tcp_timewait.c revision 77843
1/*
2 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 *    must display the following acknowledgement:
15 *	This product includes software developed by the University of
16 *	California, Berkeley and its contributors.
17 * 4. Neither the name of the University nor the names of its contributors
18 *    may be used to endorse or promote products derived from this software
19 *    without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
32 *
33 *	@(#)tcp_subr.c	8.2 (Berkeley) 5/24/95
34 * $FreeBSD: head/sys/netinet/tcp_timewait.c 77843 2001-06-06 22:17:08Z peter $
35 */
36
37#include "opt_compat.h"
38#include "opt_inet6.h"
39#include "opt_ipsec.h"
40#include "opt_tcpdebug.h"
41
42#include <sys/param.h>
43#include <sys/systm.h>
44#include <sys/callout.h>
45#include <sys/kernel.h>
46#include <sys/sysctl.h>
47#include <sys/malloc.h>
48#include <sys/mbuf.h>
49#ifdef INET6
50#include <sys/domain.h>
51#endif
52#include <sys/proc.h>
53#include <sys/socket.h>
54#include <sys/socketvar.h>
55#include <sys/protosw.h>
56#include <sys/random.h>
57
58#include <vm/vm_zone.h>
59
60#include <net/route.h>
61#include <net/if.h>
62
63#define _IP_VHL
64#include <netinet/in.h>
65#include <netinet/in_systm.h>
66#include <netinet/ip.h>
67#ifdef INET6
68#include <netinet/ip6.h>
69#endif
70#include <netinet/in_pcb.h>
71#ifdef INET6
72#include <netinet6/in6_pcb.h>
73#endif
74#include <netinet/in_var.h>
75#include <netinet/ip_var.h>
76#ifdef INET6
77#include <netinet6/ip6_var.h>
78#endif
79#include <netinet/tcp.h>
80#include <netinet/tcp_fsm.h>
81#include <netinet/tcp_seq.h>
82#include <netinet/tcp_timer.h>
83#include <netinet/tcp_var.h>
84#ifdef INET6
85#include <netinet6/tcp6_var.h>
86#endif
87#include <netinet/tcpip.h>
88#ifdef TCPDEBUG
89#include <netinet/tcp_debug.h>
90#endif
91#include <netinet6/ip6protosw.h>
92
93#ifdef IPSEC
94#include <netinet6/ipsec.h>
95#ifdef INET6
96#include <netinet6/ipsec6.h>
97#endif
98#endif /*IPSEC*/
99
100#include <machine/in_cksum.h>
101
102int 	tcp_mssdflt = TCP_MSS;
103SYSCTL_INT(_net_inet_tcp, TCPCTL_MSSDFLT, mssdflt, CTLFLAG_RW,
104    &tcp_mssdflt , 0, "Default TCP Maximum Segment Size");
105
106#ifdef INET6
107int	tcp_v6mssdflt = TCP6_MSS;
108SYSCTL_INT(_net_inet_tcp, TCPCTL_V6MSSDFLT, v6mssdflt,
109	CTLFLAG_RW, &tcp_v6mssdflt , 0,
110	"Default TCP Maximum Segment Size for IPv6");
111#endif
112
113#if 0
114static int 	tcp_rttdflt = TCPTV_SRTTDFLT / PR_SLOWHZ;
115SYSCTL_INT(_net_inet_tcp, TCPCTL_RTTDFLT, rttdflt, CTLFLAG_RW,
116    &tcp_rttdflt , 0, "Default maximum TCP Round Trip Time");
117#endif
118
119static int	tcp_do_rfc1323 = 1;
120SYSCTL_INT(_net_inet_tcp, TCPCTL_DO_RFC1323, rfc1323, CTLFLAG_RW,
121    &tcp_do_rfc1323 , 0, "Enable rfc1323 (high performance TCP) extensions");
122
123static int	tcp_do_rfc1644 = 0;
124SYSCTL_INT(_net_inet_tcp, TCPCTL_DO_RFC1644, rfc1644, CTLFLAG_RW,
125    &tcp_do_rfc1644 , 0, "Enable rfc1644 (TTCP) extensions");
126
127static int	tcp_tcbhashsize = 0;
128SYSCTL_INT(_net_inet_tcp, OID_AUTO, tcbhashsize, CTLFLAG_RD,
129     &tcp_tcbhashsize, 0, "Size of TCP control-block hashtable");
130
131static int	do_tcpdrain = 1;
132SYSCTL_INT(_net_inet_tcp, OID_AUTO, do_tcpdrain, CTLFLAG_RW, &do_tcpdrain, 0,
133     "Enable tcp_drain routine for extra help when low on mbufs");
134
135SYSCTL_INT(_net_inet_tcp, OID_AUTO, pcbcount, CTLFLAG_RD,
136    &tcbinfo.ipi_count, 0, "Number of active PCBs");
137
138static int	icmp_may_rst = 1;
139SYSCTL_INT(_net_inet_tcp, OID_AUTO, icmp_may_rst, CTLFLAG_RW, &icmp_may_rst, 0,
140    "Certain ICMP unreachable messages may abort connections in SYN_SENT");
141
142static void	tcp_cleartaocache __P((void));
143static void	tcp_notify __P((struct inpcb *, int));
144
145/*
146 * Target size of TCP PCB hash tables. Must be a power of two.
147 *
148 * Note that this can be overridden by the kernel environment
149 * variable net.inet.tcp.tcbhashsize
150 */
151#ifndef TCBHASHSIZE
152#define TCBHASHSIZE	512
153#endif
154
155/*
156 * This is the actual shape of what we allocate using the zone
157 * allocator.  Doing it this way allows us to protect both structures
158 * using the same generation count, and also eliminates the overhead
159 * of allocating tcpcbs separately.  By hiding the structure here,
160 * we avoid changing most of the rest of the code (although it needs
161 * to be changed, eventually, for greater efficiency).
