tcp_timewait.c revision 92760
1/*
2 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 *    must display the following acknowledgement:
15 *	This product includes software developed by the University of
16 *	California, Berkeley and its contributors.
17 * 4. Neither the name of the University nor the names of its contributors
18 *    may be used to endorse or promote products derived from this software
19 *    without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
32 *
33 *	@(#)tcp_subr.c	8.2 (Berkeley) 5/24/95
34 * $FreeBSD: head/sys/netinet/tcp_timewait.c 92760 2002-03-20 05:48:55Z jeff $
35 */
36
37#include "opt_compat.h"
38#include "opt_inet6.h"
39#include "opt_ipsec.h"
40#include "opt_tcpdebug.h"
41
42#include <sys/param.h>
43#include <sys/systm.h>
44#include <sys/callout.h>
45#include <sys/kernel.h>
46#include <sys/sysctl.h>
47#include <sys/malloc.h>
48#include <sys/mbuf.h>
49#ifdef INET6
50#include <sys/domain.h>
51#endif
52#include <sys/proc.h>
53#include <sys/socket.h>
54#include <sys/socketvar.h>
55#include <sys/protosw.h>
56#include <sys/random.h>
57
58#include <vm/uma.h>
59
60#include <net/route.h>
61#include <net/if.h>
62
63#define _IP_VHL
64#include <netinet/in.h>
65#include <netinet/in_systm.h>
66#include <netinet/ip.h>
67#ifdef INET6
68#include <netinet/ip6.h>
69#endif
70#include <netinet/in_pcb.h>
71#ifdef INET6
72#include <netinet6/in6_pcb.h>
73#endif
74#include <netinet/in_var.h>
75#include <netinet/ip_var.h>
76#ifdef INET6
77#include <netinet6/ip6_var.h>
78#endif
79#include <netinet/tcp.h>
80#include <netinet/tcp_fsm.h>
81#include <netinet/tcp_seq.h>
82#include <netinet/tcp_timer.h>
83#include <netinet/tcp_var.h>
84#ifdef INET6
85#include <netinet6/tcp6_var.h>
86#endif
87#include <netinet/tcpip.h>
88#ifdef TCPDEBUG
89#include <netinet/tcp_debug.h>
90#endif
91#include <netinet6/ip6protosw.h>
92
93#ifdef IPSEC
94#include <netinet6/ipsec.h>
95#ifdef INET6
96#include <netinet6/ipsec6.h>
97#endif
98#endif /*IPSEC*/
99
100#include <machine/in_cksum.h>
101#include <sys/md5.h>
102
103int 	tcp_mssdflt = TCP_MSS;
104SYSCTL_INT(_net_inet_tcp, TCPCTL_MSSDFLT, mssdflt, CTLFLAG_RW,
105    &tcp_mssdflt , 0, "Default TCP Maximum Segment Size");
106
107#ifdef INET6
108int	tcp_v6mssdflt = TCP6_MSS;
109SYSCTL_INT(_net_inet_tcp, TCPCTL_V6MSSDFLT, v6mssdflt,
110	CTLFLAG_RW, &tcp_v6mssdflt , 0,
111	"Default TCP Maximum Segment Size for IPv6");
112#endif
113
114#if 0
115static int 	tcp_rttdflt = TCPTV_SRTTDFLT / PR_SLOWHZ;
116SYSCTL_INT(_net_inet_tcp, TCPCTL_RTTDFLT, rttdflt, CTLFLAG_RW,
117    &tcp_rttdflt , 0, "Default maximum TCP Round Trip Time");
118#endif
119
120int	tcp_do_rfc1323 = 1;
121SYSCTL_INT(_net_inet_tcp, TCPCTL_DO_RFC1323, rfc1323, CTLFLAG_RW,
122    &tcp_do_rfc1323 , 0, "Enable rfc1323 (high performance TCP) extensions");
123
124int	tcp_do_rfc1644 = 0;
125SYSCTL_INT(_net_inet_tcp, TCPCTL_DO_RFC1644, rfc1644, CTLFLAG_RW,
126    &tcp_do_rfc1644 , 0, "Enable rfc1644 (TTCP) extensions");
127
128static int	tcp_tcbhashsize = 0;
129SYSCTL_INT(_net_inet_tcp, OID_AUTO, tcbhashsize, CTLFLAG_RD,
130     &tcp_tcbhashsize, 0, "Size of TCP control-block hashtable");
131
132static int	do_tcpdrain = 1;
133SYSCTL_INT(_net_inet_tcp, OID_AUTO, do_tcpdrain, CTLFLAG_RW, &do_tcpdrain, 0,
134     "Enable tcp_drain routine for extra help when low on mbufs");
135
136SYSCTL_INT(_net_inet_tcp, OID_AUTO, pcbcount, CTLFLAG_RD,
137    &tcbinfo.ipi_count, 0, "Number of active PCBs");
138
139static int	icmp_may_rst = 1;
140SYSCTL_INT(_net_inet_tcp, OID_AUTO, icmp_may_rst, CTLFLAG_RW, &icmp_may_rst, 0,
141    "Certain ICMP unreachable messages may abort connections in SYN_SENT");
142
143static int	tcp_strict_rfc1948 = 0;
144SYSCTL_INT(_net_inet_tcp, OID_AUTO, strict_rfc1948, CTLFLAG_RW,
145    &tcp_strict_rfc1948, 0, "Determines if RFC1948 is followed exactly");
146
147static int	tcp_isn_reseed_interval = 0;
148SYSCTL_INT(_net_inet_tcp, OID_AUTO, isn_reseed_interval, CTLFLAG_RW,
149    &tcp_isn_reseed_interval, 0, "Seconds between reseeding of ISN secret");
150
151static void	tcp_cleartaocache(void);
152static void	tcp_notify(struct inpcb *, int);
153
154/*
155 * Target size of TCP PCB hash tables. Must be a power of two.
156 *
157 * Note that this can be overridden by the kernel environment
158 * variable net.inet.tcp.tcbhashsize
159 */
160#ifndef TCBHASHSIZE
161#define TCBHASHSIZE	512
162#endif
163
164/*
165 * This is the actual shape of what we allocate using the zone
166 * allocator.  Doing it this way allows us to protect both structures
167 * using the same generation count, and also eliminates the overhead
168 * of allocating tcpcbs separately.  By hiding the structure here,
169 * we avoid changing most of the rest of the code (although it needs
170 * to be changed, eventually, for greater efficiency).
