_pte_overflow++;
1725	}
1726
1727	pvo->pvo_pte.pte_lo &= ~PTE_RPGN;
1728
1729	/*
1730	 * If there is a saved PTE and it's valid, restore it and return.
1731	 */
1732	if (saved_pt != NULL && (saved_pt->pte_lo & PTE_RPGN) != 0) {
1733		if (depth_p != NULL && --(*depth_p) == 0)
1734			panic("pmap_pa_unmap: restoring but depth == 0");
1735
1736		pvo->pvo_pte = *saved_pt;
1737
1738		if (!pmap_pte_spill(pvo->pvo_vaddr))
1739			panic("pmap_pa_unmap: could not spill pvo %p", pvo);
1740	}
1741}
1742
1743static void
1744pmap_syncicache(vm_offset_t pa, vm_size_t len)
1745{
1746	__syncicache((void *)pa, len);
1747}
1748
1749static void
1750tlbia(void)
1751{
1752	caddr_t	i;
1753
1754	SYNC();
1755	for (i = 0; i < (caddr_t)0x00040000; i += 0x00001000) {
1756		TLBIE(i);
1757		EIEIO();
1758	}
1759	TLBSYNC();
1760	SYNC();
1761}
1762
1763static int
1764pmap_pvo_enter(pmap_t pm, uma_zone_t zone, struct pvo_head *pvo_head,
1765    vm_offset_t va, vm_offset_t pa, u_int pte_lo, int flags)
1766{
1767	struct	pvo_entry *pvo;
1768	u_int	sr;
1769	int	first;
1770	u_int	ptegidx;
1771	int	i;
1772	int     bootstrap;
1773
1774	pmap_pvo_enter_calls++;
1775	first = 0;
1776
1777	bootstrap = 0;
1778
1779	/*
1780	 * Compute the PTE Group index.
1781	 */
1782	va &= ~ADDR_POFF;
1783	sr = va_to_sr(pm->pm_sr, va);
1784	ptegidx = va_to_pteg(sr, va);
1785
1786	/*
1787	 * Remove any existing mapping for this page.  Reuse the pvo entry if
1788	 * there is a mapping.
1789	 */
1790	LIST_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
1791		if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) {
1792			if ((pvo->pvo_pte.pte_lo & PTE_RPGN) == pa &&
1793			    (pvo->pvo_pte.pte_lo & PTE_PP) ==
1794			    (pte_lo & PTE_PP)) {
1795				return (0);
1796			}
1797			pmap_pvo_remove(pvo, -1);
1798			break;
1799		}
1800	}
1801
1802	/*
1803	 * If we aren't overwriting a mapping, try to allocate.
1804	 */
1805	if (pmap_initialized) {
1806		pvo = uma_zalloc(zone, M_NOWAIT);
1807	} else {
1808		if (pmap_bpvo_pool_index >= BPVO_POOL_SIZE) {
1809			panic("pmap_enter: bpvo pool exhausted, %d, %d, %d",
1810			      pmap_bpvo_pool_index, BPVO_POOL_SIZE,
1811			      BPVO_POOL_SIZE * sizeof(struct pvo_entry));
1812		}
1813		pvo = &pmap_bpvo_pool[pmap_bpvo_pool_index];
1814		pmap_bpvo_pool_index++;
1815		bootstrap = 1;
1816	}
1817
1818	if (pvo == NULL) {
1819		return (ENOMEM);
1820	}
1821
1822	pmap_pvo_entries++;
1823	pvo->pvo_vaddr = va;
1824	pvo->pvo_pmap = pm;
1825	LIST_INSERT_HEAD(&pmap_pvo_table[ptegidx], pvo, pvo_olink);
1826	pvo->pvo_vaddr &= ~ADDR_POFF;
1827	if (flags & VM_PROT_EXECUTE)
1828		pvo->pvo_vaddr |= PVO_EXECUTABLE;
1829	if (flags & PVO_WIRED)
1830		pvo->pvo_vaddr |= PVO_WIRED;
1831	if (pvo_head != &pmap_pvo_kunmanaged)
1832		pvo->pvo_vaddr |= PVO_MANAGED;
1833	if (bootstrap)
1834		pvo->pvo_vaddr |= PVO_BOOTSTRAP;
1835	pmap_pte_create(&pvo->pvo_pte, sr, va, pa | pte_lo);
1836
1837	/*
1838	 * Remember if the list was empty and therefore will be the first
1839	 * item.