162 */
163#define	ALIGNMENT	32
164#define	ALIGNM1		(ALIGNMENT - 1)
165struct	inp_tp {
166	union {
167		struct	inpcb inp;
168		char	align[(sizeof(struct inpcb) + ALIGNM1) & ~ALIGNM1];
169	} inp_tp_u;
170	struct	tcpcb tcb;
171	struct	callout inp_tp_rexmt, inp_tp_persist, inp_tp_keep, inp_tp_2msl;
172	struct	callout inp_tp_delack;
173};
174#undef ALIGNMENT
175#undef ALIGNM1
176
177/*
178 * Tcp initialization
179 */
180void
181tcp_init()
182{
183	int hashsize = TCBHASHSIZE;
184
185	tcp_ccgen = 1;
186	tcp_cleartaocache();
187
188	tcp_delacktime = TCPTV_DELACK;
189	tcp_keepinit = TCPTV_KEEP_INIT;
190	tcp_keepidle = TCPTV_KEEP_IDLE;
191	tcp_keepintvl = TCPTV_KEEPINTVL;
192	tcp_maxpersistidle = TCPTV_KEEP_IDLE;
193	tcp_msl = TCPTV_MSL;
194
195	LIST_INIT(&tcb);
196	tcbinfo.listhead = &tcb;
197	TUNABLE_INT_FETCH("net.inet.tcp.tcbhashsize", &hashsize);
198	if (!powerof2(hashsize)) {
199		printf("WARNING: TCB hash size not a power of 2\n");
200		hashsize = 512; /* safe default */
201	}
202	tcp_tcbhashsize = hashsize;
203	tcbinfo.hashbase = hashinit(hashsize, M_PCB, &tcbinfo.hashmask);
204	tcbinfo.porthashbase = hashinit(hashsize, M_PCB,
205					&tcbinfo.porthashmask);
206	tcbinfo.ipi_zone = zinit("tcpcb", sizeof(struct inp_tp), maxsockets,
207				 ZONE_INTERRUPT, 0);
208#ifdef INET6
209#define TCP_MINPROTOHDR (sizeof(struct ip6_hdr) + sizeof(struct tcphdr))
210#else /* INET6 */
211#define TCP_MINPROTOHDR (sizeof(struct tcpiphdr))
212#endif /* INET6 */
213	if (max_protohdr < TCP_MINPROTOHDR)
214		max_protohdr = TCP_MINPROTOHDR;
215	if (max_linkhdr + TCP_MINPROTOHDR > MHLEN)
216		panic("tcp_init");
217#undef TCP_MINPROTOHDR
218}
219
220/*
221 * Create template to be used to send tcp packets on a connection.
222 * Call after host entry created, allocates an mbuf and fills
223 * in a skeletal tcp/ip header, minimizing the amount of work
224 * necessary when the connection is used.
225 */
226struct tcptemp *
227tcp_template(tp)
228	struct tcpcb *tp;
229{
230	register struct inpcb *inp = tp->t_inpcb;
231	register struct mbuf *m;
232	register struct tcptemp *n;
233
234	if ((n = tp->t_template) == 0) {
235		m = m_get(M_DONTWAIT, MT_HEADER);
236		if (m == NULL)
237			return (0);
238		m->m_len = sizeof (struct tcptemp);
239		n = mtod(m, struct tcptemp *);
240	}
241#ifdef INET6
242	if ((inp->inp_vflag & INP_IPV6) != 0) {
243		register struct ip6_hdr *ip6;
244
245		ip6 = (struct ip6_hdr *)n->tt_ipgen;
246		ip6->ip6_flow = (ip6->ip6_flow & ~IPV6_FLOWINFO_MASK) |
247			(inp->in6p_flowinfo & IPV6_FLOWINFO_MASK);
248		ip6->ip6_vfc = (ip6->ip6_vfc & ~IPV6_VERSION_MASK) |
249			(IPV6_VERSION & IPV6_VERSION_MASK);
250		ip6->ip6_nxt = IPPROTO_TCP;
251		ip6->ip6_plen = sizeof(struct tcphdr);
252		ip6->ip6_src = inp->in6p_laddr;
253		ip6->ip6_dst = inp->in6p_faddr;
254		n->tt_t.th_sum = 0;
255	} else
256#endif
257      {
258	struct ip *ip = (struct ip *)n->tt_ipgen;
259
260	bzero(ip, sizeof(struct ip));		/* XXX overkill? */
261	ip->ip_vhl = IP_VHL_BORING;
262	ip->ip_p = IPPROTO_TCP;
263	ip->ip_src = inp->inp_laddr;
264	ip->ip_dst = inp->inp_faddr;
265	n->tt_t.th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
266	    htons(sizeof(struct tcphdr) + IPPROTO_TCP));
267      }
268	n->tt_t.th_sport = inp->inp_lport;
269	n->tt_t.th_dport = inp->inp_fport;
270	n->tt_t.th_seq = 0;
271	n->tt_t.th_ack = 0;
272	n->tt_t.th_x2 = 0;
273	n->tt_t.th_off = 5;
274	n->tt_t.th_flags = 0;
275	n->tt_t.th_win = 0;
276	n->tt_t.th_urp = 0;
277	return (n);
278}
279
280/*
281 * Send a single message to the TCP at address specified by
282 * the given TCP/IP header.  If m == 0, then we make a copy
283 * of the tcpiphdr at ti and send directly to the addressed host.
284 * This is used to force keep alive messages out using the TCP
285 * template for a connection tp->t_template.  If flags are given
286 * then we send a message back to the TCP which originated the
287 * segment ti, and discard the mbuf containing it and any other
288 * attached mbufs.
289 *
290 * In any case the ack and sequence number of the transmitted
291 * segment are as specified by the parameters.
292 *
293 * NOTE: If m != NULL, then ti must point to *inside* the mbuf.
294 */
295void
296tcp_respond(tp, ipgen, th, m, ack, seq, flags)
297	struct tcpcb *tp;
298	void *ipgen;
299	register struct tcphdr *th;
300	register struct mbuf *m;
301	tcp_seq ack, seq;
302	int flags;
303{
304	register int tlen;
305	int win = 0;
306	struct route *ro = 0;
307	struct route sro;
308	struct ip *ip;
309	struct tcphdr *nth;
310#ifdef INET6
311	struct route_in6 *ro6 = 0;
312	struct route_in6 sro6;
313	struct ip6_hdr *ip6;
314	int isipv6;
315#endif /* INET6 */
316	int ipflags = 0;
317
318#ifdef INET6
319	isipv6 = IP_VHL_V(((struct ip *)ipgen)->ip_vhl) == 6;
320	ip6 = ipgen;
321#endif /* INET6 */
322	ip = ipgen;
323
324	if (tp) {
325		if (!(flags & TH_RST)) {
326			win = sbspace(&tp->t_inpcb->inp_socket->so_rcv);
327			if (win > (long)TCP_MAXWIN << tp->rcv_scale)
328				win = (long)TCP_MAXWIN << tp->rcv_scale;
329		}
330#ifdef INET6
331		if (isipv6)
332			ro6 = &tp->t_inpcb->in6p_route;
333		else
334#endif /* INET6 */
335		ro = &tp->t_inpcb->inp_route;
336	} else {
337#ifdef INET6
338		if (isipv6) {
339			ro6 = &sro6;
340			bzero(ro6, sizeof *ro6);
341		} else
342#endif /* INET6 */
343	      {
344		ro = &sro;
345		bzero(ro, sizeof *ro);
346	      }
347	}
348	if (m == 0) {
349		m = m_gethdr(M_DONTWAIT, MT_HEADER);
350		if (m == NULL)
351			return;
352		tlen = 0;
353		m->m_data += max_linkhdr;
354#ifdef INET6
355		if (isipv6) {
356			bcopy((caddr_t)ip6, mtod(m, caddr_t),
357			      sizeof(struct ip6_hdr));
358			ip6 = mtod(m, struct ip6_hdr *);
359			nth = (struct tcphdr *)(ip6 + 1);
360		} else
361#endif /* INET6 */
362	      {
363		bcopy((caddr_t)ip, mtod(m, caddr_t), sizeof(struct ip));
364		ip = mtod(m, struct ip *);
365		nth = (struct tcphdr *)(ip + 1);
366	      }
367		bcopy((caddr_t)th, (caddr_t)nth, sizeof(struct tcphdr));
368		flags = TH_ACK;
369	} else {
370		m_freem(m->m_next);
371		m->m_next = 0;
372		m->m_data = (caddr_t)ipgen;
373		/* m_len is set later */
374		tlen = 0;
375#define xchg(a,b,type) { type t; t=a; a=b; b=t; }
376#ifdef INET6
377		if (isipv6) {
378			xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr);
379			nth = (struct tcphdr *)(ip6 + 1);
380		} else
381#endif /* INET6 */
382	      {
383		xchg(ip->ip_dst.s_addr, ip->ip_src.s_addr, n_long);
384		nth = (struct tcphdr *)(ip + 1);
385	      }
386		if (th != nth) {
387			/*
388			 * this is usually a case when an extension header
389			 * exists between the IPv6 header and the
390			 * TCP header.
