tcp_timewait.c revision 29506
1/*
2 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 *    must display the following acknowledgement:
15 *	This product includes software developed by the University of
16 *	California, Berkeley and its contributors.
17 * 4. Neither the name of the University nor the names of its contributors
18 *    may be used to endorse or promote products derived from this software
19 *    without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
32 *
33 *	@(#)tcp_subr.c	8.2 (Berkeley) 5/24/95
34 *	$Id: tcp_subr.c,v 1.36 1997/04/03 05:14:44 davidg Exp $
35 */
36
37#include <sys/param.h>
38#include <sys/queue.h>
39#include <sys/proc.h>
40#include <sys/systm.h>
41#include <sys/kernel.h>
42#include <sys/sysctl.h>
43#include <sys/malloc.h>
44#include <sys/mbuf.h>
45#include <sys/socket.h>
46#include <sys/socketvar.h>
47#include <sys/protosw.h>
48#include <sys/errno.h>
49
50#include <net/route.h>
51#include <net/if.h>
52
53#define _IP_VHL
54#include <netinet/in.h>
55#include <netinet/in_systm.h>
56#include <netinet/ip.h>
57#include <netinet/in_pcb.h>
58#include <netinet/in_var.h>
59#include <netinet/ip_var.h>
60#include <netinet/ip_icmp.h>
61#include <netinet/tcp.h>
62#include <netinet/tcp_fsm.h>
63#include <netinet/tcp_seq.h>
64#include <netinet/tcp_timer.h>
65#include <netinet/tcp_var.h>
66#include <netinet/tcpip.h>
67#ifdef TCPDEBUG
68#include <netinet/tcp_debug.h>
69#endif
70
71int 	tcp_mssdflt = TCP_MSS;
72SYSCTL_INT(_net_inet_tcp, TCPCTL_MSSDFLT, mssdflt,
73	CTLFLAG_RW, &tcp_mssdflt , 0, "");
74
75static int 	tcp_rttdflt = TCPTV_SRTTDFLT / PR_SLOWHZ;
76SYSCTL_INT(_net_inet_tcp, TCPCTL_RTTDFLT, rttdflt,
77	CTLFLAG_RW, &tcp_rttdflt , 0, "");
78
79static int	tcp_do_rfc1323 = 1;
80SYSCTL_INT(_net_inet_tcp, TCPCTL_DO_RFC1323, rfc1323,
81	CTLFLAG_RW, &tcp_do_rfc1323 , 0, "");
82
83static int	tcp_do_rfc1644 = 1;
84SYSCTL_INT(_net_inet_tcp, TCPCTL_DO_RFC1644, rfc1644,
85	CTLFLAG_RW, &tcp_do_rfc1644 , 0, "");
86
87static void	tcp_cleartaocache __P((void));
88static void	tcp_notify __P((struct inpcb *, int));
89
90/*
91 * Target size of TCP PCB hash table. Will be rounded down to a prime
92 * number.
93 */
94#ifndef TCBHASHSIZE
95#define TCBHASHSIZE	128
96#endif
97
98/*
99 * Tcp initialization
100 */
101void
102tcp_init()
103{
104
105	tcp_iss = random();	/* wrong, but better than a constant */
106	tcp_ccgen = 1;
107	tcp_cleartaocache();
108	LIST_INIT(&tcb);
109	tcbinfo.listhead = &tcb;
110	tcbinfo.hashbase = hashinit(TCBHASHSIZE, M_PCB, &tcbinfo.hashmask);
111	if (max_protohdr < sizeof(struct tcpiphdr))
112		max_protohdr = sizeof(struct tcpiphdr);
113	if (max_linkhdr + sizeof(struct tcpiphdr) > MHLEN)
114		panic("tcp_init");
115}
116
117/*
118 * Create template to be used to send tcp packets on a connection.
119 * Call after host entry created, allocates an mbuf and fills
120 * in a skeletal tcp/ip header, minimizing the amount of work
121 * necessary when the connection is used.
