tcp_timewait.c revision 98211
1/*
2 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 *    must display the following acknowledgement:
15 *	This product includes software developed by the University of
16 *	California, Berkeley and its contributors.
17 * 4. Neither the name of the University nor the names of its contributors
18 *    may be used to endorse or promote products derived from this software
19 *    without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
32 *
33 *	@(#)tcp_subr.c	8.2 (Berkeley) 5/24/95
34 * $FreeBSD: head/sys/netinet/tcp_timewait.c 98211 2002-06-14 08:35:21Z hsu $
35 */
36
37#include "opt_compat.h"
38#include "opt_inet6.h"
39#include "opt_ipsec.h"
40#include "opt_tcpdebug.h"
41
42#include <sys/param.h>
43#include <sys/systm.h>
44#include <sys/callout.h>
45#include <sys/kernel.h>
46#include <sys/sysctl.h>
47#include <sys/malloc.h>
48#include <sys/mbuf.h>
49#ifdef INET6
50#include <sys/domain.h>
51#endif
52#include <sys/proc.h>
53#include <sys/socket.h>
54#include <sys/socketvar.h>
55#include <sys/protosw.h>
56#include <sys/random.h>
57
58#include <vm/uma.h>
59
60#include <net/route.h>
61#include <net/if.h>
62
63#define _IP_VHL
64#include <netinet/in.h>
65#include <netinet/in_systm.h>
66#include <netinet/ip.h>
67#ifdef INET6
68#include <netinet/ip6.h>
69#endif
70#include <netinet/in_pcb.h>
71#ifdef INET6
72#include <netinet6/in6_pcb.h>
73#endif
74#include <netinet/in_var.h>
75#include <netinet/ip_var.h>
76#ifdef INET6
77#include <netinet6/ip6_var.h>
78#endif
79#include <netinet/tcp.h>
80#include <netinet/tcp_fsm.h>
81#include <netinet/tcp_seq.h>
82#include <netinet/tcp_timer.h>
83#include <netinet/tcp_var.h>
84#ifdef INET6
85#include <netinet6/tcp6_var.h>
86#endif
87#include <netinet/tcpip.h>
88#ifdef TCPDEBUG
89#include <netinet/tcp_debug.h>
90#endif
91#include <netinet6/ip6protosw.h>
92
93#ifdef IPSEC
94#include <netinet6/ipsec.h>
95#ifdef INET6
96#include <netinet6/ipsec6.h>
97#endif
98#endif /*IPSEC*/
99
100#include <machine/in_cksum.h>
101#include <sys/md5.h>
102
103int 	tcp_mssdflt = TCP_MSS;
104SYSCTL_INT(_net_inet_tcp, TCPCTL_MSSDFLT, mssdflt, CTLFLAG_RW,
105    &tcp_mssdflt , 0, "Default TCP Maximum Segment Size");
106
107#ifdef INET6
108int	tcp_v6mssdflt = TCP6_MSS;
109SYSCTL_INT(_net_inet_tcp, TCPCTL_V6MSSDFLT, v6mssdflt,
110	CTLFLAG_RW, &tcp_v6mssdflt , 0,
111	"Default TCP Maximum Segment Size for IPv6");
112#endif
113
114#if 0
115static int 	tcp_rttdflt = TCPTV_SRTTDFLT / PR_SLOWHZ;
116SYSCTL_INT(_net_inet_tcp, TCPCTL_RTTDFLT, rttdflt, CTLFLAG_RW,
117    &tcp_rttdflt , 0, "Default maximum TCP Round Trip Time");
118#endif
119
120int	tcp_do_rfc1323 = 1;
121SYSCTL_INT(_net_inet_tcp, TCPCTL_DO_RFC1323, rfc1323, CTLFLAG_RW,
122    &tcp_do_rfc1323 , 0, "Enable rfc1323 (high performance TCP) extensions");
123
124int	tcp_do_rfc1644 = 0;
125SYSCTL_INT(_net_inet_tcp, TCPCTL_DO_RFC1644, rfc1644, CTLFLAG_RW,
126    &tcp_do_rfc1644 , 0, "Enable rfc1644 (TTCP) extensions");
127
128static int	tcp_tcbhashsize = 0;
129SYSCTL_INT(_net_inet_tcp, OID_AUTO, tcbhashsize, CTLFLAG_RD,
130     &tcp_tcbhashsize, 0, "Size of TCP control-block hashtable");
131
132static int	do_tcpdrain = 1;
133SYSCTL_INT(_net_inet_tcp, OID_AUTO, do_tcpdrain, CTLFLAG_RW, &do_tcpdrain, 0,
134     "Enable tcp_drain routine for extra help when low on mbufs");
135
136SYSCTL_INT(_net_inet_tcp, OID_AUTO, pcbcount, CTLFLAG_RD,
137    &tcbinfo.ipi_count, 0, "Number of active PCBs");
138
139static int	icmp_may_rst = 1;
140SYSCTL_INT(_net_inet_tcp, OID_AUTO, icmp_may_rst, CTLFLAG_RW, &icmp_may_rst, 0,
141    "Certain ICMP unreachable messages may abort connections in SYN_SENT");
142
143static int	tcp_isn_reseed_interval = 0;
144SYSCTL_INT(_net_inet_tcp, OID_AUTO, isn_reseed_interval, CTLFLAG_RW,
145    &tcp_isn_reseed_interval, 0, "Seconds between reseeding of ISN secret");
146
147static void	tcp_cleartaocache(void);
148static struct inpcb *tcp_notify(struct inpcb *, int);
149
150/*
151 * Target size of TCP PCB hash tables. Must be a power of two.
152 *
153 * Note that this can be overridden by the kernel environment
154 * variable net.inet.tcp.tcbhashsize
155 */
156#ifndef TCBHASHSIZE
157#define TCBHASHSIZE	512
158#endif
159
160/*
161 * This is the actual shape of what we allocate using the zone
162 * allocator.  Doing it this way allows us to protect both structures
163 * using the same generation count, and also eliminates the overhead
164 * of allocating tcpcbs separately.  By hiding the structure here,
165 * we avoid changing most of the rest of the code (although it needs
166 * to be changed, eventually, for greater efficiency).
