tcp_timewait.c revision 80429
1/*
2 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 *    must display the following acknowledgement:
15 *	This product includes software developed by the University of
16 *	California, Berkeley and its contributors.
17 * 4. Neither the name of the University nor the names of its contributors
18 *    may be used to endorse or promote products derived from this software
19 *    without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
32 *
33 *	@(#)tcp_subr.c	8.2 (Berkeley) 5/24/95
34 * $FreeBSD: head/sys/netinet/tcp_timewait.c 80429 2001-07-27 00:04:39Z peter $
35 */
36
37#include "opt_compat.h"
38#include "opt_inet6.h"
39#include "opt_ipsec.h"
40#include "opt_tcpdebug.h"
41
42#include <sys/param.h>
43#include <sys/systm.h>
44#include <sys/callout.h>
45#include <sys/kernel.h>
46#include <sys/sysctl.h>
47#include <sys/malloc.h>
48#include <sys/mbuf.h>
49#ifdef INET6
50#include <sys/domain.h>
51#endif
52#include <sys/proc.h>
53#include <sys/socket.h>
54#include <sys/socketvar.h>
55#include <sys/protosw.h>
56#include <sys/random.h>
57
58#include <vm/vm_zone.h>
59
60#include <net/route.h>
61#include <net/if.h>
62
63#define _IP_VHL
64#include <netinet/in.h>
65#include <netinet/in_systm.h>
66#include <netinet/ip.h>
67#ifdef INET6
68#include <netinet/ip6.h>
69#endif
70#include <netinet/in_pcb.h>
71#ifdef INET6
72#include <netinet6/in6_pcb.h>
73#endif
74#include <netinet/in_var.h>
75#include <netinet/ip_var.h>
76#ifdef INET6
77#include <netinet6/ip6_var.h>
78#endif
79#include <netinet/tcp.h>
80#include <netinet/tcp_fsm.h>
81#include <netinet/tcp_seq.h>
82#include <netinet/tcp_timer.h>
83#include <netinet/tcp_var.h>
84#ifdef INET6
85#include <netinet6/tcp6_var.h>
86#endif
87#include <netinet/tcpip.h>
88#ifdef TCPDEBUG
89#include <netinet/tcp_debug.h>
90#endif
91#include <netinet6/ip6protosw.h>
92
93#ifdef IPSEC
94#include <netinet6/ipsec.h>
95#ifdef INET6
96#include <netinet6/ipsec6.h>
97#endif
98#endif /*IPSEC*/
99
100#include <machine/in_cksum.h>
101
102int 	tcp_mssdflt = TCP_MSS;
103SYSCTL_INT(_net_inet_tcp, TCPCTL_MSSDFLT, mssdflt, CTLFLAG_RW,
104    &tcp_mssdflt , 0, "Default TCP Maximum Segment Size");
105
106#ifdef INET6
107int	tcp_v6mssdflt = TCP6_MSS;
108SYSCTL_INT(_net_inet_tcp, TCPCTL_V6MSSDFLT, v6mssdflt,
109	CTLFLAG_RW, &tcp_v6mssdflt , 0,
110	"Default TCP Maximum Segment Size for IPv6");
111#endif
112
113#if 0
114static int 	tcp_rttdflt = TCPTV_SRTTDFLT / PR_SLOWHZ;
115SYSCTL_INT(_net_inet_tcp, TCPCTL_RTTDFLT, rttdflt, CTLFLAG_RW,
116    &tcp_rttdflt , 0, "Default maximum TCP Round Trip Time");
117#endif
118
119static int	tcp_do_rfc1323 = 1;
120SYSCTL_INT(_net_inet_tcp, TCPCTL_DO_RFC1323, rfc1323, CTLFLAG_RW,
121    &tcp_do_rfc1323 , 0, "Enable rfc1323 (high performance TCP) extensions");
122
123static int	tcp_do_rfc1644 = 0;
124SYSCTL_INT(_net_inet_tcp, TCPCTL_DO_RFC1644, rfc1644, CTLFLAG_RW,
125    &tcp_do_rfc1644 , 0, "Enable rfc1644 (TTCP) extensions");
126
127static int	tcp_tcbhashsize = 0;
128SYSCTL_INT(_net_inet_tcp, OID_AUTO, tcbhashsize, CTLFLAG_RD,
129     &tcp_tcbhashsize, 0, "Size of TCP control-block hashtable");
130
131static int	do_tcpdrain = 1;
132SYSCTL_INT(_net_inet_tcp, OID_AUTO, do_tcpdrain, CTLFLAG_RW, &do_tcpdrain, 0,
133     "Enable tcp_drain routine for extra help when low on mbufs");
134
135SYSCTL_INT(_net_inet_tcp, OID_AUTO, pcbcount, CTLFLAG_RD,
136    &tcbinfo.ipi_count, 0, "Number of active PCBs");
137
138static int	icmp_may_rst = 1;
139SYSCTL_INT(_net_inet_tcp, OID_AUTO, icmp_may_rst, CTLFLAG_RW, &icmp_may_rst, 0,
140    "Certain ICMP unreachable messages may abort connections in SYN_SENT");
141
142static int	tcp_seq_genscheme = 1;
143SYSCTL_INT(_net_inet_tcp, OID_AUTO, tcp_seq_genscheme, CTLFLAG_RW,
144    &tcp_seq_genscheme, 0, "TCP ISN generation scheme");
145
146static void	tcp_cleartaocache __P((void));
147static void	tcp_notify __P((struct inpcb *, int));
148
149/*
150 * Target size of TCP PCB hash tables. Must be a power of two.
151 *
152 * Note that this can be overridden by the kernel environment
153 * variable net.inet.tcp.tcbhashsize
154 */
155#ifndef TCBHASHSIZE
156#define TCBHASHSIZE	512
157#endif
158
159/*
160 * This is the actual shape of what we allocate using the zone
161 * allocator.  Doing it this way allows us to protect both structures
162 * using the same generation count, and also eliminates the overhead
163 * of allocating tcpcbs separately.  By hiding the structure here,
164 * we avoid changing most of the rest of the code (although it needs
165 * to be changed, eventually, for greater efficiency).