122 */
123struct tcpiphdr *
124tcp_template(tp)
125	struct tcpcb *tp;
126{
127	register struct inpcb *inp = tp->t_inpcb;
128	register struct mbuf *m;
129	register struct tcpiphdr *n;
130
131	if ((n = tp->t_template) == 0) {
132		m = m_get(M_DONTWAIT, MT_HEADER);
133		if (m == NULL)
134			return (0);
135		m->m_len = sizeof (struct tcpiphdr);
136		n = mtod(m, struct tcpiphdr *);
137	}
138	n->ti_next = n->ti_prev = 0;
139	n->ti_x1 = 0;
140	n->ti_pr = IPPROTO_TCP;
141	n->ti_len = htons(sizeof (struct tcpiphdr) - sizeof (struct ip));
142	n->ti_src = inp->inp_laddr;
143	n->ti_dst = inp->inp_faddr;
144	n->ti_sport = inp->inp_lport;
145	n->ti_dport = inp->inp_fport;
146	n->ti_seq = 0;
147	n->ti_ack = 0;
148	n->ti_x2 = 0;
149	n->ti_off = 5;
150	n->ti_flags = 0;
151	n->ti_win = 0;
152	n->ti_sum = 0;
153	n->ti_urp = 0;
154	return (n);
155}
156
157/*
158 * Send a single message to the TCP at address specified by
159 * the given TCP/IP header.  If m == 0, then we make a copy
160 * of the tcpiphdr at ti and send directly to the addressed host.
161 * This is used to force keep alive messages out using the TCP
162 * template for a connection tp->t_template.  If flags are given
163 * then we send a message back to the TCP which originated the
164 * segment ti, and discard the mbuf containing it and any other
165 * attached mbufs.
166 *
167 * In any case the ack and sequence number of the transmitted
168 * segment are as specified by the parameters.
169 */
170void
171tcp_respond(tp, ti, m, ack, seq, flags)
172	struct tcpcb *tp;
173	register struct tcpiphdr *ti;
174	register struct mbuf *m;
175	tcp_seq ack, seq;
176	int flags;
177{
178	register int tlen;
179	int win = 0;
180	struct route *ro = 0;
181	struct route sro;
182
183	if (tp) {
184		win = sbspace(&tp->t_inpcb->inp_socket->so_rcv);
185		ro = &tp->t_inpcb->inp_route;
186	} else {
187		ro = &sro;
188		bzero(ro, sizeof *ro);
189	}
190	if (m == 0) {
191		m = m_gethdr(M_DONTWAIT, MT_HEADER);
192		if (m == NULL)
193			return;
194#ifdef TCP_COMPAT_42
195		tlen = 1;
196#else
197		tlen = 0;
198#endif
199		m->m_data += max_linkhdr;
200		*mtod(m, struct tcpiphdr *) = *ti;
201		ti = mtod(m, struct tcpiphdr *);
202		flags = TH_ACK;
203	} else {
204		m_freem(m->m_next);
205		m->m_next = 0;
206		m->m_data = (caddr_t)ti;
207		m->m_len = sizeof (struct tcpiphdr);
208		tlen = 0;
209#define xchg(a,b,type) { type t; t=a; a=b; b=t; }
210		xchg(ti->ti_dst.s_addr, ti->ti_src.s_addr, u_long);
211		xchg(ti->ti_dport, ti->ti_sport, u_short);
212#undef xchg
213	}
214	ti->ti_len = htons((u_short)(sizeof (struct tcphdr) + tlen));
215	tlen += sizeof (struct tcpiphdr);
216	m->m_len = tlen;
217	m->m_pkthdr.len = tlen;
218	m->m_pkthdr.rcvif = (struct ifnet *) 0;
219	ti->ti_next = ti->ti_prev = 0;
220	ti->ti_x1 = 0;
221	ti->ti_seq = htonl(seq);
222	ti->ti_ack = htonl(ack);
223	ti->ti_x2 = 0;
224	ti->ti_off = sizeof (struct tcphdr) >> 2;
225	ti->ti_flags = flags;
226	if (tp)
227		ti->ti_win = htons((u_short) (win >> tp->rcv_scale));
228	else
229		ti->ti_win = htons((u_short)win);
230	ti->ti_urp = 0;
231	ti->ti_sum = 0;
232	ti->ti_sum = in_cksum(m, tlen);
233	((struct ip *)ti)->ip_len = tlen;
234	((struct ip *)ti)->ip_ttl = ip_defttl;
235#ifdef TCPDEBUG
236	if (tp == NULL || (tp->t_inpcb->inp_socket->so_options & SO_DEBUG))
237		tcp_trace(TA_OUTPUT, 0, tp, ti, 0);
238#endif
239	(void) ip_output(m, NULL, ro, 0, NULL);
240	if (ro == &sro && ro->ro_rt) {
241		RTFREE(ro->ro_rt);
242	}
243}
244
245/*
246 * Create a new TCP control block, making an
247 * empty reassembly queue and hooking it to the argument
248 * protocol control block.