171 */
172#define	ALIGNMENT	32
173#define	ALIGNM1		(ALIGNMENT - 1)
174struct	inp_tp {
175	union {
176		struct	inpcb inp;
177		char	align[(sizeof(struct inpcb) + ALIGNM1) & ~ALIGNM1];
178	} inp_tp_u;
179	struct	tcpcb tcb;
180	struct	callout inp_tp_rexmt, inp_tp_persist, inp_tp_keep, inp_tp_2msl;
181	struct	callout inp_tp_delack;
182};
183#undef ALIGNMENT
184#undef ALIGNM1
185
186/*
187 * Tcp initialization
188 */
189void
190tcp_init()
191{
192	int hashsize = TCBHASHSIZE;
193
194	tcp_ccgen = 1;
195	tcp_cleartaocache();
196
197	tcp_delacktime = TCPTV_DELACK;
198	tcp_keepinit = TCPTV_KEEP_INIT;
199	tcp_keepidle = TCPTV_KEEP_IDLE;
200	tcp_keepintvl = TCPTV_KEEPINTVL;
201	tcp_maxpersistidle = TCPTV_KEEP_IDLE;
202	tcp_msl = TCPTV_MSL;
203
204	LIST_INIT(&tcb);
205	tcbinfo.listhead = &tcb;
206	TUNABLE_INT_FETCH("net.inet.tcp.tcbhashsize", &hashsize);
207	if (!powerof2(hashsize)) {
208		printf("WARNING: TCB hash size not a power of 2\n");
209		hashsize = 512; /* safe default */
210	}
211	tcp_tcbhashsize = hashsize;
212	tcbinfo.hashbase = hashinit(hashsize, M_PCB, &tcbinfo.hashmask);
213	tcbinfo.porthashbase = hashinit(hashsize, M_PCB,
214					&tcbinfo.porthashmask);
215	tcbinfo.ipi_zone = uma_zcreate("tcpcb", sizeof(struct inp_tp),
216	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
217	uma_zone_set_max(tcbinfo.ipi_zone, maxsockets);
218#ifdef INET6
219#define TCP_MINPROTOHDR (sizeof(struct ip6_hdr) + sizeof(struct tcphdr))
220#else /* INET6 */
221#define TCP_MINPROTOHDR (sizeof(struct tcpiphdr))
222#endif /* INET6 */
223	if (max_protohdr < TCP_MINPROTOHDR)
224		max_protohdr = TCP_MINPROTOHDR;
225	if (max_linkhdr + TCP_MINPROTOHDR > MHLEN)
226		panic("tcp_init");
227#undef TCP_MINPROTOHDR
228
229	syncache_init();
230}
231
232/*
233 * Fill in the IP and TCP headers for an outgoing packet, given the tcpcb.
234 * tcp_template used to store this data in mbufs, but we now recopy it out
235 * of the tcpcb each time to conserve mbufs.
236 */
237void
238tcp_fillheaders(tp, ip_ptr, tcp_ptr)
239	struct tcpcb *tp;
240	void *ip_ptr;
241	void *tcp_ptr;
242{
243	struct inpcb *inp = tp->t_inpcb;
244	struct tcphdr *tcp_hdr = (struct tcphdr *)tcp_ptr;
245
246#ifdef INET6
247	if ((inp->inp_vflag & INP_IPV6) != 0) {
248		struct ip6_hdr *ip6;
249
250		ip6 = (struct ip6_hdr *)ip_ptr;
251		ip6->ip6_flow = (ip6->ip6_flow & ~IPV6_FLOWINFO_MASK) |
252			(inp->in6p_flowinfo & IPV6_FLOWINFO_MASK);
253		ip6->ip6_vfc = (ip6->ip6_vfc & ~IPV6_VERSION_MASK) |
254			(IPV6_VERSION & IPV6_VERSION_MASK);
255		ip6->ip6_nxt = IPPROTO_TCP;
256		ip6->ip6_plen = sizeof(struct tcphdr);
257		ip6->ip6_src = inp->in6p_laddr;
258		ip6->ip6_dst = inp->in6p_faddr;
259		tcp_hdr->th_sum = 0;
260	} else
261#endif
262	{
263	struct ip *ip = (struct ip *) ip_ptr;
264
265	ip->ip_vhl = IP_VHL_BORING;
266	ip->ip_tos = 0;
267	ip->ip_len = 0;
268	ip->ip_id = 0;
269	ip->ip_off = 0;
270	ip->ip_ttl = 0;
271	ip->ip_sum = 0;
272	ip->ip_p = IPPROTO_TCP;
273	ip->ip_src = inp->inp_laddr;
274	ip->ip_dst = inp->inp_faddr;
275	tcp_hdr->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
276		htons(sizeof(struct tcphdr) + IPPROTO_TCP));
277	}
278
279	tcp_hdr->th_sport = inp->inp_lport;
280	tcp_hdr->th_dport = inp->inp_fport;
281	tcp_hdr->th_seq = 0;
282	tcp_hdr->th_ack = 0;
283	tcp_hdr->th_x2 = 0;
284	tcp_hdr->th_off = 5;
285	tcp_hdr->th_flags = 0;
286	tcp_hdr->th_win = 0;
287	tcp_hdr->th_urp = 0;
288}
289
290/*
291 * Create template to be used to send tcp packets on a connection.
292 * Allocates an mbuf and fills in a skeletal tcp/ip header.  The only
293 * use for this function is in keepalives, which use tcp_respond.
294 */
295struct tcptemp *
296tcp_maketemplate(tp)
297	struct tcpcb *tp;
298{
299	struct mbuf *m;
300	struct tcptemp *n;
301
302	m = m_get(M_DONTWAIT, MT_HEADER);
303	if (m == NULL)
304		return (0);
305	m->m_len = sizeof(struct tcptemp);
306	n = mtod(m, struct tcptemp *);
307
308	tcp_fillheaders(tp, (void *)&n->tt_ipgen, (void *)&n->tt_t);
309	return (n);
310}
311
312/*
313 * Send a single message to the TCP at address specified by
314 * the given TCP/IP header.  If m == 0, then we make a copy
315 * of the tcpiphdr at ti and send directly to the addressed host.
316 * This is used to force keep alive messages out using the TCP
317 * template for a connection.  If flags are given then we send
318 * a message back to the TCP which originated the * segment ti,
319 * and discard the mbuf containing it and any other attached mbufs.
320 *
321 * In any case the ack and sequence number of the transmitted
322 * segment are as specified by the parameters.
323 *
324 * NOTE: If m != NULL, then ti must point to *inside* the mbuf.