391			 */
392			nth->th_sport = th->th_sport;
393			nth->th_dport = th->th_dport;
394		}
395		xchg(nth->th_dport, nth->th_sport, n_short);
396#undef xchg
397	}
398#ifdef INET6
399	if (isipv6) {
400		ip6->ip6_plen = htons((u_short)(sizeof (struct tcphdr) +
401						tlen));
402		tlen += sizeof (struct ip6_hdr) + sizeof (struct tcphdr);
403	} else
404#endif
405      {
406	tlen += sizeof (struct tcpiphdr);
407	ip->ip_len = tlen;
408	ip->ip_ttl = ip_defttl;
409      }
410	m->m_len = tlen;
411	m->m_pkthdr.len = tlen;
412	m->m_pkthdr.rcvif = (struct ifnet *) 0;
413	nth->th_seq = htonl(seq);
414	nth->th_ack = htonl(ack);
415	nth->th_x2 = 0;
416	nth->th_off = sizeof (struct tcphdr) >> 2;
417	nth->th_flags = flags;
418	if (tp)
419		nth->th_win = htons((u_short) (win >> tp->rcv_scale));
420	else
421		nth->th_win = htons((u_short)win);
422	nth->th_urp = 0;
423#ifdef INET6
424	if (isipv6) {
425		nth->th_sum = 0;
426		nth->th_sum = in6_cksum(m, IPPROTO_TCP,
427					sizeof(struct ip6_hdr),
428					tlen - sizeof(struct ip6_hdr));
429		ip6->ip6_hlim = in6_selecthlim(tp ? tp->t_inpcb : NULL,
430					       ro6 && ro6->ro_rt ?
431					       ro6->ro_rt->rt_ifp :
432					       NULL);
433	} else
434#endif /* INET6 */
435      {
436        nth->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
437	    htons((u_short)(tlen - sizeof(struct ip) + ip->ip_p)));
438        m->m_pkthdr.csum_flags = CSUM_TCP;
439        m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
440      }
441#ifdef TCPDEBUG
442	if (tp == NULL || (tp->t_inpcb->inp_socket->so_options & SO_DEBUG))
443		tcp_trace(TA_OUTPUT, 0, tp, mtod(m, void *), th, 0);
444#endif
445#ifdef IPSEC
446	ipsec_setsocket(m, tp ? tp->t_inpcb->inp_socket : NULL);
447#endif
448#ifdef INET6
449	if (isipv6) {
450		(void)ip6_output(m, NULL, ro6, ipflags, NULL, NULL);
451		if (ro6 == &sro6 && ro6->ro_rt) {
452			RTFREE(ro6->ro_rt);
453			ro6->ro_rt = NULL;
454		}
455	} else
456#endif /* INET6 */
457      {
458	(void) ip_output(m, NULL, ro, ipflags, NULL);
459	if (ro == &sro && ro->ro_rt) {
460		RTFREE(ro->ro_rt);
461		ro->ro_rt = NULL;
462	}
463      }
464}
465
466/*
467 * Create a new TCP control block, making an
468 * empty reassembly queue and hooking it to the argument
469 * protocol control block.  The `inp' parameter must have
470 * come from the zone allocator set up in tcp_init().
471 */
472struct tcpcb *
473tcp_newtcpcb(inp)
474	struct inpcb *inp;
475{
476	struct inp_tp *it;
477	register struct tcpcb *tp;
478#ifdef INET6
479	int isipv6 = (inp->inp_vflag & INP_IPV6) != 0;
480#endif /* INET6 */
481
482	it = (struct inp_tp *)inp;
483	tp = &it->tcb;
484	bzero((char *) tp, sizeof(struct tcpcb));
485	LIST_INIT(&tp->t_segq);
486	tp->t_maxseg = tp->t_maxopd =
487#ifdef INET6
488		isipv6 ? tcp_v6mssdflt :
489#endif /* INET6 */
490		tcp_mssdflt;
491
492	/* Set up our timeouts. */
493	callout_init(tp->tt_rexmt = &it->inp_tp_rexmt, 0);
494	callout_init(tp->tt_persist = &it->inp_tp_persist, 0);
495	callout_init(tp->tt_keep = &it->inp_tp_keep, 0);
496	callout_init(tp->tt_2msl = &it->inp_tp_2msl, 0);
497	callout_init(tp->tt_delack = &it->inp_tp_delack, 0);
498
499	if (tcp_do_rfc1323)
500		tp->t_flags = (TF_REQ_SCALE|TF_REQ_TSTMP);
501	if (tcp_do_rfc1644)
502		tp->t_flags |= TF_REQ_CC;
503	tp->t_inpcb = inp;	/* XXX */
504	/*
505	 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
506	 * rtt estimate.  Set rttvar so that srtt + 4 * rttvar gives
507	 * reasonable initial retransmit time.
508	 */
509	tp->t_srtt = TCPTV_SRTTBASE;
510	tp->t_rttvar = ((TCPTV_RTOBASE - TCPTV_SRTTBASE) << TCP_RTTVAR_SHIFT) / 4;
511	tp->t_rttmin = TCPTV_MIN;
512	tp->t_rxtcur = TCPTV_RTOBASE;
513	tp->snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
514	tp->snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT;
515	tp->t_rcvtime = ticks;
516        /*
517	 * IPv4 TTL initialization is necessary for an IPv6 socket as well,
518	 * because the socket may be bound to an IPv6 wildcard address,
519	 * which may match an IPv4-mapped IPv6 address.
520	 */
521	inp->inp_ip_ttl = ip_defttl;
522	inp->inp_ppcb = (caddr_t)tp;
523	return (tp);		/* XXX */
524}
525
526/*
527 * Drop a TCP connection, reporting
528 * the specified error.  If connection is synchronized,
529 * then send a RST to peer.