167 */
168#define	ALIGNMENT	32
169#define	ALIGNM1		(ALIGNMENT - 1)
170struct	inp_tp {
171	union {
172		struct	inpcb inp;
173		char	align[(sizeof(struct inpcb) + ALIGNM1) & ~ALIGNM1];
174	} inp_tp_u;
175	struct	tcpcb tcb;
176	struct	callout inp_tp_rexmt, inp_tp_persist, inp_tp_keep, inp_tp_2msl;
177	struct	callout inp_tp_delack;
178};
179#undef ALIGNMENT
180#undef ALIGNM1
181
182/*
183 * Tcp initialization
184 */
185void
186tcp_init()
187{
188	int hashsize = TCBHASHSIZE;
189
190	tcp_ccgen = 1;
191	tcp_cleartaocache();
192
193	tcp_delacktime = TCPTV_DELACK;
194	tcp_keepinit = TCPTV_KEEP_INIT;
195	tcp_keepidle = TCPTV_KEEP_IDLE;
196	tcp_keepintvl = TCPTV_KEEPINTVL;
197	tcp_maxpersistidle = TCPTV_KEEP_IDLE;
198	tcp_msl = TCPTV_MSL;
199
200	INP_INFO_LOCK_INIT(&tcbinfo, "tcp");
201	LIST_INIT(&tcb);
202	tcbinfo.listhead = &tcb;
203	TUNABLE_INT_FETCH("net.inet.tcp.tcbhashsize", &hashsize);
204	if (!powerof2(hashsize)) {
205		printf("WARNING: TCB hash size not a power of 2\n");
206		hashsize = 512; /* safe default */
207	}
208	tcp_tcbhashsize = hashsize;
209	tcbinfo.hashbase = hashinit(hashsize, M_PCB, &tcbinfo.hashmask);
210	tcbinfo.porthashbase = hashinit(hashsize, M_PCB,
211					&tcbinfo.porthashmask);
212	tcbinfo.ipi_zone = uma_zcreate("tcpcb", sizeof(struct inp_tp),
213	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
214	uma_zone_set_max(tcbinfo.ipi_zone, maxsockets);
215#ifdef INET6
216#define TCP_MINPROTOHDR (sizeof(struct ip6_hdr) + sizeof(struct tcphdr))
217#else /* INET6 */
218#define TCP_MINPROTOHDR (sizeof(struct tcpiphdr))
219#endif /* INET6 */
220	if (max_protohdr < TCP_MINPROTOHDR)
221		max_protohdr = TCP_MINPROTOHDR;
222	if (max_linkhdr + TCP_MINPROTOHDR > MHLEN)
223		panic("tcp_init");
224#undef TCP_MINPROTOHDR
225
226	syncache_init();
227}
228
229/*
230 * Fill in the IP and TCP headers for an outgoing packet, given the tcpcb.
231 * tcp_template used to store this data in mbufs, but we now recopy it out
232 * of the tcpcb each time to conserve mbufs.
233 */
234void
235tcp_fillheaders(tp, ip_ptr, tcp_ptr)
236	struct tcpcb *tp;
237	void *ip_ptr;
238	void *tcp_ptr;
239{
240	struct inpcb *inp = tp->t_inpcb;
241	struct tcphdr *tcp_hdr = (struct tcphdr *)tcp_ptr;
242
243#ifdef INET6
244	if ((inp->inp_vflag & INP_IPV6) != 0) {
245		struct ip6_hdr *ip6;
246
247		ip6 = (struct ip6_hdr *)ip_ptr;
248		ip6->ip6_flow = (ip6->ip6_flow & ~IPV6_FLOWINFO_MASK) |
249			(inp->in6p_flowinfo & IPV6_FLOWINFO_MASK);
250		ip6->ip6_vfc = (ip6->ip6_vfc & ~IPV6_VERSION_MASK) |
251			(IPV6_VERSION & IPV6_VERSION_MASK);
252		ip6->ip6_nxt = IPPROTO_TCP;
253		ip6->ip6_plen = sizeof(struct tcphdr);
254		ip6->ip6_src = inp->in6p_laddr;
255		ip6->ip6_dst = inp->in6p_faddr;
256		tcp_hdr->th_sum = 0;
257	} else
258#endif
259	{
260	struct ip *ip = (struct ip *) ip_ptr;
261
262	ip->ip_vhl = IP_VHL_BORING;
263	ip->ip_tos = 0;
264	ip->ip_len = 0;
265	ip->ip_id = 0;
266	ip->ip_off = 0;
267	ip->ip_ttl = 0;
268	ip->ip_sum = 0;
269	ip->ip_p = IPPROTO_TCP;
270	ip->ip_src = inp->inp_laddr;
271	ip->ip_dst = inp->inp_faddr;
272	tcp_hdr->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
273		htons(sizeof(struct tcphdr) + IPPROTO_TCP));
274	}
275
276	tcp_hdr->th_sport = inp->inp_lport;
277	tcp_hdr->th_dport = inp->inp_fport;
278	tcp_hdr->th_seq = 0;
279	tcp_hdr->th_ack = 0;
280	tcp_hdr->th_x2 = 0;
281	tcp_hdr->th_off = 5;
282	tcp_hdr->th_flags = 0;
283	tcp_hdr->th_win = 0;
284	tcp_hdr->th_urp = 0;
285}
286
287/*
288 * Create template to be used to send tcp packets on a connection.
289 * Allocates an mbuf and fills in a skeletal tcp/ip header.  The only
290 * use for this function is in keepalives, which use tcp_respond.
291 */
292struct tcptemp *
293tcp_maketemplate(tp)
294	struct tcpcb *tp;
295{
296	struct mbuf *m;
297	struct tcptemp *n;
298
299	m = m_get(M_DONTWAIT, MT_HEADER);
300	if (m == NULL)
301		return (0);
302	m->m_len = sizeof(struct tcptemp);
303	n = mtod(m, struct tcptemp *);
304
305	tcp_fillheaders(tp, (void *)&n->tt_ipgen, (void *)&n->tt_t);
306	return (n);
307}
308
309/*
310 * Send a single message to the TCP at address specified by
311 * the given TCP/IP header.  If m == 0, then we make a copy
312 * of the tcpiphdr at ti and send directly to the addressed host.
313 * This is used to force keep alive messages out using the TCP
314 * template for a connection.  If flags are given then we send
315 * a message back to the TCP which originated the * segment ti,
316 * and discard the mbuf containing it and any other attached mbufs.
317 *
318 * In any case the ack and sequence number of the transmitted
319 * segment are as specified by the parameters.
320 *
321 * NOTE: If m != NULL, then ti must point to *inside* the mbuf.
322 */
323void
324tcp_respond(tp, ipgen, th, m, ack, seq, flags)
325	struct tcpcb *tp;
326	void *ipgen;
327	register struct tcphdr *th;
328	register struct mbuf *m;
329	tcp_seq ack, seq;
330	int flags;
331{
332	register int tlen;
333	int win = 0;
334	struct route *ro = 0;
335	struct route sro;
336	struct ip *ip;
337	struct tcphdr *nth;
338#ifdef INET6
339	struct route_in6 *ro6 = 0;
340	struct route_in6 sro6;
341	struct ip6_hdr *ip6;
342	int isipv6;
343#endif /* INET6 */
344	int ipflags = 0;
345
346#ifdef INET6
347	isipv6 = IP_VHL_V(((struct ip *)ipgen)->ip_vhl) == 6;
348	ip6 = ipgen;
349#endif /* INET6 */
350	ip = ipgen;
351
352	if (tp) {
353		if (!(flags & TH_RST)) {
354			win = sbspace(&tp->t_inpcb->inp_socket->so_rcv);
355			if (win > (long)TCP_MAXWIN << tp->rcv_scale)
356				win = (long)TCP_MAXWIN << tp->rcv_scale;
357		}
358#ifdef INET6
359		if (isipv6)
360			ro6 = &tp->t_inpcb->in6p_route;
361		else
362#endif /* INET6 */
363		ro = &tp->t_inpcb->inp_route;
364	} else {
365#ifdef INET6
366		if (isipv6) {
367			ro6 = &sro6;
368			bzero(ro6, sizeof *ro6);
369		} else
370#endif /* INET6 */
371	      {
372		ro = &sro;
373		bzero(ro, sizeof *ro);
374	      }
375	}
376	if (m == 0) {
377		m = m_gethdr(M_DONTWAIT, MT_HEADER);
378		if (m == NULL)
379			return;
380		tlen = 0;
381		m->m_data += max_linkhdr;
382#ifdef INET6
383		if (isipv6) {
384			bcopy((caddr_t)ip6, mtod(m, caddr_t),
385			      sizeof(struct ip6_hdr));
386			ip6 = mtod(m, struct ip6_hdr *);
387			nth = (struct tcphdr *)(ip6 + 1);
388		} else
389#endif /* INET6 */
390	      {
391		bcopy((caddr_t)ip, mtod(m, caddr_t), sizeof(struct ip));
392		ip = mtod(m, struct ip *);
393		nth = (struct tcphdr *)(ip + 1);
394	      }
395		bcopy((caddr_t)th, (caddr_t)nth, sizeof(struct tcphdr));
396		flags = TH_ACK;
397	} else {
398		m_freem(m->m_next);
399		m->m_next = 0;
400		m->m_data = (caddr_t)ipgen;
401		/* m_len is set later */
402		tlen = 0;
403#define xchg(a,b,type) { type t; t=a; a=b; b=t; }
404#ifdef INET6
405		if (isipv6) {
406			xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr);
407			nth = (struct tcphdr *)(ip6 + 1);
408		} else
409#endif /* INET6 */
410	      {
411		xchg(ip->ip_dst.s_addr, ip->ip_src.s_addr, n_long);
412		nth = (struct tcphdr *)(ip + 1);
413	      }
414		if (th != nth) {
415			/*
416			 * this is usually a case when an extension header
417			 * exists between the IPv6 header and the
418			 * TCP header.