1840	 */
1841	if (LIST_FIRST(pvo_head) == NULL)
1842		first = 1;
1843
1844	LIST_INSERT_HEAD(pvo_head, pvo, pvo_vlink);
1845	if (pvo->pvo_pte.pte_lo & PVO_WIRED)
1846		pvo->pvo_pmap->pm_stats.wired_count++;
1847	pvo->pvo_pmap->pm_stats.resident_count++;
1848
1849	/*
1850	 * We hope this succeeds but it isn't required.
1851	 */
1852	i = pmap_pte_insert(ptegidx, &pvo->pvo_pte);
1853	if (i >= 0) {
1854		PVO_PTEGIDX_SET(pvo, i);
1855	} else {
1856		panic("pmap_pvo_enter: overflow");
1857		pmap_pte_overflow++;
1858	}
1859
1860	return (first ? ENOENT : 0);
1861}
1862
1863static void
1864pmap_pvo_remove(struct pvo_entry *pvo, int pteidx)
1865{
1866	struct	pte *pt;
1867
1868	/*
1869	 * If there is an active pte entry, we need to deactivate it (and
1870	 * save the ref & cfg bits).
1871	 */
1872	pt = pmap_pvo_to_pte(pvo, pteidx);
1873	if (pt != NULL) {
1874		pmap_pte_unset(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
1875		PVO_PTEGIDX_CLR(pvo);
1876	} else {
1877		pmap_pte_overflow--;
1878	}
1879
1880	/*
1881	 * Update our statistics.
1882	 */
1883	pvo->pvo_pmap->pm_stats.resident_count--;
1884	if (pvo->pvo_pte.pte_lo & PVO_WIRED)
1885		pvo->pvo_pmap->pm_stats.wired_count--;
1886
1887	/*
1888	 * Save the REF/CHG bits into their cache if the page is managed.
1889	 */
1890	if (pvo->pvo_vaddr & PVO_MANAGED) {
1891		struct	vm_page *pg;
1892
1893		pg = PHYS_TO_VM_PAGE(pvo->pvo_pte.pte_lo & PTE_RPGN);
1894		if (pg != NULL) {
1895			pmap_attr_save(pg, pvo->pvo_pte.pte_lo &
1896			    (PTE_REF | PTE_CHG));
1897		}
1898	}
1899
1900	/*
1901	 * Remove this PVO from the PV list.
1902	 */
1903	LIST_REMOVE(pvo, pvo_vlink);
1904
1905	/*
1906	 * Remove this from the overflow list and return it to the pool
1907	 * if we aren't going to reuse it.
1908	 */
1909	LIST_REMOVE(pvo, pvo_olink);
1910	if (!(pvo->pvo_vaddr & PVO_BOOTSTRAP))
1911		uma_zfree(pvo->pvo_vaddr & PVO_MANAGED ? pmap_mpvo_zone :
1912		    pmap_upvo_zone, pvo);
1913	pmap_pvo_entries--;
1914	pmap_pvo_remove_calls++;
1915}
1916
1917static __inline int
1918pmap_pvo_pte_index(const struct pvo_entry *pvo, int ptegidx)
1919{
1920	int	pteidx;
1921
1922	/*
1923	 * We can find the actual pte entry without searching by grabbing
1924	 * the PTEG index from 3 unused bits in pte_lo[11:9] and by
1925	 * noticing the HID bit.
