tcp_timewait.c revision 169154
1/*-
2 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 4. Neither the name of the University nor the names of its contributors
14 *    may be used to endorse or promote products derived from this software
15 *    without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 *
29 *	@(#)tcp_subr.c	8.2 (Berkeley) 5/24/95
30 * $FreeBSD: head/sys/netinet/tcp_timewait.c 169154 2007-04-30 23:12:05Z rwatson $
31 */
32
33#include "opt_compat.h"
34#include "opt_inet.h"
35#include "opt_inet6.h"
36#include "opt_ipsec.h"
37#include "opt_mac.h"
38#include "opt_tcpdebug.h"
39
40#include <sys/param.h>
41#include <sys/systm.h>
42#include <sys/callout.h>
43#include <sys/kernel.h>
44#include <sys/sysctl.h>
45#include <sys/malloc.h>
46#include <sys/mbuf.h>
47#ifdef INET6
48#include <sys/domain.h>
49#endif
50#include <sys/priv.h>
51#include <sys/proc.h>
52#include <sys/socket.h>
53#include <sys/socketvar.h>
54#include <sys/protosw.h>
55#include <sys/random.h>
56
57#include <vm/uma.h>
58
59#include <net/route.h>
60#include <net/if.h>
61
62#include <netinet/in.h>
63#include <netinet/in_systm.h>
64#include <netinet/ip.h>
65#ifdef INET6
66#include <netinet/ip6.h>
67#endif
68#include <netinet/in_pcb.h>
69#ifdef INET6
70#include <netinet6/in6_pcb.h>
71#endif
72#include <netinet/in_var.h>
73#include <netinet/ip_var.h>
74#ifdef INET6
75#include <netinet6/ip6_var.h>
76#include <netinet6/scope6_var.h>
77#include <netinet6/nd6.h>
78#endif
79#include <netinet/ip_icmp.h>
80#include <netinet/tcp.h>
81#include <netinet/tcp_fsm.h>
82#include <netinet/tcp_seq.h>
83#include <netinet/tcp_timer.h>
84#include <netinet/tcp_var.h>
85#ifdef INET6
86#include <netinet6/tcp6_var.h>
87#endif
88#include <netinet/tcpip.h>
89#ifdef TCPDEBUG
90#include <netinet/tcp_debug.h>
91#endif
92#include <netinet6/ip6protosw.h>
93
94#ifdef IPSEC
95#include <netinet6/ipsec.h>
96#ifdef INET6
97#include <netinet6/ipsec6.h>
98#endif
99#include <netkey/key.h>
100#endif /*IPSEC*/
101
102#ifdef FAST_IPSEC
103#include <netipsec/ipsec.h>
104#include <netipsec/xform.h>
105#ifdef INET6
106#include <netipsec/ipsec6.h>
107#endif
108#include <netipsec/key.h>
109#define	IPSEC
110#endif /*FAST_IPSEC*/
111
112#include <machine/in_cksum.h>
113#include <sys/md5.h>
114
115#include <security/mac/mac_framework.h>
116
117int	tcp_mssdflt = TCP_MSS;
118SYSCTL_INT(_net_inet_tcp, TCPCTL_MSSDFLT, mssdflt, CTLFLAG_RW,
119    &tcp_mssdflt, 0, "Default TCP Maximum Segment Size");
120
121#ifdef INET6
122int	tcp_v6mssdflt = TCP6_MSS;
123SYSCTL_INT(_net_inet_tcp, TCPCTL_V6MSSDFLT, v6mssdflt,
124    CTLFLAG_RW, &tcp_v6mssdflt , 0,
125    "Default TCP Maximum Segment Size for IPv6");
126#endif
127
128/*
129 * Minimum MSS we accept and use. This prevents DoS attacks where
130 * we are forced to a ridiculous low MSS like 20 and send hundreds
131 * of packets instead of one. The effect scales with the available
132 * bandwidth and quickly saturates the CPU and network interface
133 * with packet generation and sending. Set to zero to disable MINMSS
134 * checking. This setting prevents us from sending too small packets.
135 */
136int	tcp_minmss = TCP_MINMSS;
137SYSCTL_INT(_net_inet_tcp, OID_AUTO, minmss, CTLFLAG_RW,
138    &tcp_minmss , 0, "Minmum TCP Maximum Segment Size");
139
140int	tcp_do_rfc1323 = 1;
141SYSCTL_INT(_net_inet_tcp, TCPCTL_DO_RFC1323, rfc1323, CTLFLAG_RW,
142    &tcp_do_rfc1323, 0, "Enable rfc1323 (high performance TCP) extensions");
143
144static int	tcp_tcbhashsize = 0;
145SYSCTL_INT(_net_inet_tcp, OID_AUTO, tcbhashsize, CTLFLAG_RDTUN,
146    &tcp_tcbhashsize, 0, "Size of TCP control-block hashtable");
147
148static int	do_tcpdrain = 1;
149SYSCTL_INT(_net_inet_tcp, OID_AUTO, do_tcpdrain, CTLFLAG_RW,
150    &do_tcpdrain, 0,
151    "Enable tcp_drain routine for extra help when low on mbufs");
152
153SYSCTL_INT(_net_inet_tcp, OID_AUTO, pcbcount, CTLFLAG_RD,
154    &tcbinfo.ipi_count, 0, "Number of active PCBs");
155
156static int	icmp_may_rst = 1;
157SYSCTL_INT(_net_inet_tcp, OID_AUTO, icmp_may_rst, CTLFLAG_RW,
158    &icmp_may_rst, 0,
159    "Certain ICMP unreachable messages may abort connections in SYN_SENT");
160
161static int	tcp_isn_reseed_interval = 0;
162SYSCTL_INT(_net_inet_tcp, OID_AUTO, isn_reseed_interval, CTLFLAG_RW,
163    &tcp_isn_reseed_interval, 0, "Seconds between reseeding of ISN secret");
164
165static uma_zone_t tcptw_zone;
166static int	maxtcptw;
167
168static int
169tcptw_auto_size(void)
170{
171	int halfrange;
172
173	/*
174	 * Max out at half the ephemeral port range so that TIME_WAIT
175	 * sockets don't tie up too many ephemeral ports.
176	 */
177	if (ipport_lastauto > ipport_firstauto)
178		halfrange = (ipport_lastauto - ipport_firstauto) / 2;
179	else
180		halfrange = (ipport_firstauto - ipport_lastauto) / 2;
181	/* Protect against goofy port ranges smaller than 32. */
182	return (imin(imax(halfrange, 32), maxsockets / 5));
183}
184
185static int
186sysctl_maxtcptw(SYSCTL_HANDLER_ARGS)
187{
188	int error, new;
189
190	if (maxtcptw == 0)
191		new = tcptw_auto_size();
192	else
193		new = maxtcptw;
194	error = sysctl_handle_int(oidp, &new, sizeof(int), req);
195	if (error == 0 && req->newptr)
196		if (new >= 32) {
197			maxtcptw = new;
198			uma_zone_set_max(tcptw_zone, maxtcptw);
199		}
200	return (error);
201}
202SYSCTL_PROC(_net_inet_tcp, OID_AUTO, maxtcptw, CTLTYPE_INT|CTLFLAG_RW,
203    &maxtcptw, 0, sysctl_maxtcptw, "IU",
204    "Maximum number of compressed TCP TIME_WAIT entries");
205
206static int	nolocaltimewait = 0;
207SYSCTL_INT(_net_inet_tcp, OID_AUTO, nolocaltimewait, CTLFLAG_RW,
208    &nolocaltimewait, 0,
209    "Do not create compressed TCP TIME_WAIT entries for local connections");
210
211/*
212 * TCP bandwidth limiting sysctls.  Note that the default lower bound of
213 * 1024 exists only for debugging.  A good production default would be
214 * something like 6100.
215 */
216SYSCTL_NODE(_net_inet_tcp, OID_AUTO, inflight, CTLFLAG_RW, 0,
217    "TCP inflight data limiting");
218
219static int	tcp_inflight_enable = 1;
220SYSCTL_INT(_net_inet_tcp_inflight, OID_AUTO, enable, CTLFLAG_RW,
221    &tcp_inflight_enable, 0, "Enable automatic TCP inflight data limiting");
222
223static int	tcp_inflight_debug = 0;
224SYSCTL_INT(_net_inet_tcp_inflight, OID_AUTO, debug, CTLFLAG_RW,
225    &tcp_inflight_debug, 0, "Debug TCP inflight calculations");
226
227static int	tcp_inflight_rttthresh;
228SYSCTL_PROC(_net_inet_tcp_inflight, OID_AUTO, rttthresh, CTLTYPE_INT|CTLFLAG_RW,
229    &tcp_inflight_rttthresh, 0, sysctl_msec_to_ticks, "I",
230    "RTT threshold below which inflight will deactivate itself");
231
232static int	tcp_inflight_min = 6144;
233SYSCTL_INT(_net_inet_tcp_inflight, OID_AUTO, min, CTLFLAG_RW,
234    &tcp_inflight_min, 0, "Lower-bound for TCP inflight window");
235
236static int	tcp_inflight_max = TCP_MAXWIN << TCP_MAX_WINSHIFT;
237SYSCTL_INT(_net_inet_tcp_inflight, OID_AUTO, max, CTLFLAG_RW,
238    &tcp_inflight_max, 0, "Upper-bound for TCP inflight window");
239
240static int	tcp_inflight_stab = 20;
241SYSCTL_INT(_net_inet_tcp_inflight, OID_AUTO, stab, CTLFLAG_RW,
242    &tcp_inflight_stab, 0, "Inflight Algorithm Stabilization 20 = 2 packets");
243
244uma_zone_t sack_hole_zone;
245
246static struct inpcb *tcp_notify(struct inpcb *, int);
247static void	tcp_isn_tick(void *);
248
249/*
250 * Target size of TCP PCB hash tables. Must be a power of two.
251 *
252 * Note that this can be overridden by the kernel environment
253 * variable net.inet.tcp.tcbhashsize
254 */
255#ifndef TCBHASHSIZE
256#define TCBHASHSIZE	512
257#endif
258
259/*
260 * XXX
261 * Callouts should be moved into struct tcp directly.  They are currently
262 * separate because the tcpcb structure is exported to userland for sysctl
263 * parsing purposes, which do not know about callouts.
264 */
265struct tcpcb_mem {
266	struct	tcpcb		tcb;
267	struct	tcp_timer	tt;
268};
269
270static uma_zone_t tcpcb_zone;
271struct callout isn_callout;
272static struct mtx isn_mtx;
273
274#define	ISN_LOCK_INIT()	mtx_init(&isn_mtx, "isn_mtx", NULL, MTX_DEF)
275#define	ISN_LOCK()	mtx_lock(&isn_mtx)
276#define	ISN_UNLOCK()	mtx_unlock(&isn_mtx)
277
278/*
279 * TCP initialization.