419			 */
420			nth->th_sport = th->th_sport;
421			nth->th_dport = th->th_dport;
422		}
423		xchg(nth->th_dport, nth->th_sport, n_short);
424#undef xchg
425	}
426#ifdef INET6
427	if (isipv6) {
428		ip6->ip6_flow = 0;
429		ip6->ip6_vfc = IPV6_VERSION;
430		ip6->ip6_nxt = IPPROTO_TCP;
431		ip6->ip6_plen = htons((u_short)(sizeof (struct tcphdr) +
432						tlen));
433		tlen += sizeof (struct ip6_hdr) + sizeof (struct tcphdr);
434	} else
435#endif
436      {
437	tlen += sizeof (struct tcpiphdr);
438	ip->ip_len = tlen;
439	ip->ip_ttl = ip_defttl;
440      }
441	m->m_len = tlen;
442	m->m_pkthdr.len = tlen;
443	m->m_pkthdr.rcvif = (struct ifnet *) 0;
444	nth->th_seq = htonl(seq);
445	nth->th_ack = htonl(ack);
446	nth->th_x2 = 0;
447	nth->th_off = sizeof (struct tcphdr) >> 2;
448	nth->th_flags = flags;
449	if (tp)
450		nth->th_win = htons((u_short) (win >> tp->rcv_scale));
451	else
452		nth->th_win = htons((u_short)win);
453	nth->th_urp = 0;
454#ifdef INET6
455	if (isipv6) {
456		nth->th_sum = 0;
457		nth->th_sum = in6_cksum(m, IPPROTO_TCP,
458					sizeof(struct ip6_hdr),
459					tlen - sizeof(struct ip6_hdr));
460		ip6->ip6_hlim = in6_selecthlim(tp ? tp->t_inpcb : NULL,
461					       ro6 && ro6->ro_rt ?
462					       ro6->ro_rt->rt_ifp :
463					       NULL);
464	} else
465#endif /* INET6 */
466      {
467        nth->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
468	    htons((u_short)(tlen - sizeof(struct ip) + ip->ip_p)));
469        m->m_pkthdr.csum_flags = CSUM_TCP;
470        m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
471      }
472#ifdef TCPDEBUG
473	if (tp == NULL || (tp->t_inpcb->inp_socket->so_options & SO_DEBUG))
474		tcp_trace(TA_OUTPUT, 0, tp, mtod(m, void *), th, 0);
475#endif
476#ifdef IPSEC
477	if (ipsec_setsocket(m, tp ? tp->t_inpcb->inp_socket : NULL) != 0) {
478		m_freem(m);
479		return;
480	}
481#endif
482#ifdef INET6
483	if (isipv6) {
484		(void)ip6_output(m, NULL, ro6, ipflags, NULL, NULL);
485		if (ro6 == &sro6 && ro6->ro_rt) {
486			RTFREE(ro6->ro_rt);
487			ro6->ro_rt = NULL;
488		}
489	} else
490#endif /* INET6 */
491      {
492	(void) ip_output(m, NULL, ro, ipflags, NULL);
493	if (ro == &sro && ro->ro_rt) {
494		RTFREE(ro->ro_rt);
495		ro->ro_rt = NULL;
496	}
497      }
498}
499
500/*
501 * Create a new TCP control block, making an
502 * empty reassembly queue and hooking it to the argument
503 * protocol control block.  The `inp' parameter must have
504 * come from the zone allocator set up in tcp_init().
505 */
506struct tcpcb *
507tcp_newtcpcb(inp)
508	struct inpcb *inp;
509{
510	struct inp_tp *it;
511	register struct tcpcb *tp;
512#ifdef INET6
513	int isipv6 = (inp->inp_vflag & INP_IPV6) != 0;
514#endif /* INET6 */
515
516	it = (struct inp_tp *)inp;
517	tp = &it->tcb;
518	bzero((char *) tp, sizeof(struct tcpcb));
519	LIST_INIT(&tp->t_segq);
520	tp->t_maxseg = tp->t_maxopd =
521#ifdef INET6
522		isipv6 ? tcp_v6mssdflt :
523#endif /* INET6 */
524		tcp_mssdflt;
525
526	/* Set up our timeouts. */
527	callout_init(tp->tt_rexmt = &it->inp_tp_rexmt, 0);
528	callout_init(tp->tt_persist = &it->inp_tp_persist, 0);
529	callout_init(tp->tt_keep = &it->inp_tp_keep, 0);
530	callout_init(tp->tt_2msl = &it->inp_tp_2msl, 0);
531	callout_init(tp->tt_delack = &it->inp_tp_delack, 0);
532
533	if (tcp_do_rfc1323)
534		tp->t_flags = (TF_REQ_SCALE|TF_REQ_TSTMP);
535	if (tcp_do_rfc1644)
536		tp->t_flags |= TF_REQ_CC;
537	tp->t_inpcb = inp;	/* XXX */
538	/*
539	 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
540	 * rtt estimate.  Set rttvar so that srtt + 4 * rttvar gives
541	 * reasonable initial retransmit time.
542	 */
543	tp->t_srtt = TCPTV_SRTTBASE;
544	tp->t_rttvar = ((TCPTV_RTOBASE - TCPTV_SRTTBASE) << TCP_RTTVAR_SHIFT) / 4;
545	tp->t_rttmin = TCPTV_MIN;
546	tp->t_rxtcur = TCPTV_RTOBASE;
547	tp->snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
548	tp->snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT;
549	tp->t_rcvtime = ticks;
550        /*
551	 * IPv4 TTL initialization is necessary for an IPv6 socket as well,
552	 * because the socket may be bound to an IPv6 wildcard address,
553	 * which may match an IPv4-mapped IPv6 address.