325 */
326void
327tcp_respond(tp, ipgen, th, m, ack, seq, flags)
328	struct tcpcb *tp;
329	void *ipgen;
330	register struct tcphdr *th;
331	register struct mbuf *m;
332	tcp_seq ack, seq;
333	int flags;
334{
335	register int tlen;
336	int win = 0;
337	struct route *ro = 0;
338	struct route sro;
339	struct ip *ip;
340	struct tcphdr *nth;
341#ifdef INET6
342	struct route_in6 *ro6 = 0;
343	struct route_in6 sro6;
344	struct ip6_hdr *ip6;
345	int isipv6;
346#endif /* INET6 */
347	int ipflags = 0;
348
349#ifdef INET6
350	isipv6 = IP_VHL_V(((struct ip *)ipgen)->ip_vhl) == 6;
351	ip6 = ipgen;
352#endif /* INET6 */
353	ip = ipgen;
354
355	if (tp) {
356		if (!(flags & TH_RST)) {
357			win = sbspace(&tp->t_inpcb->inp_socket->so_rcv);
358			if (win > (long)TCP_MAXWIN << tp->rcv_scale)
359				win = (long)TCP_MAXWIN << tp->rcv_scale;
360		}
361#ifdef INET6
362		if (isipv6)
363			ro6 = &tp->t_inpcb->in6p_route;
364		else
365#endif /* INET6 */
366		ro = &tp->t_inpcb->inp_route;
367	} else {
368#ifdef INET6
369		if (isipv6) {
370			ro6 = &sro6;
371			bzero(ro6, sizeof *ro6);
372		} else
373#endif /* INET6 */
374	      {
375		ro = &sro;
376		bzero(ro, sizeof *ro);
377	      }
378	}
379	if (m == 0) {
380		m = m_gethdr(M_DONTWAIT, MT_HEADER);
381		if (m == NULL)
382			return;
383		tlen = 0;
384		m->m_data += max_linkhdr;
385#ifdef INET6
386		if (isipv6) {
387			bcopy((caddr_t)ip6, mtod(m, caddr_t),
388			      sizeof(struct ip6_hdr));
389			ip6 = mtod(m, struct ip6_hdr *);
390			nth = (struct tcphdr *)(ip6 + 1);
391		} else
392#endif /* INET6 */
393	      {
394		bcopy((caddr_t)ip, mtod(m, caddr_t), sizeof(struct ip));
395		ip = mtod(m, struct ip *);
396		nth = (struct tcphdr *)(ip + 1);
397	      }
398		bcopy((caddr_t)th, (caddr_t)nth, sizeof(struct tcphdr));
399		flags = TH_ACK;
400	} else {
401		m_freem(m->m_next);
402		m->m_next = 0;
403		m->m_data = (caddr_t)ipgen;
404		/* m_len is set later */
405		tlen = 0;
406#define xchg(a,b,type) { type t; t=a; a=b; b=t; }
407#ifdef INET6
408		if (isipv6) {
409			xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr);
410			nth = (struct tcphdr *)(ip6 + 1);
411		} else
412#endif /* INET6 */
413	      {
414		xchg(ip->ip_dst.s_addr, ip->ip_src.s_addr, n_long);
415		nth = (struct tcphdr *)(ip + 1);
416	      }
417		if (th != nth) {
418			/*
419			 * this is usually a case when an extension header
420			 * exists between the IPv6 header and the
421			 * TCP header.
422			 */
423			nth->th_sport = th->th_sport;
424			nth->th_dport = th->th_dport;
425		}
426		xchg(nth->th_dport, nth->th_sport, n_short);
427#undef xchg
428	}
429#ifdef INET6
430	if (isipv6) {
431		ip6->ip6_flow = 0;
432		ip6->ip6_vfc = IPV6_VERSION;
433		ip6->ip6_nxt = IPPROTO_TCP;
434		ip6->ip6_plen = htons((u_short)(sizeof (struct tcphdr) +
435						tlen));
436		tlen += sizeof (struct ip6_hdr) + sizeof (struct tcphdr);
437	} else
438#endif
439      {
440	tlen += sizeof (struct tcpiphdr);
441	ip->ip_len = tlen;
442	ip->ip_ttl = ip_defttl;
443      }
444	m->m_len = tlen;
445	m->m_pkthdr.len = tlen;
446	m->m_pkthdr.rcvif = (struct ifnet *) 0;
447	nth->th_seq = htonl(seq);
448	nth->th_ack = htonl(ack);
449	nth->th_x2 = 0;
450	nth->th_off = sizeof (struct tcphdr) >> 2;
451	nth->th_flags = flags;
452	if (tp)
453		nth->th_win = htons((u_short) (win >> tp->rcv_scale));
454	else
455		nth->th_win = htons((u_short)win);
456	nth->th_urp = 0;
457#ifdef INET6
458	if (isipv6) {
459		nth->th_sum = 0;
460		nth->th_sum = in6_cksum(m, IPPROTO_TCP,
461					sizeof(struct ip6_hdr),
462					tlen - sizeof(struct ip6_hdr));
463		ip6->ip6_hlim = in6_selecthlim(tp ? tp->t_inpcb : NULL,
464					       ro6 && ro6->ro_rt ?
465					       ro6->ro_rt->rt_ifp :
466					       NULL);
467	} else
468#endif /* INET6 */
469      {
470        nth->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
471	    htons((u_short)(tlen - sizeof(struct ip) + ip->ip_p)));
472        m->m_pkthdr.csum_flags = CSUM_TCP;
473        m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
474      }
475#ifdef TCPDEBUG
476	if (tp == NULL || (tp->t_inpcb->inp_socket->so_options & SO_DEBUG))
477		tcp_trace(TA_OUTPUT, 0, tp, mtod(m, void *), th, 0);
478#endif
479#ifdef IPSEC
480	if (ipsec_setsocket(m, tp ? tp->t_inpcb->inp_socket : NULL) != 0) {
481		m_freem(m);
482		return;
483	}
484#endif
485#ifdef INET6
486	if (isipv6) {
487		(void)ip6_output(m, NULL, ro6, ipflags, NULL, NULL);
488		if (ro6 == &sro6 && ro6->ro_rt) {
489			RTFREE(ro6->ro_rt);
490			ro6->ro_rt = NULL;
491		}
492	} else
493#endif /* INET6 */
494      {
495	(void) ip_output(m, NULL, ro, ipflags, NULL);
496	if (ro == &sro && ro->ro_rt) {
497		RTFREE(ro->ro_rt);
498		ro->ro_rt = NULL;
499	}
500      }
501}
502
503/*
504 * Create a new TCP control block, making an
505 * empty reassembly queue and hooking it to the argument
506 * protocol control block.  The `inp' parameter must have
507 * come from the zone allocator set up in tcp_init().
508 */
509struct tcpcb *
510tcp_newtcpcb(inp)
511	struct inpcb *inp;
512{
513	struct inp_tp *it;
514	register struct tcpcb *tp;
515#ifdef INET6
516	int isipv6 = (inp->inp_vflag & INP_IPV6) != 0;
517#endif /* INET6 */
518
519	it = (struct inp_tp *)inp;
520	tp = &it->tcb;
521	bzero((char *) tp, sizeof(struct tcpcb));
522	LIST_INIT(&tp->t_segq);
523	tp->t_maxseg = tp->t_maxopd =
524#ifdef INET6
525		isipv6 ? tcp_v6mssdflt :
526#endif /* INET6 */
527		tcp_mssdflt;
528
529	/* Set up our timeouts. */
530	callout_init(tp->tt_rexmt = &it->inp_tp_rexmt, 0);
531	callout_init(tp->tt_persist = &it->inp_tp_persist, 0);
532	callout_init(tp->tt_keep = &it->inp_tp_keep, 0);
533	callout_init(tp->tt_2msl = &it->inp_tp_2msl, 0);
534	callout_init(tp->tt_delack = &it->inp_tp_delack, 0);
535
536	if (tcp_do_rfc1323)
537		tp->t_flags = (TF_REQ_SCALE|TF_REQ_TSTMP);
538	if (tcp_do_rfc1644)
539		tp->t_flags |= TF_REQ_CC;
540	tp->t_inpcb = inp;	/* XXX */
541	/*
542	 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
543	 * rtt estimate.  Set rttvar so that srtt + 4 * rttvar gives
544	 * reasonable initial retransmit time.
545	 */
546	tp->t_srtt = TCPTV_SRTTBASE;
547	tp->t_rttvar = ((TCPTV_RTOBASE - TCPTV_SRTTBASE) << TCP_RTTVAR_SHIFT) / 4;
548	tp->t_rttmin = TCPTV_MIN;
549	tp->t_rxtcur = TCPTV_RTOBASE;
550	tp->snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
551	tp->snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT;
552	tp->t_rcvtime = ticks;
553        /*
554	 * IPv4 TTL initialization is necessary for an IPv6 socket as well,
555	 * because the socket may be bound to an IPv6 wildcard address,
556	 * which may match an IPv4-mapped IPv6 address.