1926	 */
1927	pteidx = ptegidx * 8 + PVO_PTEGIDX_GET(pvo);
1928	if (pvo->pvo_pte.pte_hi & PTE_HID)
1929		pteidx ^= pmap_pteg_mask * 8;
1930
1931	return (pteidx);
1932}
1933
1934static struct pvo_entry *
1935pmap_pvo_find_va(pmap_t pm, vm_offset_t va, int *pteidx_p)
1936{
1937	struct	pvo_entry *pvo;
1938	int	ptegidx;
1939	u_int	sr;
1940
1941	va &= ~ADDR_POFF;
1942	sr = va_to_sr(pm->pm_sr, va);
1943	ptegidx = va_to_pteg(sr, va);
1944
1945	LIST_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
1946		if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) {
1947			if (pteidx_p)
1948				*pteidx_p = pmap_pvo_pte_index(pvo, ptegidx);
1949			return (pvo);
1950		}
1951	}
1952
1953	return (NULL);
1954}
1955
1956static struct pte *
1957pmap_pvo_to_pte(const struct pvo_entry *pvo, int pteidx)
1958{
1959	struct	pte *pt;
1960
1961	/*
1962	 * If we haven't been supplied the ptegidx, calculate it.
1963	 */
1964	if (pteidx == -1) {
1965		int	ptegidx;
1966		u_int	sr;
1967
1968		sr = va_to_sr(pvo->pvo_pmap->pm_sr, pvo->pvo_vaddr);
1969		ptegidx = va_to_pteg(sr, pvo->pvo_vaddr);
1970		pteidx = pmap_pvo_pte_index(pvo, ptegidx);
1971	}
1972
1973	pt = &pmap_pteg_table[pteidx >> 3].pt[pteidx & 7];
1974
1975	if ((pvo->pvo_pte.pte_hi & PTE_VALID) && !PVO_PTEGIDX_ISSET(pvo)) {
1976		panic("pmap_pvo_to_pte: pvo %p has valid pte in pvo but no "
1977		    "valid pte index", pvo);
1978	}
1979
1980	if ((pvo->pvo_pte.pte_hi & PTE_VALID) == 0 && PVO_PTEGIDX_ISSET(pvo)) {
1981		panic("pmap_pvo_to_pte: pvo %p has valid pte index in pvo "
1982		    "pvo but no valid pte", pvo);
1983	}
1984
1985	if ((pt->pte_hi ^ (pvo->pvo_pte.pte_hi & ~PTE_VALID)) == PTE_VALID) {
1986		if ((pvo->pvo_pte.pte_hi & PTE_VALID) == 0) {
1987			panic("pmap_pvo_to_pte: pvo %p has valid pte in "
1988			    "pmap_pteg_table %p but invalid in pvo", pvo, pt);
1989		}
1990
1991		if (((pt->pte_lo ^ pvo->pvo_pte.pte_lo) & ~(PTE_CHG|PTE_REF))
1992		    != 0) {
1993			panic("pmap_pvo_to_pte: pvo %p pte does not match "
1994			    "pte %p in pmap_pteg_table", pvo, pt);
1995		}
1996
1997		return (pt);
1998	}
1999
2000	if (pvo->pvo_pte.pte_hi & PTE_VALID) {
2001		panic("pmap_pvo_to_pte: pvo %p has invalid pte %p in "
2002		    "pmap_pteg_table but valid in pvo", pvo, pt);
2003	}
2004
2005	return (NULL);
2006}
2007
2008static void *
2009pmap_pvo_allocf(uma_zone_t zone, int bytes, u_int8_t *flags, int wait)
2010{
2011	vm_page_t	m;
2012
2013	if (bytes != PAGE_SIZE)
2014		panic("pmap_pvo_allocf: benno was shortsighted.  hit him.");
2015
2016	*flags = UMA_SLAB_PRIV;
2017	m = vm_page_alloc(pmap_pvo_obj, pmap_pvo_count, VM_ALLOC_SYSTEM);
2018	if (m == NULL)
2019		return (NULL);
2020	pmap_pvo_count++;
2021	return ((void *)VM_PAGE_TO_PHYS(m));
2022}
2023
2024/*
2025 * XXX: THIS STUFF SHOULD BE IN pte.c?
2026 */
2027int
2028pmap_pte_spill(vm_offset_t addr)
2029{
2030	struct	pvo_entry *source_pvo, *victim_pvo;
2031	struct	pvo_entry *pvo;
2032	int	ptegidx, i, j;
2033	u_int	sr;
2034	struct	pteg *pteg;
2035	struct	pte *pt;
2036
2037	pmap_pte_spills++;
2038
2039	sr = mfsrin(addr);
2040	ptegidx = va_to_pteg(sr, addr);
2041
2042	/*
2043	 * Have to substitute some entry.  Use the primary hash for this.