554	 */
555	inp->inp_ip_ttl = ip_defttl;
556	inp->inp_ppcb = (caddr_t)tp;
557	return (tp);		/* XXX */
558}
559
560/*
561 * Drop a TCP connection, reporting
562 * the specified error.  If connection is synchronized,
563 * then send a RST to peer.
564 */
565struct tcpcb *
566tcp_drop(tp, errno)
567	register struct tcpcb *tp;
568	int errno;
569{
570	struct socket *so = tp->t_inpcb->inp_socket;
571
572	if (TCPS_HAVERCVDSYN(tp->t_state)) {
573		tp->t_state = TCPS_CLOSED;
574		(void) tcp_output(tp);
575		tcpstat.tcps_drops++;
576	} else
577		tcpstat.tcps_conndrops++;
578	if (errno == ETIMEDOUT && tp->t_softerror)
579		errno = tp->t_softerror;
580	so->so_error = errno;
581	return (tcp_close(tp));
582}
583
584/*
585 * Close a TCP control block:
586 *	discard all space held by the tcp
587 *	discard internet protocol block
588 *	wake up any sleepers
589 */
590struct tcpcb *
591tcp_close(tp)
592	register struct tcpcb *tp;
593{
594	register struct tseg_qent *q;
595	struct inpcb *inp = tp->t_inpcb;
596	struct socket *so = inp->inp_socket;
597#ifdef INET6
598	int isipv6 = (inp->inp_vflag & INP_IPV6) != 0;
599#endif /* INET6 */
600	register struct rtentry *rt;
601	int dosavessthresh;
602
603	/*
604	 * Make sure that all of our timers are stopped before we
605	 * delete the PCB.
606	 */
607	callout_stop(tp->tt_rexmt);
608	callout_stop(tp->tt_persist);
609	callout_stop(tp->tt_keep);
610	callout_stop(tp->tt_2msl);
611	callout_stop(tp->tt_delack);
612
613	/*
614	 * If we got enough samples through the srtt filter,
615	 * save the rtt and rttvar in the routing entry.
616	 * 'Enough' is arbitrarily defined as the 16 samples.
617	 * 16 samples is enough for the srtt filter to converge
618	 * to within 5% of the correct value; fewer samples and
619	 * we could save a very bogus rtt.
620	 *
621	 * Don't update the default route's characteristics and don't
622	 * update anything that the user "locked".
623	 */
624	if (tp->t_rttupdated >= 16) {
625		register u_long i = 0;
626#ifdef INET6
627		if (isipv6) {
628			struct sockaddr_in6 *sin6;
629
630			if ((rt = inp->in6p_route.ro_rt) == NULL)
631				goto no_valid_rt;
632			sin6 = (struct sockaddr_in6 *)rt_key(rt);
633			if (IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr))
634				goto no_valid_rt;
635		}
636		else
637#endif /* INET6 */
638		if ((rt = inp->inp_route.ro_rt) == NULL ||
639		    ((struct sockaddr_in *)rt_key(rt))->sin_addr.s_addr
640		    == INADDR_ANY)
641			goto no_valid_rt;
642
643		if ((rt->rt_rmx.rmx_locks & RTV_RTT) == 0) {
644			i = tp->t_srtt *
645			    (RTM_RTTUNIT / (hz * TCP_RTT_SCALE));
646			if (rt->rt_rmx.rmx_rtt && i)
647				/*
648				 * filter this update to half the old & half
649				 * the new values, converting scale.
650				 * See route.h and tcp_var.h for a
651				 * description of the scaling constants.
652				 */
653				rt->rt_rmx.rmx_rtt =
654				    (rt->rt_rmx.rmx_rtt + i) / 2;
655			else
656				rt->rt_rmx.rmx_rtt = i;
657			tcpstat.tcps_cachedrtt++;
658		}
659		if ((rt->rt_rmx.rmx_locks & RTV_RTTVAR) == 0) {
660			i = tp->t_rttvar *
661			    (RTM_RTTUNIT / (hz * TCP_RTTVAR_SCALE));
662			if (rt->rt_rmx.rmx_rttvar && i)
663				rt->rt_rmx.rmx_rttvar =
664				    (rt->rt_rmx.rmx_rttvar + i) / 2;
665			else
666				rt->rt_rmx.rmx_rttvar = i;
667			tcpstat.tcps_cachedrttvar++;
668		}
669		/*
670		 * The old comment here said:
671		 * update the pipelimit (ssthresh) if it has been updated
672		 * already or if a pipesize was specified & the threshhold
673		 * got below half the pipesize.  I.e., wait for bad news
674		 * before we start updating, then update on both good
675		 * and bad news.
676		 *
677		 * But we want to save the ssthresh even if no pipesize is
678		 * specified explicitly in the route, because such
679		 * connections still have an implicit pipesize specified
680		 * by the global tcp_sendspace.  In the absence of a reliable
681		 * way to calculate the pipesize, it will have to do.
682		 */
683		i = tp->snd_ssthresh;
684		if (rt->rt_rmx.rmx_sendpipe != 0)
685			dosavessthresh = (i < rt->rt_rmx.rmx_sendpipe / 2);
686		else
687			dosavessthresh = (i < so->so_snd.sb_hiwat / 2);
688		if (((rt->rt_rmx.rmx_locks & RTV_SSTHRESH) == 0 &&
689		     i != 0 && rt->rt_rmx.rmx_ssthresh != 0)
690		    || dosavessthresh) {
691			/*
692			 * convert the limit from user data bytes to
693			 * packets then to packet data bytes.
694			 */
695			i = (i + tp->t_maxseg / 2) / tp->t_maxseg;
696			if (i < 2)
697				i = 2;
698			i *= (u_long)(tp->t_maxseg +
699#ifdef INET6
700				      (isipv6 ? sizeof (struct ip6_hdr) +
701					       sizeof (struct tcphdr) :
702#endif
703				       sizeof (struct tcpiphdr)
704#ifdef INET6
705				       )
706#endif
707				      );
708			if (rt->rt_rmx.rmx_ssthresh)
709				rt->rt_rmx.rmx_ssthresh =
710				    (rt->rt_rmx.rmx_ssthresh + i) / 2;
711			else
712				rt->rt_rmx.rmx_ssthresh = i;
713			tcpstat.tcps_cachedssthresh++;
714		}
715	}
716    no_valid_rt:
717	/* free the reassembly queue, if any */
718	while((q = LIST_FIRST(&tp->t_segq)) != NULL) {
719		LIST_REMOVE(q, tqe_q);
720		m_freem(q->tqe_m);
721		FREE(q, M_TSEGQ);
722	}
723	inp->inp_ppcb = NULL;
724	soisdisconnected(so);
725#ifdef INET6
726	if (INP_CHECK_SOCKAF(so, AF_INET6))
727		in6_pcbdetach(inp);
728	else
729#endif /* INET6 */
730	in_pcbdetach(inp);
731	tcpstat.tcps_closed++;
732	return ((struct tcpcb *)0);
733}
734
735void
736tcp_drain()
737{
738	if (do_tcpdrain)
739	{
740		struct inpcb *inpb;
741		struct tcpcb *tcpb;
742		struct tseg_qent *te;
743
744	/*
745	 * Walk the tcpbs, if existing, and flush the reassembly queue,
746	 * if there is one...
747	 * XXX: The "Net/3" implementation doesn't imply that the TCP
748	 *      reassembly queue should be flushed, but in a situation
749	 * 	where we're really low on mbufs, this is potentially
750	 *  	usefull.