557	 */
558	inp->inp_ip_ttl = ip_defttl;
559	inp->inp_ppcb = (caddr_t)tp;
560	return (tp);		/* XXX */
561}
562
563/*
564 * Drop a TCP connection, reporting
565 * the specified error.  If connection is synchronized,
566 * then send a RST to peer.
567 */
568struct tcpcb *
569tcp_drop(tp, errno)
570	register struct tcpcb *tp;
571	int errno;
572{
573	struct socket *so = tp->t_inpcb->inp_socket;
574
575	if (TCPS_HAVERCVDSYN(tp->t_state)) {
576		tp->t_state = TCPS_CLOSED;
577		(void) tcp_output(tp);
578		tcpstat.tcps_drops++;
579	} else
580		tcpstat.tcps_conndrops++;
581	if (errno == ETIMEDOUT && tp->t_softerror)
582		errno = tp->t_softerror;
583	so->so_error = errno;
584	return (tcp_close(tp));
585}
586
587/*
588 * Close a TCP control block:
589 *	discard all space held by the tcp
590 *	discard internet protocol block
591 *	wake up any sleepers
592 */
593struct tcpcb *
594tcp_close(tp)
595	register struct tcpcb *tp;
596{
597	register struct tseg_qent *q;
598	struct inpcb *inp = tp->t_inpcb;
599	struct socket *so = inp->inp_socket;
600#ifdef INET6
601	int isipv6 = (inp->inp_vflag & INP_IPV6) != 0;
602#endif /* INET6 */
603	register struct rtentry *rt;
604	int dosavessthresh;
605
606	/*
607	 * Make sure that all of our timers are stopped before we
608	 * delete the PCB.
609	 */
610	callout_stop(tp->tt_rexmt);
611	callout_stop(tp->tt_persist);
612	callout_stop(tp->tt_keep);
613	callout_stop(tp->tt_2msl);
614	callout_stop(tp->tt_delack);
615
616	/*
617	 * If we got enough samples through the srtt filter,
618	 * save the rtt and rttvar in the routing entry.
619	 * 'Enough' is arbitrarily defined as the 16 samples.
620	 * 16 samples is enough for the srtt filter to converge
621	 * to within 5% of the correct value; fewer samples and
622	 * we could save a very bogus rtt.
623	 *
624	 * Don't update the default route's characteristics and don't
625	 * update anything that the user "locked".
626	 */
627	if (tp->t_rttupdated >= 16) {
628		register u_long i = 0;
629#ifdef INET6
630		if (isipv6) {
631			struct sockaddr_in6 *sin6;
632
633			if ((rt = inp->in6p_route.ro_rt) == NULL)
634				goto no_valid_rt;
635			sin6 = (struct sockaddr_in6 *)rt_key(rt);
636			if (IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr))
637				goto no_valid_rt;
638		}
639		else
640#endif /* INET6 */
641		if ((rt = inp->inp_route.ro_rt) == NULL ||
642		    ((struct sockaddr_in *)rt_key(rt))->sin_addr.s_addr
643		    == INADDR_ANY)
644			goto no_valid_rt;
645
646		if ((rt->rt_rmx.rmx_locks & RTV_RTT) == 0) {
647			i = tp->t_srtt *
648			    (RTM_RTTUNIT / (hz * TCP_RTT_SCALE));
649			if (rt->rt_rmx.rmx_rtt && i)
650				/*
651				 * filter this update to half the old & half
652				 * the new values, converting scale.
653				 * See route.h and tcp_var.h for a
654				 * description of the scaling constants.
655				 */
656				rt->rt_rmx.rmx_rtt =
657				    (rt->rt_rmx.rmx_rtt + i) / 2;
658			else
659				rt->rt_rmx.rmx_rtt = i;
660			tcpstat.tcps_cachedrtt++;
661		}
662		if ((rt->rt_rmx.rmx_locks & RTV_RTTVAR) == 0) {
663			i = tp->t_rttvar *
664			    (RTM_RTTUNIT / (hz * TCP_RTTVAR_SCALE));
665			if (rt->rt_rmx.rmx_rttvar && i)
666				rt->rt_rmx.rmx_rttvar =
667				    (rt->rt_rmx.rmx_rttvar + i) / 2;
668			else
669				rt->rt_rmx.rmx_rttvar = i;
670			tcpstat.tcps_cachedrttvar++;
671		}
672		/*
673		 * The old comment here said:
674		 * update the pipelimit (ssthresh) if it has been updated
675		 * already or if a pipesize was specified & the threshhold
676		 * got below half the pipesize.  I.e., wait for bad news
677		 * before we start updating, then update on both good
678		 * and bad news.
679		 *
680		 * But we want to save the ssthresh even if no pipesize is
681		 * specified explicitly in the route, because such
682		 * connections still have an implicit pipesize specified
683		 * by the global tcp_sendspace.  In the absence of a reliable
684		 * way to calculate the pipesize, it will have to do.
685		 */
686		i = tp->snd_ssthresh;
687		if (rt->rt_rmx.rmx_sendpipe != 0)
688			dosavessthresh = (i < rt->rt_rmx.rmx_sendpipe / 2);
689		else
690			dosavessthresh = (i < so->so_snd.sb_hiwat / 2);
691		if (((rt->rt_rmx.rmx_locks & RTV_SSTHRESH) == 0 &&
692		     i != 0 && rt->rt_rmx.rmx_ssthresh != 0)
693		    || dosavessthresh) {
694			/*
695			 * convert the limit from user data bytes to
696			 * packets then to packet data bytes.
697			 */
698			i = (i + tp->t_maxseg / 2) / tp->t_maxseg;
699			if (i < 2)
700				i = 2;
701			i *= (u_long)(tp->t_maxseg +
702#ifdef INET6
703				      (isipv6 ? sizeof (struct ip6_hdr) +
704					       sizeof (struct tcphdr) :
705#endif
706				       sizeof (struct tcpiphdr)
707#ifdef INET6
708				       )
709#endif
710				      );
711			if (rt->rt_rmx.rmx_ssthresh)
712				rt->rt_rmx.rmx_ssthresh =
713				    (rt->rt_rmx.rmx_ssthresh + i) / 2;
714			else
715				rt->rt_rmx.rmx_ssthresh = i;
716			tcpstat.tcps_cachedssthresh++;
717		}
718	}
719    no_valid_rt:
720	/* free the reassembly queue, if any */
721	while((q = LIST_FIRST(&tp->t_segq)) != NULL) {
722		LIST_REMOVE(q, tqe_q);
723		m_freem(q->tqe_m);
724		FREE(q, M_TSEGQ);
725	}
726	inp->inp_ppcb = NULL;
727	soisdisconnected(so);
728#ifdef INET6
729	if (INP_CHECK_SOCKAF(so, AF_INET6))
730		in6_pcbdetach(inp);
731	else
732#endif /* INET6 */
733	in_pcbdetach(inp);
734	tcpstat.tcps_closed++;
735	return ((struct tcpcb *)0);
736}
737
738void
739tcp_drain()
740{
741	if (do_tcpdrain)
742	{
743		struct inpcb *inpb;
744		struct tcpcb *tcpb;
745		struct tseg_qent *te;
746
747	/*
748	 * Walk the tcpbs, if existing, and flush the reassembly queue,
749	 * if there is one...