280 */
281static void
282tcp_zone_change(void *tag)
283{
284
285	uma_zone_set_max(tcbinfo.ipi_zone, maxsockets);
286	uma_zone_set_max(tcpcb_zone, maxsockets);
287	if (maxtcptw == 0)
288		uma_zone_set_max(tcptw_zone, tcptw_auto_size());
289}
290
291static int
292tcp_inpcb_init(void *mem, int size, int flags)
293{
294	struct inpcb *inp = mem;
295
296	INP_LOCK_INIT(inp, "inp", "tcpinp");
297	return (0);
298}
299
300void
301tcp_init(void)
302{
303	int hashsize = TCBHASHSIZE;
304
305	tcp_delacktime = TCPTV_DELACK;
306	tcp_keepinit = TCPTV_KEEP_INIT;
307	tcp_keepidle = TCPTV_KEEP_IDLE;
308	tcp_keepintvl = TCPTV_KEEPINTVL;
309	tcp_maxpersistidle = TCPTV_KEEP_IDLE;
310	tcp_msl = TCPTV_MSL;
311	tcp_rexmit_min = TCPTV_MIN;
312	tcp_rexmit_slop = TCPTV_CPU_VAR;
313	tcp_inflight_rttthresh = TCPTV_INFLIGHT_RTTTHRESH;
314	tcp_finwait2_timeout = TCPTV_FINWAIT2_TIMEOUT;
315
316	INP_INFO_LOCK_INIT(&tcbinfo, "tcp");
317	LIST_INIT(&tcb);
318	tcbinfo.ipi_listhead = &tcb;
319	TUNABLE_INT_FETCH("net.inet.tcp.tcbhashsize", &hashsize);
320	if (!powerof2(hashsize)) {
321		printf("WARNING: TCB hash size not a power of 2\n");
322		hashsize = 512; /* safe default */
323	}
324	tcp_tcbhashsize = hashsize;
325	tcbinfo.ipi_hashbase = hashinit(hashsize, M_PCB,
326	    &tcbinfo.ipi_hashmask);
327	tcbinfo.ipi_porthashbase = hashinit(hashsize, M_PCB,
328	    &tcbinfo.ipi_porthashmask);
329	tcbinfo.ipi_zone = uma_zcreate("inpcb", sizeof(struct inpcb),
330	    NULL, NULL, tcp_inpcb_init, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
331	uma_zone_set_max(tcbinfo.ipi_zone, maxsockets);
332#ifdef INET6
333#define TCP_MINPROTOHDR (sizeof(struct ip6_hdr) + sizeof(struct tcphdr))
334#else /* INET6 */
335#define TCP_MINPROTOHDR (sizeof(struct tcpiphdr))
336#endif /* INET6 */
337	if (max_protohdr < TCP_MINPROTOHDR)
338		max_protohdr = TCP_MINPROTOHDR;
339	if (max_linkhdr + TCP_MINPROTOHDR > MHLEN)
340		panic("tcp_init");
341#undef TCP_MINPROTOHDR
342	/*
343	 * These have to be type stable for the benefit of the timers.
344	 */
345	tcpcb_zone = uma_zcreate("tcpcb", sizeof(struct tcpcb_mem),
346	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
347	uma_zone_set_max(tcpcb_zone, maxsockets);
348	tcptw_zone = uma_zcreate("tcptw", sizeof(struct tcptw),
349	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
350	TUNABLE_INT_FETCH("net.inet.tcp.maxtcptw", &maxtcptw);
351	if (maxtcptw == 0)
352		uma_zone_set_max(tcptw_zone, tcptw_auto_size());
353	else
354		uma_zone_set_max(tcptw_zone, maxtcptw);
355	tcp_timer_init();
356	syncache_init();
357	tcp_hc_init();
358	tcp_reass_init();
359	ISN_LOCK_INIT();
360	callout_init(&isn_callout, CALLOUT_MPSAFE);
361	tcp_isn_tick(NULL);
362	EVENTHANDLER_REGISTER(shutdown_pre_sync, tcp_fini, NULL,
363		SHUTDOWN_PRI_DEFAULT);
364	sack_hole_zone = uma_zcreate("sackhole", sizeof(struct sackhole),
365	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
366	EVENTHANDLER_REGISTER(maxsockets_change, tcp_zone_change, NULL,
367		EVENTHANDLER_PRI_ANY);
368}
369
370void
371tcp_fini(void *xtp)
372{
373
374	callout_stop(&isn_callout);
375}
376
377/*
378 * Fill in the IP and TCP headers for an outgoing packet, given the tcpcb.
379 * tcp_template used to store this data in mbufs, but we now recopy it out
380 * of the tcpcb each time to conserve mbufs.
381 */
382void
383tcpip_fillheaders(struct inpcb *inp, void *ip_ptr, void *tcp_ptr)
384{
385	struct tcphdr *th = (struct tcphdr *)tcp_ptr;
386
387	INP_LOCK_ASSERT(inp);
388
389#ifdef INET6
390	if ((inp->inp_vflag & INP_IPV6) != 0) {
391		struct ip6_hdr *ip6;
392
393		ip6 = (struct ip6_hdr *)ip_ptr;
394		ip6->ip6_flow = (ip6->ip6_flow & ~IPV6_FLOWINFO_MASK) |
395			(inp->in6p_flowinfo & IPV6_FLOWINFO_MASK);
396		ip6->ip6_vfc = (ip6->ip6_vfc & ~IPV6_VERSION_MASK) |
397			(IPV6_VERSION & IPV6_VERSION_MASK);
398		ip6->ip6_nxt = IPPROTO_TCP;
399		ip6->ip6_plen = sizeof(struct tcphdr);
400		ip6->ip6_src = inp->in6p_laddr;
401		ip6->ip6_dst = inp->in6p_faddr;
402	} else
403#endif
404	{
405		struct ip *ip;
406
407		ip = (struct ip *)ip_ptr;
408		ip->ip_v = IPVERSION;
409		ip->ip_hl = 5;
410		ip->ip_tos = inp->inp_ip_tos;
411		ip->ip_len = 0;
412		ip->ip_id = 0;
413		ip->ip_off = 0;
414		ip->ip_ttl = inp->inp_ip_ttl;
415		ip->ip_sum = 0;
416		ip->ip_p = IPPROTO_TCP;
417		ip->ip_src = inp->inp_laddr;
418		ip->ip_dst = inp->inp_faddr;
419	}
420	th->th_sport = inp->inp_lport;
421	th->th_dport = inp->inp_fport;
422	th->th_seq = 0;
423	th->th_ack = 0;
424	th->th_x2 = 0;
425	th->th_off = 5;
426	th->th_flags = 0;
427	th->th_win = 0;
428	th->th_urp = 0;
429	th->th_sum = 0;		/* in_pseudo() is called later for ipv4 */
430}
431
432/*
433 * Create template to be used to send tcp packets on a connection.
434 * Allocates an mbuf and fills in a skeletal tcp/ip header.  The only
435 * use for this function is in keepalives, which use tcp_respond.
436 */
437struct tcptemp *
438tcpip_maketemplate(struct inpcb *inp)
439{
440	struct mbuf *m;
441	struct tcptemp *n;
442
443	m = m_get(M_DONTWAIT, MT_DATA);
444	if (m == NULL)
445		return (0);
446	m->m_len = sizeof(struct tcptemp);
447	n = mtod(m, struct tcptemp *);
448
449	tcpip_fillheaders(inp, (void *)&n->tt_ipgen, (void *)&n->tt_t);
450	return (n);
451}
452
453/*
454 * Send a single message to the TCP at address specified by
455 * the given TCP/IP header.  If m == NULL, then we make a copy
456 * of the tcpiphdr at ti and send directly to the addressed host.
457 * This is used to force keep alive messages out using the TCP
458 * template for a connection.  If flags are given then we send
459 * a message back to the TCP which originated the * segment ti,
460 * and discard the mbuf containing it and any other attached mbufs.
461 *
462 * In any case the ack and sequence number of the transmitted
463 * segment are as specified by the parameters.
464 *
465 * NOTE: If m != NULL, then ti must point to *inside* the mbuf.
466 */
467void
468tcp_respond(struct tcpcb *tp, void *ipgen, struct tcphdr *th,
469    struct mbuf *m, tcp_seq ack, tcp_seq seq, int flags)
470{
471	int tlen;
472	int win = 0;
473	struct ip *ip;
474	struct tcphdr *nth;
475#ifdef INET6
476	struct ip6_hdr *ip6;
477	int isipv6;
478#endif /* INET6 */
479	int ipflags = 0;
480	struct inpcb *inp;
481
482	KASSERT(tp != NULL || m != NULL, ("tcp_respond: tp and m both NULL"));
483
484#ifdef INET6
485	isipv6 = ((struct ip *)ipgen)->ip_v == 6;
486	ip6 = ipgen;
487#endif /* INET6 */
488	ip = ipgen;
489
490	if (tp != NULL) {
491		inp = tp->t_inpcb;
492		KASSERT(inp != NULL, ("tcp control block w/o inpcb"));
493		INP_LOCK_ASSERT(inp);
494	} else
495		inp = NULL;
496
497	if (tp != NULL) {
498		if (!(flags & TH_RST)) {
499			win = sbspace(&inp->inp_socket->so_rcv);
500			if (win > (long)TCP_MAXWIN << tp->rcv_scale)
501				win = (long)TCP_MAXWIN << tp->rcv_scale;
502		}
503	}
504	if (m == NULL) {
505		m = m_gethdr(M_DONTWAIT, MT_DATA);
506		if (m == NULL)
507			return;
508		tlen = 0;
509		m->m_data += max_linkhdr;
510#ifdef INET6
511		if (isipv6) {
512			bcopy((caddr_t)ip6, mtod(m, caddr_t),
513			      sizeof(struct ip6_hdr));
514			ip6 = mtod(m, struct ip6_hdr *);
515			nth = (struct tcphdr *)(ip6 + 1);
516		} else
517#endif /* INET6 */
518	      {
519		bcopy((caddr_t)ip, mtod(m, caddr_t), sizeof(struct ip));
520		ip = mtod(m, struct ip *);
521		nth = (struct tcphdr *)(ip + 1);
522	      }
523		bcopy((caddr_t)th, (caddr_t)nth, sizeof(struct tcphdr));
524		flags = TH_ACK;
525	} else {
526		m_freem(m->m_next);
527		m->m_next = NULL;
528		m->m_data = (caddr_t)ipgen;
529		/* m_len is set later */
530		tlen = 0;
531#define xchg(a,b,type) { type t; t=a; a=b; b=t; }
532#ifdef INET6
533		if (isipv6) {
534			xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr);
535			nth = (struct tcphdr *)(ip6 + 1);
536		} else
537#endif /* INET6 */
538	      {
539		xchg(ip->ip_dst.s_addr, ip->ip_src.s_addr, n_long);
540		nth = (struct tcphdr *)(ip + 1);
541	      }
542		if (th != nth) {
543			/*
544			 * this is usually a case when an extension header
545			 * exists between the IPv6 header and the
546			 * TCP header.