166 */
167#define	ALIGNMENT	32
168#define	ALIGNM1		(ALIGNMENT - 1)
169struct	inp_tp {
170	union {
171		struct	inpcb inp;
172		char	align[(sizeof(struct inpcb) + ALIGNM1) & ~ALIGNM1];
173	} inp_tp_u;
174	struct	tcpcb tcb;
175	struct	callout inp_tp_rexmt, inp_tp_persist, inp_tp_keep, inp_tp_2msl;
176	struct	callout inp_tp_delack;
177};
178#undef ALIGNMENT
179#undef ALIGNM1
180
181/*
182 * Tcp initialization
183 */
184void
185tcp_init()
186{
187	int hashsize = TCBHASHSIZE;
188
189	tcp_iss = arc4random();	/* wrong, but better than a constant */
190	tcp_ccgen = 1;
191	tcp_cleartaocache();
192
193	tcp_delacktime = TCPTV_DELACK;
194	tcp_keepinit = TCPTV_KEEP_INIT;
195	tcp_keepidle = TCPTV_KEEP_IDLE;
196	tcp_keepintvl = TCPTV_KEEPINTVL;
197	tcp_maxpersistidle = TCPTV_KEEP_IDLE;
198	tcp_msl = TCPTV_MSL;
199
200	LIST_INIT(&tcb);
201	tcbinfo.listhead = &tcb;
202	TUNABLE_INT_FETCH("net.inet.tcp.tcbhashsize", &hashsize);
203	if (!powerof2(hashsize)) {
204		printf("WARNING: TCB hash size not a power of 2\n");
205		hashsize = 512; /* safe default */
206	}
207	tcp_tcbhashsize = hashsize;
208	tcbinfo.hashbase = hashinit(hashsize, M_PCB, &tcbinfo.hashmask);
209	tcbinfo.porthashbase = hashinit(hashsize, M_PCB,
210					&tcbinfo.porthashmask);
211	tcbinfo.ipi_zone = zinit("tcpcb", sizeof(struct inp_tp), maxsockets,
212				 ZONE_INTERRUPT, 0);
213#ifdef INET6
214#define TCP_MINPROTOHDR (sizeof(struct ip6_hdr) + sizeof(struct tcphdr))
215#else /* INET6 */
216#define TCP_MINPROTOHDR (sizeof(struct tcpiphdr))
217#endif /* INET6 */
218	if (max_protohdr < TCP_MINPROTOHDR)
219		max_protohdr = TCP_MINPROTOHDR;
220	if (max_linkhdr + TCP_MINPROTOHDR > MHLEN)
221		panic("tcp_init");
222#undef TCP_MINPROTOHDR
223}
224
225/*
226 * Fill in the IP and TCP headers for an outgoing packet, given the tcpcb.
227 * tcp_template used to store this data in mbufs, but we now recopy it out
228 * of the tcpcb each time to conserve mbufs.
229 */
230void
231tcp_fillheaders(tp, ip_ptr, tcp_ptr)
232	struct tcpcb *tp;
233	void *ip_ptr;
234	void *tcp_ptr;
235{
236	struct inpcb *inp = tp->t_inpcb;
237	struct tcphdr *tcp_hdr = (struct tcphdr *)tcp_ptr;
238
239#ifdef INET6
240	if ((inp->inp_vflag & INP_IPV6) != 0) {
241		struct ip6_hdr *ip6;
242
243		ip6 = (struct ip6_hdr *)ip_ptr;
244		ip6->ip6_flow = (ip6->ip6_flow & ~IPV6_FLOWINFO_MASK) |
245			(inp->in6p_flowinfo & IPV6_FLOWINFO_MASK);
246		ip6->ip6_vfc = (ip6->ip6_vfc & ~IPV6_VERSION_MASK) |
247			(IPV6_VERSION & IPV6_VERSION_MASK);
248		ip6->ip6_nxt = IPPROTO_TCP;
249		ip6->ip6_plen = sizeof(struct tcphdr);
250		ip6->ip6_src = inp->in6p_laddr;
251		ip6->ip6_dst = inp->in6p_faddr;
252		tcp_hdr->th_sum = 0;
253	} else
254#endif
255	{
256	struct ip *ip = (struct ip *) ip_ptr;
257
258	ip->ip_vhl = IP_VHL_BORING;
259	ip->ip_tos = 0;
260	ip->ip_len = 0;
261	ip->ip_id = 0;
262	ip->ip_off = 0;
263	ip->ip_ttl = 0;
264	ip->ip_sum = 0;
265	ip->ip_p = IPPROTO_TCP;
266	ip->ip_src = inp->inp_laddr;
267	ip->ip_dst = inp->inp_faddr;
268	tcp_hdr->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
269		htons(sizeof(struct tcphdr) + IPPROTO_TCP));
270	}
271
272	tcp_hdr->th_sport = inp->inp_lport;
273	tcp_hdr->th_dport = inp->inp_fport;
274	tcp_hdr->th_seq = 0;
275	tcp_hdr->th_ack = 0;
276	tcp_hdr->th_x2 = 0;
277	tcp_hdr->th_off = 5;
278	tcp_hdr->th_flags = 0;
279	tcp_hdr->th_win = 0;
280	tcp_hdr->th_urp = 0;
281}
282
283/*
284 * Create template to be used to send tcp packets on a connection.
285 * Allocates an mbuf and fills in a skeletal tcp/ip header.  The only
286 * use for this function is in keepalives, which use tcp_respond.
287 */
288struct tcptemp *
289tcp_maketemplate(tp)
290	struct tcpcb *tp;
291{
292	struct mbuf *m;
293	struct tcptemp *n;
294
295	m = m_get(M_DONTWAIT, MT_HEADER);
296	if (m == NULL)
297		return (0);
298	m->m_len = sizeof(struct tcptemp);
299	n = mtod(m, struct tcptemp *);
300
301	tcp_fillheaders(tp, (void *)&n->tt_ipgen, (void *)&n->tt_t);
302	return (n);
303}
304
305/*
306 * Send a single message to the TCP at address specified by
307 * the given TCP/IP header.  If m == 0, then we make a copy
308 * of the tcpiphdr at ti and send directly to the addressed host.
309 * This is used to force keep alive messages out using the TCP
310 * template for a connection.  If flags are given then we send
311 * a message back to the TCP which originated the * segment ti,
312 * and discard the mbuf containing it and any other attached mbufs.
313 *
314 * In any case the ack and sequence number of the transmitted
315 * segment are as specified by the parameters.
316 *
317 * NOTE: If m != NULL, then ti must point to *inside* the mbuf.