750	 * XXX: The "Net/3" implementation doesn't imply that the TCP
751	 *      reassembly queue should be flushed, but in a situation
752	 * 	where we're really low on mbufs, this is potentially
753	 *  	usefull.
754	 */
755		LIST_FOREACH(inpb, tcbinfo.listhead, inp_list) {
756			if ((tcpb = intotcpcb(inpb))) {
757				while ((te = LIST_FIRST(&tcpb->t_segq))
758			            != NULL) {
759					LIST_REMOVE(te, tqe_q);
760					m_freem(te->tqe_m);
761					FREE(te, M_TSEGQ);
762				}
763			}
764		}
765	}
766}
767
768/*
769 * Notify a tcp user of an asynchronous error;
770 * store error as soft error, but wake up user
771 * (for now, won't do anything until can select for soft error).
772 *
773 * Do not wake up user since there currently is no mechanism for
774 * reporting soft errors (yet - a kqueue filter may be added).
775 */
776static void
777tcp_notify(inp, error)
778	struct inpcb *inp;
779	int error;
780{
781	struct tcpcb *tp = (struct tcpcb *)inp->inp_ppcb;
782
783	/*
784	 * Ignore some errors if we are hooked up.
785	 * If connection hasn't completed, has retransmitted several times,
786	 * and receives a second error, give up now.  This is better
787	 * than waiting a long time to establish a connection that
788	 * can never complete.
789	 */
790	if (tp->t_state == TCPS_ESTABLISHED &&
791	     (error == EHOSTUNREACH || error == ENETUNREACH ||
792	      error == EHOSTDOWN)) {
793		return;
794	} else if (tp->t_state < TCPS_ESTABLISHED && tp->t_rxtshift > 3 &&
795	    tp->t_softerror)
796		tcp_drop(tp, error);
797	else
798		tp->t_softerror = error;
799#if 0
800	wakeup((caddr_t) &so->so_timeo);
801	sorwakeup(so);
802	sowwakeup(so);
803#endif
804}
805
806static int
807tcp_pcblist(SYSCTL_HANDLER_ARGS)
808{
809	int error, i, n, s;
810	struct inpcb *inp, **inp_list;
811	inp_gen_t gencnt;
812	struct xinpgen xig;
813
814	/*
815	 * The process of preparing the TCB list is too time-consuming and
816	 * resource-intensive to repeat twice on every request.
817	 */
818	if (req->oldptr == 0) {
819		n = tcbinfo.ipi_count;
820		req->oldidx = 2 * (sizeof xig)
821			+ (n + n/8) * sizeof(struct xtcpcb);
822		return 0;
823	}
824
825	if (req->newptr != 0)
826		return EPERM;
827
828	/*
829	 * OK, now we're committed to doing something.
830	 */
831	s = splnet();
832	gencnt = tcbinfo.ipi_gencnt;
833	n = tcbinfo.ipi_count;
834	splx(s);
835
836	xig.xig_len = sizeof xig;
837	xig.xig_count = n;
838	xig.xig_gen = gencnt;
839	xig.xig_sogen = so_gencnt;
840	error = SYSCTL_OUT(req, &xig, sizeof xig);
841	if (error)
842		return error;
843
844	inp_list = malloc(n * sizeof *inp_list, M_TEMP, M_WAITOK);
845	if (inp_list == 0)
846		return ENOMEM;
847
848	s = splnet();
849	for (inp = LIST_FIRST(tcbinfo.listhead), i = 0; inp && i < n;
850	     inp = LIST_NEXT(inp, inp_list)) {
851		if (inp->inp_gencnt <= gencnt) {
852			if (cr_cansee(req->td->td_ucred,
853			    inp->inp_socket->so_cred))
854				continue;
855			inp_list[i++] = inp;
856		}
857	}
858	splx(s);
859	n = i;
860
861	error = 0;
862	for (i = 0; i < n; i++) {
863		inp = inp_list[i];
864		if (inp->inp_gencnt <= gencnt) {
865			struct xtcpcb xt;
866			caddr_t inp_ppcb;
867			xt.xt_len = sizeof xt;
868			/* XXX should avoid extra copy */
869			bcopy(inp, &xt.xt_inp, sizeof *inp);
870			inp_ppcb = inp->inp_ppcb;
871			if (inp_ppcb != NULL)
872				bcopy(inp_ppcb, &xt.xt_tp, sizeof xt.xt_tp);
873			else
874				bzero((char *) &xt.xt_tp, sizeof xt.xt_tp);
875			if (inp->inp_socket)
876				sotoxsocket(inp->inp_socket, &xt.xt_socket);
877			error = SYSCTL_OUT(req, &xt, sizeof xt);
878		}
879	}
880	if (!error) {
881		/*
882		 * Give the user an updated idea of our state.
883		 * If the generation differs from what we told
884		 * her before, she knows that something happened
885		 * while we were processing this request, and it
886		 * might be necessary to retry.