547			 */
548			nth->th_sport = th->th_sport;
549			nth->th_dport = th->th_dport;
550		}
551		xchg(nth->th_dport, nth->th_sport, n_short);
552#undef xchg
553	}
554#ifdef INET6
555	if (isipv6) {
556		ip6->ip6_flow = 0;
557		ip6->ip6_vfc = IPV6_VERSION;
558		ip6->ip6_nxt = IPPROTO_TCP;
559		ip6->ip6_plen = htons((u_short)(sizeof (struct tcphdr) +
560						tlen));
561		tlen += sizeof (struct ip6_hdr) + sizeof (struct tcphdr);
562	} else
563#endif
564	{
565		tlen += sizeof (struct tcpiphdr);
566		ip->ip_len = tlen;
567		ip->ip_ttl = ip_defttl;
568		if (path_mtu_discovery)
569			ip->ip_off |= IP_DF;
570	}
571	m->m_len = tlen;
572	m->m_pkthdr.len = tlen;
573	m->m_pkthdr.rcvif = NULL;
574#ifdef MAC
575	if (inp != NULL) {
576		/*
577		 * Packet is associated with a socket, so allow the
578		 * label of the response to reflect the socket label.
579		 */
580		INP_LOCK_ASSERT(inp);
581		mac_create_mbuf_from_inpcb(inp, m);
582	} else {
583		/*
584		 * Packet is not associated with a socket, so possibly
585		 * update the label in place.
586		 */
587		mac_reflect_mbuf_tcp(m);
588	}
589#endif
590	nth->th_seq = htonl(seq);
591	nth->th_ack = htonl(ack);
592	nth->th_x2 = 0;
593	nth->th_off = sizeof (struct tcphdr) >> 2;
594	nth->th_flags = flags;
595	if (tp != NULL)
596		nth->th_win = htons((u_short) (win >> tp->rcv_scale));
597	else
598		nth->th_win = htons((u_short)win);
599	nth->th_urp = 0;
600#ifdef INET6
601	if (isipv6) {
602		nth->th_sum = 0;
603		nth->th_sum = in6_cksum(m, IPPROTO_TCP,
604					sizeof(struct ip6_hdr),
605					tlen - sizeof(struct ip6_hdr));
606		ip6->ip6_hlim = in6_selecthlim(tp != NULL ? tp->t_inpcb :
607		    NULL, NULL);
608	} else
609#endif /* INET6 */
610	{
611		nth->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
612		    htons((u_short)(tlen - sizeof(struct ip) + ip->ip_p)));
613		m->m_pkthdr.csum_flags = CSUM_TCP;
614		m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
615	}
616#ifdef TCPDEBUG
617	if (tp == NULL || (inp->inp_socket->so_options & SO_DEBUG))
618		tcp_trace(TA_OUTPUT, 0, tp, mtod(m, void *), th, 0);
619#endif
620#ifdef INET6
621	if (isipv6)
622		(void) ip6_output(m, NULL, NULL, ipflags, NULL, NULL, inp);
623	else
624#endif /* INET6 */
625	(void) ip_output(m, NULL, NULL, ipflags, NULL, inp);
626}
627
628/*
629 * Create a new TCP control block, making an
630 * empty reassembly queue and hooking it to the argument
631 * protocol control block.  The `inp' parameter must have
632 * come from the zone allocator set up in tcp_init().
633 */
634struct tcpcb *
635tcp_newtcpcb(struct inpcb *inp)
636{
637	struct tcpcb_mem *tm;
638	struct tcpcb *tp;
639#ifdef INET6
640	int isipv6 = (inp->inp_vflag & INP_IPV6) != 0;
641#endif /* INET6 */
642
643	tm = uma_zalloc(tcpcb_zone, M_NOWAIT | M_ZERO);
644	if (tm == NULL)
645		return (NULL);
646	tp = &tm->tcb;
647	tp->t_timers = &tm->tt;
648	/*	LIST_INIT(&tp->t_segq); */	/* XXX covered by M_ZERO */
649	tp->t_maxseg = tp->t_maxopd =
650#ifdef INET6
651		isipv6 ? tcp_v6mssdflt :
652#endif /* INET6 */
653		tcp_mssdflt;
654
655	/* Set up our timeouts. */
656	callout_init_mtx(&tp->t_timers->tt_timer, &inp->inp_mtx,
657			 CALLOUT_RETURNUNLOCKED);
658
659	if (tcp_do_rfc1323)
660		tp->t_flags = (TF_REQ_SCALE|TF_REQ_TSTMP);
661	tp->sack_enable = tcp_do_sack;
662	TAILQ_INIT(&tp->snd_holes);
663	tp->t_inpcb = inp;	/* XXX */
664	/*
665	 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
666	 * rtt estimate.  Set rttvar so that srtt + 4 * rttvar gives
667	 * reasonable initial retransmit time.
668	 */
669	tp->t_srtt = TCPTV_SRTTBASE;
670	tp->t_rttvar = ((TCPTV_RTOBASE - TCPTV_SRTTBASE) << TCP_RTTVAR_SHIFT) / 4;
671	tp->t_rttmin = tcp_rexmit_min;
672	tp->t_rxtcur = TCPTV_RTOBASE;
673	tp->snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
674	tp->snd_bwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
675	tp->snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT;
676	tp->t_rcvtime = ticks;
677	tp->t_bw_rtttime = ticks;
678	/*
679	 * IPv4 TTL initialization is necessary for an IPv6 socket as well,
680	 * because the socket may be bound to an IPv6 wildcard address,
681	 * which may match an IPv4-mapped IPv6 address.
682	 */
683	inp->inp_ip_ttl = ip_defttl;
684	inp->inp_ppcb = tp;
685	return (tp);		/* XXX */
686}
687
688/*
689 * Drop a TCP connection, reporting
690 * the specified error.  If connection is synchronized,
691 * then send a RST to peer.
692 */
693struct tcpcb *
694tcp_drop(struct tcpcb *tp, int errno)
695{
696	struct socket *so = tp->t_inpcb->inp_socket;
697
698	INP_INFO_WLOCK_ASSERT(&tcbinfo);
699	INP_LOCK_ASSERT(tp->t_inpcb);
700
701	if (TCPS_HAVERCVDSYN(tp->t_state)) {
702		tp->t_state = TCPS_CLOSED;
703		(void) tcp_output(tp);
704		tcpstat.tcps_drops++;
705	} else
706		tcpstat.tcps_conndrops++;
707	if (errno == ETIMEDOUT && tp->t_softerror)
708		errno = tp->t_softerror;
709	so->so_error = errno;
710	return (tcp_close(tp));
711}
712
713void
714tcp_discardcb(struct tcpcb *tp)
715{
716	struct tseg_qent *q;
717	struct inpcb *inp = tp->t_inpcb;
718	struct socket *so = inp->inp_socket;
719#ifdef INET6
720	int isipv6 = (inp->inp_vflag & INP_IPV6) != 0;
721#endif /* INET6 */
722
723	INP_LOCK_ASSERT(inp);
724
725	/*
726	 * Make sure that all of our timers are stopped before we
727	 * delete the PCB.
728	 *
729	 * XXX: callout_stop() may race and a callout may already
730	 * try to obtain the INP_LOCK.  Only callout_drain() would
731	 * stop this but it would cause a LOR thus we can't use it.
732	 * The tcp_timer() function contains a lot of checks to
733	 * handle this case rather gracefully.
734	 */
735	tp->t_timers->tt_active = 0;
736	callout_stop(&tp->t_timers->tt_timer);
737
738	/*
739	 * If we got enough samples through the srtt filter,
740	 * save the rtt and rttvar in the routing entry.
741	 * 'Enough' is arbitrarily defined as 4 rtt samples.
742	 * 4 samples is enough for the srtt filter to converge
743	 * to within enough % of the correct value; fewer samples
744	 * and we could save a bogus rtt. The danger is not high
745	 * as tcp quickly recovers from everything.
746	 * XXX: Works very well but needs some more statistics!
747	 */
748	if (tp->t_rttupdated >= 4) {
749		struct hc_metrics_lite metrics;
750		u_long ssthresh;
751
752		bzero(&metrics, sizeof(metrics));
753		/*
754		 * Update the ssthresh always when the conditions below
755		 * are satisfied. This gives us better new start value
756		 * for the congestion avoidance for new connections.
757		 * ssthresh is only set if packet loss occured on a session.
758		 *
759		 * XXXRW: 'so' may be NULL here, and/or socket buffer may be
760		 * being torn down.  Ideally this code would not use 'so'.
761		 */
762		ssthresh = tp->snd_ssthresh;
763		if (ssthresh != 0 && ssthresh < so->so_snd.sb_hiwat / 2) {
764			/*
765			 * convert the limit from user data bytes to
766			 * packets then to packet data bytes.
767			 */
768			ssthresh = (ssthresh + tp->t_maxseg / 2) / tp->t_maxseg;
769			if (ssthresh < 2)
770				ssthresh = 2;
771			ssthresh *= (u_long)(tp->t_maxseg +
772#ifdef INET6
773				      (isipv6 ? sizeof (struct ip6_hdr) +
774					       sizeof (struct tcphdr) :
775#endif
776				       sizeof (struct tcpiphdr)
777#ifdef INET6
778				       )
779#endif
780				      );
781		} else
782			ssthresh = 0;
783		metrics.rmx_ssthresh = ssthresh;
784
785		metrics.rmx_rtt = tp->t_srtt;
786		metrics.rmx_rttvar = tp->t_rttvar;
787		/* XXX: This wraps if the pipe is more than 4 Gbit per second */
788		metrics.rmx_bandwidth = tp->snd_bandwidth;
789		metrics.rmx_cwnd = tp->snd_cwnd;
790		metrics.rmx_sendpipe = 0;
791		metrics.rmx_recvpipe = 0;
792
793		tcp_hc_update(&inp->inp_inc, &metrics);
794	}
795
796	/* free the reassembly queue, if any */
797	while ((q = LIST_FIRST(&tp->t_segq)) != NULL) {
798		LIST_REMOVE(q, tqe_q);
799		m_freem(q->tqe_m);
800		uma_zfree(tcp_reass_zone, q);
801		tp->t_segqlen--;
802		tcp_reass_qsize--;
803	}
804	tcp_free_sackholes(tp);
805	inp->inp_ppcb = NULL;
806	tp->t_inpcb = NULL;
807	uma_zfree(tcpcb_zone, tp);
808}
809
810/*
811 * Attempt to close a TCP control block, marking it as dropped, and freeing
812 * the socket if we hold the only reference.