530 */
531struct tcpcb *
532tcp_drop(tp, errno)
533	register struct tcpcb *tp;
534	int errno;
535{
536	struct socket *so = tp->t_inpcb->inp_socket;
537
538	if (TCPS_HAVERCVDSYN(tp->t_state)) {
539		tp->t_state = TCPS_CLOSED;
540		(void) tcp_output(tp);
541		tcpstat.tcps_drops++;
542	} else
543		tcpstat.tcps_conndrops++;
544	if (errno == ETIMEDOUT && tp->t_softerror)
545		errno = tp->t_softerror;
546	so->so_error = errno;
547	return (tcp_close(tp));
548}
549
550/*
551 * Close a TCP control block:
552 *	discard all space held by the tcp
553 *	discard internet protocol block
554 *	wake up any sleepers
555 */
556struct tcpcb *
557tcp_close(tp)
558	register struct tcpcb *tp;
559{
560	register struct tseg_qent *q;
561	struct inpcb *inp = tp->t_inpcb;
562	struct socket *so = inp->inp_socket;
563#ifdef INET6
564	int isipv6 = (inp->inp_vflag & INP_IPV6) != 0;
565#endif /* INET6 */
566	register struct rtentry *rt;
567	int dosavessthresh;
568
569	/*
570	 * Make sure that all of our timers are stopped before we
571	 * delete the PCB.
572	 */
573	callout_stop(tp->tt_rexmt);
574	callout_stop(tp->tt_persist);
575	callout_stop(tp->tt_keep);
576	callout_stop(tp->tt_2msl);
577	callout_stop(tp->tt_delack);
578
579	/*
580	 * If we got enough samples through the srtt filter,
581	 * save the rtt and rttvar in the routing entry.
582	 * 'Enough' is arbitrarily defined as the 16 samples.
583	 * 16 samples is enough for the srtt filter to converge
584	 * to within 5% of the correct value; fewer samples and
585	 * we could save a very bogus rtt.
586	 *
587	 * Don't update the default route's characteristics and don't
588	 * update anything that the user "locked".
589	 */
590	if (tp->t_rttupdated >= 16) {
591		register u_long i = 0;
592#ifdef INET6
593		if (isipv6) {
594			struct sockaddr_in6 *sin6;
595
596			if ((rt = inp->in6p_route.ro_rt) == NULL)
597				goto no_valid_rt;
598			sin6 = (struct sockaddr_in6 *)rt_key(rt);
599			if (IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr))
600				goto no_valid_rt;
601		}
602		else
603#endif /* INET6 */
604		if ((rt = inp->inp_route.ro_rt) == NULL ||
605		    ((struct sockaddr_in *)rt_key(rt))->sin_addr.s_addr
606		    == INADDR_ANY)
607			goto no_valid_rt;
608
609		if ((rt->rt_rmx.rmx_locks & RTV_RTT) == 0) {
610			i = tp->t_srtt *
611			    (RTM_RTTUNIT / (hz * TCP_RTT_SCALE));
612			if (rt->rt_rmx.rmx_rtt && i)
613				/*
614				 * filter this update to half the old & half
615				 * the new values, converting scale.
616				 * See route.h and tcp_var.h for a
617				 * description of the scaling constants.
618				 */
619				rt->rt_rmx.rmx_rtt =
620				    (rt->rt_rmx.rmx_rtt + i) / 2;
621			else
622				rt->rt_rmx.rmx_rtt = i;
623			tcpstat.tcps_cachedrtt++;
624		}
625		if ((rt->rt_rmx.rmx_locks & RTV_RTTVAR) == 0) {
626			i = tp->t_rttvar *
627			    (RTM_RTTUNIT / (hz * TCP_RTTVAR_SCALE));
628			if (rt->rt_rmx.rmx_rttvar && i)
629				rt->rt_rmx.rmx_rttvar =
630				    (rt->rt_rmx.rmx_rttvar + i) / 2;
631			else
632				rt->rt_rmx.rmx_rttvar = i;
633			tcpstat.tcps_cachedrttvar++;
634		}
635		/*
636		 * The old comment here said:
637		 * update the pipelimit (ssthresh) if it has been updated
638		 * already or if a pipesize was specified & the threshhold
639		 * got below half the pipesize.  I.e., wait for bad news
640		 * before we start updating, then update on both good
641		 * and bad news.
642		 *
643		 * But we want to save the ssthresh even if no pipesize is
644		 * specified explicitly in the route, because such
645		 * connections still have an implicit pipesize specified
646		 * by the global tcp_sendspace.  In the absence of a reliable
647		 * way to calculate the pipesize, it will have to do.
648		 */
649		i = tp->snd_ssthresh;
650		if (rt->rt_rmx.rmx_sendpipe != 0)
651			dosavessthresh = (i < rt->rt_rmx.rmx_sendpipe / 2);
652		else
653			dosavessthresh = (i < so->so_snd.sb_hiwat / 2);
654		if (((rt->rt_rmx.rmx_locks & RTV_SSTHRESH) == 0 &&
655		     i != 0 && rt->rt_rmx.rmx_ssthresh != 0)
656		    || dosavessthresh) {
657			/*
658			 * convert the limit from user data bytes to
659			 * packets then to packet data bytes.
660			 */
661			i = (i + tp->t_maxseg / 2) / tp->t_maxseg;
662			if (i < 2)
663				i = 2;
664			i *= (u_long)(tp->t_maxseg +
665#ifdef INET6
666				      (isipv6 ? sizeof (struct ip6_hdr) +
667					       sizeof (struct tcphdr) :
668#endif
669				       sizeof (struct tcpiphdr)
670#ifdef INET6
671				       )
672#endif
673				      );
674			if (rt->rt_rmx.rmx_ssthresh)
675				rt->rt_rmx.rmx_ssthresh =
676				    (rt->rt_rmx.rmx_ssthresh + i) / 2;
677			else
678				rt->rt_rmx.rmx_ssthresh = i;
679			tcpstat.tcps_cachedssthresh++;
680		}
681	}
682	rt = inp->inp_route.ro_rt;
683	if (rt) {
684		/*
685		 * mark route for deletion if no information is
686		 * cached.
687		 */
688		if ((tp->t_flags & TF_LQ_OVERFLOW) &&
689		    ((rt->rt_rmx.rmx_locks & RTV_RTT) == 0)){
690			if (rt->rt_rmx.rmx_rtt == 0)
691				rt->rt_flags |= RTF_DELCLONE;
692		}
693	}
694    no_valid_rt:
695	/* free the reassembly queue, if any */
696	while((q = LIST_FIRST(&tp->t_segq)) != NULL) {
697		LIST_REMOVE(q, tqe_q);
698		m_freem(q->tqe_m);
699		FREE(q, M_TSEGQ);
700	}
701	if (tp->t_template)
702		(void) m_free(dtom(tp->t_template));
703	inp->inp_ppcb = NULL;
704	soisdisconnected(so);
705#ifdef INET6
706	if (INP_CHECK_SOCKAF(so, AF_INET6))
707		in6_pcbdetach(inp);
708	else
709#endif /* INET6 */
710	in_pcbdetach(inp);
711	tcpstat.tcps_closed++;
712	return ((struct tcpcb *)0);
713}
714
715void
716tcp_drain()
717{
718	if (do_tcpdrain)
719	{
720		struct inpcb *inpb;
721		struct tcpcb *tcpb;
722		struct tseg_qent *te;
723
724	/*
725	 * Walk the tcpbs, if existing, and flush the reassembly queue,
726	 * if there is one...