887		 */
888		s = splnet();
889		xig.xig_gen = tcbinfo.ipi_gencnt;
890		xig.xig_sogen = so_gencnt;
891		xig.xig_count = tcbinfo.ipi_count;
892		splx(s);
893		error = SYSCTL_OUT(req, &xig, sizeof xig);
894	}
895	free(inp_list, M_TEMP);
896	return error;
897}
898
899SYSCTL_PROC(_net_inet_tcp, TCPCTL_PCBLIST, pcblist, CTLFLAG_RD, 0, 0,
900	    tcp_pcblist, "S,xtcpcb", "List of active TCP connections");
901
902static int
903tcp_getcred(SYSCTL_HANDLER_ARGS)
904{
905	struct xucred xuc;
906	struct sockaddr_in addrs[2];
907	struct inpcb *inp;
908	int error, s;
909
910	error = suser_xxx(0, req->td->td_proc, PRISON_ROOT);
911	if (error)
912		return (error);
913	error = SYSCTL_IN(req, addrs, sizeof(addrs));
914	if (error)
915		return (error);
916	s = splnet();
917	inp = in_pcblookup_hash(&tcbinfo, addrs[1].sin_addr, addrs[1].sin_port,
918	    addrs[0].sin_addr, addrs[0].sin_port, 0, NULL);
919	if (inp == NULL || inp->inp_socket == NULL) {
920		error = ENOENT;
921		goto out;
922	}
923	error = cr_cansee(req->td->td_ucred, inp->inp_socket->so_cred);
924	if (error)
925		goto out;
926	cru2x(inp->inp_socket->so_cred, &xuc);
927	error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred));
928out:
929	splx(s);
930	return (error);
931}
932
933SYSCTL_PROC(_net_inet_tcp, OID_AUTO, getcred,
934    CTLTYPE_OPAQUE|CTLFLAG_RW|CTLFLAG_PRISON, 0, 0,
935    tcp_getcred, "S,xucred", "Get the xucred of a TCP connection");
936
937#ifdef INET6
938static int
939tcp6_getcred(SYSCTL_HANDLER_ARGS)
940{
941	struct xucred xuc;
942	struct sockaddr_in6 addrs[2];
943	struct inpcb *inp;
944	int error, s, mapped = 0;
945
946	error = suser_xxx(0, req->td->td_proc, PRISON_ROOT);
947	if (error)
948		return (error);
949	error = SYSCTL_IN(req, addrs, sizeof(addrs));
950	if (error)
951		return (error);
952	if (IN6_IS_ADDR_V4MAPPED(&addrs[0].sin6_addr)) {
953		if (IN6_IS_ADDR_V4MAPPED(&addrs[1].sin6_addr))
954			mapped = 1;
955		else
956			return (EINVAL);
957	}
958	s = splnet();
959	if (mapped == 1)
960		inp = in_pcblookup_hash(&tcbinfo,
961			*(struct in_addr *)&addrs[1].sin6_addr.s6_addr[12],
962			addrs[1].sin6_port,
963			*(struct in_addr *)&addrs[0].sin6_addr.s6_addr[12],
964			addrs[0].sin6_port,
965			0, NULL);
966	else
967		inp = in6_pcblookup_hash(&tcbinfo, &addrs[1].sin6_addr,
968				 addrs[1].sin6_port,
969				 &addrs[0].sin6_addr, addrs[0].sin6_port,
970				 0, NULL);
971	if (inp == NULL || inp->inp_socket == NULL) {
972		error = ENOENT;
973		goto out;
974	}
975	error = cr_cansee(req->td->td_ucred, inp->inp_socket->so_cred);
976	if (error)
977		goto out;
978	cru2x(inp->inp_socket->so_cred, &xuc);
979	error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred));
980out:
981	splx(s);
982	return (error);
983}
984
985SYSCTL_PROC(_net_inet6_tcp6, OID_AUTO, getcred,
986    CTLTYPE_OPAQUE|CTLFLAG_RW|CTLFLAG_PRISON, 0, 0,
987    tcp6_getcred, "S,xucred", "Get the xucred of a TCP6 connection");
988#endif
989
990
991void
992tcp_ctlinput(cmd, sa, vip)
993	int cmd;
994	struct sockaddr *sa;
995	void *vip;
996{
997	struct ip *ip = vip;
998	struct tcphdr *th;
999	struct in_addr faddr;
1000	struct inpcb *inp;
1001	struct tcpcb *tp;
1002	void (*notify)(struct inpcb *, int) = tcp_notify;
1003	tcp_seq icmp_seq;
1004	int s;
1005
1006	faddr = ((struct sockaddr_in *)sa)->sin_addr;
1007	if (sa->sa_family != AF_INET || faddr.s_addr == INADDR_ANY)
1008		return;
1009
1010	if (cmd == PRC_QUENCH)
1011		notify = tcp_quench;
1012	else if (icmp_may_rst && (cmd == PRC_UNREACH_ADMIN_PROHIB ||
1013		cmd == PRC_UNREACH_PORT) && ip)
1014		notify = tcp_drop_syn_sent;
1015	else if (cmd == PRC_MSGSIZE)
1016		notify = tcp_mtudisc;
1017	else if (PRC_IS_REDIRECT(cmd)) {
1018		ip = 0;
1019		notify = in_rtchange;
1020	} else if (cmd == PRC_HOSTDEAD)
1021		ip = 0;
1022	else if ((unsigned)cmd > PRC_NCMDS || inetctlerrmap[cmd] == 0)
1023		return;
1024	if (ip) {
1025		s = splnet();
1026		th = (struct tcphdr *)((caddr_t)ip
1027				       + (IP_VHL_HL(ip->ip_vhl) << 2));
1028		inp = in_pcblookup_hash(&tcbinfo, faddr, th->th_dport,
1029		    ip->ip_src, th->th_sport, 0, NULL);
1030		if (inp != NULL && inp->inp_socket != NULL) {
1031			icmp_seq = htonl(th->th_seq);
1032			tp = intotcpcb(inp);
1033			if (SEQ_GEQ(icmp_seq, tp->snd_una) &&
1034			    SEQ_LT(icmp_seq, tp->snd_max))
1035				(*notify)(inp, inetctlerrmap[cmd]);
1036		} else {
1037			struct in_conninfo inc;
1038
1039			inc.inc_fport = th->th_dport;
1040			inc.inc_lport = th->th_sport;
1041			inc.inc_faddr = faddr;
1042			inc.inc_laddr = ip->ip_src;
1043#ifdef INET6
1044			inc.inc_isipv6 = 0;
1045#endif
1046			syncache_unreach(&inc, th);
1047		}
1048		splx(s);
1049	} else
1050		in_pcbnotifyall(&tcb, faddr, inetctlerrmap[cmd], notify);
1051}
1052
1053#ifdef INET6
1054void
1055tcp6_ctlinput(cmd, sa, d)
1056	int cmd;
1057	struct sockaddr *sa;
1058	void *d;
1059{
1060	struct tcphdr th;
1061	void (*notify)(struct inpcb *, int) = tcp_notify;
1062	struct ip6_hdr *ip6;
1063	struct mbuf *m;
1064	struct ip6ctlparam *ip6cp = NULL;
1065	const struct sockaddr_in6 *sa6_src = NULL;
1066	int off;
1067	struct tcp_portonly {
1068		u_int16_t th_sport;
1069		u_int16_t th_dport;
1070	} *thp;
1071
1072	if (sa->sa_family != AF_INET6 ||
1073	    sa->sa_len != sizeof(struct sockaddr_in6))
1074		return;
1075
1076	if (cmd == PRC_QUENCH)
1077		notify = tcp_quench;
1078	else if (cmd == PRC_MSGSIZE)
1079		notify = tcp_mtudisc;
1080	else if (!PRC_IS_REDIRECT(cmd) &&
1081		 ((unsigned)cmd > PRC_NCMDS || inet6ctlerrmap[cmd] == 0))
1082		return;
1083
1084	/* if the parameter is from icmp6, decode it. */
1085	if (d != NULL) {
1086		ip6cp = (struct ip6ctlparam *)d;
1087		m = ip6cp->ip6c_m;
1088		ip6 = ip6cp->ip6c_ip6;
1089		off = ip6cp->ip6c_off;
1090		sa6_src = ip6cp->ip6c_src;
1091	} else {
1092		m = NULL;
1093		ip6 = NULL;
1094		off = 0;	/* fool gcc */
1095		sa6_src = &sa6_any;
1096	}
1097
1098	if (ip6) {
1099		struct in_conninfo inc;
1100		/*
1101		 * XXX: We assume that when IPV6 is non NULL,
1102		 * M and OFF are valid.
1103		 */
1104
1105		/* check if we can safely examine src and dst ports */
1106		if (m->m_pkthdr.len < off + sizeof(*thp))
1107			return;
1108
1109		bzero(&th, sizeof(th));
1110		m_copydata(m, off, sizeof(*thp), (caddr_t)&th);
1111
1112		in6_pcbnotify(&tcb, sa, th.th_dport,
1113		    (struct sockaddr *)ip6cp->ip6c_src,
1114		    th.th_sport, cmd, notify);
1115
1116		inc.inc_fport = th.th_dport;
1117		inc.inc_lport = th.th_sport;
1118		inc.inc6_faddr = ((struct sockaddr_in6 *)sa)->sin6_addr;
1119		inc.inc6_laddr = ip6cp->ip6c_src->sin6_addr;
1120		inc.inc_isipv6 = 1;
1121		syncache_unreach(&inc, &th);
1122	} else
1123		in6_pcbnotify(&tcb, sa, 0, (const struct sockaddr *)sa6_src,
1124			      0, cmd, notify);
1125}
1126#endif /* INET6 */
1127
1128
1129/*
1130 * Following is where TCP initial sequence number generation occurs.