813 */
814struct tcpcb *
815tcp_close(struct tcpcb *tp)
816{
817	struct inpcb *inp = tp->t_inpcb;
818	struct socket *so;
819
820	INP_INFO_WLOCK_ASSERT(&tcbinfo);
821	INP_LOCK_ASSERT(inp);
822
823	in_pcbdrop(inp);
824	tcpstat.tcps_closed++;
825	KASSERT(inp->inp_socket != NULL, ("tcp_close: inp_socket NULL"));
826	so = inp->inp_socket;
827	soisdisconnected(so);
828	if (inp->inp_vflag & INP_SOCKREF) {
829		KASSERT(so->so_state & SS_PROTOREF,
830		    ("tcp_close: !SS_PROTOREF"));
831		inp->inp_vflag &= ~INP_SOCKREF;
832		INP_UNLOCK(inp);
833		ACCEPT_LOCK();
834		SOCK_LOCK(so);
835		so->so_state &= ~SS_PROTOREF;
836		sofree(so);
837		return (NULL);
838	}
839	return (tp);
840}
841
842void
843tcp_drain(void)
844{
845
846	if (do_tcpdrain) {
847		struct inpcb *inpb;
848		struct tcpcb *tcpb;
849		struct tseg_qent *te;
850
851	/*
852	 * Walk the tcpbs, if existing, and flush the reassembly queue,
853	 * if there is one...
854	 * XXX: The "Net/3" implementation doesn't imply that the TCP
855	 *      reassembly queue should be flushed, but in a situation
856	 *	where we're really low on mbufs, this is potentially
857	 *	usefull.
858	 */
859		INP_INFO_RLOCK(&tcbinfo);
860		LIST_FOREACH(inpb, tcbinfo.ipi_listhead, inp_list) {
861			if (inpb->inp_vflag & INP_TIMEWAIT)
862				continue;
863			INP_LOCK(inpb);
864			if ((tcpb = intotcpcb(inpb)) != NULL) {
865				while ((te = LIST_FIRST(&tcpb->t_segq))
866			            != NULL) {
867					LIST_REMOVE(te, tqe_q);
868					m_freem(te->tqe_m);
869					uma_zfree(tcp_reass_zone, te);
870					tcpb->t_segqlen--;
871					tcp_reass_qsize--;
872				}
873				tcp_clean_sackreport(tcpb);
874			}
875			INP_UNLOCK(inpb);
876		}
877		INP_INFO_RUNLOCK(&tcbinfo);
878	}
879}
880
881/*
882 * Notify a tcp user of an asynchronous error;
883 * store error as soft error, but wake up user
884 * (for now, won't do anything until can select for soft error).
885 *
886 * Do not wake up user since there currently is no mechanism for
887 * reporting soft errors (yet - a kqueue filter may be added).
888 */
889static struct inpcb *
890tcp_notify(struct inpcb *inp, int error)
891{
892	struct tcpcb *tp;
893
894	INP_INFO_WLOCK_ASSERT(&tcbinfo);
895	INP_LOCK_ASSERT(inp);
896
897	if ((inp->inp_vflag & INP_TIMEWAIT) ||
898	    (inp->inp_vflag & INP_DROPPED))
899		return (inp);
900
901	tp = intotcpcb(inp);
902	KASSERT(tp != NULL, ("tcp_notify: tp == NULL"));
903
904	/*
905	 * Ignore some errors if we are hooked up.
906	 * If connection hasn't completed, has retransmitted several times,
907	 * and receives a second error, give up now.  This is better
908	 * than waiting a long time to establish a connection that
909	 * can never complete.
910	 */
911	if (tp->t_state == TCPS_ESTABLISHED &&
912	    (error == EHOSTUNREACH || error == ENETUNREACH ||
913	     error == EHOSTDOWN)) {
914		return (inp);
915	} else if (tp->t_state < TCPS_ESTABLISHED && tp->t_rxtshift > 3 &&
916	    tp->t_softerror) {
917		tp = tcp_drop(tp, error);
918		if (tp != NULL)
919			return (inp);
920		else
921			return (NULL);
922	} else {
923		tp->t_softerror = error;
924		return (inp);
925	}
926#if 0
927	wakeup( &so->so_timeo);
928	sorwakeup(so);
929	sowwakeup(so);
930#endif
931}
932
933static int
934tcp_pcblist(SYSCTL_HANDLER_ARGS)
935{
936	int error, i, n;
937	struct inpcb *inp, **inp_list;
938	inp_gen_t gencnt;
939	struct xinpgen xig;
940
941	/*
942	 * The process of preparing the TCB list is too time-consuming and
943	 * resource-intensive to repeat twice on every request.
944	 */
945	if (req->oldptr == NULL) {
946		n = tcbinfo.ipi_count;
947		req->oldidx = 2 * (sizeof xig)
948			+ (n + n/8) * sizeof(struct xtcpcb);
949		return (0);
950	}
951
952	if (req->newptr != NULL)
953		return (EPERM);
954
955	/*
956	 * OK, now we're committed to doing something.
957	 */
958	INP_INFO_RLOCK(&tcbinfo);
959	gencnt = tcbinfo.ipi_gencnt;
960	n = tcbinfo.ipi_count;
961	INP_INFO_RUNLOCK(&tcbinfo);
962
963	error = sysctl_wire_old_buffer(req, 2 * (sizeof xig)
964		+ n * sizeof(struct xtcpcb));
965	if (error != 0)
966		return (error);
967
968	xig.xig_len = sizeof xig;
969	xig.xig_count = n;
970	xig.xig_gen = gencnt;
971	xig.xig_sogen = so_gencnt;
972	error = SYSCTL_OUT(req, &xig, sizeof xig);
973	if (error)
974		return (error);
975
976	inp_list = malloc(n * sizeof *inp_list, M_TEMP, M_WAITOK);
977	if (inp_list == NULL)
978		return (ENOMEM);
979
980	INP_INFO_RLOCK(&tcbinfo);
981	for (inp = LIST_FIRST(tcbinfo.ipi_listhead), i = 0; inp != NULL && i
982	    < n; inp = LIST_NEXT(inp, inp_list)) {
983		INP_LOCK(inp);
984		if (inp->inp_gencnt <= gencnt) {
985			/*
986			 * XXX: This use of cr_cansee(), introduced with
987			 * TCP state changes, is not quite right, but for
988			 * now, better than nothing.
989			 */
990			if (inp->inp_vflag & INP_TIMEWAIT) {
991				if (intotw(inp) != NULL)
992					error = cr_cansee(req->td->td_ucred,
993					    intotw(inp)->tw_cred);
994				else
995					error = EINVAL;	/* Skip this inp. */
996			} else
997				error = cr_canseesocket(req->td->td_ucred,
998				    inp->inp_socket);
999			if (error == 0)
1000				inp_list[i++] = inp;
1001		}
1002		INP_UNLOCK(inp);
1003	}
1004	INP_INFO_RUNLOCK(&tcbinfo);
1005	n = i;
1006
1007	error = 0;
1008	for (i = 0; i < n; i++) {
1009		inp = inp_list[i];
1010		INP_LOCK(inp);
1011		if (inp->inp_gencnt <= gencnt) {
1012			struct xtcpcb xt;
1013			void *inp_ppcb;
1014
1015			bzero(&xt, sizeof(xt));
1016			xt.xt_len = sizeof xt;
1017			/* XXX should avoid extra copy */
1018			bcopy(inp, &xt.xt_inp, sizeof *inp);
1019			inp_ppcb = inp->inp_ppcb;
1020			if (inp_ppcb == NULL)
1021				bzero((char *) &xt.xt_tp, sizeof xt.xt_tp);
1022			else if (inp->inp_vflag & INP_TIMEWAIT) {
1023				bzero((char *) &xt.xt_tp, sizeof xt.xt_tp);
1024				xt.xt_tp.t_state = TCPS_TIME_WAIT;
1025			} else
1026				bcopy(inp_ppcb, &xt.xt_tp, sizeof xt.xt_tp);
1027			if (inp->inp_socket != NULL)
1028				sotoxsocket(inp->inp_socket, &xt.xt_socket);
1029			else {
1030				bzero(&xt.xt_socket, sizeof xt.xt_socket);
1031				xt.xt_socket.xso_protocol = IPPROTO_TCP;
1032			}
1033			xt.xt_inp.inp_gencnt = inp->inp_gencnt;
1034			INP_UNLOCK(inp);
1035			error = SYSCTL_OUT(req, &xt, sizeof xt);
1036		} else
1037			INP_UNLOCK(inp);
1038
1039	}
1040	if (!error) {
1041		/*
1042		 * Give the user an updated idea of our state.
1043		 * If the generation differs from what we told
1044		 * her before, she knows that something happened
1045		 * while we were processing this request, and it
1046		 * might be necessary to retry.