249 */
250struct tcpcb *
251tcp_newtcpcb(inp)
252	struct inpcb *inp;
253{
254	register struct tcpcb *tp;
255
256	tp = malloc(sizeof(*tp), M_PCB, M_NOWAIT);
257	if (tp == NULL)
258		return ((struct tcpcb *)0);
259	bzero((char *) tp, sizeof(struct tcpcb));
260	tp->seg_next = tp->seg_prev = (struct tcpiphdr *)tp;
261	tp->t_maxseg = tp->t_maxopd = tcp_mssdflt;
262
263	if (tcp_do_rfc1323)
264		tp->t_flags = (TF_REQ_SCALE|TF_REQ_TSTMP);
265	if (tcp_do_rfc1644)
266		tp->t_flags |= TF_REQ_CC;
267	tp->t_inpcb = inp;
268	/*
269	 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
270	 * rtt estimate.  Set rttvar so that srtt + 4 * rttvar gives
271	 * reasonable initial retransmit time.
272	 */
273	tp->t_srtt = TCPTV_SRTTBASE;
274	tp->t_rttvar = ((TCPTV_RTOBASE - TCPTV_SRTTBASE) << TCP_RTTVAR_SHIFT) / 4;
275	tp->t_rttmin = TCPTV_MIN;
276	tp->t_rxtcur = TCPTV_RTOBASE;
277	tp->snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
278	tp->snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT;
279	inp->inp_ip_ttl = ip_defttl;
280	inp->inp_ppcb = (caddr_t)tp;
281	return (tp);
282}
283
284/*
285 * Drop a TCP connection, reporting
286 * the specified error.  If connection is synchronized,
287 * then send a RST to peer.
288 */
289struct tcpcb *
290tcp_drop(tp, errno)
291	register struct tcpcb *tp;
292	int errno;
293{
294	struct socket *so = tp->t_inpcb->inp_socket;
295
296	if (TCPS_HAVERCVDSYN(tp->t_state)) {
297		tp->t_state = TCPS_CLOSED;
298		(void) tcp_output(tp);
299		tcpstat.tcps_drops++;
300	} else
301		tcpstat.tcps_conndrops++;
302	if (errno == ETIMEDOUT && tp->t_softerror)
303		errno = tp->t_softerror;
304	so->so_error = errno;
305	return (tcp_close(tp));
306}
307
308/*
309 * Close a TCP control block:
310 *	discard all space held by the tcp
311 *	discard internet protocol block
312 *	wake up any sleepers
313 */
314struct tcpcb *
315tcp_close(tp)
316	register struct tcpcb *tp;
317{
318	register struct tcpiphdr *t;
319	struct inpcb *inp = tp->t_inpcb;
320	struct socket *so = inp->inp_socket;
321	register struct mbuf *m;
322	register struct rtentry *rt;
323	int dosavessthresh;
324
325	/*
326	 * If we got enough samples through the srtt filter,
327	 * save the rtt and rttvar in the routing entry.
328	 * 'Enough' is arbitrarily defined as the 16 samples.
329	 * 16 samples is enough for the srtt filter to converge
330	 * to within 5% of the correct value; fewer samples and
331	 * we could save a very bogus rtt.