1131 *
1132 * There are two places where we must use initial sequence numbers:
1133 * 1.  In SYN-ACK packets.
1134 * 2.  In SYN packets.
1135 *
1136 * The ISNs in SYN-ACK packets have no monotonicity requirement,
1137 * and should be as unpredictable as possible to avoid the possibility
1138 * of spoofing and/or connection hijacking.  To satisfy this
1139 * requirement, SYN-ACK ISNs are generated via the arc4random()
1140 * function.  If exact RFC 1948 compliance is requested via sysctl,
1141 * these ISNs will be generated just like those in SYN packets.
1142 *
1143 * The ISNs in SYN packets must be monotonic; TIME_WAIT recycling
1144 * depends on this property.  In addition, these ISNs should be
1145 * unguessable so as to prevent connection hijacking.  To satisfy
1146 * the requirements of this situation, the algorithm outlined in
1147 * RFC 1948 is used to generate sequence numbers.
1148 *
1149 * For more information on the theory of operation, please see
1150 * RFC 1948.
1151 *
1152 * Implementation details:
1153 *
1154 * Time is based off the system timer, and is corrected so that it
1155 * increases by one megabyte per second.  This allows for proper
1156 * recycling on high speed LANs while still leaving over an hour
1157 * before rollover.
1158 *
1159 * Two sysctls control the generation of ISNs:
1160 *
1161 * net.inet.tcp.isn_reseed_interval controls the number of seconds
1162 * between seeding of isn_secret.  This is normally set to zero,
1163 * as reseeding should not be necessary.
1164 *
1165 * net.inet.tcp.strict_rfc1948 controls whether RFC 1948 is followed
1166 * strictly.  When strict compliance is requested, reseeding is
1167 * disabled and SYN-ACKs will be generated in the same manner as
1168 * SYNs.  Strict mode is disabled by default.
1169 *
1170 */
1171
1172#define ISN_BYTES_PER_SECOND 1048576
1173
1174u_char isn_secret[32];
1175int isn_last_reseed;
1176MD5_CTX isn_ctx;
1177
1178tcp_seq
1179tcp_new_isn(tp)
1180	struct tcpcb *tp;
1181{
1182	u_int32_t md5_buffer[4];
1183	tcp_seq new_isn;
1184
1185	/* Use arc4random for SYN-ACKs when not in exact RFC1948 mode. */
1186	if (((tp->t_state == TCPS_LISTEN) || (tp->t_state == TCPS_TIME_WAIT))
1187	   && tcp_strict_rfc1948 == 0)
1188		return arc4random();
1189
1190	/* Seed if this is the first use, reseed if requested. */
1191	if ((isn_last_reseed == 0) ||
1192	    ((tcp_strict_rfc1948 == 0) && (tcp_isn_reseed_interval > 0) &&
1193	     (((u_int)isn_last_reseed + (u_int)tcp_isn_reseed_interval*hz)
1194		< (u_int)ticks))) {
1195		read_random(&isn_secret, sizeof(isn_secret));
1196		isn_last_reseed = ticks;
1197	}
1198
1199	/* Compute the md5 hash and return the ISN. */
1200	MD5Init(&isn_ctx);
1201	MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_fport, sizeof(u_short));
1202	MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_lport, sizeof(u_short));
1203#ifdef INET6
1204	if ((tp->t_inpcb->inp_vflag & INP_IPV6) != 0) {
1205		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_faddr,
1206			  sizeof(struct in6_addr));
1207		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_laddr,
1208			  sizeof(struct in6_addr));
1209	} else
1210#endif
1211	{
1212		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_faddr,
1213			  sizeof(struct in_addr));
1214		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_laddr,
1215			  sizeof(struct in_addr));
1216	}
1217	MD5Update(&isn_ctx, (u_char *) &isn_secret, sizeof(isn_secret));
1218	MD5Final((u_char *) &md5_buffer, &isn_ctx);
1219	new_isn = (tcp_seq) md5_buffer[0];
1220	new_isn += ticks * (ISN_BYTES_PER_SECOND / hz);
1221	return new_isn;
1222}
1223
1224/*
1225 * When a source quench is received, close congestion window
1226 * to one segment.  We will gradually open it again as we proceed.
1227 */
1228void
1229tcp_quench(inp, errno)
1230	struct inpcb *inp;
1231	int errno;
1232{
1233	struct tcpcb *tp = intotcpcb(inp);
1234
1235	if (tp)
1236		tp->snd_cwnd = tp->t_maxseg;
1237}
1238
1239/*
1240 * When a specific ICMP unreachable message is received and the
1241 * connection state is SYN-SENT, drop the connection.  This behavior
1242 * is controlled by the icmp_may_rst sysctl.
1243 */
1244void
1245tcp_drop_syn_sent(inp, errno)
1246	struct inpcb *inp;
1247	int errno;
1248{
1249	struct tcpcb *tp = intotcpcb(inp);
1250
1251	if (tp && tp->t_state == TCPS_SYN_SENT)
1252		tcp_drop(tp, errno);
1253}
1254
1255/*
1256 * When `need fragmentation' ICMP is received, update our idea of the MSS
1257 * based on the new value in the route.  Also nudge TCP to send something,
1258 * since we know the packet we just sent was dropped.
1259 * This duplicates some code in the tcp_mss() function in tcp_input.c.
1260 */
1261void
1262tcp_mtudisc(inp, errno)
1263	struct inpcb *inp;
1264	int errno;
1265{
1266	struct tcpcb *tp = intotcpcb(inp);
1267	struct rtentry *rt;
1268	struct rmxp_tao *taop;
1269	struct socket *so = inp->inp_socket;
1270	int offered;
1271	int mss;
1272#ifdef INET6
1273	int isipv6 = (tp->t_inpcb->inp_vflag & INP_IPV6) != 0;
1274#endif /* INET6 */
1275
1276	if (tp) {
1277#ifdef INET6
1278		if (isipv6)
1279			rt = tcp_rtlookup6(&inp->inp_inc);
1280		else
1281#endif /* INET6 */
1282		rt = tcp_rtlookup(&inp->inp_inc);
1283		if (!rt || !rt->rt_rmx.rmx_mtu) {
1284			tp->t_maxopd = tp->t_maxseg =
1285#ifdef INET6
1286				isipv6 ? tcp_v6mssdflt :
1287#endif /* INET6 */
1288				tcp_mssdflt;
1289			return;
1290		}
1291		taop = rmx_taop(rt->rt_rmx);
1292		offered = taop->tao_mssopt;
1293		mss = rt->rt_rmx.rmx_mtu -
1294#ifdef INET6
1295			(isipv6 ?