318 */
319void
320tcp_respond(tp, ipgen, th, m, ack, seq, flags)
321	struct tcpcb *tp;
322	void *ipgen;
323	register struct tcphdr *th;
324	register struct mbuf *m;
325	tcp_seq ack, seq;
326	int flags;
327{
328	register int tlen;
329	int win = 0;
330	struct route *ro = 0;
331	struct route sro;
332	struct ip *ip;
333	struct tcphdr *nth;
334#ifdef INET6
335	struct route_in6 *ro6 = 0;
336	struct route_in6 sro6;
337	struct ip6_hdr *ip6;
338	int isipv6;
339#endif /* INET6 */
340	int ipflags = 0;
341
342#ifdef INET6
343	isipv6 = IP_VHL_V(((struct ip *)ipgen)->ip_vhl) == 6;
344	ip6 = ipgen;
345#endif /* INET6 */
346	ip = ipgen;
347
348	if (tp) {
349		if (!(flags & TH_RST)) {
350			win = sbspace(&tp->t_inpcb->inp_socket->so_rcv);
351			if (win > (long)TCP_MAXWIN << tp->rcv_scale)
352				win = (long)TCP_MAXWIN << tp->rcv_scale;
353		}
354#ifdef INET6
355		if (isipv6)
356			ro6 = &tp->t_inpcb->in6p_route;
357		else
358#endif /* INET6 */
359		ro = &tp->t_inpcb->inp_route;
360	} else {
361#ifdef INET6
362		if (isipv6) {
363			ro6 = &sro6;
364			bzero(ro6, sizeof *ro6);
365		} else
366#endif /* INET6 */
367	      {
368		ro = &sro;
369		bzero(ro, sizeof *ro);
370	      }
371	}
372	if (m == 0) {
373		m = m_gethdr(M_DONTWAIT, MT_HEADER);
374		if (m == NULL)
375			return;
376		tlen = 0;
377		m->m_data += max_linkhdr;
378#ifdef INET6
379		if (isipv6) {
380			bcopy((caddr_t)ip6, mtod(m, caddr_t),
381			      sizeof(struct ip6_hdr));
382			ip6 = mtod(m, struct ip6_hdr *);
383			nth = (struct tcphdr *)(ip6 + 1);
384		} else
385#endif /* INET6 */
386	      {
387		bcopy((caddr_t)ip, mtod(m, caddr_t), sizeof(struct ip));
388		ip = mtod(m, struct ip *);
389		nth = (struct tcphdr *)(ip + 1);
390	      }
391		bcopy((caddr_t)th, (caddr_t)nth, sizeof(struct tcphdr));
392		flags = TH_ACK;
393	} else {
394		m_freem(m->m_next);
395		m->m_next = 0;
396		m->m_data = (caddr_t)ipgen;
397		/* m_len is set later */
398		tlen = 0;
399#define xchg(a,b,type) { type t; t=a; a=b; b=t; }
400#ifdef INET6
401		if (isipv6) {
402			xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr);
403			nth = (struct tcphdr *)(ip6 + 1);
404		} else
405#endif /* INET6 */
406	      {
407		xchg(ip->ip_dst.s_addr, ip->ip_src.s_addr, n_long);
408		nth = (struct tcphdr *)(ip + 1);
409	      }
410		if (th != nth) {
411			/*
412			 * this is usually a case when an extension header
413			 * exists between the IPv6 header and the
414			 * TCP header.
415			 */
416			nth->th_sport = th->th_sport;
417			nth->th_dport = th->th_dport;
418		}
419		xchg(nth->th_dport, nth->th_sport, n_short);
420#undef xchg
421	}
422#ifdef INET6
423	if (isipv6) {
424		ip6->ip6_plen = htons((u_short)(sizeof (struct tcphdr) +
425						tlen));
426		tlen += sizeof (struct ip6_hdr) + sizeof (struct tcphdr);
427	} else
428#endif
429      {
430	tlen += sizeof (struct tcpiphdr);
431	ip->ip_len = tlen;
432	ip->ip_ttl = ip_defttl;
433      }
434	m->m_len = tlen;
435	m->m_pkthdr.len = tlen;
436	m->m_pkthdr.rcvif = (struct ifnet *) 0;
437	nth->th_seq = htonl(seq);
438	nth->th_ack = htonl(ack);
439	nth->th_x2 = 0;
440	nth->th_off = sizeof (struct tcphdr) >> 2;
441	nth->th_flags = flags;
442	if (tp)
443		nth->th_win = htons((u_short) (win >> tp->rcv_scale));
444	else
445		nth->th_win = htons((u_short)win);
446	nth->th_urp = 0;
447#ifdef INET6
448	if (isipv6) {
449		nth->th_sum = 0;
450		nth->th_sum = in6_cksum(m, IPPROTO_TCP,
451					sizeof(struct ip6_hdr),
452					tlen - sizeof(struct ip6_hdr));
453		ip6->ip6_hlim = in6_selecthlim(tp ? tp->t_inpcb : NULL,
454					       ro6 && ro6->ro_rt ?
455					       ro6->ro_rt->rt_ifp :
456					       NULL);
457	} else
458#endif /* INET6 */
459      {
460        nth->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
461	    htons((u_short)(tlen - sizeof(struct ip) + ip->ip_p)));
462        m->m_pkthdr.csum_flags = CSUM_TCP;
463        m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
464      }
465#ifdef TCPDEBUG
466	if (tp == NULL || (tp->t_inpcb->inp_socket->so_options & SO_DEBUG))
467		tcp_trace(TA_OUTPUT, 0, tp, mtod(m, void *), th, 0);
468#endif
469#ifdef IPSEC
470	if (ipsec_setsocket(m, tp ? tp->t_inpcb->inp_socket : NULL) != 0) {
471		m_freem(m);
472		return;
473	}
474#endif
475#ifdef INET6
476	if (isipv6) {
477		(void)ip6_output(m, NULL, ro6, ipflags, NULL, NULL);
478		if (ro6 == &sro6 && ro6->ro_rt) {
479			RTFREE(ro6->ro_rt);
480			ro6->ro_rt = NULL;
481		}
482	} else
483#endif /* INET6 */
484      {
485	(void) ip_output(m, NULL, ro, ipflags, NULL);
486	if (ro == &sro && ro->ro_rt) {
487		RTFREE(ro->ro_rt);
488		ro->ro_rt = NULL;
489	}
490      }
491}
492
493/*
494 * Create a new TCP control block, making an
495 * empty reassembly queue and hooking it to the argument
496 * protocol control block.  The `inp' parameter must have
497 * come from the zone allocator set up in tcp_init().
498 */
499struct tcpcb *
500tcp_newtcpcb(inp)
501	struct inpcb *inp;
502{
503	struct inp_tp *it;
504	register struct tcpcb *tp;
505#ifdef INET6
506	int isipv6 = (inp->inp_vflag & INP_IPV6) != 0;
507#endif /* INET6 */
508
509	it = (struct inp_tp *)inp;
510	tp = &it->tcb;
511	bzero((char *) tp, sizeof(struct tcpcb));
512	LIST_INIT(&tp->t_segq);
513	tp->t_maxseg = tp->t_maxopd =
514#ifdef INET6
515		isipv6 ? tcp_v6mssdflt :
516#endif /* INET6 */
517		tcp_mssdflt;
518
519	/* Set up our timeouts. */
520	callout_init(tp->tt_rexmt = &it->inp_tp_rexmt, 0);
521	callout_init(tp->tt_persist = &it->inp_tp_persist, 0);
522	callout_init(tp->tt_keep = &it->inp_tp_keep, 0);
523	callout_init(tp->tt_2msl = &it->inp_tp_2msl, 0);
524	callout_init(tp->tt_delack = &it->inp_tp_delack, 0);
525
526	if (tcp_do_rfc1323)
527		tp->t_flags = (TF_REQ_SCALE|TF_REQ_TSTMP);
528	if (tcp_do_rfc1644)
529		tp->t_flags |= TF_REQ_CC;
530	tp->t_inpcb = inp;	/* XXX */
531	/*
532	 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
533	 * rtt estimate.  Set rttvar so that srtt + 4 * rttvar gives
534	 * reasonable initial retransmit time.