332	 *
333	 * Don't update the default route's characteristics and don't
334	 * update anything that the user "locked".
335	 */
336	if (tp->t_rttupdated >= 16 &&
337	    (rt = inp->inp_route.ro_rt) &&
338	    ((struct sockaddr_in *)rt_key(rt))->sin_addr.s_addr != INADDR_ANY) {
339		register u_long i = 0;
340
341		if ((rt->rt_rmx.rmx_locks & RTV_RTT) == 0) {
342			i = tp->t_srtt *
343			    (RTM_RTTUNIT / (PR_SLOWHZ * TCP_RTT_SCALE));
344			if (rt->rt_rmx.rmx_rtt && i)
345				/*
346				 * filter this update to half the old & half
347				 * the new values, converting scale.
348				 * See route.h and tcp_var.h for a
349				 * description of the scaling constants.
350				 */
351				rt->rt_rmx.rmx_rtt =
352				    (rt->rt_rmx.rmx_rtt + i) / 2;
353			else
354				rt->rt_rmx.rmx_rtt = i;
355			tcpstat.tcps_cachedrtt++;
356		}
357		if ((rt->rt_rmx.rmx_locks & RTV_RTTVAR) == 0) {
358			i = tp->t_rttvar *
359			    (RTM_RTTUNIT / (PR_SLOWHZ * TCP_RTTVAR_SCALE));
360			if (rt->rt_rmx.rmx_rttvar && i)
361				rt->rt_rmx.rmx_rttvar =
362				    (rt->rt_rmx.rmx_rttvar + i) / 2;
363			else
364				rt->rt_rmx.rmx_rttvar = i;
365			tcpstat.tcps_cachedrttvar++;
366		}
367		/*
368		 * The old comment here said:
369		 * update the pipelimit (ssthresh) if it has been updated
370		 * already or if a pipesize was specified & the threshhold
371		 * got below half the pipesize.  I.e., wait for bad news
372		 * before we start updating, then update on both good
373		 * and bad news.
374		 *
375		 * But we want to save the ssthresh even if no pipesize is
376		 * specified explicitly in the route, because such
377		 * connections still have an implicit pipesize specified
378		 * by the global tcp_sendspace.  In the absence of a reliable
379		 * way to calculate the pipesize, it will have to do.
380		 */
381		i = tp->snd_ssthresh;
382#if 1
383		if (rt->rt_rmx.rmx_sendpipe != 0)
384			dosavessthresh = (i < rt->rt_rmx.rmx_sendpipe / 2);
385		else
386			dosavessthresh = (i < so->so_snd.sb_hiwat / 2);
387#else
388		dosavessthresh = (i < rt->rt_rmx.rmx_sendpipe / 2);
389#endif
390		if (((rt->rt_rmx.rmx_locks & RTV_SSTHRESH) == 0 &&
391		     i != 0 && rt->rt_rmx.rmx_ssthresh != 0)
392		    || dosavessthresh) {
393			/*
394			 * convert the limit from user data bytes to
395			 * packets then to packet data bytes.
396			 */
397			i = (i + tp->t_maxseg / 2) / tp->t_maxseg;
398			if (i < 2)
399				i = 2;
400			i *= (u_long)(tp->t_maxseg + sizeof (struct tcpiphdr));
401			if (rt->rt_rmx.rmx_ssthresh)
402				rt->rt_rmx.rmx_ssthresh =
403				    (rt->rt_rmx.rmx_ssthresh + i) / 2;
404			else
405				rt->rt_rmx.rmx_ssthresh = i;
406			tcpstat.tcps_cachedssthresh++;
407		}
408	}
409	/* free the reassembly queue, if any */
410	t = tp->seg_next;
411	while (t != (struct tcpiphdr *)tp) {
412		t = (struct tcpiphdr *)t->ti_next;
413		m = REASS_MBUF((struct tcpiphdr *)t->ti_prev);
414		remque(t->ti_prev);
415		m_freem(m);
416	}
417	if (tp->t_template)
418		(void) m_free(dtom(tp->t_template));
419	free(tp, M_PCB);
420	inp->inp_ppcb = 0;
421	soisdisconnected(so);
422	in_pcbdetach(inp);
423	tcpstat.tcps_closed++;
424	return ((struct tcpcb *)0);
425}
426
427void
428tcp_drain()
429{
430
431}
432
433/*
434 * Notify a tcp user of an asynchronous error;
435 * store error as soft error, but wake up user
436 * (for now, won't do anything until can select for soft error).