727	 * XXX: The "Net/3" implementation doesn't imply that the TCP
728	 *      reassembly queue should be flushed, but in a situation
729	 * 	where we're really low on mbufs, this is potentially
730	 *  	usefull.
731	 */
732		LIST_FOREACH(inpb, tcbinfo.listhead, inp_list) {
733			if ((tcpb = intotcpcb(inpb))) {
734				while ((te = LIST_FIRST(&tcpb->t_segq))
735			            != NULL) {
736					LIST_REMOVE(te, tqe_q);
737					m_freem(te->tqe_m);
738					FREE(te, M_TSEGQ);
739				}
740			}
741		}
742	}
743}
744
745/*
746 * Notify a tcp user of an asynchronous error;
747 * store error as soft error, but wake up user
748 * (for now, won't do anything until can select for soft error).
749 *
750 * Do not wake up user since there currently is no mechanism for
751 * reporting soft errors (yet - a kqueue filter may be added).
752 */
753static void
754tcp_notify(inp, error)
755	struct inpcb *inp;
756	int error;
757{
758	struct tcpcb *tp = (struct tcpcb *)inp->inp_ppcb;
759
760	/*
761	 * Ignore some errors if we are hooked up.
762	 * If connection hasn't completed, has retransmitted several times,
763	 * and receives a second error, give up now.  This is better
764	 * than waiting a long time to establish a connection that
765	 * can never complete.
766	 */
767	if (tp->t_state == TCPS_ESTABLISHED &&
768	     (error == EHOSTUNREACH || error == ENETUNREACH ||
769	      error == EHOSTDOWN)) {
770		return;
771	} else if (tp->t_state < TCPS_ESTABLISHED && tp->t_rxtshift > 3 &&
772	    tp->t_softerror)
773		tcp_drop(tp, error);
774	else
775		tp->t_softerror = error;
776#if 0
777	wakeup((caddr_t) &so->so_timeo);
778	sorwakeup(so);
779	sowwakeup(so);
780#endif
781}
782
783static int
784tcp_pcblist(SYSCTL_HANDLER_ARGS)
785{
786	int error, i, n, s;
787	struct inpcb *inp, **inp_list;
788	inp_gen_t gencnt;
789	struct xinpgen xig;
790
791	/*
792	 * The process of preparing the TCB list is too time-consuming and
793	 * resource-intensive to repeat twice on every request.
794	 */
795	if (req->oldptr == 0) {
796		n = tcbinfo.ipi_count;
797		req->oldidx = 2 * (sizeof xig)
798			+ (n + n/8) * sizeof(struct xtcpcb);
799		return 0;
800	}
801
802	if (req->newptr != 0)
803		return EPERM;
804
805	/*
806	 * OK, now we're committed to doing something.
807	 */
808	s = splnet();
809	gencnt = tcbinfo.ipi_gencnt;
810	n = tcbinfo.ipi_count;
811	splx(s);
812
813	xig.xig_len = sizeof xig;
814	xig.xig_count = n;
815	xig.xig_gen = gencnt;
816	xig.xig_sogen = so_gencnt;
817	error = SYSCTL_OUT(req, &xig, sizeof xig);
818	if (error)
819		return error;
820
821	inp_list = malloc(n * sizeof *inp_list, M_TEMP, M_WAITOK);
822	if (inp_list == 0)
823		return ENOMEM;
824
825	s = splnet();
826	for (inp = LIST_FIRST(tcbinfo.listhead), i = 0; inp && i < n;
827	     inp = LIST_NEXT(inp, inp_list)) {
828		if (inp->inp_gencnt <= gencnt && !prison_xinpcb(req->p, inp))
829			inp_list[i++] = inp;
830	}
831	splx(s);
832	n = i;
833
834	error = 0;
835	for (i = 0; i < n; i++) {
836		inp = inp_list[i];
837		if (inp->inp_gencnt <= gencnt) {
838			struct xtcpcb xt;
839			caddr_t inp_ppcb;
840			xt.xt_len = sizeof xt;
841			/* XXX should avoid extra copy */
842			bcopy(inp, &xt.xt_inp, sizeof *inp);
843			inp_ppcb = inp->inp_ppcb;
844			if (inp_ppcb != NULL)
845				bcopy(inp_ppcb, &xt.xt_tp, sizeof xt.xt_tp);
846			else
847				bzero((char *) &xt.xt_tp, sizeof xt.xt_tp);
848			if (inp->inp_socket)
849				sotoxsocket(inp->inp_socket, &xt.xt_socket);
850			error = SYSCTL_OUT(req, &xt, sizeof xt);
851		}
852	}
853	if (!error) {
854		/*
855		 * Give the user an updated idea of our state.
856		 * If the generation differs from what we told
857		 * her before, she knows that something happened
858		 * while we were processing this request, and it
859		 * might be necessary to retry.