535	 */
536	tp->t_srtt = TCPTV_SRTTBASE;
537	tp->t_rttvar = ((TCPTV_RTOBASE - TCPTV_SRTTBASE) << TCP_RTTVAR_SHIFT) / 4;
538	tp->t_rttmin = TCPTV_MIN;
539	tp->t_rxtcur = TCPTV_RTOBASE;
540	tp->snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
541	tp->snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT;
542	tp->t_rcvtime = ticks;
543        /*
544	 * IPv4 TTL initialization is necessary for an IPv6 socket as well,
545	 * because the socket may be bound to an IPv6 wildcard address,
546	 * which may match an IPv4-mapped IPv6 address.
547	 */
548	inp->inp_ip_ttl = ip_defttl;
549	inp->inp_ppcb = (caddr_t)tp;
550	return (tp);		/* XXX */
551}
552
553/*
554 * Drop a TCP connection, reporting
555 * the specified error.  If connection is synchronized,
556 * then send a RST to peer.
557 */
558struct tcpcb *
559tcp_drop(tp, errno)
560	register struct tcpcb *tp;
561	int errno;
562{
563	struct socket *so = tp->t_inpcb->inp_socket;
564
565	if (TCPS_HAVERCVDSYN(tp->t_state)) {
566		tp->t_state = TCPS_CLOSED;
567		(void) tcp_output(tp);
568		tcpstat.tcps_drops++;
569	} else
570		tcpstat.tcps_conndrops++;
571	if (errno == ETIMEDOUT && tp->t_softerror)
572		errno = tp->t_softerror;
573	so->so_error = errno;
574	return (tcp_close(tp));
575}
576
577/*
578 * Close a TCP control block:
579 *	discard all space held by the tcp
580 *	discard internet protocol block
581 *	wake up any sleepers
582 */
583struct tcpcb *
584tcp_close(tp)
585	register struct tcpcb *tp;
586{
587	register struct tseg_qent *q;
588	struct inpcb *inp = tp->t_inpcb;
589	struct socket *so = inp->inp_socket;
590#ifdef INET6
591	int isipv6 = (inp->inp_vflag & INP_IPV6) != 0;
592#endif /* INET6 */
593	register struct rtentry *rt;
594	int dosavessthresh;
595
596	/*
597	 * Make sure that all of our timers are stopped before we
598	 * delete the PCB.
599	 */
600	callout_stop(tp->tt_rexmt);
601	callout_stop(tp->tt_persist);
602	callout_stop(tp->tt_keep);
603	callout_stop(tp->tt_2msl);
604	callout_stop(tp->tt_delack);
605
606	/*
607	 * If we got enough samples through the srtt filter,
608	 * save the rtt and rttvar in the routing entry.
609	 * 'Enough' is arbitrarily defined as the 16 samples.
610	 * 16 samples is enough for the srtt filter to converge
611	 * to within 5% of the correct value; fewer samples and
612	 * we could save a very bogus rtt.
613	 *
614	 * Don't update the default route's characteristics and don't
615	 * update anything that the user "locked".
616	 */
617	if (tp->t_rttupdated >= 16) {
618		register u_long i = 0;
619#ifdef INET6
620		if (isipv6) {
621			struct sockaddr_in6 *sin6;
622
623			if ((rt = inp->in6p_route.ro_rt) == NULL)
624				goto no_valid_rt;
625			sin6 = (struct sockaddr_in6 *)rt_key(rt);
626			if (IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr))
627				goto no_valid_rt;
628		}
629		else
630#endif /* INET6 */
631		if ((rt = inp->inp_route.ro_rt) == NULL ||
632		    ((struct sockaddr_in *)rt_key(rt))->sin_addr.s_addr
633		    == INADDR_ANY)
634			goto no_valid_rt;
635
636		if ((rt->rt_rmx.rmx_locks & RTV_RTT) == 0) {
637			i = tp->t_srtt *
638			    (RTM_RTTUNIT / (hz * TCP_RTT_SCALE));
639			if (rt->rt_rmx.rmx_rtt && i)
640				/*
641				 * filter this update to half the old & half
642				 * the new values, converting scale.
643				 * See route.h and tcp_var.h for a
644				 * description of the scaling constants.
645				 */
646				rt->rt_rmx.rmx_rtt =
647				    (rt->rt_rmx.rmx_rtt + i) / 2;
648			else
649				rt->rt_rmx.rmx_rtt = i;
650			tcpstat.tcps_cachedrtt++;
651		}
652		if ((rt->rt_rmx.rmx_locks & RTV_RTTVAR) == 0) {
653			i = tp->t_rttvar *
654			    (RTM_RTTUNIT / (hz * TCP_RTTVAR_SCALE));
655			if (rt->rt_rmx.rmx_rttvar && i)
656				rt->rt_rmx.rmx_rttvar =
657				    (rt->rt_rmx.rmx_rttvar + i) / 2;
658			else
659				rt->rt_rmx.rmx_rttvar = i;
660			tcpstat.tcps_cachedrttvar++;
661		}
662		/*
663		 * The old comment here said:
664		 * update the pipelimit (ssthresh) if it has been updated
665		 * already or if a pipesize was specified & the threshhold
666		 * got below half the pipesize.  I.e., wait for bad news
667		 * before we start updating, then update on both good
668		 * and bad news.
669		 *
670		 * But we want to save the ssthresh even if no pipesize is
671		 * specified explicitly in the route, because such
672		 * connections still have an implicit pipesize specified
673		 * by the global tcp_sendspace.  In the absence of a reliable
674		 * way to calculate the pipesize, it will have to do.
675		 */
676		i = tp->snd_ssthresh;
677		if (rt->rt_rmx.rmx_sendpipe != 0)
678			dosavessthresh = (i < rt->rt_rmx.rmx_sendpipe / 2);
679		else
680			dosavessthresh = (i < so->so_snd.sb_hiwat / 2);
681		if (((rt->rt_rmx.rmx_locks & RTV_SSTHRESH) == 0 &&
682		     i != 0 && rt->rt_rmx.rmx_ssthresh != 0)
683		    || dosavessthresh) {
684			/*
685			 * convert the limit from user data bytes to
686			 * packets then to packet data bytes.
687			 */
688			i = (i + tp->t_maxseg / 2) / tp->t_maxseg;
689			if (i < 2)
690				i = 2;
691			i *= (u_long)(tp->t_maxseg +
692#ifdef INET6
693				      (isipv6 ? sizeof (struct ip6_hdr) +
694					       sizeof (struct tcphdr) :
695#endif
696				       sizeof (struct tcpiphdr)
697#ifdef INET6
698				       )
699#endif
700				      );
701			if (rt->rt_rmx.rmx_ssthresh)
702				rt->rt_rmx.rmx_ssthresh =
703				    (rt->rt_rmx.rmx_ssthresh + i) / 2;
704			else
705				rt->rt_rmx.rmx_ssthresh = i;
706			tcpstat.tcps_cachedssthresh++;
707		}
708	}
709	rt = inp->inp_route.ro_rt;
710	if (rt) {
711		/*
712		 * mark route for deletion if no information is
713		 * cached.