751	 */
752		INP_INFO_RLOCK(&tcbinfo);
753		LIST_FOREACH(inpb, tcbinfo.listhead, inp_list) {
754			INP_LOCK(inpb);
755			if ((tcpb = intotcpcb(inpb))) {
756				while ((te = LIST_FIRST(&tcpb->t_segq))
757			            != NULL) {
758					LIST_REMOVE(te, tqe_q);
759					m_freem(te->tqe_m);
760					FREE(te, M_TSEGQ);
761				}
762			}
763			INP_UNLOCK(inpb);
764		}
765		INP_INFO_RUNLOCK(&tcbinfo);
766	}
767}
768
769/*
770 * Notify a tcp user of an asynchronous error;
771 * store error as soft error, but wake up user
772 * (for now, won't do anything until can select for soft error).
773 *
774 * Do not wake up user since there currently is no mechanism for
775 * reporting soft errors (yet - a kqueue filter may be added).
776 */
777static struct inpcb *
778tcp_notify(inp, error)
779	struct inpcb *inp;
780	int error;
781{
782	struct tcpcb *tp = (struct tcpcb *)inp->inp_ppcb;
783
784	/*
785	 * Ignore some errors if we are hooked up.
786	 * If connection hasn't completed, has retransmitted several times,
787	 * and receives a second error, give up now.  This is better
788	 * than waiting a long time to establish a connection that
789	 * can never complete.
790	 */
791	if (tp->t_state == TCPS_ESTABLISHED &&
792	     (error == EHOSTUNREACH || error == ENETUNREACH ||
793	      error == EHOSTDOWN)) {
794		return inp;
795	} else if (tp->t_state < TCPS_ESTABLISHED && tp->t_rxtshift > 3 &&
796	    tp->t_softerror) {
797		tcp_drop(tp, error);
798		return (struct inpcb *)0;
799	} else {
800		tp->t_softerror = error;
801		return inp;
802	}
803#if 0
804	wakeup((caddr_t) &so->so_timeo);
805	sorwakeup(so);
806	sowwakeup(so);
807#endif
808}
809
810static int
811tcp_pcblist(SYSCTL_HANDLER_ARGS)
812{
813	int error, i, n, s;
814	struct inpcb *inp, **inp_list;
815	inp_gen_t gencnt;
816	struct xinpgen xig;
817
818	/*
819	 * The process of preparing the TCB list is too time-consuming and
820	 * resource-intensive to repeat twice on every request.
821	 */
822	if (req->oldptr == 0) {
823		n = tcbinfo.ipi_count;
824		req->oldidx = 2 * (sizeof xig)
825			+ (n + n/8) * sizeof(struct xtcpcb);
826		return 0;
827	}
828
829	if (req->newptr != 0)
830		return EPERM;
831
832	/*
833	 * OK, now we're committed to doing something.
834	 */
835	s = splnet();
836	INP_INFO_RLOCK(&tcbinfo);
837	gencnt = tcbinfo.ipi_gencnt;
838	n = tcbinfo.ipi_count;
839	INP_INFO_RUNLOCK(&tcbinfo);
840	splx(s);
841
842	xig.xig_len = sizeof xig;
843	xig.xig_count = n;
844	xig.xig_gen = gencnt;
845	xig.xig_sogen = so_gencnt;
846	error = SYSCTL_OUT(req, &xig, sizeof xig);
847	if (error)
848		return error;
849
850	inp_list = malloc(n * sizeof *inp_list, M_TEMP, M_WAITOK);
851	if (inp_list == 0)
852		return ENOMEM;
853
854	s = splnet();
855	INP_INFO_RLOCK(&tcbinfo);
856	for (inp = LIST_FIRST(tcbinfo.listhead), i = 0; inp && i < n;
857	     inp = LIST_NEXT(inp, inp_list)) {
858		INP_LOCK(inp);
859		if (inp->inp_gencnt <= gencnt &&
860		    cr_canseesocket(req->td->td_ucred, inp->inp_socket) == 0)
861			inp_list[i++] = inp;
862		INP_UNLOCK(inp);
863	}
864	INP_INFO_RUNLOCK(&tcbinfo);
865	splx(s);
866	n = i;
867
868	error = 0;
869	for (i = 0; i < n; i++) {
870		inp = inp_list[i];
871		INP_LOCK(inp);
872		if (inp->inp_gencnt <= gencnt) {
873			struct xtcpcb xt;
874			caddr_t inp_ppcb;
875			xt.xt_len = sizeof xt;
876			/* XXX should avoid extra copy */
877			bcopy(inp, &xt.xt_inp, sizeof *inp);
878			inp_ppcb = inp->inp_ppcb;
879			if (inp_ppcb != NULL)
880				bcopy(inp_ppcb, &xt.xt_tp, sizeof xt.xt_tp);
881			else
882				bzero((char *) &xt.xt_tp, sizeof xt.xt_tp);
883			if (inp->inp_socket)
884				sotoxsocket(inp->inp_socket, &xt.xt_socket);
885			error = SYSCTL_OUT(req, &xt, sizeof xt);
886		}
887		INP_UNLOCK(inp);
888	}
889	if (!error) {
890		/*
891		 * Give the user an updated idea of our state.
892		 * If the generation differs from what we told
893		 * her before, she knows that something happened
894		 * while we were processing this request, and it
895		 * might be necessary to retry.