860		 */
861		s = splnet();
862		xig.xig_gen = tcbinfo.ipi_gencnt;
863		xig.xig_sogen = so_gencnt;
864		xig.xig_count = tcbinfo.ipi_count;
865		splx(s);
866		error = SYSCTL_OUT(req, &xig, sizeof xig);
867	}
868	free(inp_list, M_TEMP);
869	return error;
870}
871
872SYSCTL_PROC(_net_inet_tcp, TCPCTL_PCBLIST, pcblist, CTLFLAG_RD, 0, 0,
873	    tcp_pcblist, "S,xtcpcb", "List of active TCP connections");
874
875static int
876tcp_getcred(SYSCTL_HANDLER_ARGS)
877{
878	struct xucred xuc;
879	struct sockaddr_in addrs[2];
880	struct inpcb *inp;
881	int error, s;
882
883	error = suser(req->p);
884	if (error)
885		return (error);
886	error = SYSCTL_IN(req, addrs, sizeof(addrs));
887	if (error)
888		return (error);
889	s = splnet();
890	inp = in_pcblookup_hash(&tcbinfo, addrs[1].sin_addr, addrs[1].sin_port,
891	    addrs[0].sin_addr, addrs[0].sin_port, 0, NULL);
892	if (inp == NULL || inp->inp_socket == NULL) {
893		error = ENOENT;
894		goto out;
895	}
896	bzero(&xuc, sizeof(xuc));
897	xuc.cr_uid = inp->inp_socket->so_cred->cr_uid;
898	xuc.cr_ngroups = inp->inp_socket->so_cred->cr_ngroups;
899	bcopy(inp->inp_socket->so_cred->cr_groups, xuc.cr_groups,
900	    sizeof(xuc.cr_groups));
901	error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred));
902out:
903	splx(s);
904	return (error);
905}
906
907SYSCTL_PROC(_net_inet_tcp, OID_AUTO, getcred, CTLTYPE_OPAQUE|CTLFLAG_RW,
908    0, 0, tcp_getcred, "S,xucred", "Get the xucred of a TCP connection");
909
910#ifdef INET6
911static int
912tcp6_getcred(SYSCTL_HANDLER_ARGS)
913{
914	struct xucred xuc;
915	struct sockaddr_in6 addrs[2];
916	struct inpcb *inp;
917	int error, s, mapped = 0;
918
919	error = suser(req->p);
920	if (error)
921		return (error);
922	error = SYSCTL_IN(req, addrs, sizeof(addrs));
923	if (error)
924		return (error);
925	if (IN6_IS_ADDR_V4MAPPED(&addrs[0].sin6_addr)) {
926		if (IN6_IS_ADDR_V4MAPPED(&addrs[1].sin6_addr))
927			mapped = 1;
928		else
929			return (EINVAL);
930	}
931	s = splnet();
932	if (mapped == 1)
933		inp = in_pcblookup_hash(&tcbinfo,
934			*(struct in_addr *)&addrs[1].sin6_addr.s6_addr[12],
935			addrs[1].sin6_port,
936			*(struct in_addr *)&addrs[0].sin6_addr.s6_addr[12],
937			addrs[0].sin6_port,
938			0, NULL);
939	else
940		inp = in6_pcblookup_hash(&tcbinfo, &addrs[1].sin6_addr,
941				 addrs[1].sin6_port,
942				 &addrs[0].sin6_addr, addrs[0].sin6_port,
943				 0, NULL);
944	if (inp == NULL || inp->inp_socket == NULL) {
945		error = ENOENT;
946		goto out;
947	}
948	bzero(&xuc, sizeof(xuc));
949	xuc.cr_uid = inp->inp_socket->so_cred->cr_uid;
950	xuc.cr_ngroups = inp->inp_socket->so_cred->cr_ngroups;
951	bcopy(inp->inp_socket->so_cred->cr_groups, xuc.cr_groups,
952	    sizeof(xuc.cr_groups));
953	error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred));
954out:
955	splx(s);
956	return (error);
957}
958
959SYSCTL_PROC(_net_inet6_tcp6, OID_AUTO, getcred, CTLTYPE_OPAQUE|CTLFLAG_RW,
960	    0, 0,
961	    tcp6_getcred, "S,xucred", "Get the xucred of a TCP6 connection");
962#endif
963
964
965void
966tcp_ctlinput(cmd, sa, vip)
967	int cmd;
968	struct sockaddr *sa;
969	void *vip;
970{
971	struct ip *ip = vip;
972	struct tcphdr *th;
973	struct in_addr faddr;
974	struct inpcb *inp;
975	struct tcpcb *tp;
976	void (*notify) __P((struct inpcb *, int)) = tcp_notify;
977	tcp_seq icmp_seq;
978	int s;
979
980	faddr = ((struct sockaddr_in *)sa)->sin_addr;
981	if (sa->sa_family != AF_INET || faddr.s_addr == INADDR_ANY)
982		return;
983
984	if (cmd == PRC_QUENCH)
985		notify = tcp_quench;
986	else if (icmp_may_rst && (cmd == PRC_UNREACH_ADMIN_PROHIB ||
987		cmd == PRC_UNREACH_PORT) && ip)
988		notify = tcp_drop_syn_sent;
989	else if (cmd == PRC_MSGSIZE)
990		notify = tcp_mtudisc;
991	else if (PRC_IS_REDIRECT(cmd)) {
992		ip = 0;
993		notify = in_rtchange;
994	} else if (cmd == PRC_HOSTDEAD)
995		ip = 0;
996	else if ((unsigned)cmd > PRC_NCMDS || inetctlerrmap[cmd] == 0)
997		return;
998	if (ip) {
999		s = splnet();
1000		th = (struct tcphdr *)((caddr_t)ip
1001				       + (IP_VHL_HL(ip->ip_vhl) << 2));
1002		inp = in_pcblookup_hash(&tcbinfo, faddr, th->th_dport,
1003		    ip->ip_src, th->th_sport, 0, NULL);
1004		if (inp != NULL && inp->inp_socket != NULL) {
1005			icmp_seq = htonl(th->th_seq);
1006			tp = intotcpcb(inp);
1007			if (SEQ_GEQ(icmp_seq, tp->snd_una) &&
1008			    SEQ_LT(icmp_seq, tp->snd_max))
1009				(*notify)(inp, inetctlerrmap[cmd]);
1010		}
1011		splx(s);
1012	} else
1013		in_pcbnotifyall(&tcb, faddr, inetctlerrmap[cmd], notify);
1014}
1015
1016#ifdef INET6
1017void
1018tcp6_ctlinput(cmd, sa, d)
1019	int cmd;
1020	struct sockaddr *sa;
1021	void *d;
1022{
1023	register struct tcphdr *thp;
1024	struct tcphdr th;
1025	void (*notify) __P((struct inpcb *, int)) = tcp_notify;
1026	struct sockaddr_in6 sa6;
1027	struct ip6_hdr *ip6;
1028	struct mbuf *m;
1029	int off;
1030
1031	if (sa->sa_family != AF_INET6 ||
1032	    sa->sa_len != sizeof(struct sockaddr_in6))
1033		return;
1034
1035	if (cmd == PRC_QUENCH)
1036		notify = tcp_quench;
1037	else if (cmd == PRC_MSGSIZE)
1038		notify = tcp_mtudisc;
1039	else if (!PRC_IS_REDIRECT(cmd) &&
1040		 ((unsigned)cmd > PRC_NCMDS || inet6ctlerrmap[cmd] == 0))
1041		return;
1042
1043	/* if the parameter is from icmp6, decode it. */
1044	if (d != NULL) {
1045		struct ip6ctlparam *ip6cp = (struct ip6ctlparam *)d;
1046		m = ip6cp->ip6c_m;
1047		ip6 = ip6cp->ip6c_ip6;
1048		off = ip6cp->ip6c_off;
1049	} else {
1050		m = NULL;
1051		ip6 = NULL;
1052		off = 0;	/* fool gcc */
1053	}
1054
1055	/*
1056	 * Translate addresses into internal form.
1057	 * Sa check if it is AF_INET6 is done at the top of this funciton.
1058	 */
1059	sa6 = *(struct sockaddr_in6 *)sa;
1060	if (IN6_IS_ADDR_LINKLOCAL(&sa6.sin6_addr) != 0 && m != NULL &&
1061	    m->m_pkthdr.rcvif != NULL)
1062		sa6.sin6_addr.s6_addr16[1] = htons(m->m_pkthdr.rcvif->if_index);
1063
1064	if (ip6) {
1065		/*
1066		 * XXX: We assume that when IPV6 is non NULL,
1067		 * M and OFF are valid.