714		 */
715		if ((tp->t_flags & TF_LQ_OVERFLOW) &&
716		    ((rt->rt_rmx.rmx_locks & RTV_RTT) == 0)){
717			if (rt->rt_rmx.rmx_rtt == 0)
718				rt->rt_flags |= RTF_DELCLONE;
719		}
720	}
721    no_valid_rt:
722	/* free the reassembly queue, if any */
723	while((q = LIST_FIRST(&tp->t_segq)) != NULL) {
724		LIST_REMOVE(q, tqe_q);
725		m_freem(q->tqe_m);
726		FREE(q, M_TSEGQ);
727	}
728	inp->inp_ppcb = NULL;
729	soisdisconnected(so);
730#ifdef INET6
731	if (INP_CHECK_SOCKAF(so, AF_INET6))
732		in6_pcbdetach(inp);
733	else
734#endif /* INET6 */
735	in_pcbdetach(inp);
736	tcpstat.tcps_closed++;
737	return ((struct tcpcb *)0);
738}
739
740void
741tcp_drain()
742{
743	if (do_tcpdrain)
744	{
745		struct inpcb *inpb;
746		struct tcpcb *tcpb;
747		struct tseg_qent *te;
748
749	/*
750	 * Walk the tcpbs, if existing, and flush the reassembly queue,
751	 * if there is one...
752	 * XXX: The "Net/3" implementation doesn't imply that the TCP
753	 *      reassembly queue should be flushed, but in a situation
754	 * 	where we're really low on mbufs, this is potentially
755	 *  	usefull.
756	 */
757		LIST_FOREACH(inpb, tcbinfo.listhead, inp_list) {
758			if ((tcpb = intotcpcb(inpb))) {
759				while ((te = LIST_FIRST(&tcpb->t_segq))
760			            != NULL) {
761					LIST_REMOVE(te, tqe_q);
762					m_freem(te->tqe_m);
763					FREE(te, M_TSEGQ);
764				}
765			}
766		}
767	}
768}
769
770/*
771 * Notify a tcp user of an asynchronous error;
772 * store error as soft error, but wake up user
773 * (for now, won't do anything until can select for soft error).
774 *
775 * Do not wake up user since there currently is no mechanism for
776 * reporting soft errors (yet - a kqueue filter may be added).
777 */
778static void
779tcp_notify(inp, error)
780	struct inpcb *inp;
781	int error;
782{
783	struct tcpcb *tp = (struct tcpcb *)inp->inp_ppcb;
784
785	/*
786	 * Ignore some errors if we are hooked up.
787	 * If connection hasn't completed, has retransmitted several times,
788	 * and receives a second error, give up now.  This is better
789	 * than waiting a long time to establish a connection that
790	 * can never complete.
791	 */
792	if (tp->t_state == TCPS_ESTABLISHED &&
793	     (error == EHOSTUNREACH || error == ENETUNREACH ||
794	      error == EHOSTDOWN)) {
795		return;
796	} else if (tp->t_state < TCPS_ESTABLISHED && tp->t_rxtshift > 3 &&
797	    tp->t_softerror)
798		tcp_drop(tp, error);
799	else
800		tp->t_softerror = error;
801#if 0
802	wakeup((caddr_t) &so->so_timeo);
803	sorwakeup(so);
804	sowwakeup(so);
805#endif
806}
807
808static int
809tcp_pcblist(SYSCTL_HANDLER_ARGS)
810{
811	int error, i, n, s;
812	struct inpcb *inp, **inp_list;
813	inp_gen_t gencnt;
814	struct xinpgen xig;
815
816	/*
817	 * The process of preparing the TCB list is too time-consuming and
818	 * resource-intensive to repeat twice on every request.
819	 */
820	if (req->oldptr == 0) {
821		n = tcbinfo.ipi_count;
822		req->oldidx = 2 * (sizeof xig)
823			+ (n + n/8) * sizeof(struct xtcpcb);
824		return 0;
825	}
826
827	if (req->newptr != 0)
828		return EPERM;
829
830	/*
831	 * OK, now we're committed to doing something.
832	 */
833	s = splnet();
834	gencnt = tcbinfo.ipi_gencnt;
835	n = tcbinfo.ipi_count;
836	splx(s);
837
838	xig.xig_len = sizeof xig;
839	xig.xig_count = n;
840	xig.xig_gen = gencnt;
841	xig.xig_sogen = so_gencnt;
842	error = SYSCTL_OUT(req, &xig, sizeof xig);
843	if (error)
844		return error;
845
846	inp_list = malloc(n * sizeof *inp_list, M_TEMP, M_WAITOK);
847	if (inp_list == 0)
848		return ENOMEM;
849
850	s = splnet();
851	for (inp = LIST_FIRST(tcbinfo.listhead), i = 0; inp && i < n;
852	     inp = LIST_NEXT(inp, inp_list)) {
853		if (inp->inp_gencnt <= gencnt && !prison_xinpcb(req->p, inp))
854			inp_list[i++] = inp;
855	}
856	splx(s);
857	n = i;
858
859	error = 0;
860	for (i = 0; i < n; i++) {
861		inp = inp_list[i];
862		if (inp->inp_gencnt <= gencnt) {
863			struct xtcpcb xt;
864			caddr_t inp_ppcb;
865			xt.xt_len = sizeof xt;
866			/* XXX should avoid extra copy */
867			bcopy(inp, &xt.xt_inp, sizeof *inp);
868			inp_ppcb = inp->inp_ppcb;
869			if (inp_ppcb != NULL)
870				bcopy(inp_ppcb, &xt.xt_tp, sizeof xt.xt_tp);
871			else
872				bzero((char *) &xt.xt_tp, sizeof xt.xt_tp);
873			if (inp->inp_socket)
874				sotoxsocket(inp->inp_socket, &xt.xt_socket);
875			error = SYSCTL_OUT(req, &xt, sizeof xt);
876		}
877	}
878	if (!error) {
879		/*
880		 * Give the user an updated idea of our state.
881		 * If the generation differs from what we told
882		 * her before, she knows that something happened
883		 * while we were processing this request, and it
884		 * might be necessary to retry.