896		 */
897		s = splnet();
898		INP_INFO_RLOCK(&tcbinfo);
899		xig.xig_gen = tcbinfo.ipi_gencnt;
900		xig.xig_sogen = so_gencnt;
901		xig.xig_count = tcbinfo.ipi_count;
902		INP_INFO_RUNLOCK(&tcbinfo);
903		splx(s);
904		error = SYSCTL_OUT(req, &xig, sizeof xig);
905	}
906	free(inp_list, M_TEMP);
907	return error;
908}
909
910SYSCTL_PROC(_net_inet_tcp, TCPCTL_PCBLIST, pcblist, CTLFLAG_RD, 0, 0,
911	    tcp_pcblist, "S,xtcpcb", "List of active TCP connections");
912
913static int
914tcp_getcred(SYSCTL_HANDLER_ARGS)
915{
916	struct xucred xuc;
917	struct sockaddr_in addrs[2];
918	struct inpcb *inp;
919	int error, s;
920
921	error = suser_cred(req->td->td_ucred, PRISON_ROOT);
922	if (error)
923		return (error);
924	error = SYSCTL_IN(req, addrs, sizeof(addrs));
925	if (error)
926		return (error);
927	s = splnet();
928	INP_INFO_RLOCK(&tcbinfo);
929	inp = in_pcblookup_hash(&tcbinfo, addrs[1].sin_addr, addrs[1].sin_port,
930	    addrs[0].sin_addr, addrs[0].sin_port, 0, NULL);
931	if (inp == NULL) {
932		error = ENOENT;
933		goto outunlocked;
934	} else {
935		INP_LOCK(inp);
936		if (inp->inp_socket == NULL) {
937			error = ENOENT;
938			goto out;
939		}
940	}
941
942	error = cr_canseesocket(req->td->td_ucred, inp->inp_socket);
943	if (error)
944		goto out;
945	cru2x(inp->inp_socket->so_cred, &xuc);
946	error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred));
947out:
948	INP_UNLOCK(inp);
949outunlocked:
950	INP_INFO_RUNLOCK(&tcbinfo);
951	splx(s);
952	return (error);
953}
954
955SYSCTL_PROC(_net_inet_tcp, OID_AUTO, getcred,
956    CTLTYPE_OPAQUE|CTLFLAG_RW|CTLFLAG_PRISON, 0, 0,
957    tcp_getcred, "S,xucred", "Get the xucred of a TCP connection");
958
959#ifdef INET6
960static int
961tcp6_getcred(SYSCTL_HANDLER_ARGS)
962{
963	struct xucred xuc;
964	struct sockaddr_in6 addrs[2];
965	struct inpcb *inp;
966	int error, s, mapped = 0;
967
968	error = suser_cred(req->td->td_ucred, PRISON_ROOT);
969	if (error)
970		return (error);
971	error = SYSCTL_IN(req, addrs, sizeof(addrs));
972	if (error)
973		return (error);
974	if (IN6_IS_ADDR_V4MAPPED(&addrs[0].sin6_addr)) {
975		if (IN6_IS_ADDR_V4MAPPED(&addrs[1].sin6_addr))
976			mapped = 1;
977		else
978			return (EINVAL);
979	}
980	s = splnet();
981	INP_INFO_RLOCK(&tcbinfo);
982	if (mapped == 1)
983		inp = in_pcblookup_hash(&tcbinfo,
984			*(struct in_addr *)&addrs[1].sin6_addr.s6_addr[12],
985			addrs[1].sin6_port,
986			*(struct in_addr *)&addrs[0].sin6_addr.s6_addr[12],
987			addrs[0].sin6_port,
988			0, NULL);
989	else
990		inp = in6_pcblookup_hash(&tcbinfo, &addrs[1].sin6_addr,
991				 addrs[1].sin6_port,
992				 &addrs[0].sin6_addr, addrs[0].sin6_port,
993				 0, NULL);
994	if (inp == NULL) {
995		error = ENOENT;
996		goto outunlocked;
997	} else {
998		INP_LOCK(inp);
999		if (inp->inp_socket == NULL) {
1000			error = ENOENT;
1001			goto out;
1002		}
1003	}
1004	error = cr_canseesocket(req->td->td_ucred, inp->inp_socket);
1005	if (error)
1006		goto out;
1007	cru2x(inp->inp_socket->so_cred, &xuc);
1008	error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred));
1009out:
1010	INP_UNLOCK(inp);
1011outunlocked:
1012	INP_INFO_RUNLOCK(&tcbinfo);
1013	splx(s);
1014	return (error);
1015}
1016
1017SYSCTL_PROC(_net_inet6_tcp6, OID_AUTO, getcred,
1018    CTLTYPE_OPAQUE|CTLFLAG_RW|CTLFLAG_PRISON, 0, 0,
1019    tcp6_getcred, "S,xucred", "Get the xucred of a TCP6 connection");
1020#endif
1021
1022
1023void
1024tcp_ctlinput(cmd, sa, vip)
1025	int cmd;
1026	struct sockaddr *sa;
1027	void *vip;
1028{
1029	struct ip *ip = vip;
1030	struct tcphdr *th;
1031	struct in_addr faddr;
1032	struct inpcb *inp;
1033	struct tcpcb *tp;
1034	struct inpcb *(*notify)(struct inpcb *, int) = tcp_notify;
1035	tcp_seq icmp_seq;
1036	int s;
1037
1038	faddr = ((struct sockaddr_in *)sa)->sin_addr;
1039	if (sa->sa_family != AF_INET || faddr.s_addr == INADDR_ANY)
1040		return;
1041
1042	if (cmd == PRC_QUENCH)
1043		notify = tcp_quench;
1044	else if (icmp_may_rst && (cmd == PRC_UNREACH_ADMIN_PROHIB ||
1045		cmd == PRC_UNREACH_PORT) && ip)
1046		notify = tcp_drop_syn_sent;
1047	else if (cmd == PRC_MSGSIZE)
1048		notify = tcp_mtudisc;
1049	else if (PRC_IS_REDIRECT(cmd)) {
1050		ip = 0;
1051		notify = in_rtchange;
1052	} else if (cmd == PRC_HOSTDEAD)
1053		ip = 0;
1054	else if ((unsigned)cmd > PRC_NCMDS || inetctlerrmap[cmd] == 0)
1055		return;
1056	if (ip) {
1057		s = splnet();
1058		th = (struct tcphdr *)((caddr_t)ip
1059				       + (IP_VHL_HL(ip->ip_vhl) << 2));
1060		INP_INFO_RLOCK(&tcbinfo);
1061		inp = in_pcblookup_hash(&tcbinfo, faddr, th->th_dport,
1062		    ip->ip_src, th->th_sport, 0, NULL);
1063		if (inp != NULL)  {
1064			INP_LOCK(inp);
1065			if (inp->inp_socket != NULL) {
1066				icmp_seq = htonl(th->th_seq);
1067				tp = intotcpcb(inp);
1068				if (SEQ_GEQ(icmp_seq, tp->snd_una) &&
1069			    		SEQ_LT(icmp_seq, tp->snd_max))
1070					inp = (*notify)(inp, inetctlerrmap[cmd]);
1071			}
1072			if (inp)
1073				INP_UNLOCK(inp);
1074		} else {
1075			struct in_conninfo inc;
1076
1077			inc.inc_fport = th->th_dport;
1078			inc.inc_lport = th->th_sport;
1079			inc.inc_faddr = faddr;
1080			inc.inc_laddr = ip->ip_src;
1081#ifdef INET6
1082			inc.inc_isipv6 = 0;
1083#endif
1084			syncache_unreach(&inc, th);
1085		}
1086		INP_INFO_RUNLOCK(&tcbinfo);
1087		splx(s);
1088	} else
1089		in_pcbnotifyall(&tcbinfo, faddr, inetctlerrmap[cmd], notify);
1090}
1091
1092#ifdef INET6
1093void
1094tcp6_ctlinput(cmd, sa, d)
1095	int cmd;
1096	struct sockaddr *sa;
1097	void *d;
1098{
1099	struct tcphdr th;
1100	struct inpcb *(*notify)(struct inpcb *, int) = tcp_notify;
1101	struct ip6_hdr *ip6;
1102	struct mbuf *m;
1103	struct ip6ctlparam *ip6cp = NULL;
1104	const struct sockaddr_in6 *sa6_src = NULL;
1105	int off;
1106	struct tcp_portonly {
1107		u_int16_t th_sport;
1108		u_int16_t th_dport;
1109	} *thp;
1110
1111	if (sa->sa_family != AF_INET6 ||
1112	    sa->sa_len != sizeof(struct sockaddr_in6))
1113		return;
1114
1115	if (cmd == PRC_QUENCH)
1116		notify = tcp_quench;
1117	else if (cmd == PRC_MSGSIZE)
1118		notify = tcp_mtudisc;
1119	else if (!PRC_IS_REDIRECT(cmd) &&
1120		 ((unsigned)cmd > PRC_NCMDS || inet6ctlerrmap[cmd] == 0))
1121		return;
1122
1123	/* if the parameter is from icmp6, decode it. */
1124	if (d != NULL) {
1125		ip6cp = (struct ip6ctlparam *)d;
1126		m = ip6cp->ip6c_m;
1127		ip6 = ip6cp->ip6c_ip6;
1128		off = ip6cp->ip6c_off;
1129		sa6_src = ip6cp->ip6c_src;
1130	} else {
1131		m = NULL;
1132		ip6 = NULL;
1133		off = 0;	/* fool gcc */
1134		sa6_src = &sa6_any;
1135	}
1136
1137	if (ip6) {
1138		struct in_conninfo inc;
1139		/*
1140		 * XXX: We assume that when IPV6 is non NULL,
1141		 * M and OFF are valid.