1068		 */
1069		struct in6_addr s;
1070
1071		/* translate addresses into internal form */
1072		memcpy(&s, &ip6->ip6_src, sizeof(s));
1073		if (IN6_IS_ADDR_LINKLOCAL(&s) != 0 && m != NULL &&
1074		    m->m_pkthdr.rcvif != NULL)
1075			s.s6_addr16[1] = htons(m->m_pkthdr.rcvif->if_index);
1076
1077		/* check if we can safely examine src and dst ports */
1078		if (m->m_pkthdr.len < off + sizeof(th))
1079			return;
1080
1081		if (m->m_len < off + sizeof(th)) {
1082			/*
1083			 * this should be rare case
1084			 * because now MINCLSIZE is "(MHLEN + 1)",
1085			 * so we compromise on this copy...
1086			 */
1087			m_copydata(m, off, sizeof(th), (caddr_t)&th);
1088			thp = &th;
1089		} else
1090			thp = (struct tcphdr *)(mtod(m, caddr_t) + off);
1091		in6_pcbnotify(&tcb, (struct sockaddr *)&sa6, thp->th_dport,
1092			      &s, thp->th_sport, cmd, notify);
1093	} else
1094		in6_pcbnotify(&tcb, (struct sockaddr *)&sa6, 0, &zeroin6_addr,
1095			      0, cmd, notify);
1096}
1097#endif /* INET6 */
1098
1099#define TCP_RNDISS_ROUNDS	16
1100#define TCP_RNDISS_OUT	7200
1101#define TCP_RNDISS_MAX	30000
1102
1103u_int8_t tcp_rndiss_sbox[128];
1104u_int16_t tcp_rndiss_msb;
1105u_int16_t tcp_rndiss_cnt;
1106long tcp_rndiss_reseed;
1107
1108u_int16_t
1109tcp_rndiss_encrypt(val)
1110	u_int16_t val;
1111{
1112	u_int16_t sum = 0, i;
1113
1114	for (i = 0; i < TCP_RNDISS_ROUNDS; i++) {
1115		sum += 0x79b9;
1116		val ^= ((u_int16_t)tcp_rndiss_sbox[(val^sum) & 0x7f]) << 7;
1117		val = ((val & 0xff) << 7) | (val >> 8);
1118	}
1119
1120	return val;
1121}
1122
1123void
1124tcp_rndiss_init()
1125{
1126	struct timeval time;
1127
1128	getmicrotime(&time);
1129	read_random(tcp_rndiss_sbox, sizeof(tcp_rndiss_sbox));
1130
1131	tcp_rndiss_reseed = time.tv_sec + TCP_RNDISS_OUT;
1132	tcp_rndiss_msb = tcp_rndiss_msb == 0x8000 ? 0 : 0x8000;
1133	tcp_rndiss_cnt = 0;
1134}
1135
1136tcp_seq
1137tcp_rndiss_next()
1138{
1139	u_int16_t tmp;
1140	struct timeval time;
1141
1142	getmicrotime(&time);
1143
1144        if (tcp_rndiss_cnt >= TCP_RNDISS_MAX ||
1145	    time.tv_sec > tcp_rndiss_reseed)
1146                tcp_rndiss_init();
1147
1148	read_random(&tmp, sizeof(tmp));
1149
1150	/* (tmp & 0x7fff) ensures a 32768 byte gap between ISS */
1151	return ((tcp_rndiss_encrypt(tcp_rndiss_cnt++) | tcp_rndiss_msb) <<16) |
1152		(tmp & 0x7fff);
1153}
1154
1155
1156/*
1157 * When a source quench is received, close congestion window
1158 * to one segment.  We will gradually open it again as we proceed.
1159 */
1160void
1161tcp_quench(inp, errno)
1162	struct inpcb *inp;
1163	int errno;
1164{
1165	struct tcpcb *tp = intotcpcb(inp);
1166
1167	if (tp)
1168		tp->snd_cwnd = tp->t_maxseg;
1169}
1170
1171/*
1172 * When a specific ICMP unreachable message is received and the
1173 * connection state is SYN-SENT, drop the connection.  This behavior
1174 * is controlled by the icmp_may_rst sysctl.
1175 */
1176void
1177tcp_drop_syn_sent(inp, errno)
1178	struct inpcb *inp;
1179	int errno;
1180{
1181	struct tcpcb *tp = intotcpcb(inp);
1182
1183	if (tp && tp->t_state == TCPS_SYN_SENT)
1184		tcp_drop(tp, errno);
1185}
1186
1187/*
1188 * When `need fragmentation' ICMP is received, update our idea of the MSS
1189 * based on the new value in the route.  Also nudge TCP to send something,
1190 * since we know the packet we just sent was dropped.
1191 * This duplicates some code in the tcp_mss() function in tcp_input.c.
1192 */
1193void
1194tcp_mtudisc(inp, errno)
1195	struct inpcb *inp;
1196	int errno;
1197{
1198	struct tcpcb *tp = intotcpcb(inp);
1199	struct rtentry *rt;
1200	struct rmxp_tao *taop;
1201	struct socket *so = inp->inp_socket;
1202	int offered;
1203	int mss;
1204#ifdef INET6
1205	int isipv6 = (tp->t_inpcb->inp_vflag & INP_IPV6) != 0;
1206#endif /* INET6 */
1207
1208	if (tp) {
1209#ifdef INET6
1210		if (isipv6)
1211			rt = tcp_rtlookup6(inp);
1212		else
1213#endif /* INET6 */
1214		rt = tcp_rtlookup(inp);
1215		if (!rt || !rt->rt_rmx.rmx_mtu) {
1216			tp->t_maxopd = tp->t_maxseg =
1217#ifdef INET6
1218				isipv6 ? tcp_v6mssdflt :
1219#endif /* INET6 */
1220				tcp_mssdflt;
1221			return;
1222		}
1223		taop = rmx_taop(rt->rt_rmx);
1224		offered = taop->tao_mssopt;
1225		mss = rt->rt_rmx.rmx_mtu -
1226#ifdef INET6
1227			(isipv6 ?
1228			 sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
1229#endif /* INET6 */
1230			 sizeof(struct tcpiphdr)
1231#ifdef INET6
1232			 )
1233#endif /* INET6 */
1234			;
1235
1236		if (offered)
1237			mss = min(mss, offered);
1238		/*
1239		 * XXX - The above conditional probably violates the TCP
1240		 * spec.  The problem is that, since we don't know the
1241		 * other end's MSS, we are supposed to use a conservative
1242		 * default.  But, if we do that, then MTU discovery will
1243		 * never actually take place, because the conservative
1244		 * default is much less than the MTUs typically seen
1245		 * on the Internet today.  For the moment, we'll sweep
1246		 * this under the carpet.