437 */
438static void
439tcp_notify(inp, error)
440	struct inpcb *inp;
441	int error;
442{
443	register struct tcpcb *tp = (struct tcpcb *)inp->inp_ppcb;
444	register struct socket *so = inp->inp_socket;
445
446	/*
447	 * Ignore some errors if we are hooked up.
448	 * If connection hasn't completed, has retransmitted several times,
449	 * and receives a second error, give up now.  This is better
450	 * than waiting a long time to establish a connection that
451	 * can never complete.
452	 */
453	if (tp->t_state == TCPS_ESTABLISHED &&
454	     (error == EHOSTUNREACH || error == ENETUNREACH ||
455	      error == EHOSTDOWN)) {
456		return;
457	} else if (tp->t_state < TCPS_ESTABLISHED && tp->t_rxtshift > 3 &&
458	    tp->t_softerror)
459		so->so_error = error;
460	else
461		tp->t_softerror = error;
462	wakeup((caddr_t) &so->so_timeo);
463	sorwakeup(so);
464	sowwakeup(so);
465}
466
467void
468tcp_ctlinput(cmd, sa, vip)
469	int cmd;
470	struct sockaddr *sa;
471	void *vip;
472{
473	register struct ip *ip = vip;
474	register struct tcphdr *th;
475	void (*notify) __P((struct inpcb *, int)) = tcp_notify;
476
477	if (cmd == PRC_QUENCH)
478		notify = tcp_quench;
479#if 1
480	else if (cmd == PRC_MSGSIZE)
481		notify = tcp_mtudisc;
482#endif
483	else if (!PRC_IS_REDIRECT(cmd) &&
484		 ((unsigned)cmd > PRC_NCMDS || inetctlerrmap[cmd] == 0))
485		return;
486	if (ip) {
487		th = (struct tcphdr *)((caddr_t)ip
488				       + (IP_VHL_HL(ip->ip_vhl) << 2));
489		in_pcbnotify(&tcb, sa, th->th_dport, ip->ip_src, th->th_sport,
490			cmd, notify);
491	} else
492		in_pcbnotify(&tcb, sa, 0, zeroin_addr, 0, cmd, notify);
493}
494
495/*
496 * When a source quench is received, close congestion window
497 * to one segment.  We will gradually open it again as we proceed.
498 */
499void
500tcp_quench(inp, errno)
501	struct inpcb *inp;
502	int errno;
503{
504	struct tcpcb *tp = intotcpcb(inp);
505
506	if (tp)
507		tp->snd_cwnd = tp->t_maxseg;
508}
509
510#if 1
511/*
512 * When `need fragmentation' ICMP is received, update our idea of the MSS
513 * based on the new value in the route.  Also nudge TCP to send something,
514 * since we know the packet we just sent was dropped.
515 * This duplicates some code in the tcp_mss() function in tcp_input.c.
516 */
517void
518tcp_mtudisc(inp, errno)
519	struct inpcb *inp;
520	int errno;
521{
522	struct tcpcb *tp = intotcpcb(inp);
523	struct rtentry *rt;
524	struct rmxp_tao *taop;
525	struct socket *so = inp->inp_socket;
526	int offered;
527	int mss;
528
529	if (tp) {
530		rt = tcp_rtlookup(inp);
531		if (!rt || !rt->rt_rmx.rmx_mtu) {
532			tp->t_maxopd = tp->t_maxseg = tcp_mssdflt;
533			return;
534		}
535		taop = rmx_taop(rt->rt_rmx);
536		offered = taop->tao_mssopt;
537		mss = rt->rt_rmx.rmx_mtu - sizeof(struct tcpiphdr);
538		if (offered)
539			mss = min(mss, offered);
540		/*
541		 * XXX - The above conditional probably violates the TCP
542		 * spec.  The problem is that, since we don't know the
543		 * other end's MSS, we are supposed to use a conservative
544		 * default.  But, if we do that, then MTU discovery will
545		 * never actually take place, because the conservative
546		 * default is much less than the MTUs typically seen
547		 * on the Internet today.  For the moment, we'll sweep
548		 * this under the carpet.