2044	 * Use low bits of timebase as random generator.
2045	 */
2046	pteg = &pmap_pteg_table[ptegidx];
2047	__asm __volatile("mftb %0" : "=r"(i));
2048	i &= 7;
2049	pt = &pteg->pt[i];
2050
2051	source_pvo = NULL;
2052	victim_pvo = NULL;
2053	LIST_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
2054		/*
2055		 * We need to find a pvo entry for this address.
2056		 */
2057		PMAP_PVO_CHECK(pvo);
2058		if (source_pvo == NULL &&
2059		    pmap_pte_match(&pvo->pvo_pte, sr, addr,
2060		    pvo->pvo_pte.pte_hi & PTE_HID)) {
2061			/*
2062			 * Now found an entry to be spilled into the pteg.
2063			 * The PTE is now valid, so we know it's active.
2064			 */
2065			j = pmap_pte_insert(ptegidx, &pvo->pvo_pte);
2066
2067			if (j >= 0) {
2068				PVO_PTEGIDX_SET(pvo, j);
2069				pmap_pte_overflow--;
2070				PMAP_PVO_CHECK(pvo);
2071				return (1);
2072			}
2073
2074			source_pvo = pvo;
2075
2076			if (victim_pvo != NULL)
2077				break;
2078		}
2079
2080		/*
2081		 * We also need the pvo entry of the victim we are replacing
2082		 * so save the R & C bits of the PTE.
2083		 */
2084		if ((pt->pte_hi & PTE_HID) == 0 && victim_pvo == NULL &&
2085		    pmap_pte_compare(pt, &pvo->pvo_pte)) {
2086			victim_pvo = pvo;
2087			if (source_pvo != NULL)
2088				break;
2089		}
2090	}
2091
2092	if (source_pvo == NULL)
2093		return (0);
2094
2095	if (victim_pvo == NULL) {
2096		if ((pt->pte_hi & PTE_HID) == 0)
2097			panic("pmap_pte_spill: victim p-pte (%p) has no pvo"
2098			    "entry", pt);
2099
2100		/*
2101		 * If this is a secondary PTE, we need to search it's primary
2102		 * pvo bucket for the matching PVO.
2103		 */
2104		LIST_FOREACH(pvo, &pmap_pvo_table[ptegidx ^ pmap_pteg_mask],
2105		    pvo_olink) {
2106			PMAP_PVO_CHECK(pvo);
2107			/*
2108			 * We also need the pvo entry of the victim we are
2109			 * replacing so save the R & C bits of the PTE.
2110			 */
2111			if (pmap_pte_compare(pt, &pvo->pvo_pte)) {
2112				victim_pvo = pvo;
2113				break;
2114			}
2115		}
2116
2117		if (victim_pvo == NULL)
2118			panic("pmap_pte_spill: victim s-pte (%p) has no pvo"
2119			    "entry", pt);
2120	}
2121
2122	/*
2123	 * We are invalidating the TLB entry for the EA we are replacing even
2124	 * though it's valid.  If we don't, we lose any ref/chg bit changes
2125	 * contained in the TLB entry.
2126	 */
2127	source_pvo->pvo_pte.pte_hi &= ~PTE_HID;
2128
2129	pmap_pte_unset(pt, &victim_pvo->pvo_pte, victim_pvo->pvo_vaddr);
2130	pmap_pte_set(pt, &source_pvo->pvo_pte);
2131
2132	PVO_PTEGIDX_CLR(victim_pvo);
2133	PVO_PTEGIDX_SET(source_pvo, i);
2134	pmap_pte_replacements++;
2135
2136	PMAP_PVO_CHECK(victim_pvo);
2137	PMAP_PVO_CHECK(source_pvo);
2138
2139	return (1);
2140}
2141
2142static int
2143pmap_pte_insert(u_int ptegidx, struct pte *pvo_pt)
2144{
2145	struct	pte *pt;
2146	int	i;
2147
2148	/*
2149	 * First try primary hash.