1142		 */
1143
1144		/* check if we can safely examine src and dst ports */
1145		if (m->m_pkthdr.len < off + sizeof(*thp))
1146			return;
1147
1148		bzero(&th, sizeof(th));
1149		m_copydata(m, off, sizeof(*thp), (caddr_t)&th);
1150
1151		in6_pcbnotify(&tcb, sa, th.th_dport,
1152		    (struct sockaddr *)ip6cp->ip6c_src,
1153		    th.th_sport, cmd, notify);
1154
1155		inc.inc_fport = th.th_dport;
1156		inc.inc_lport = th.th_sport;
1157		inc.inc6_faddr = ((struct sockaddr_in6 *)sa)->sin6_addr;
1158		inc.inc6_laddr = ip6cp->ip6c_src->sin6_addr;
1159		inc.inc_isipv6 = 1;
1160		syncache_unreach(&inc, &th);
1161	} else
1162		in6_pcbnotify(&tcb, sa, 0, (const struct sockaddr *)sa6_src,
1163			      0, cmd, notify);
1164}
1165#endif /* INET6 */
1166
1167
1168/*
1169 * Following is where TCP initial sequence number generation occurs.
1170 *
1171 * There are two places where we must use initial sequence numbers:
1172 * 1.  In SYN-ACK packets.
1173 * 2.  In SYN packets.
1174 *
1175 * All ISNs for SYN-ACK packets are generated by the syncache.  See
1176 * tcp_syncache.c for details.
1177 *
1178 * The ISNs in SYN packets must be monotonic; TIME_WAIT recycling
1179 * depends on this property.  In addition, these ISNs should be
1180 * unguessable so as to prevent connection hijacking.  To satisfy
1181 * the requirements of this situation, the algorithm outlined in
1182 * RFC 1948 is used to generate sequence numbers.
1183 *
1184 * Implementation details:
1185 *
1186 * Time is based off the system timer, and is corrected so that it
1187 * increases by one megabyte per second.  This allows for proper
1188 * recycling on high speed LANs while still leaving over an hour
1189 * before rollover.
1190 *
1191 * net.inet.tcp.isn_reseed_interval controls the number of seconds
1192 * between seeding of isn_secret.  This is normally set to zero,
1193 * as reseeding should not be necessary.
1194 *
1195 */
1196
1197#define ISN_BYTES_PER_SECOND 1048576
1198
1199u_char isn_secret[32];
1200int isn_last_reseed;
1201MD5_CTX isn_ctx;
1202
1203tcp_seq
1204tcp_new_isn(tp)
1205	struct tcpcb *tp;
1206{
1207	u_int32_t md5_buffer[4];
1208	tcp_seq new_isn;
1209
1210	/* Seed if this is the first use, reseed if requested. */
1211	if ((isn_last_reseed == 0) || ((tcp_isn_reseed_interval > 0) &&
1212	     (((u_int)isn_last_reseed + (u_int)tcp_isn_reseed_interval*hz)
1213		< (u_int)ticks))) {
1214		read_random(&isn_secret, sizeof(isn_secret));
1215		isn_last_reseed = ticks;
1216	}
1217
1218	/* Compute the md5 hash and return the ISN. */
1219	MD5Init(&isn_ctx);
1220	MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_fport, sizeof(u_short));
1221	MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_lport, sizeof(u_short));
1222#ifdef INET6
1223	if ((tp->t_inpcb->inp_vflag & INP_IPV6) != 0) {
1224		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_faddr,
1225			  sizeof(struct in6_addr));
1226		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_laddr,
1227			  sizeof(struct in6_addr));
1228	} else
1229#endif
1230	{
1231		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_faddr,
1232			  sizeof(struct in_addr));
1233		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_laddr,
1234			  sizeof(struct in_addr));
1235	}
1236	MD5Update(&isn_ctx, (u_char *) &isn_secret, sizeof(isn_secret));
1237	MD5Final((u_char *) &md5_buffer, &isn_ctx);
1238	new_isn = (tcp_seq) md5_buffer[0];
1239	new_isn += ticks * (ISN_BYTES_PER_SECOND / hz);
1240	return new_isn;
1241}
1242
1243/*
1244 * When a source quench is received, close congestion window
1245 * to one segment.  We will gradually open it again as we proceed.
1246 */
1247struct inpcb *
1248tcp_quench(inp, errno)
1249	struct inpcb *inp;
1250	int errno;
1251{
1252	struct tcpcb *tp = intotcpcb(inp);
1253
1254	if (tp)
1255		tp->snd_cwnd = tp->t_maxseg;
1256	return (inp);
1257}
1258
1259/*
1260 * When a specific ICMP unreachable message is received and the
1261 * connection state is SYN-SENT, drop the connection.  This behavior
1262 * is controlled by the icmp_may_rst sysctl.
1263 */
1264struct inpcb *
1265tcp_drop_syn_sent(inp, errno)
1266	struct inpcb *inp;
1267	int errno;
1268{
1269	struct tcpcb *tp = intotcpcb(inp);
1270
1271	if (tp && tp->t_state == TCPS_SYN_SENT) {
1272		tcp_drop(tp, errno);
1273		return (struct inpcb *)0;
1274	}
1275	return inp;
1276}
1277
1278/*
1279 * When `need fragmentation' ICMP is received, update our idea of the MSS
1280 * based on the new value in the route.  Also nudge TCP to send something,
1281 * since we know the packet we just sent was dropped.
1282 * This duplicates some code in the tcp_mss() function in tcp_input.c.
1283 */
1284struct inpcb *
1285tcp_mtudisc(inp, errno)
1286	struct inpcb *inp;
1287	int errno;
1288{
1289	struct tcpcb *tp = intotcpcb(inp);
1290	struct rtentry *rt;
1291	struct rmxp_tao *taop;
1292	struct socket *so = inp->inp_socket;
1293	int offered;
1294	int mss;
1295#ifdef INET6
1296	int isipv6 = (tp->t_inpcb->inp_vflag & INP_IPV6) != 0;
1297#endif /* INET6 */
1298
1299	if (tp) {
1300#ifdef INET6
1301		if (isipv6)
1302			rt = tcp_rtlookup6(&inp->inp_inc);
1303		else
1304#endif /* INET6 */
1305		rt = tcp_rtlookup(&inp->inp_inc);
1306		if (!rt || !rt->rt_rmx.rmx_mtu) {
1307			tp->t_maxopd = tp->t_maxseg =
1308#ifdef INET6
1309				isipv6 ? tcp_v6mssdflt :
1310#endif /* INET6 */
1311				tcp_mssdflt;
1312			return inp;
1313		}
1314		taop = rmx_taop(rt->rt_rmx);
1315		offered = taop->tao_mssopt;
1316		mss = rt->rt_rmx.rmx_mtu -
1317#ifdef INET6
1318			(isipv6 ?