1047		 */
1048		INP_INFO_RLOCK(&tcbinfo);
1049		xig.xig_gen = tcbinfo.ipi_gencnt;
1050		xig.xig_sogen = so_gencnt;
1051		xig.xig_count = tcbinfo.ipi_count;
1052		INP_INFO_RUNLOCK(&tcbinfo);
1053		error = SYSCTL_OUT(req, &xig, sizeof xig);
1054	}
1055	free(inp_list, M_TEMP);
1056	return (error);
1057}
1058
1059SYSCTL_PROC(_net_inet_tcp, TCPCTL_PCBLIST, pcblist, CTLFLAG_RD, 0, 0,
1060    tcp_pcblist, "S,xtcpcb", "List of active TCP connections");
1061
1062static int
1063tcp_getcred(SYSCTL_HANDLER_ARGS)
1064{
1065	struct xucred xuc;
1066	struct sockaddr_in addrs[2];
1067	struct inpcb *inp;
1068	int error;
1069
1070	error = priv_check_cred(req->td->td_ucred, PRIV_NETINET_GETCRED,
1071	    SUSER_ALLOWJAIL);
1072	if (error)
1073		return (error);
1074	error = SYSCTL_IN(req, addrs, sizeof(addrs));
1075	if (error)
1076		return (error);
1077	INP_INFO_RLOCK(&tcbinfo);
1078	inp = in_pcblookup_hash(&tcbinfo, addrs[1].sin_addr, addrs[1].sin_port,
1079	    addrs[0].sin_addr, addrs[0].sin_port, 0, NULL);
1080	if (inp == NULL) {
1081		error = ENOENT;
1082		goto outunlocked;
1083	}
1084	INP_LOCK(inp);
1085	if (inp->inp_socket == NULL) {
1086		error = ENOENT;
1087		goto out;
1088	}
1089	error = cr_canseesocket(req->td->td_ucred, inp->inp_socket);
1090	if (error)
1091		goto out;
1092	cru2x(inp->inp_socket->so_cred, &xuc);
1093out:
1094	INP_UNLOCK(inp);
1095outunlocked:
1096	INP_INFO_RUNLOCK(&tcbinfo);
1097	if (error == 0)
1098		error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred));
1099	return (error);
1100}
1101
1102SYSCTL_PROC(_net_inet_tcp, OID_AUTO, getcred,
1103    CTLTYPE_OPAQUE|CTLFLAG_RW|CTLFLAG_PRISON, 0, 0,
1104    tcp_getcred, "S,xucred", "Get the xucred of a TCP connection");
1105
1106#ifdef INET6
1107static int
1108tcp6_getcred(SYSCTL_HANDLER_ARGS)
1109{
1110	struct xucred xuc;
1111	struct sockaddr_in6 addrs[2];
1112	struct inpcb *inp;
1113	int error, mapped = 0;
1114
1115	error = priv_check_cred(req->td->td_ucred, PRIV_NETINET_GETCRED,
1116	    SUSER_ALLOWJAIL);
1117	if (error)
1118		return (error);
1119	error = SYSCTL_IN(req, addrs, sizeof(addrs));
1120	if (error)
1121		return (error);
1122	if ((error = sa6_embedscope(&addrs[0], ip6_use_defzone)) != 0 ||
1123	    (error = sa6_embedscope(&addrs[1], ip6_use_defzone)) != 0) {
1124		return (error);
1125	}
1126	if (IN6_IS_ADDR_V4MAPPED(&addrs[0].sin6_addr)) {
1127		if (IN6_IS_ADDR_V4MAPPED(&addrs[1].sin6_addr))
1128			mapped = 1;
1129		else
1130			return (EINVAL);
1131	}
1132
1133	INP_INFO_RLOCK(&tcbinfo);
1134	if (mapped == 1)
1135		inp = in_pcblookup_hash(&tcbinfo,
1136			*(struct in_addr *)&addrs[1].sin6_addr.s6_addr[12],
1137			addrs[1].sin6_port,
1138			*(struct in_addr *)&addrs[0].sin6_addr.s6_addr[12],
1139			addrs[0].sin6_port,
1140			0, NULL);
1141	else
1142		inp = in6_pcblookup_hash(&tcbinfo,
1143			&addrs[1].sin6_addr, addrs[1].sin6_port,
1144			&addrs[0].sin6_addr, addrs[0].sin6_port, 0, NULL);
1145	if (inp == NULL) {
1146		error = ENOENT;
1147		goto outunlocked;
1148	}
1149	INP_LOCK(inp);
1150	if (inp->inp_socket == NULL) {
1151		error = ENOENT;
1152		goto out;
1153	}
1154	error = cr_canseesocket(req->td->td_ucred, inp->inp_socket);
1155	if (error)
1156		goto out;
1157	cru2x(inp->inp_socket->so_cred, &xuc);
1158out:
1159	INP_UNLOCK(inp);
1160outunlocked:
1161	INP_INFO_RUNLOCK(&tcbinfo);
1162	if (error == 0)
1163		error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred));
1164	return (error);
1165}
1166
1167SYSCTL_PROC(_net_inet6_tcp6, OID_AUTO, getcred,
1168    CTLTYPE_OPAQUE|CTLFLAG_RW|CTLFLAG_PRISON, 0, 0,
1169    tcp6_getcred, "S,xucred", "Get the xucred of a TCP6 connection");
1170#endif
1171
1172
1173void
1174tcp_ctlinput(int cmd, struct sockaddr *sa, void *vip)
1175{
1176	struct ip *ip = vip;
1177	struct tcphdr *th;
1178	struct in_addr faddr;
1179	struct inpcb *inp;
1180	struct tcpcb *tp;
1181	struct inpcb *(*notify)(struct inpcb *, int) = tcp_notify;
1182	struct icmp *icp;
1183	struct in_conninfo inc;
1184	tcp_seq icmp_tcp_seq;
1185	int mtu;
1186
1187	faddr = ((struct sockaddr_in *)sa)->sin_addr;
1188	if (sa->sa_family != AF_INET || faddr.s_addr == INADDR_ANY)
1189		return;
1190
1191	if (cmd == PRC_MSGSIZE)
1192		notify = tcp_mtudisc;
1193	else if (icmp_may_rst && (cmd == PRC_UNREACH_ADMIN_PROHIB ||
1194		cmd == PRC_UNREACH_PORT || cmd == PRC_TIMXCEED_INTRANS) && ip)
1195		notify = tcp_drop_syn_sent;
1196	/*
1197	 * Redirects don't need to be handled up here.
1198	 */
1199	else if (PRC_IS_REDIRECT(cmd))
1200		return;
1201	/*
1202	 * Source quench is depreciated.
1203	 */
1204	else if (cmd == PRC_QUENCH)
1205		return;
1206	/*
1207	 * Hostdead is ugly because it goes linearly through all PCBs.
1208	 * XXX: We never get this from ICMP, otherwise it makes an
1209	 * excellent DoS attack on machines with many connections.
1210	 */
1211	else if (cmd == PRC_HOSTDEAD)
1212		ip = NULL;
1213	else if ((unsigned)cmd >= PRC_NCMDS || inetctlerrmap[cmd] == 0)
1214		return;
1215	if (ip != NULL) {
1216		icp = (struct icmp *)((caddr_t)ip
1217				      - offsetof(struct icmp, icmp_ip));
1218		th = (struct tcphdr *)((caddr_t)ip
1219				       + (ip->ip_hl << 2));
1220		INP_INFO_WLOCK(&tcbinfo);
1221		inp = in_pcblookup_hash(&tcbinfo, faddr, th->th_dport,
1222		    ip->ip_src, th->th_sport, 0, NULL);
1223		if (inp != NULL)  {
1224			INP_LOCK(inp);
1225			if (!(inp->inp_vflag & INP_TIMEWAIT) &&
1226			    !(inp->inp_vflag & INP_DROPPED) &&
1227			    !(inp->inp_socket == NULL)) {
1228				icmp_tcp_seq = htonl(th->th_seq);
1229				tp = intotcpcb(inp);
1230				if (SEQ_GEQ(icmp_tcp_seq, tp->snd_una) &&
1231				    SEQ_LT(icmp_tcp_seq, tp->snd_max)) {
1232					if (cmd == PRC_MSGSIZE) {
1233					    /*
1234					     * MTU discovery:
1235					     * If we got a needfrag set the MTU
1236					     * in the route to the suggested new
1237					     * value (if given) and then notify.
1238					     */
1239					    bzero(&inc, sizeof(inc));
1240					    inc.inc_flags = 0;	/* IPv4 */
1241					    inc.inc_faddr = faddr;
1242
1243					    mtu = ntohs(icp->icmp_nextmtu);
1244					    /*
1245					     * If no alternative MTU was
1246					     * proposed, try the next smaller
1247					     * one.  ip->ip_len has already
1248					     * been swapped in icmp_input().
1249					     */
1250					    if (!mtu)
1251						mtu = ip_next_mtu(ip->ip_len,
1252						 1);
1253					    if (mtu < max(296, (tcp_minmss)
1254						 + sizeof(struct tcpiphdr)))
1255						mtu = 0;
1256					    if (!mtu)
1257						mtu = tcp_mssdflt
1258						 + sizeof(struct tcpiphdr);
1259					    /*
1260					     * Only cache the the MTU if it
1261					     * is smaller than the interface
1262					     * or route MTU.  tcp_mtudisc()
1263					     * will do right thing by itself.
1264					     */
1265					    if (mtu <= tcp_maxmtu(&inc, NULL))
1266						tcp_hc_updatemtu(&inc, mtu);
1267					}
1268
1269					inp = (*notify)(inp, inetctlerrmap[cmd]);
1270				}
1271			}
1272			if (inp != NULL)
1273				INP_UNLOCK(inp);
1274		} else {
1275			inc.inc_fport = th->th_dport;
1276			inc.inc_lport = th->th_sport;
1277			inc.inc_faddr = faddr;
1278			inc.inc_laddr = ip->ip_src;
1279#ifdef INET6
1280			inc.inc_isipv6 = 0;
1281#endif
1282			syncache_unreach(&inc, th);
1283		}
1284		INP_INFO_WUNLOCK(&tcbinfo);
1285	} else
1286		in_pcbnotifyall(&tcbinfo, faddr, inetctlerrmap[cmd], notify);
1287}
1288
1289#ifdef INET6
1290void
1291tcp6_ctlinput(int cmd, struct sockaddr *sa, void *d)
1292{
1293	struct tcphdr th;
1294	struct inpcb *(*notify)(struct inpcb *, int) = tcp_notify;
1295	struct ip6_hdr *ip6;
1296	struct mbuf *m;
1297	struct ip6ctlparam *ip6cp = NULL;
1298	const struct sockaddr_in6 *sa6_src = NULL;
1299	int off;
1300	struct tcp_portonly {
1301		u_int16_t th_sport;
1302		u_int16_t th_dport;
1303	} *thp;
1304
1305	if (sa->sa_family != AF_INET6 ||
1306	    sa->sa_len != sizeof(struct sockaddr_in6))
1307		return;
1308
1309	if (cmd == PRC_MSGSIZE)
1310		notify = tcp_mtudisc;
1311	else if (!PRC_IS_REDIRECT(cmd) &&
1312		 ((unsigned)cmd >= PRC_NCMDS || inet6ctlerrmap[cmd] == 0))
1313		return;
1314	/* Source quench is depreciated. */
1315	else if (cmd == PRC_QUENCH)
1316		return;
1317
1318	/* if the parameter is from icmp6, decode it. */
1319	if (d != NULL) {
1320		ip6cp = (struct ip6ctlparam *)d;
1321		m = ip6cp->ip6c_m;
1322		ip6 = ip6cp->ip6c_ip6;
1323		off = ip6cp->ip6c_off;
1324		sa6_src = ip6cp->ip6c_src;
1325	} else {
1326		m = NULL;
1327		ip6 = NULL;
1328		off = 0;	/* fool gcc */
1329		sa6_src = &sa6_any;
1330	}
1331
1332	if (ip6 != NULL) {
1333		struct in_conninfo inc;
1334		/*
1335		 * XXX: We assume that when IPV6 is non NULL,
1336		 * M and OFF are valid.
1337		 */
1338
1339		/* check if we can safely examine src and dst ports */
1340		if (m->m_pkthdr.len < off + sizeof(*thp))
1341			return;
1342
1343		bzero(&th, sizeof(th));
1344		m_copydata(m, off, sizeof(*thp), (caddr_t)&th);
1345
1346		in6_pcbnotify(&tcbinfo, sa, th.th_dport,
1347		    (struct sockaddr *)ip6cp->ip6c_src,
1348		    th.th_sport, cmd, NULL, notify);
1349
1350		inc.inc_fport = th.th_dport;
1351		inc.inc_lport = th.th_sport;
1352		inc.inc6_faddr = ((struct sockaddr_in6 *)sa)->sin6_addr;
1353		inc.inc6_laddr = ip6cp->ip6c_src->sin6_addr;
1354		inc.inc_isipv6 = 1;
1355		INP_INFO_WLOCK(&tcbinfo);
1356		syncache_unreach(&inc, &th);
1357		INP_INFO_WUNLOCK(&tcbinfo);
1358	} else
1359		in6_pcbnotify(&tcbinfo, sa, 0, (const struct sockaddr *)sa6_src,
1360			      0, cmd, NULL, notify);
1361}
1362#endif /* INET6 */
1363
1364
1365/*
1366 * Following is where TCP initial sequence number generation occurs.
1367 *
1368 * There are two places where we must use initial sequence numbers:
1369 * 1.  In SYN-ACK packets.
1370 * 2.  In SYN packets.
1371 *
1372 * All ISNs for SYN-ACK packets are generated by the syncache.  See
1373 * tcp_syncache.c for details.