2150	 */
2151	for (pt = pmap_pteg_table[ptegidx].pt, i = 0; i < 8; i++, pt++) {
2152		if ((pt->pte_hi & PTE_VALID) == 0) {
2153			pvo_pt->pte_hi &= ~PTE_HID;
2154			pmap_pte_set(pt, pvo_pt);
2155			return (i);
2156		}
2157	}
2158
2159	/*
2160	 * Now try secondary hash.
2161	 */
2162	ptegidx ^= pmap_pteg_mask;
2163	ptegidx++;
2164	for (pt = pmap_pteg_table[ptegidx].pt, i = 0; i < 8; i++, pt++) {
2165		if ((pt->pte_hi & PTE_VALID) == 0) {
2166			pvo_pt->pte_hi |= PTE_HID;
2167			pmap_pte_set(pt, pvo_pt);
2168			return (i);
2169		}
2170	}
2171
2172	panic("pmap_pte_insert: overflow");
2173	return (-1);
2174}
2175
2176static boolean_t
2177pmap_query_bit(vm_page_t m, int ptebit)
2178{
2179	struct	pvo_entry *pvo;
2180	struct	pte *pt;
2181
2182	if (pmap_attr_fetch(m) & ptebit)
2183		return (TRUE);
2184
2185	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
2186		PMAP_PVO_CHECK(pvo);	/* sanity check */
2187
2188		/*
2189		 * See if we saved the bit off.  If so, cache it and return
2190		 * success.
2191		 */
2192		if (pvo->pvo_pte.pte_lo & ptebit) {
2193			pmap_attr_save(m, ptebit);
2194			PMAP_PVO_CHECK(pvo);	/* sanity check */
2195			return (TRUE);
2196		}
2197	}
2198
2199	/*
2200	 * No luck, now go through the hard part of looking at the PTEs
2201	 * themselves.  Sync so that any pending REF/CHG bits are flushed to
2202	 * the PTEs.
2203	 */
2204	SYNC();
2205	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
2206		PMAP_PVO_CHECK(pvo);	/* sanity check */
2207
2208		/*
2209		 * See if this pvo has a valid PTE.  if so, fetch the
2210		 * REF/CHG bits from the valid PTE.  If the appropriate
2211		 * ptebit is set, cache it and return success.
2212		 */
2213		pt = pmap_pvo_to_pte(pvo, -1);
2214		if (pt != NULL) {
2215			pmap_pte_synch(pt, &pvo->pvo_pte);
2216			if (pvo->pvo_pte.pte_lo & ptebit) {
2217				pmap_attr_save(m, ptebit);
2218				PMAP_PVO_CHECK(pvo);	/* sanity check */
2219				return (TRUE);
2220			}
2221		}
2222	}
2223
2224	return (TRUE);
2225}
2226
2227static boolean_t
2228pmap_clear_bit(vm_page_t m, int ptebit)
2229{
2230	struct	pvo_entry *pvo;
2231	struct	pte *pt;
2232	int	rv;
2233
2234	/*
2235	 * Clear the cached value.
2236	 */
2237	rv = pmap_attr_fetch(m);
2238	pmap_attr_clear(m, ptebit);
2239
2240	/*
2241	 * Sync so that any pending REF/CHG bits are flushed to the PTEs (so
2242	 * we can reset the right ones).  note that since the pvo entries and
2243	 * list heads are accessed via BAT0 and are never placed in the page
2244	 * table, we don't have to worry about further accesses setting the
2245	 * REF/CHG bits.
2246	 */
2247	SYNC();
2248
2249	/*
2250	 * For each pvo entry, clear the pvo's ptebit.  If this pvo has a
2251	 * valid pte clear the ptebit from the valid pte.