1296			 sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
1297#endif /* INET6 */
1298			 sizeof(struct tcpiphdr)
1299#ifdef INET6
1300			 )
1301#endif /* INET6 */
1302			;
1303
1304		if (offered)
1305			mss = min(mss, offered);
1306		/*
1307		 * XXX - The above conditional probably violates the TCP
1308		 * spec.  The problem is that, since we don't know the
1309		 * other end's MSS, we are supposed to use a conservative
1310		 * default.  But, if we do that, then MTU discovery will
1311		 * never actually take place, because the conservative
1312		 * default is much less than the MTUs typically seen
1313		 * on the Internet today.  For the moment, we'll sweep
1314		 * this under the carpet.
1315		 *
1316		 * The conservative default might not actually be a problem
1317		 * if the only case this occurs is when sending an initial
1318		 * SYN with options and data to a host we've never talked
1319		 * to before.  Then, they will reply with an MSS value which
1320		 * will get recorded and the new parameters should get
1321		 * recomputed.  For Further Study.
1322		 */
1323		if (tp->t_maxopd <= mss)
1324			return;
1325		tp->t_maxopd = mss;
1326
1327		if ((tp->t_flags & (TF_REQ_TSTMP|TF_NOOPT)) == TF_REQ_TSTMP &&
1328		    (tp->t_flags & TF_RCVD_TSTMP) == TF_RCVD_TSTMP)
1329			mss -= TCPOLEN_TSTAMP_APPA;
1330		if ((tp->t_flags & (TF_REQ_CC|TF_NOOPT)) == TF_REQ_CC &&
1331		    (tp->t_flags & TF_RCVD_CC) == TF_RCVD_CC)
1332			mss -= TCPOLEN_CC_APPA;
1333#if	(MCLBYTES & (MCLBYTES - 1)) == 0
1334		if (mss > MCLBYTES)
1335			mss &= ~(MCLBYTES-1);
1336#else
1337		if (mss > MCLBYTES)
1338			mss = mss / MCLBYTES * MCLBYTES;
1339#endif
1340		if (so->so_snd.sb_hiwat < mss)
1341			mss = so->so_snd.sb_hiwat;
1342
1343		tp->t_maxseg = mss;
1344
1345		tcpstat.tcps_mturesent++;
1346		tp->t_rtttime = 0;
1347		tp->snd_nxt = tp->snd_una;
1348		tcp_output(tp);
1349	}
1350}
1351
1352/*
1353 * Look-up the routing entry to the peer of this inpcb.  If no route
1354 * is found and it cannot be allocated the return NULL.  This routine
1355 * is called by TCP routines that access the rmx structure and by tcp_mss
1356 * to get the interface MTU.
1357 */
1358struct rtentry *
1359tcp_rtlookup(inc)
1360	struct in_conninfo *inc;
1361{
1362	struct route *ro;
1363	struct rtentry *rt;
1364
1365	ro = &inc->inc_route;
1366	rt = ro->ro_rt;
1367	if (rt == NULL || !(rt->rt_flags & RTF_UP)) {
1368		/* No route yet, so try to acquire one */
1369		if (inc->inc_faddr.s_addr != INADDR_ANY) {
1370			ro->ro_dst.sa_family = AF_INET;
1371			ro->ro_dst.sa_len = sizeof(struct sockaddr_in);
1372			((struct sockaddr_in *) &ro->ro_dst)->sin_addr =
1373			    inc->inc_faddr;
1374			rtalloc(ro);
1375			rt = ro->ro_rt;
1376		}
1377	}
1378	return rt;
1379}
1380
1381#ifdef INET6
1382struct rtentry *
1383tcp_rtlookup6(inc)
1384	struct in_conninfo *inc;
1385{
1386	struct route_in6 *ro6;
1387	struct rtentry *rt;
1388
1389	ro6 = &inc->inc6_route;
1390	rt = ro6->ro_rt;
1391	if (rt == NULL || !(rt->rt_flags & RTF_UP)) {
1392		/* No route yet, so try to acquire one */
1393		if (!IN6_IS_ADDR_UNSPECIFIED(&inc->inc6_faddr)) {
1394			ro6->ro_dst.sin6_family = AF_INET6;
1395			ro6->ro_dst.sin6_len = sizeof(struct sockaddr_in6);
1396			ro6->ro_dst.sin6_addr = inc->inc6_faddr;
1397			rtalloc((struct route *)ro6);
1398			rt = ro6->ro_rt;
1399		}
1400	}
1401	return rt;
1402}
1403#endif /* INET6 */
1404
1405#ifdef IPSEC
1406/* compute ESP/AH header size for TCP, including outer IP header. */
1407size_t
1408ipsec_hdrsiz_tcp(tp)
1409	struct tcpcb *tp;
1410{
1411	struct inpcb *inp;
1412	struct mbuf *m;
1413	size_t hdrsiz;
1414	struct ip *ip;
1415#ifdef INET6
1416	struct ip6_hdr *ip6;
1417#endif /* INET6 */
1418	struct tcphdr *th;
1419
1420	if ((tp == NULL) || ((inp = tp->t_inpcb) == NULL))
1421		return 0;
1422	MGETHDR(m, M_DONTWAIT, MT_DATA);
1423	if (!m)
1424		return 0;
1425
1426#ifdef INET6
1427	if ((inp->inp_vflag & INP_IPV6) != 0) {
1428		ip6 = mtod(m, struct ip6_hdr *);
1429		th = (struct tcphdr *)(ip6 + 1);
1430		m->m_pkthdr.len = m->m_len =
1431			sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
1432		tcp_fillheaders(tp, ip6, th);
1433		hdrsiz = ipsec6_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
1434	} else
1435#endif /* INET6 */
1436      {
1437	ip = mtod(m, struct ip *);
1438	th = (struct tcphdr *)(ip + 1);
1439	m->m_pkthdr.len = m->m_len = sizeof(struct tcpiphdr);
1440	tcp_fillheaders(tp, ip, th);
1441	hdrsiz = ipsec4_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
1442      }
1443
1444	m_free(m);
1445	return hdrsiz;
1446}
1447#endif /*IPSEC*/
1448
1449/*
1450 * Return a pointer to the cached information about the remote host.
1451 * The cached information is stored in the protocol specific part of
1452 * the route metrics.
1453 */
1454struct rmxp_tao *
1455tcp_gettaocache(inc)
1456	struct in_conninfo *inc;
1457{
1458	struct rtentry *rt;
1459
1460#ifdef INET6
1461	if (inc->inc_isipv6)
1462		rt = tcp_rtlookup6(inc);
1463	else
1464#endif /* INET6 */
1465	rt = tcp_rtlookup(inc);
1466
1467	/* Make sure this is a host route and is up. */
1468	if (rt == NULL ||
1469	    (rt->rt_flags & (RTF_UP|RTF_HOST)) != (RTF_UP|RTF_HOST))
1470		return NULL;
1471
1472	return rmx_taop(rt->rt_rmx);
1473}
1474
1475/*
1476 * Clear all the TAO cache entries, called from tcp_init.
1477 *
1478 * XXX
1479 * This routine is just an empty one, because we assume that the routing
1480 * routing tables are initialized at the same time when TCP, so there is
1481 * nothing in the cache left over.
1482 */
1483static void
1484tcp_cleartaocache()
1485{
1486}
1487