1374 *
1375 * The ISNs in SYN packets must be monotonic; TIME_WAIT recycling
1376 * depends on this property.  In addition, these ISNs should be
1377 * unguessable so as to prevent connection hijacking.  To satisfy
1378 * the requirements of this situation, the algorithm outlined in
1379 * RFC 1948 is used, with only small modifications.
1380 *
1381 * Implementation details:
1382 *
1383 * Time is based off the system timer, and is corrected so that it
1384 * increases by one megabyte per second.  This allows for proper
1385 * recycling on high speed LANs while still leaving over an hour
1386 * before rollover.
1387 *
1388 * As reading the *exact* system time is too expensive to be done
1389 * whenever setting up a TCP connection, we increment the time
1390 * offset in two ways.  First, a small random positive increment
1391 * is added to isn_offset for each connection that is set up.
1392 * Second, the function tcp_isn_tick fires once per clock tick
1393 * and increments isn_offset as necessary so that sequence numbers
1394 * are incremented at approximately ISN_BYTES_PER_SECOND.  The
1395 * random positive increments serve only to ensure that the same
1396 * exact sequence number is never sent out twice (as could otherwise
1397 * happen when a port is recycled in less than the system tick
1398 * interval.)
1399 *
1400 * net.inet.tcp.isn_reseed_interval controls the number of seconds
1401 * between seeding of isn_secret.  This is normally set to zero,
1402 * as reseeding should not be necessary.
1403 *
1404 * Locking of the global variables isn_secret, isn_last_reseed, isn_offset,
1405 * isn_offset_old, and isn_ctx is performed using the TCP pcbinfo lock.  In
1406 * general, this means holding an exclusive (write) lock.
1407 */
1408
1409#define ISN_BYTES_PER_SECOND 1048576
1410#define ISN_STATIC_INCREMENT 4096
1411#define ISN_RANDOM_INCREMENT (4096 - 1)
1412
1413static u_char isn_secret[32];
1414static int isn_last_reseed;
1415static u_int32_t isn_offset, isn_offset_old;
1416static MD5_CTX isn_ctx;
1417
1418tcp_seq
1419tcp_new_isn(struct tcpcb *tp)
1420{
1421	u_int32_t md5_buffer[4];
1422	tcp_seq new_isn;
1423
1424	INP_LOCK_ASSERT(tp->t_inpcb);
1425
1426	ISN_LOCK();
1427	/* Seed if this is the first use, reseed if requested. */
1428	if ((isn_last_reseed == 0) || ((tcp_isn_reseed_interval > 0) &&
1429	     (((u_int)isn_last_reseed + (u_int)tcp_isn_reseed_interval*hz)
1430		< (u_int)ticks))) {
1431		read_random(&isn_secret, sizeof(isn_secret));
1432		isn_last_reseed = ticks;
1433	}
1434
1435	/* Compute the md5 hash and return the ISN. */
1436	MD5Init(&isn_ctx);
1437	MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_fport, sizeof(u_short));
1438	MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_lport, sizeof(u_short));
1439#ifdef INET6
1440	if ((tp->t_inpcb->inp_vflag & INP_IPV6) != 0) {
1441		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_faddr,
1442			  sizeof(struct in6_addr));
1443		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_laddr,
1444			  sizeof(struct in6_addr));
1445	} else
1446#endif
1447	{
1448		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_faddr,
1449			  sizeof(struct in_addr));
1450		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_laddr,
1451			  sizeof(struct in_addr));
1452	}
1453	MD5Update(&isn_ctx, (u_char *) &isn_secret, sizeof(isn_secret));
1454	MD5Final((u_char *) &md5_buffer, &isn_ctx);
1455	new_isn = (tcp_seq) md5_buffer[0];
1456	isn_offset += ISN_STATIC_INCREMENT +
1457		(arc4random() & ISN_RANDOM_INCREMENT);
1458	new_isn += isn_offset;
1459	ISN_UNLOCK();
1460	return (new_isn);
1461}
1462
1463/*
1464 * Increment the offset to the next ISN_BYTES_PER_SECOND / hz boundary
1465 * to keep time flowing at a relatively constant rate.  If the random
1466 * increments have already pushed us past the projected offset, do nothing.
1467 */
1468static void
1469tcp_isn_tick(void *xtp)
1470{
1471	u_int32_t projected_offset;
1472
1473	ISN_LOCK();
1474	projected_offset = isn_offset_old + ISN_BYTES_PER_SECOND / 100;
1475
1476	if (projected_offset > isn_offset)
1477		isn_offset = projected_offset;
1478
1479	isn_offset_old = isn_offset;
1480	callout_reset(&isn_callout, hz/100, tcp_isn_tick, NULL);
1481	ISN_UNLOCK();
1482}
1483
1484/*
1485 * When a specific ICMP unreachable message is received and the
1486 * connection state is SYN-SENT, drop the connection.  This behavior
1487 * is controlled by the icmp_may_rst sysctl.
1488 */
1489struct inpcb *
1490tcp_drop_syn_sent(struct inpcb *inp, int errno)
1491{
1492	struct tcpcb *tp;
1493
1494	INP_INFO_WLOCK_ASSERT(&tcbinfo);
1495	INP_LOCK_ASSERT(inp);
1496
1497	if ((inp->inp_vflag & INP_TIMEWAIT) ||
1498	    (inp->inp_vflag & INP_DROPPED))
1499		return (inp);
1500
1501	tp = intotcpcb(inp);
1502	if (tp->t_state != TCPS_SYN_SENT)
1503		return (inp);
1504
1505	tp = tcp_drop(tp, errno);
1506	if (tp != NULL)
1507		return (inp);
1508	else
1509		return (NULL);
1510}
1511
1512/*
1513 * When `need fragmentation' ICMP is received, update our idea of the MSS
1514 * based on the new value in the route.  Also nudge TCP to send something,
1515 * since we know the packet we just sent was dropped.
1516 * This duplicates some code in the tcp_mss() function in tcp_input.c.
1517 */
1518struct inpcb *
1519tcp_mtudisc(struct inpcb *inp, int errno)
1520{
1521	struct tcpcb *tp;
1522	struct socket *so = inp->inp_socket;
1523	u_int maxmtu;
1524	u_int romtu;
1525	int mss;
1526#ifdef INET6
1527	int isipv6;
1528#endif /* INET6 */
1529
1530	INP_LOCK_ASSERT(inp);
1531	if ((inp->inp_vflag & INP_TIMEWAIT) ||
1532	    (inp->inp_vflag & INP_DROPPED))
1533		return (inp);
1534
1535	tp = intotcpcb(inp);
1536	KASSERT(tp != NULL, ("tcp_mtudisc: tp == NULL"));
1537
1538#ifdef INET6
1539	isipv6 = (tp->t_inpcb->inp_vflag & INP_IPV6) != 0;
1540#endif
1541	maxmtu = tcp_hc_getmtu(&inp->inp_inc); /* IPv4 and IPv6 */
1542	romtu =
1543#ifdef INET6
1544	    isipv6 ? tcp_maxmtu6(&inp->inp_inc, NULL) :
1545#endif /* INET6 */
1546	    tcp_maxmtu(&inp->inp_inc, NULL);
1547	if (!maxmtu)
1548		maxmtu = romtu;
1549	else
1550		maxmtu = min(maxmtu, romtu);
1551	if (!maxmtu) {
1552		tp->t_maxopd = tp->t_maxseg =
1553#ifdef INET6
1554			isipv6 ? tcp_v6mssdflt :
1555#endif /* INET6 */
1556			tcp_mssdflt;
1557		return (inp);
1558	}
1559	mss = maxmtu -
1560#ifdef INET6
1561		(isipv6 ? sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
1562#endif /* INET6 */
1563		 sizeof(struct tcpiphdr)
1564#ifdef INET6
1565		 )
1566#endif /* INET6 */
1567		;
1568
1569	/*
1570	 * XXX - The above conditional probably violates the TCP
1571	 * spec.  The problem is that, since we don't know the
1572	 * other end's MSS, we are supposed to use a conservative
1573	 * default.  But, if we do that, then MTU discovery will
1574	 * never actually take place, because the conservative
1575	 * default is much less than the MTUs typically seen
1576	 * on the Internet today.  For the moment, we'll sweep
1577	 * this under the carpet.
1578	 *
1579	 * The conservative default might not actually be a problem
1580	 * if the only case this occurs is when sending an initial
1581	 * SYN with options and data to a host we've never talked
1582	 * to before.  Then, they will reply with an MSS value which
1583	 * will get recorded and the new parameters should get
1584	 * recomputed.  For Further Study.
1585	 */
1586	if (tp->t_maxopd <= mss)
1587		return (inp);
1588	tp->t_maxopd = mss;
1589
1590	if ((tp->t_flags & (TF_REQ_TSTMP|TF_NOOPT)) == TF_REQ_TSTMP &&
1591	    (tp->t_flags & TF_RCVD_TSTMP) == TF_RCVD_TSTMP)
1592		mss -= TCPOLEN_TSTAMP_APPA;
1593#if	(MCLBYTES & (MCLBYTES - 1)) == 0
1594	if (mss > MCLBYTES)
1595		mss &= ~(MCLBYTES-1);
1596#else
1597	if (mss > MCLBYTES)
1598		mss = mss / MCLBYTES * MCLBYTES;
1599#endif
1600	if (so->so_snd.sb_hiwat < mss)
1601		mss = so->so_snd.sb_hiwat;
1602
1603	tp->t_maxseg = mss;
1604
1605	tcpstat.tcps_mturesent++;
1606	tp->t_rtttime = 0;
1607	tp->snd_nxt = tp->snd_una;
1608	tcp_free_sackholes(tp);
1609	tp->snd_recover = tp->snd_max;
1610	if (tp->sack_enable)
1611		EXIT_FASTRECOVERY(tp);
1612	tcp_output(tp);
1613	return (inp);
1614}
1615
1616/*
1617 * Look-up the routing entry to the peer of this inpcb.  If no route
1618 * is found and it cannot be allocated, then return NULL.  This routine
1619 * is called by TCP routines that access the rmx structure and by tcp_mss
1620 * to get the interface MTU.