2252	 */
2253	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
2254		PMAP_PVO_CHECK(pvo);	/* sanity check */
2255		pt = pmap_pvo_to_pte(pvo, -1);
2256		if (pt != NULL) {
2257			pmap_pte_synch(pt, &pvo->pvo_pte);
2258			if (pvo->pvo_pte.pte_lo & ptebit)
2259				pmap_pte_clear(pt, PVO_VADDR(pvo), ptebit);
2260		}
2261		rv |= pvo->pvo_pte.pte_lo;
2262		pvo->pvo_pte.pte_lo &= ~ptebit;
2263		PMAP_PVO_CHECK(pvo);	/* sanity check */
2264	}
2265
2266	return ((rv & ptebit) != 0);
2267}
2268
2269/*
2270 * Return true if the physical range is encompassed by the battable[idx]
2271 */
2272static int
2273pmap_bat_mapped(int idx, vm_offset_t pa, vm_size_t size)
2274{
2275	u_int prot;
2276	u_int32_t start;
2277	u_int32_t end;
2278	u_int32_t bat_ble;
2279
2280	/*
2281	 * Return immediately if not a valid mapping
2282	 */
2283	if (!battable[idx].batu & BAT_Vs)
2284		return (EINVAL);
2285
2286	/*
2287	 * The BAT entry must be cache-inhibited, guarded, and r/w
2288	 * so it can function as an i/o page
2289	 */
2290	prot = battable[idx].batl & (BAT_I|BAT_G|BAT_PP_RW);
2291	if (prot != (BAT_I|BAT_G|BAT_PP_RW))
2292		return (EPERM);
2293
2294	/*
2295	 * The address should be within the BAT range. Assume that the
2296	 * start address in the BAT has the correct alignment (thus
2297	 * not requiring masking)
2298	 */
2299	start = battable[idx].batl & BAT_PBS;
2300	bat_ble = (battable[idx].batu & ~(BAT_EBS)) | 0x03;
2301	end = start | (bat_ble << 15) | 0x7fff;
2302
2303	if ((pa < start) || ((pa + size) > end))
2304		return (ERANGE);
2305
2306	return (0);
2307}
2308
2309
2310/*
2311 * Map a set of physical memory pages into the kernel virtual
2312 * address space. Return a pointer to where it is mapped. This
2313 * routine is intended to be used for mapping device memory,
2314 * NOT real memory.
2315 */
2316void *
2317pmap_mapdev(vm_offset_t pa, vm_size_t size)
2318{
2319	vm_offset_t va, tmpva, ppa, offset;
2320	int i;
2321
2322	ppa = trunc_page(pa);
2323	offset = pa & PAGE_MASK;
2324	size = roundup(offset + size, PAGE_SIZE);
2325
2326	GIANT_REQUIRED;
2327
2328	/*
2329	 * If the physical address lies within a valid BAT table entry,
2330	 * return the 1:1 mapping. This currently doesn't work
2331	 * for regions that overlap 256M BAT segments.
2332	 */
2333	for (i = 0; i < 16; i++) {
2334		if (pmap_bat_mapped(i, pa, size) == 0)
2335			return ((void *) pa);
2336	}
2337
2338	va = kmem_alloc_pageable(kernel_map, size);
2339	if (!va)
2340		panic("pmap_mapdev: Couldn't alloc kernel virtual memory");
2341
2342	for (tmpva = va; size > 0;) {
2343		pmap_kenter(tmpva, ppa);
2344		TLBIE(tmpva); /* XXX or should it be invalidate-all ? */
2345		size -= PAGE_SIZE;
2346		tmpva += PAGE_SIZE;
2347		ppa += PAGE_SIZE;
2348	}
2349
2350	return ((void *)(va + offset));
2351}
2352
2353void
2354pmap_unmapdev(vm_offset_t va, vm_size_t size)
2355{
2356	vm_offset_t base, offset;
2357
2358	/*
2359	 * If this is outside kernel virtual space, then it's a
2360	 * battable entry and doesn't require unmapping
2361	 */
2362	if ((va >= VM_MIN_KERNEL_ADDRESS) && (va <= VM_MAX_KERNEL_ADDRESS)) {
2363		base = trunc_page(va);
2364		offset = va & PAGE_MASK;
2365		size = roundup(offset + size, PAGE_SIZE);
2366		kmem_free(kernel_map, base, size);
2367	}
2368}
2369