885		 */
886		s = splnet();
887		xig.xig_gen = tcbinfo.ipi_gencnt;
888		xig.xig_sogen = so_gencnt;
889		xig.xig_count = tcbinfo.ipi_count;
890		splx(s);
891		error = SYSCTL_OUT(req, &xig, sizeof xig);
892	}
893	free(inp_list, M_TEMP);
894	return error;
895}
896
897SYSCTL_PROC(_net_inet_tcp, TCPCTL_PCBLIST, pcblist, CTLFLAG_RD, 0, 0,
898	    tcp_pcblist, "S,xtcpcb", "List of active TCP connections");
899
900static int
901tcp_getcred(SYSCTL_HANDLER_ARGS)
902{
903	struct xucred xuc;
904	struct sockaddr_in addrs[2];
905	struct inpcb *inp;
906	int error, s;
907
908	error = suser_xxx(0, req->p, PRISON_ROOT);
909	if (error)
910		return (error);
911	error = SYSCTL_IN(req, addrs, sizeof(addrs));
912	if (error)
913		return (error);
914	s = splnet();
915	inp = in_pcblookup_hash(&tcbinfo, addrs[1].sin_addr, addrs[1].sin_port,
916	    addrs[0].sin_addr, addrs[0].sin_port, 0, NULL);
917	if (inp == NULL || inp->inp_socket == NULL) {
918		error = ENOENT;
919		goto out;
920	}
921	error = u_cansee(req->p->p_ucred, inp->inp_socket->so_cred);
922	if (error)
923		goto out;
924	bzero(&xuc, sizeof(xuc));
925	xuc.cr_uid = inp->inp_socket->so_cred->cr_uid;
926	xuc.cr_ngroups = inp->inp_socket->so_cred->cr_ngroups;
927	bcopy(inp->inp_socket->so_cred->cr_groups, xuc.cr_groups,
928	    sizeof(xuc.cr_groups));
929	error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred));
930out:
931	splx(s);
932	return (error);
933}
934
935SYSCTL_PROC(_net_inet_tcp, OID_AUTO, getcred,
936    CTLTYPE_OPAQUE|CTLFLAG_RW|CTLFLAG_PRISON, 0, 0,
937    tcp_getcred, "S,xucred", "Get the xucred of a TCP connection");
938
939#ifdef INET6
940static int
941tcp6_getcred(SYSCTL_HANDLER_ARGS)
942{
943	struct xucred xuc;
944	struct sockaddr_in6 addrs[2];
945	struct inpcb *inp;
946	int error, s, mapped = 0;
947
948	error = suser_xxx(0, req->p, PRISON_ROOT);
949	if (error)
950		return (error);
951	error = SYSCTL_IN(req, addrs, sizeof(addrs));
952	if (error)
953		return (error);
954	if (IN6_IS_ADDR_V4MAPPED(&addrs[0].sin6_addr)) {
955		if (IN6_IS_ADDR_V4MAPPED(&addrs[1].sin6_addr))
956			mapped = 1;
957		else
958			return (EINVAL);
959	}
960	s = splnet();
961	if (mapped == 1)
962		inp = in_pcblookup_hash(&tcbinfo,
963			*(struct in_addr *)&addrs[1].sin6_addr.s6_addr[12],
964			addrs[1].sin6_port,
965			*(struct in_addr *)&addrs[0].sin6_addr.s6_addr[12],
966			addrs[0].sin6_port,
967			0, NULL);
968	else
969		inp = in6_pcblookup_hash(&tcbinfo, &addrs[1].sin6_addr,
970				 addrs[1].sin6_port,
971				 &addrs[0].sin6_addr, addrs[0].sin6_port,
972				 0, NULL);
973	if (inp == NULL || inp->inp_socket == NULL) {
974		error = ENOENT;
975		goto out;
976	}
977	error = u_cansee(req->p->p_ucred, inp->inp_socket->so_cred);
978	if (error)
979		goto out;
980	bzero(&xuc, sizeof(xuc));
981	xuc.cr_uid = inp->inp_socket->so_cred->cr_uid;
982	xuc.cr_ngroups = inp->inp_socket->so_cred->cr_ngroups;
983	bcopy(inp->inp_socket->so_cred->cr_groups, xuc.cr_groups,
984	    sizeof(xuc.cr_groups));
985	error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred));
986out:
987	splx(s);
988	return (error);
989}
990
991SYSCTL_PROC(_net_inet6_tcp6, OID_AUTO, getcred,
992    CTLTYPE_OPAQUE|CTLFLAG_RW|CTLFLAG_PRISON, 0, 0,
993    tcp6_getcred, "S,xucred", "Get the xucred of a TCP6 connection");
994#endif
995
996
997void
998tcp_ctlinput(cmd, sa, vip)
999	int cmd;
1000	struct sockaddr *sa;
1001	void *vip;
1002{
1003	struct ip *ip = vip;
1004	struct tcphdr *th;
1005	struct in_addr faddr;
1006	struct inpcb *inp;
1007	struct tcpcb *tp;
1008	void (*notify) __P((struct inpcb *, int)) = tcp_notify;
1009	tcp_seq icmp_seq;
1010	int s;
1011
1012	faddr = ((struct sockaddr_in *)sa)->sin_addr;
1013	if (sa->sa_family != AF_INET || faddr.s_addr == INADDR_ANY)
1014		return;
1015
1016	if (cmd == PRC_QUENCH)
1017		notify = tcp_quench;
1018	else if (icmp_may_rst && (cmd == PRC_UNREACH_ADMIN_PROHIB ||
1019		cmd == PRC_UNREACH_PORT) && ip)
1020		notify = tcp_drop_syn_sent;
1021	else if (cmd == PRC_MSGSIZE)
1022		notify = tcp_mtudisc;
1023	else if (PRC_IS_REDIRECT(cmd)) {
1024		ip = 0;
1025		notify = in_rtchange;
1026	} else if (cmd == PRC_HOSTDEAD)
1027		ip = 0;
1028	else if ((unsigned)cmd > PRC_NCMDS || inetctlerrmap[cmd] == 0)
1029		return;
1030	if (ip) {
1031		s = splnet();
1032		th = (struct tcphdr *)((caddr_t)ip
1033				       + (IP_VHL_HL(ip->ip_vhl) << 2));
1034		inp = in_pcblookup_hash(&tcbinfo, faddr, th->th_dport,
1035		    ip->ip_src, th->th_sport, 0, NULL);
1036		if (inp != NULL && inp->inp_socket != NULL) {
1037			icmp_seq = htonl(th->th_seq);
1038			tp = intotcpcb(inp);
1039			if (SEQ_GEQ(icmp_seq, tp->snd_una) &&
1040			    SEQ_LT(icmp_seq, tp->snd_max))
1041				(*notify)(inp, inetctlerrmap[cmd]);
1042		}
1043		splx(s);
1044	} else
1045		in_pcbnotifyall(&tcb, faddr, inetctlerrmap[cmd], notify);
1046}
1047
1048#ifdef INET6
1049void
1050tcp6_ctlinput(cmd, sa, d)
1051	int cmd;
1052	struct sockaddr *sa;
1053	void *d;
1054{
1055	struct tcphdr th;
1056	void (*notify) __P((struct inpcb *, int)) = tcp_notify;
1057	struct ip6_hdr *ip6;
1058	struct mbuf *m;
1059	struct ip6ctlparam *ip6cp = NULL;
1060	const struct sockaddr_in6 *sa6_src = NULL;
1061	int off;
1062	struct tcp_portonly {
1063		u_int16_t th_sport;
1064		u_int16_t th_dport;
1065	} *thp;
1066
1067	if (sa->sa_family != AF_INET6 ||
1068	    sa->sa_len != sizeof(struct sockaddr_in6))
1069		return;
1070
1071	if (cmd == PRC_QUENCH)
1072		notify = tcp_quench;
1073	else if (cmd == PRC_MSGSIZE)
1074		notify = tcp_mtudisc;
1075	else if (!PRC_IS_REDIRECT(cmd) &&
1076		 ((unsigned)cmd > PRC_NCMDS || inet6ctlerrmap[cmd] == 0))
1077		return;
1078
1079	/* if the parameter is from icmp6, decode it. */
1080	if (d != NULL) {
1081		ip6cp = (struct ip6ctlparam *)d;
1082		m = ip6cp->ip6c_m;
1083		ip6 = ip6cp->ip6c_ip6;
1084		off = ip6cp->ip6c_off;
1085		sa6_src = ip6cp->ip6c_src;
1086	} else {
1087		m = NULL;
1088		ip6 = NULL;
1089		off = 0;	/* fool gcc */
1090		sa6_src = &sa6_any;
1091	}
1092
1093	if (ip6) {
1094		/*
1095		 * XXX: We assume that when IPV6 is non NULL,
1096		 * M and OFF are valid.