549		 *
550		 * The conservative default might not actually be a problem
551		 * if the only case this occurs is when sending an initial
552		 * SYN with options and data to a host we've never talked
553		 * to before.  Then, they will reply with an MSS value which
554		 * will get recorded and the new parameters should get
555		 * recomputed.  For Further Study.
556		 */
557		if (tp->t_maxopd <= mss)
558			return;
559		tp->t_maxopd = mss;
560
561		if ((tp->t_flags & (TF_REQ_TSTMP|TF_NOOPT)) == TF_REQ_TSTMP &&
562		    (tp->t_flags & TF_RCVD_TSTMP) == TF_RCVD_TSTMP)
563			mss -= TCPOLEN_TSTAMP_APPA;
564		if ((tp->t_flags & (TF_REQ_CC|TF_NOOPT)) == TF_REQ_CC &&
565		    (tp->t_flags & TF_RCVD_CC) == TF_RCVD_CC)
566			mss -= TCPOLEN_CC_APPA;
567#if	(MCLBYTES & (MCLBYTES - 1)) == 0
568		if (mss > MCLBYTES)
569			mss &= ~(MCLBYTES-1);
570#else
571		if (mss > MCLBYTES)
572			mss = mss / MCLBYTES * MCLBYTES;
573#endif
574		if (so->so_snd.sb_hiwat < mss)
575			mss = so->so_snd.sb_hiwat;
576
577		tp->t_maxseg = mss;
578
579		tcpstat.tcps_mturesent++;
580		tp->t_rtt = 0;
581		tp->snd_nxt = tp->snd_una;
582		tcp_output(tp);
583	}
584}
585#endif
586
587/*
588 * Look-up the routing entry to the peer of this inpcb.  If no route
589 * is found and it cannot be allocated the return NULL.  This routine
590 * is called by TCP routines that access the rmx structure and by tcp_mss
591 * to get the interface MTU.
592 */
593struct rtentry *
594tcp_rtlookup(inp)
595	struct inpcb *inp;
596{
597	struct route *ro;
598	struct rtentry *rt;
599
600	ro = &inp->inp_route;
601	rt = ro->ro_rt;
602	if (rt == NULL || !(rt->rt_flags & RTF_UP)) {
603		/* No route yet, so try to acquire one */
604		if (inp->inp_faddr.s_addr != INADDR_ANY) {
605			ro->ro_dst.sa_family = AF_INET;
606			ro->ro_dst.sa_len = sizeof(ro->ro_dst);
607			((struct sockaddr_in *) &ro->ro_dst)->sin_addr =
608				inp->inp_faddr;
609			rtalloc(ro);
610			rt = ro->ro_rt;
611		}
612	}
613	return rt;
614}
615
616/*
617 * Return a pointer to the cached information about the remote host.
618 * The cached information is stored in the protocol specific part of
619 * the route metrics.
620 */
621struct rmxp_tao *
622tcp_gettaocache(inp)
623	struct inpcb *inp;
624{
625	struct rtentry *rt = tcp_rtlookup(inp);
626
627	/* Make sure this is a host route and is up. */
628	if (rt == NULL ||
629	    (rt->rt_flags & (RTF_UP|RTF_HOST)) != (RTF_UP|RTF_HOST))
630		return NULL;
631
632	return rmx_taop(rt->rt_rmx);
633}
634
635/*
636 * Clear all the TAO cache entries, called from tcp_init.
637 *
638 * XXX
639 * This routine is just an empty one, because we assume that the routing
640 * routing tables are initialized at the same time when TCP, so there is
641 * nothing in the cache left over.
642 */
643static void
644tcp_cleartaocache()
645{
646}
647