1319			 sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
1320#endif /* INET6 */
1321			 sizeof(struct tcpiphdr)
1322#ifdef INET6
1323			 )
1324#endif /* INET6 */
1325			;
1326
1327		if (offered)
1328			mss = min(mss, offered);
1329		/*
1330		 * XXX - The above conditional probably violates the TCP
1331		 * spec.  The problem is that, since we don't know the
1332		 * other end's MSS, we are supposed to use a conservative
1333		 * default.  But, if we do that, then MTU discovery will
1334		 * never actually take place, because the conservative
1335		 * default is much less than the MTUs typically seen
1336		 * on the Internet today.  For the moment, we'll sweep
1337		 * this under the carpet.
1338		 *
1339		 * The conservative default might not actually be a problem
1340		 * if the only case this occurs is when sending an initial
1341		 * SYN with options and data to a host we've never talked
1342		 * to before.  Then, they will reply with an MSS value which
1343		 * will get recorded and the new parameters should get
1344		 * recomputed.  For Further Study.
1345		 */
1346		if (tp->t_maxopd <= mss)
1347			return inp;
1348		tp->t_maxopd = mss;
1349
1350		if ((tp->t_flags & (TF_REQ_TSTMP|TF_NOOPT)) == TF_REQ_TSTMP &&
1351		    (tp->t_flags & TF_RCVD_TSTMP) == TF_RCVD_TSTMP)
1352			mss -= TCPOLEN_TSTAMP_APPA;
1353		if ((tp->t_flags & (TF_REQ_CC|TF_NOOPT)) == TF_REQ_CC &&
1354		    (tp->t_flags & TF_RCVD_CC) == TF_RCVD_CC)
1355			mss -= TCPOLEN_CC_APPA;
1356#if	(MCLBYTES & (MCLBYTES - 1)) == 0
1357		if (mss > MCLBYTES)
1358			mss &= ~(MCLBYTES-1);
1359#else
1360		if (mss > MCLBYTES)
1361			mss = mss / MCLBYTES * MCLBYTES;
1362#endif
1363		if (so->so_snd.sb_hiwat < mss)
1364			mss = so->so_snd.sb_hiwat;
1365
1366		tp->t_maxseg = mss;
1367
1368		tcpstat.tcps_mturesent++;
1369		tp->t_rtttime = 0;
1370		tp->snd_nxt = tp->snd_una;
1371		tcp_output(tp);
1372	}
1373	return inp;
1374}
1375
1376/*
1377 * Look-up the routing entry to the peer of this inpcb.  If no route
1378 * is found and it cannot be allocated the return NULL.  This routine
1379 * is called by TCP routines that access the rmx structure and by tcp_mss
1380 * to get the interface MTU.
1381 */
1382struct rtentry *
1383tcp_rtlookup(inc)
1384	struct in_conninfo *inc;
1385{
1386	struct route *ro;
1387	struct rtentry *rt;
1388
1389	ro = &inc->inc_route;
1390	rt = ro->ro_rt;
1391	if (rt == NULL || !(rt->rt_flags & RTF_UP)) {
1392		/* No route yet, so try to acquire one */
1393		if (inc->inc_faddr.s_addr != INADDR_ANY) {
1394			ro->ro_dst.sa_family = AF_INET;
1395			ro->ro_dst.sa_len = sizeof(struct sockaddr_in);
1396			((struct sockaddr_in *) &ro->ro_dst)->sin_addr =
1397			    inc->inc_faddr;
1398			rtalloc(ro);
1399			rt = ro->ro_rt;
1400		}
1401	}
1402	return rt;
1403}
1404
1405#ifdef INET6
1406struct rtentry *
1407tcp_rtlookup6(inc)
1408	struct in_conninfo *inc;
1409{
1410	struct route_in6 *ro6;
1411	struct rtentry *rt;
1412
1413	ro6 = &inc->inc6_route;
1414	rt = ro6->ro_rt;
1415	if (rt == NULL || !(rt->rt_flags & RTF_UP)) {
1416		/* No route yet, so try to acquire one */
1417		if (!IN6_IS_ADDR_UNSPECIFIED(&inc->inc6_faddr)) {
1418			ro6->ro_dst.sin6_family = AF_INET6;
1419			ro6->ro_dst.sin6_len = sizeof(struct sockaddr_in6);
1420			ro6->ro_dst.sin6_addr = inc->inc6_faddr;
1421			rtalloc((struct route *)ro6);
1422			rt = ro6->ro_rt;
1423		}
1424	}
1425	return rt;
1426}
1427#endif /* INET6 */
1428
1429#ifdef IPSEC
1430/* compute ESP/AH header size for TCP, including outer IP header. */
1431size_t
1432ipsec_hdrsiz_tcp(tp)
1433	struct tcpcb *tp;
1434{
1435	struct inpcb *inp;
1436	struct mbuf *m;
1437	size_t hdrsiz;
1438	struct ip *ip;
1439#ifdef INET6
1440	struct ip6_hdr *ip6;
1441#endif /* INET6 */
1442	struct tcphdr *th;
1443
1444	if ((tp == NULL) || ((inp = tp->t_inpcb) == NULL))
1445		return 0;
1446	MGETHDR(m, M_DONTWAIT, MT_DATA);
1447	if (!m)
1448		return 0;
1449
1450#ifdef INET6
1451	if ((inp->inp_vflag & INP_IPV6) != 0) {
1452		ip6 = mtod(m, struct ip6_hdr *);
1453		th = (struct tcphdr *)(ip6 + 1);
1454		m->m_pkthdr.len = m->m_len =
1455			sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
1456		tcp_fillheaders(tp, ip6, th);
1457		hdrsiz = ipsec6_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
1458	} else
1459#endif /* INET6 */
1460      {
1461	ip = mtod(m, struct ip *);
1462	th = (struct tcphdr *)(ip + 1);
1463	m->m_pkthdr.len = m->m_len = sizeof(struct tcpiphdr);
1464	tcp_fillheaders(tp, ip, th);
1465	hdrsiz = ipsec4_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
1466      }
1467
1468	m_free(m);
1469	return hdrsiz;
1470}
1471#endif /*IPSEC*/
1472
1473/*
1474 * Return a pointer to the cached information about the remote host.
1475 * The cached information is stored in the protocol specific part of
1476 * the route metrics.
1477 */
1478struct rmxp_tao *
1479tcp_gettaocache(inc)
1480	struct in_conninfo *inc;
1481{
1482	struct rtentry *rt;
1483
1484#ifdef INET6
1485	if (inc->inc_isipv6)
1486		rt = tcp_rtlookup6(inc);
1487	else
1488#endif /* INET6 */
1489	rt = tcp_rtlookup(inc);
1490
1491	/* Make sure this is a host route and is up. */
1492	if (rt == NULL ||
1493	    (rt->rt_flags & (RTF_UP|RTF_HOST)) != (RTF_UP|RTF_HOST))
1494		return NULL;
1495
1496	return rmx_taop(rt->rt_rmx);
1497}
1498
1499/*
1500 * Clear all the TAO cache entries, called from tcp_init.
1501 *
1502 * XXX
1503 * This routine is just an empty one, because we assume that the routing
1504 * routing tables are initialized at the same time when TCP, so there is
1505 * nothing in the cache left over.
1506 */
1507static void
1508tcp_cleartaocache()
1509{
1510}
1511