1097		 */
1098
1099		/* check if we can safely examine src and dst ports */
1100		if (m->m_pkthdr.len < off + sizeof(*thp))
1101			return;
1102
1103		bzero(&th, sizeof(th));
1104		m_copydata(m, off, sizeof(*thp), (caddr_t)&th);
1105
1106		in6_pcbnotify(&tcb, sa, th.th_dport,
1107		    (struct sockaddr *)ip6cp->ip6c_src,
1108		    th.th_sport, cmd, notify);
1109	} else
1110		in6_pcbnotify(&tcb, sa, 0, (struct sockaddr *)sa6_src,
1111			      0, cmd, notify);
1112}
1113#endif /* INET6 */
1114
1115tcp_seq
1116tcp_new_isn()
1117{
1118
1119	if (tcp_seq_genscheme > 1 || tcp_seq_genscheme < 0)
1120		tcp_seq_genscheme = 1;
1121
1122	switch (tcp_seq_genscheme) {
1123	case 0:			/* Random positive increments */
1124		tcp_iss += TCP_ISSINCR/2;
1125		return tcp_iss;
1126	case 1:			/* OpenBSD randomized scheme */
1127		return tcp_rndiss_next();
1128	default:
1129		panic("cannot happen");
1130	}
1131}
1132
1133#define TCP_RNDISS_ROUNDS	16
1134#define TCP_RNDISS_OUT	7200
1135#define TCP_RNDISS_MAX	30000
1136
1137u_int8_t tcp_rndiss_sbox[128];
1138u_int16_t tcp_rndiss_msb;
1139u_int16_t tcp_rndiss_cnt;
1140long tcp_rndiss_reseed;
1141
1142u_int16_t
1143tcp_rndiss_encrypt(val)
1144	u_int16_t val;
1145{
1146	u_int16_t sum = 0, i;
1147
1148	for (i = 0; i < TCP_RNDISS_ROUNDS; i++) {
1149		sum += 0x79b9;
1150		val ^= ((u_int16_t)tcp_rndiss_sbox[(val^sum) & 0x7f]) << 7;
1151		val = ((val & 0xff) << 7) | (val >> 8);
1152	}
1153
1154	return val;
1155}
1156
1157void
1158tcp_rndiss_init()
1159{
1160	struct timeval time;
1161
1162	getmicrotime(&time);
1163	read_random(tcp_rndiss_sbox, sizeof(tcp_rndiss_sbox));
1164
1165	tcp_rndiss_reseed = time.tv_sec + TCP_RNDISS_OUT;
1166	tcp_rndiss_msb = tcp_rndiss_msb == 0x8000 ? 0 : 0x8000;
1167	tcp_rndiss_cnt = 0;
1168}
1169
1170tcp_seq
1171tcp_rndiss_next()
1172{
1173	u_int16_t tmp;
1174	struct timeval time;
1175
1176	getmicrotime(&time);
1177
1178        if (tcp_rndiss_cnt >= TCP_RNDISS_MAX ||
1179	    time.tv_sec > tcp_rndiss_reseed)
1180                tcp_rndiss_init();
1181
1182	read_random(&tmp, sizeof(tmp));
1183
1184	/* (tmp & 0x7fff) ensures a 32768 byte gap between ISS */
1185	return ((tcp_rndiss_encrypt(tcp_rndiss_cnt++) | tcp_rndiss_msb) <<16) |
1186		(tmp & 0x7fff);
1187}
1188
1189
1190/*
1191 * When a source quench is received, close congestion window
1192 * to one segment.  We will gradually open it again as we proceed.
1193 */
1194void
1195tcp_quench(inp, errno)
1196	struct inpcb *inp;
1197	int errno;
1198{
1199	struct tcpcb *tp = intotcpcb(inp);
1200
1201	if (tp)
1202		tp->snd_cwnd = tp->t_maxseg;
1203}
1204
1205/*
1206 * When a specific ICMP unreachable message is received and the
1207 * connection state is SYN-SENT, drop the connection.  This behavior
1208 * is controlled by the icmp_may_rst sysctl.
1209 */
1210void
1211tcp_drop_syn_sent(inp, errno)
1212	struct inpcb *inp;
1213	int errno;
1214{
1215	struct tcpcb *tp = intotcpcb(inp);
1216
1217	if (tp && tp->t_state == TCPS_SYN_SENT)
1218		tcp_drop(tp, errno);
1219}
1220
1221/*
1222 * When `need fragmentation' ICMP is received, update our idea of the MSS
1223 * based on the new value in the route.  Also nudge TCP to send something,
1224 * since we know the packet we just sent was dropped.
1225 * This duplicates some code in the tcp_mss() function in tcp_input.c.
1226 */
1227void
1228tcp_mtudisc(inp, errno)
1229	struct inpcb *inp;
1230	int errno;
1231{
1232	struct tcpcb *tp = intotcpcb(inp);
1233	struct rtentry *rt;
1234	struct rmxp_tao *taop;
1235	struct socket *so = inp->inp_socket;
1236	int offered;
1237	int mss;
1238#ifdef INET6
1239	int isipv6 = (tp->t_inpcb->inp_vflag & INP_IPV6) != 0;
1240#endif /* INET6 */
1241
1242	if (tp) {
1243#ifdef INET6
1244		if (isipv6)
1245			rt = tcp_rtlookup6(inp);
1246		else
1247#endif /* INET6 */
1248		rt = tcp_rtlookup(inp);
1249		if (!rt || !rt->rt_rmx.rmx_mtu) {
1250			tp->t_maxopd = tp->t_maxseg =
1251#ifdef INET6
1252				isipv6 ? tcp_v6mssdflt :
1253#endif /* INET6 */
1254				tcp_mssdflt;
1255			return;
1256		}
1257		taop = rmx_taop(rt->rt_rmx);
1258		offered = taop->tao_mssopt;
1259		mss = rt->rt_rmx.rmx_mtu -
1260#ifdef INET6
1261			(isipv6 ?