1621 */
1622u_long
1623tcp_maxmtu(struct in_conninfo *inc, int *flags)
1624{
1625	struct route sro;
1626	struct sockaddr_in *dst;
1627	struct ifnet *ifp;
1628	u_long maxmtu = 0;
1629
1630	KASSERT(inc != NULL, ("tcp_maxmtu with NULL in_conninfo pointer"));
1631
1632	bzero(&sro, sizeof(sro));
1633	if (inc->inc_faddr.s_addr != INADDR_ANY) {
1634	        dst = (struct sockaddr_in *)&sro.ro_dst;
1635		dst->sin_family = AF_INET;
1636		dst->sin_len = sizeof(*dst);
1637		dst->sin_addr = inc->inc_faddr;
1638		rtalloc_ign(&sro, RTF_CLONING);
1639	}
1640	if (sro.ro_rt != NULL) {
1641		ifp = sro.ro_rt->rt_ifp;
1642		if (sro.ro_rt->rt_rmx.rmx_mtu == 0)
1643			maxmtu = ifp->if_mtu;
1644		else
1645			maxmtu = min(sro.ro_rt->rt_rmx.rmx_mtu, ifp->if_mtu);
1646
1647		/* Report additional interface capabilities. */
1648		if (flags != NULL) {
1649			if (ifp->if_capenable & IFCAP_TSO4 &&
1650			    ifp->if_hwassist & CSUM_TSO)
1651				*flags |= CSUM_TSO;
1652		}
1653		RTFREE(sro.ro_rt);
1654	}
1655	return (maxmtu);
1656}
1657
1658#ifdef INET6
1659u_long
1660tcp_maxmtu6(struct in_conninfo *inc, int *flags)
1661{
1662	struct route_in6 sro6;
1663	struct ifnet *ifp;
1664	u_long maxmtu = 0;
1665
1666	KASSERT(inc != NULL, ("tcp_maxmtu6 with NULL in_conninfo pointer"));
1667
1668	bzero(&sro6, sizeof(sro6));
1669	if (!IN6_IS_ADDR_UNSPECIFIED(&inc->inc6_faddr)) {
1670		sro6.ro_dst.sin6_family = AF_INET6;
1671		sro6.ro_dst.sin6_len = sizeof(struct sockaddr_in6);
1672		sro6.ro_dst.sin6_addr = inc->inc6_faddr;
1673		rtalloc_ign((struct route *)&sro6, RTF_CLONING);
1674	}
1675	if (sro6.ro_rt != NULL) {
1676		ifp = sro6.ro_rt->rt_ifp;
1677		if (sro6.ro_rt->rt_rmx.rmx_mtu == 0)
1678			maxmtu = IN6_LINKMTU(sro6.ro_rt->rt_ifp);
1679		else
1680			maxmtu = min(sro6.ro_rt->rt_rmx.rmx_mtu,
1681				     IN6_LINKMTU(sro6.ro_rt->rt_ifp));
1682
1683		/* Report additional interface capabilities. */
1684		if (flags != NULL) {
1685			if (ifp->if_capenable & IFCAP_TSO6 &&
1686			    ifp->if_hwassist & CSUM_TSO)
1687				*flags |= CSUM_TSO;
1688		}
1689		RTFREE(sro6.ro_rt);
1690	}
1691
1692	return (maxmtu);
1693}
1694#endif /* INET6 */
1695
1696#ifdef IPSEC
1697/* compute ESP/AH header size for TCP, including outer IP header. */
1698size_t
1699ipsec_hdrsiz_tcp(struct tcpcb *tp)
1700{
1701	struct inpcb *inp;
1702	struct mbuf *m;
1703	size_t hdrsiz;
1704	struct ip *ip;
1705#ifdef INET6
1706	struct ip6_hdr *ip6;
1707#endif
1708	struct tcphdr *th;
1709
1710	if ((tp == NULL) || ((inp = tp->t_inpcb) == NULL))
1711		return (0);
1712	MGETHDR(m, M_DONTWAIT, MT_DATA);
1713	if (!m)
1714		return (0);
1715
1716#ifdef INET6
1717	if ((inp->inp_vflag & INP_IPV6) != 0) {
1718		ip6 = mtod(m, struct ip6_hdr *);
1719		th = (struct tcphdr *)(ip6 + 1);
1720		m->m_pkthdr.len = m->m_len =
1721			sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
1722		tcpip_fillheaders(inp, ip6, th);
1723		hdrsiz = ipsec6_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
1724	} else
1725#endif /* INET6 */
1726	{
1727		ip = mtod(m, struct ip *);
1728		th = (struct tcphdr *)(ip + 1);
1729		m->m_pkthdr.len = m->m_len = sizeof(struct tcpiphdr);
1730		tcpip_fillheaders(inp, ip, th);
1731		hdrsiz = ipsec4_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
1732	}
1733
1734	m_free(m);
1735	return (hdrsiz);
1736}
1737#endif /*IPSEC*/
1738
1739/*
1740 * Move a TCP connection into TIME_WAIT state.
1741 *    tcbinfo is locked.
1742 *    inp is locked, and is unlocked before returning.
1743 */
1744void
1745tcp_twstart(struct tcpcb *tp)
1746{
1747	struct tcptw *tw;
1748	struct inpcb *inp = tp->t_inpcb;
1749	int acknow;
1750	struct socket *so;
1751
1752	INP_INFO_WLOCK_ASSERT(&tcbinfo);	/* tcp_timer_2msl_reset(). */
1753	INP_LOCK_ASSERT(inp);
1754
1755	if (nolocaltimewait && in_localip(inp->inp_faddr)) {
1756		tp = tcp_close(tp);
1757		if (tp != NULL)
1758			INP_UNLOCK(inp);
1759		return;
1760	}
1761
1762	tw = uma_zalloc(tcptw_zone, M_NOWAIT);
1763	if (tw == NULL) {
1764		tw = tcp_timer_2msl_tw(1);
1765		if (tw == NULL) {
1766			tp = tcp_close(tp);
1767			if (tp != NULL)
1768				INP_UNLOCK(inp);
1769			return;
1770		}
1771	}
1772	tw->tw_inpcb = inp;
1773
1774	/*
1775	 * Recover last window size sent.
1776	 */
1777	tw->last_win = (tp->rcv_adv - tp->rcv_nxt) >> tp->rcv_scale;
1778
1779	/*
1780	 * Set t_recent if timestamps are used on the connection.
1781	 */
1782	if ((tp->t_flags & (TF_REQ_TSTMP|TF_RCVD_TSTMP|TF_NOOPT)) ==
1783	    (TF_REQ_TSTMP|TF_RCVD_TSTMP))
1784		tw->t_recent = tp->ts_recent;
1785	else
1786		tw->t_recent = 0;
1787
1788	tw->snd_nxt = tp->snd_nxt;
1789	tw->rcv_nxt = tp->rcv_nxt;
1790	tw->iss     = tp->iss;
1791	tw->irs     = tp->irs;
1792	tw->t_starttime = tp->t_starttime;
1793	tw->tw_time = 0;
1794
1795/* XXX
1796 * If this code will
1797 * be used for fin-wait-2 state also, then we may need
1798 * a ts_recent from the last segment.
1799 */
1800	acknow = tp->t_flags & TF_ACKNOW;
1801
1802	/*
1803	 * First, discard tcpcb state, which includes stopping its timers and
1804	 * freeing it.  tcp_discardcb() used to also release the inpcb, but
1805	 * that work is now done in the caller.
1806	 *
1807	 * Note: soisdisconnected() call used to be made in tcp_discardcb(),
1808	 * and might not be needed here any longer.
1809	 */
1810	tcp_discardcb(tp);
1811	so = inp->inp_socket;
1812	soisdisconnected(so);
1813	SOCK_LOCK(so);
1814	tw->tw_cred = crhold(so->so_cred);
1815	tw->tw_so_options = so->so_options;
1816	SOCK_UNLOCK(so);
1817	if (acknow)
1818		tcp_twrespond(tw, TH_ACK);
1819	inp->inp_ppcb = tw;
1820	inp->inp_vflag |= INP_TIMEWAIT;
1821	tcp_timer_2msl_reset(tw, 0);
1822
1823	/*
1824	 * If the inpcb owns the sole reference to the socket, then we can
1825	 * detach and free the socket as it is not needed in time wait.
1826	 */
1827	if (inp->inp_vflag & INP_SOCKREF) {
1828		KASSERT(so->so_state & SS_PROTOREF,
1829		    ("tcp_twstart: !SS_PROTOREF"));
1830		inp->inp_vflag &= ~INP_SOCKREF;
1831		INP_UNLOCK(inp);
1832		ACCEPT_LOCK();
1833		SOCK_LOCK(so);
1834		so->so_state &= ~SS_PROTOREF;
1835		sofree(so);
1836	} else
1837		INP_UNLOCK(inp);
1838}
1839
1840#if 0
1841/*
1842 * The appromixate rate of ISN increase of Microsoft TCP stacks;
1843 * the actual rate is slightly higher due to the addition of
1844 * random positive increments.
1845 *
1846 * Most other new OSes use semi-randomized ISN values, so we
1847 * do not need to worry about them.
1848 */
1849#define MS_ISN_BYTES_PER_SECOND		250000
1850
1851/*
1852 * Determine if the ISN we will generate has advanced beyond the last
1853 * sequence number used by the previous connection.  If so, indicate
1854 * that it is safe to recycle this tw socket by returning 1.
1855 */
1856int
1857tcp_twrecycleable(struct tcptw *tw)
1858{
1859	tcp_seq new_iss = tw->iss;
1860	tcp_seq new_irs = tw->irs;
1861
1862	INP_INFO_WLOCK_ASSERT(&tcbinfo);
1863	new_iss += (ticks - tw->t_starttime) * (ISN_BYTES_PER_SECOND / hz);
1864	new_irs += (ticks - tw->t_starttime) * (MS_ISN_BYTES_PER_SECOND / hz);
1865
1866	if (SEQ_GT(new_iss, tw->snd_nxt) && SEQ_GT(new_irs, tw->rcv_nxt))
1867		return (1);
1868	else
1869		return (0);
1870}
1871#endif
1872
1873void
1874tcp_twclose(struct tcptw *tw, int reuse)
1875{
1876	struct socket *so;
1877	struct inpcb *inp;
1878
1879	/*
1880	 * At this point, we are in one of two situations:
1881	 *
1882	 * (1) We have no socket, just an inpcb<->twtcp pair.  We can free
1883	 *     all state.
1884	 *
1885	 * (2) We have a socket -- if we own a reference, release it and
1886	 *     notify the socket layer.
1887	 */
1888	inp = tw->tw_inpcb;
1889	KASSERT((inp->inp_vflag & INP_TIMEWAIT), ("tcp_twclose: !timewait"));
1890	KASSERT(intotw(inp) == tw, ("tcp_twclose: inp_ppcb != tw"));
1891	INP_INFO_WLOCK_ASSERT(&tcbinfo);	/* tcp_timer_2msl_stop(). */
1892	INP_LOCK_ASSERT(inp);
1893
1894	tw->tw_inpcb = NULL;
1895	tcp_timer_2msl_stop(tw);
1896	inp->inp_ppcb = NULL;
1897	in_pcbdrop(inp);
1898
1899	so = inp->inp_socket;
1900	if (so != NULL) {
1901		/*
1902		 * If there's a socket, handle two cases: first, we own a
1903		 * strong reference, which we will now release, or we don't
1904		 * in which case another reference exists (XXXRW: think
1905		 * about this more), and we don't need to take action.
1906		 */
1907		if (inp->inp_vflag & INP_SOCKREF) {
1908			inp->inp_vflag &= ~INP_SOCKREF;
1909			INP_UNLOCK(inp);
1910			ACCEPT_LOCK();
1911			SOCK_LOCK(so);
1912			KASSERT(so->so_state & SS_PROTOREF,
1913			    ("tcp_twclose: INP_SOCKREF && !SS_PROTOREF"));
1914			so->so_state &= ~SS_PROTOREF;
1915			sofree(so);
1916		} else {
1917			/*
1918			 * If we don't own the only reference, the socket and
1919			 * inpcb need to be left around to be handled by
1920			 * tcp_usr_detach() later.