1247		 *
1248		 * The conservative default might not actually be a problem
1249		 * if the only case this occurs is when sending an initial
1250		 * SYN with options and data to a host we've never talked
1251		 * to before.  Then, they will reply with an MSS value which
1252		 * will get recorded and the new parameters should get
1253		 * recomputed.  For Further Study.
1254		 */
1255		if (tp->t_maxopd <= mss)
1256			return;
1257		tp->t_maxopd = mss;
1258
1259		if ((tp->t_flags & (TF_REQ_TSTMP|TF_NOOPT)) == TF_REQ_TSTMP &&
1260		    (tp->t_flags & TF_RCVD_TSTMP) == TF_RCVD_TSTMP)
1261			mss -= TCPOLEN_TSTAMP_APPA;
1262		if ((tp->t_flags & (TF_REQ_CC|TF_NOOPT)) == TF_REQ_CC &&
1263		    (tp->t_flags & TF_RCVD_CC) == TF_RCVD_CC)
1264			mss -= TCPOLEN_CC_APPA;
1265#if	(MCLBYTES & (MCLBYTES - 1)) == 0
1266		if (mss > MCLBYTES)
1267			mss &= ~(MCLBYTES-1);
1268#else
1269		if (mss > MCLBYTES)
1270			mss = mss / MCLBYTES * MCLBYTES;
1271#endif
1272		if (so->so_snd.sb_hiwat < mss)
1273			mss = so->so_snd.sb_hiwat;
1274
1275		tp->t_maxseg = mss;
1276
1277		tcpstat.tcps_mturesent++;
1278		tp->t_rtttime = 0;
1279		tp->snd_nxt = tp->snd_una;
1280		tcp_output(tp);
1281	}
1282}
1283
1284/*
1285 * Look-up the routing entry to the peer of this inpcb.  If no route
1286 * is found and it cannot be allocated the return NULL.  This routine
1287 * is called by TCP routines that access the rmx structure and by tcp_mss
1288 * to get the interface MTU.
1289 */
1290struct rtentry *
1291tcp_rtlookup(inp)
1292	struct inpcb *inp;
1293{
1294	struct route *ro;
1295	struct rtentry *rt;
1296
1297	ro = &inp->inp_route;
1298	rt = ro->ro_rt;
1299	if (rt == NULL || !(rt->rt_flags & RTF_UP)) {
1300		/* No route yet, so try to acquire one */
1301		if (inp->inp_faddr.s_addr != INADDR_ANY) {
1302			ro->ro_dst.sa_family = AF_INET;
1303			ro->ro_dst.sa_len = sizeof(ro->ro_dst);
1304			((struct sockaddr_in *) &ro->ro_dst)->sin_addr =
1305				inp->inp_faddr;
1306			rtalloc(ro);
1307			rt = ro->ro_rt;
1308		}
1309	}
1310	return rt;
1311}
1312
1313#ifdef INET6
1314struct rtentry *
1315tcp_rtlookup6(inp)
1316	struct inpcb *inp;
1317{
1318	struct route_in6 *ro6;
1319	struct rtentry *rt;
1320
1321	ro6 = &inp->in6p_route;
1322	rt = ro6->ro_rt;
1323	if (rt == NULL || !(rt->rt_flags & RTF_UP)) {
1324		/* No route yet, so try to acquire one */
1325		if (!IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_faddr)) {
1326			ro6->ro_dst.sin6_family = AF_INET6;
1327			ro6->ro_dst.sin6_len = sizeof(ro6->ro_dst);
1328			ro6->ro_dst.sin6_addr = inp->in6p_faddr;
1329			rtalloc((struct route *)ro6);
1330			rt = ro6->ro_rt;
1331		}
1332	}
1333	return rt;
1334}
1335#endif /* INET6 */
1336
1337#ifdef IPSEC
1338/* compute ESP/AH header size for TCP, including outer IP header. */
1339size_t
1340ipsec_hdrsiz_tcp(tp)
1341	struct tcpcb *tp;
1342{
1343	struct inpcb *inp;
1344	struct mbuf *m;
1345	size_t hdrsiz;
1346	struct ip *ip;
1347#ifdef INET6
1348	struct ip6_hdr *ip6;
1349#endif /* INET6 */
1350	struct tcphdr *th;
1351
1352	if (!tp || !tp->t_template || !(inp = tp->t_inpcb))
1353		return 0;
1354	MGETHDR(m, M_DONTWAIT, MT_DATA);
1355	if (!m)
1356		return 0;
1357
1358#ifdef INET6
1359	if ((inp->inp_vflag & INP_IPV6) != 0) {
1360		ip6 = mtod(m, struct ip6_hdr *);
1361		th = (struct tcphdr *)(ip6 + 1);
1362		m->m_pkthdr.len = m->m_len =
1363			sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
1364		bcopy((caddr_t)tp->t_template->tt_ipgen, (caddr_t)ip6,
1365		      sizeof(struct ip6_hdr));
1366		bcopy((caddr_t)&tp->t_template->tt_t, (caddr_t)th,
1367		      sizeof(struct tcphdr));
1368		hdrsiz = ipsec6_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
1369	} else
1370#endif /* INET6 */
1371      {
1372	ip = mtod(m, struct ip *);
1373	th = (struct tcphdr *)(ip + 1);
1374	m->m_pkthdr.len = m->m_len = sizeof(struct tcpiphdr);
1375	bcopy((caddr_t)tp->t_template->tt_ipgen, (caddr_t)ip,
1376	      sizeof(struct ip));
1377	bcopy((caddr_t)&tp->t_template->tt_t, (caddr_t)th,
1378	      sizeof(struct tcphdr));
1379	hdrsiz = ipsec4_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
1380      }
1381
1382	m_free(m);
1383	return hdrsiz;
1384}
1385#endif /*IPSEC*/
1386
1387/*
1388 * Return a pointer to the cached information about the remote host.
1389 * The cached information is stored in the protocol specific part of
1390 * the route metrics.
1391 */
1392struct rmxp_tao *
1393tcp_gettaocache(inp)
1394	struct inpcb *inp;
1395{
1396	struct rtentry *rt;
1397
1398#ifdef INET6
1399	if ((inp->inp_vflag & INP_IPV6) != 0)
1400		rt = tcp_rtlookup6(inp);
1401	else
1402#endif /* INET6 */
1403	rt = tcp_rtlookup(inp);
1404
1405	/* Make sure this is a host route and is up. */
1406	if (rt == NULL ||
1407	    (rt->rt_flags & (RTF_UP|RTF_HOST)) != (RTF_UP|RTF_HOST))
1408		return NULL;
1409
1410	return rmx_taop(rt->rt_rmx);
1411}
1412
1413/*
1414 * Clear all the TAO cache entries, called from tcp_init.
1415 *
1416 * XXX
1417 * This routine is just an empty one, because we assume that the routing
1418 * routing tables are initialized at the same time when TCP, so there is
1419 * nothing in the cache left over.
1420 */
1421static void
1422tcp_cleartaocache()
1423{
1424}
1425