1262			 sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
1263#endif /* INET6 */
1264			 sizeof(struct tcpiphdr)
1265#ifdef INET6
1266			 )
1267#endif /* INET6 */
1268			;
1269
1270		if (offered)
1271			mss = min(mss, offered);
1272		/*
1273		 * XXX - The above conditional probably violates the TCP
1274		 * spec.  The problem is that, since we don't know the
1275		 * other end's MSS, we are supposed to use a conservative
1276		 * default.  But, if we do that, then MTU discovery will
1277		 * never actually take place, because the conservative
1278		 * default is much less than the MTUs typically seen
1279		 * on the Internet today.  For the moment, we'll sweep
1280		 * this under the carpet.
1281		 *
1282		 * The conservative default might not actually be a problem
1283		 * if the only case this occurs is when sending an initial
1284		 * SYN with options and data to a host we've never talked
1285		 * to before.  Then, they will reply with an MSS value which
1286		 * will get recorded and the new parameters should get
1287		 * recomputed.  For Further Study.
1288		 */
1289		if (tp->t_maxopd <= mss)
1290			return;
1291		tp->t_maxopd = mss;
1292
1293		if ((tp->t_flags & (TF_REQ_TSTMP|TF_NOOPT)) == TF_REQ_TSTMP &&
1294		    (tp->t_flags & TF_RCVD_TSTMP) == TF_RCVD_TSTMP)
1295			mss -= TCPOLEN_TSTAMP_APPA;
1296		if ((tp->t_flags & (TF_REQ_CC|TF_NOOPT)) == TF_REQ_CC &&
1297		    (tp->t_flags & TF_RCVD_CC) == TF_RCVD_CC)
1298			mss -= TCPOLEN_CC_APPA;
1299#if	(MCLBYTES & (MCLBYTES - 1)) == 0
1300		if (mss > MCLBYTES)
1301			mss &= ~(MCLBYTES-1);
1302#else
1303		if (mss > MCLBYTES)
1304			mss = mss / MCLBYTES * MCLBYTES;
1305#endif
1306		if (so->so_snd.sb_hiwat < mss)
1307			mss = so->so_snd.sb_hiwat;
1308
1309		tp->t_maxseg = mss;
1310
1311		tcpstat.tcps_mturesent++;
1312		tp->t_rtttime = 0;
1313		tp->snd_nxt = tp->snd_una;
1314		tcp_output(tp);
1315	}
1316}
1317
1318/*
1319 * Look-up the routing entry to the peer of this inpcb.  If no route
1320 * is found and it cannot be allocated the return NULL.  This routine
1321 * is called by TCP routines that access the rmx structure and by tcp_mss
1322 * to get the interface MTU.
1323 */
1324struct rtentry *
1325tcp_rtlookup(inp)
1326	struct inpcb *inp;
1327{
1328	struct route *ro;
1329	struct rtentry *rt;
1330
1331	ro = &inp->inp_route;
1332	rt = ro->ro_rt;
1333	if (rt == NULL || !(rt->rt_flags & RTF_UP)) {
1334		/* No route yet, so try to acquire one */
1335		if (inp->inp_faddr.s_addr != INADDR_ANY) {
1336			ro->ro_dst.sa_family = AF_INET;
1337			ro->ro_dst.sa_len = sizeof(struct sockaddr_in);
1338			((struct sockaddr_in *) &ro->ro_dst)->sin_addr =
1339				inp->inp_faddr;
1340			rtalloc(ro);
1341			rt = ro->ro_rt;
1342		}
1343	}
1344	return rt;
1345}
1346
1347#ifdef INET6
1348struct rtentry *
1349tcp_rtlookup6(inp)
1350	struct inpcb *inp;
1351{
1352	struct route_in6 *ro6;
1353	struct rtentry *rt;
1354
1355	ro6 = &inp->in6p_route;
1356	rt = ro6->ro_rt;
1357	if (rt == NULL || !(rt->rt_flags & RTF_UP)) {
1358		/* No route yet, so try to acquire one */
1359		if (!IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_faddr)) {
1360			struct sockaddr_in6 *dst6;
1361
1362			dst6 = (struct sockaddr_in6 *)&ro6->ro_dst;
1363			dst6->sin6_family = AF_INET6;
1364			dst6->sin6_len = sizeof(*dst6);
1365			dst6->sin6_addr = inp->in6p_faddr;
1366			rtalloc((struct route *)ro6);
1367			rt = ro6->ro_rt;
1368		}
1369	}
1370	return rt;
1371}
1372#endif /* INET6 */
1373
1374#ifdef IPSEC
1375/* compute ESP/AH header size for TCP, including outer IP header. */
1376size_t
1377ipsec_hdrsiz_tcp(tp)
1378	struct tcpcb *tp;
1379{
1380	struct inpcb *inp;
1381	struct mbuf *m;
1382	size_t hdrsiz;
1383	struct ip *ip;
1384#ifdef INET6
1385	struct ip6_hdr *ip6;
1386#endif /* INET6 */
1387	struct tcphdr *th;
1388
1389	if ((tp == NULL) || ((inp = tp->t_inpcb) == NULL))
1390		return 0;
1391	MGETHDR(m, M_DONTWAIT, MT_DATA);
1392	if (!m)
1393		return 0;
1394
1395#ifdef INET6
1396	if ((inp->inp_vflag & INP_IPV6) != 0) {
1397		ip6 = mtod(m, struct ip6_hdr *);
1398		th = (struct tcphdr *)(ip6 + 1);
1399		m->m_pkthdr.len = m->m_len =
1400			sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
1401		tcp_fillheaders(tp, ip6, th);
1402		hdrsiz = ipsec6_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
1403	} else
1404#endif /* INET6 */
1405      {
1406	ip = mtod(m, struct ip *);
1407	th = (struct tcphdr *)(ip + 1);
1408	m->m_pkthdr.len = m->m_len = sizeof(struct tcpiphdr);
1409	tcp_fillheaders(tp, ip, th);
1410	hdrsiz = ipsec4_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
1411      }
1412
1413	m_free(m);
1414	return hdrsiz;
1415}
1416#endif /*IPSEC*/
1417
1418/*
1419 * Return a pointer to the cached information about the remote host.
1420 * The cached information is stored in the protocol specific part of
1421 * the route metrics.
1422 */
1423struct rmxp_tao *
1424tcp_gettaocache(inp)
1425	struct inpcb *inp;
1426{
1427	struct rtentry *rt;
1428
1429#ifdef INET6
1430	if ((inp->inp_vflag & INP_IPV6) != 0)
1431		rt = tcp_rtlookup6(inp);
1432	else
1433#endif /* INET6 */
1434	rt = tcp_rtlookup(inp);
1435
1436	/* Make sure this is a host route and is up. */
1437	if (rt == NULL ||
1438	    (rt->rt_flags & (RTF_UP|RTF_HOST)) != (RTF_UP|RTF_HOST))
1439		return NULL;
1440
1441	return rmx_taop(rt->rt_rmx);
1442}
1443
1444/*
1445 * Clear all the TAO cache entries, called from tcp_init.
1446 *
1447 * XXX
1448 * This routine is just an empty one, because we assume that the routing
1449 * routing tables are initialized at the same time when TCP, so there is
1450 * nothing in the cache left over.
1451 */
1452static void
1453tcp_cleartaocache()
1454{
1455}
1456