1921			 */
1922			INP_UNLOCK(inp);
1923		}
1924	} else {
1925#ifdef INET6
1926		if (inp->inp_vflag & INP_IPV6PROTO)
1927			in6_pcbfree(inp);
1928		else
1929#endif
1930			in_pcbfree(inp);
1931	}
1932	tcpstat.tcps_closed++;
1933	crfree(tw->tw_cred);
1934	tw->tw_cred = NULL;
1935	if (reuse)
1936		return;
1937	uma_zfree(tcptw_zone, tw);
1938}
1939
1940int
1941tcp_twrespond(struct tcptw *tw, int flags)
1942{
1943	struct inpcb *inp = tw->tw_inpcb;
1944	struct tcphdr *th;
1945	struct mbuf *m;
1946	struct ip *ip = NULL;
1947	u_int hdrlen, optlen;
1948	int error;
1949	struct tcpopt to;
1950#ifdef INET6
1951	struct ip6_hdr *ip6 = NULL;
1952	int isipv6 = inp->inp_inc.inc_isipv6;
1953#endif
1954
1955	INP_LOCK_ASSERT(inp);
1956
1957	m = m_gethdr(M_DONTWAIT, MT_DATA);
1958	if (m == NULL)
1959		return (ENOBUFS);
1960	m->m_data += max_linkhdr;
1961
1962#ifdef MAC
1963	mac_create_mbuf_from_inpcb(inp, m);
1964#endif
1965
1966#ifdef INET6
1967	if (isipv6) {
1968		hdrlen = sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
1969		ip6 = mtod(m, struct ip6_hdr *);
1970		th = (struct tcphdr *)(ip6 + 1);
1971		tcpip_fillheaders(inp, ip6, th);
1972	} else
1973#endif
1974	{
1975		hdrlen = sizeof(struct tcpiphdr);
1976		ip = mtod(m, struct ip *);
1977		th = (struct tcphdr *)(ip + 1);
1978		tcpip_fillheaders(inp, ip, th);
1979	}
1980	to.to_flags = 0;
1981
1982	/*
1983	 * Send a timestamp and echo-reply if both our side and our peer
1984	 * have sent timestamps in our SYN's and this is not a RST.
1985	 */
1986	if (tw->t_recent && flags == TH_ACK) {
1987		to.to_flags |= TOF_TS;
1988		to.to_tsval = ticks;
1989		to.to_tsecr = tw->t_recent;
1990	}
1991	optlen = tcp_addoptions(&to, (u_char *)(th + 1));
1992
1993	m->m_len = hdrlen + optlen;
1994	m->m_pkthdr.len = m->m_len;
1995
1996	KASSERT(max_linkhdr + m->m_len <= MHLEN, ("tcptw: mbuf too small"));
1997
1998	th->th_seq = htonl(tw->snd_nxt);
1999	th->th_ack = htonl(tw->rcv_nxt);
2000	th->th_off = (sizeof(struct tcphdr) + optlen) >> 2;
2001	th->th_flags = flags;
2002	th->th_win = htons(tw->last_win);
2003
2004#ifdef INET6
2005	if (isipv6) {
2006		th->th_sum = in6_cksum(m, IPPROTO_TCP, sizeof(struct ip6_hdr),
2007		    sizeof(struct tcphdr) + optlen);
2008		ip6->ip6_hlim = in6_selecthlim(inp, NULL);
2009		error = ip6_output(m, inp->in6p_outputopts, NULL,
2010		    (tw->tw_so_options & SO_DONTROUTE), NULL, NULL, inp);
2011	} else
2012#endif
2013	{
2014		th->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
2015		    htons(sizeof(struct tcphdr) + optlen + IPPROTO_TCP));
2016		m->m_pkthdr.csum_flags = CSUM_TCP;
2017		m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
2018		ip->ip_len = m->m_pkthdr.len;
2019		if (path_mtu_discovery)
2020			ip->ip_off |= IP_DF;
2021		error = ip_output(m, inp->inp_options, NULL,
2022		    ((tw->tw_so_options & SO_DONTROUTE) ? IP_ROUTETOIF : 0),
2023		    NULL, inp);
2024	}
2025	if (flags & TH_ACK)
2026		tcpstat.tcps_sndacks++;
2027	else
2028		tcpstat.tcps_sndctrl++;
2029	tcpstat.tcps_sndtotal++;
2030	return (error);
2031}
2032
2033/*
2034 * TCP BANDWIDTH DELAY PRODUCT WINDOW LIMITING
2035 *
2036 * This code attempts to calculate the bandwidth-delay product as a
2037 * means of determining the optimal window size to maximize bandwidth,
2038 * minimize RTT, and avoid the over-allocation of buffers on interfaces and
2039 * routers.  This code also does a fairly good job keeping RTTs in check
2040 * across slow links like modems.  We implement an algorithm which is very
2041 * similar (but not meant to be) TCP/Vegas.  The code operates on the
2042 * transmitter side of a TCP connection and so only effects the transmit
2043 * side of the connection.
2044 *
2045 * BACKGROUND:  TCP makes no provision for the management of buffer space
2046 * at the end points or at the intermediate routers and switches.  A TCP
2047 * stream, whether using NewReno or not, will eventually buffer as
2048 * many packets as it is able and the only reason this typically works is
2049 * due to the fairly small default buffers made available for a connection
2050 * (typicaly 16K or 32K).  As machines use larger windows and/or window
2051 * scaling it is now fairly easy for even a single TCP connection to blow-out
2052 * all available buffer space not only on the local interface, but on
2053 * intermediate routers and switches as well.  NewReno makes a misguided
2054 * attempt to 'solve' this problem by waiting for an actual failure to occur,
2055 * then backing off, then steadily increasing the window again until another
2056 * failure occurs, ad-infinitum.  This results in terrible oscillation that
2057 * is only made worse as network loads increase and the idea of intentionally
2058 * blowing out network buffers is, frankly, a terrible way to manage network
2059 * resources.
2060 *
2061 * It is far better to limit the transmit window prior to the failure
2062 * condition being achieved.  There are two general ways to do this:  First
2063 * you can 'scan' through different transmit window sizes and locate the
2064 * point where the RTT stops increasing, indicating that you have filled the
2065 * pipe, then scan backwards until you note that RTT stops decreasing, then
2066 * repeat ad-infinitum.  This method works in principle but has severe
2067 * implementation issues due to RTT variances, timer granularity, and
2068 * instability in the algorithm which can lead to many false positives and
2069 * create oscillations as well as interact badly with other TCP streams
2070 * implementing the same algorithm.
2071 *
2072 * The second method is to limit the window to the bandwidth delay product
2073 * of the link.  This is the method we implement.  RTT variances and our
2074 * own manipulation of the congestion window, bwnd, can potentially
2075 * destabilize the algorithm.  For this reason we have to stabilize the
2076 * elements used to calculate the window.  We do this by using the minimum
2077 * observed RTT, the long term average of the observed bandwidth, and
2078 * by adding two segments worth of slop.  It isn't perfect but it is able
2079 * to react to changing conditions and gives us a very stable basis on
2080 * which to extend the algorithm.
2081 */
2082void
2083tcp_xmit_bandwidth_limit(struct tcpcb *tp, tcp_seq ack_seq)
2084{
2085	u_long bw;
2086	u_long bwnd;
2087	int save_ticks;
2088
2089	INP_LOCK_ASSERT(tp->t_inpcb);
2090
2091	/*
2092	 * If inflight_enable is disabled in the middle of a tcp connection,
2093	 * make sure snd_bwnd is effectively disabled.
2094	 */
2095	if (tcp_inflight_enable == 0 || tp->t_rttlow < tcp_inflight_rttthresh) {
2096		tp->snd_bwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
2097		tp->snd_bandwidth = 0;
2098		return;
2099	}
2100
2101	/*
2102	 * Figure out the bandwidth.  Due to the tick granularity this
2103	 * is a very rough number and it MUST be averaged over a fairly
2104	 * long period of time.  XXX we need to take into account a link
2105	 * that is not using all available bandwidth, but for now our
2106	 * slop will ramp us up if this case occurs and the bandwidth later
2107	 * increases.
2108	 *
2109	 * Note: if ticks rollover 'bw' may wind up negative.  We must
2110	 * effectively reset t_bw_rtttime for this case.
2111	 */
2112	save_ticks = ticks;
2113	if ((u_int)(save_ticks - tp->t_bw_rtttime) < 1)
2114		return;
2115
2116	bw = (int64_t)(ack_seq - tp->t_bw_rtseq) * hz /
2117	    (save_ticks - tp->t_bw_rtttime);
2118	tp->t_bw_rtttime = save_ticks;
2119	tp->t_bw_rtseq = ack_seq;
2120	if (tp->t_bw_rtttime == 0 || (int)bw < 0)
2121		return;
2122	bw = ((int64_t)tp->snd_bandwidth * 15 + bw) >> 4;
2123
2124	tp->snd_bandwidth = bw;
2125
2126	/*
2127	 * Calculate the semi-static bandwidth delay product, plus two maximal
2128	 * segments.  The additional slop puts us squarely in the sweet
2129	 * spot and also handles the bandwidth run-up case and stabilization.
2130	 * Without the slop we could be locking ourselves into a lower
2131	 * bandwidth.
2132	 *
2133	 * Situations Handled:
2134	 *	(1) Prevents over-queueing of packets on LANs, especially on
2135	 *	    high speed LANs, allowing larger TCP buffers to be
2136	 *	    specified, and also does a good job preventing
2137	 *	    over-queueing of packets over choke points like modems
2138	 *	    (at least for the transmit side).
2139	 *
2140	 *	(2) Is able to handle changing network loads (bandwidth
2141	 *	    drops so bwnd drops, bandwidth increases so bwnd
2142	 *	    increases).
2143	 *
2144	 *	(3) Theoretically should stabilize in the face of multiple
2145	 *	    connections implementing the same algorithm (this may need
2146	 *	    a little work).
2147	 *
2148	 *	(4) Stability value (defaults to 20 = 2 maximal packets) can
2149	 *	    be adjusted with a sysctl but typically only needs to be
2150	 *	    on very slow connections.  A value no smaller then 5
2151	 *	    should be used, but only reduce this default if you have
2152	 *	    no other choice.
2153	 */
2154#define USERTT	((tp->t_srtt + tp->t_rttbest) / 2)
2155	bwnd = (int64_t)bw * USERTT / (hz << TCP_RTT_SHIFT) + tcp_inflight_stab * tp->t_maxseg / 10;
2156#undef USERTT
2157
2158	if (tcp_inflight_debug > 0) {
2159		static int ltime;
2160		if ((u_int)(ticks - ltime) >= hz / tcp_inflight_debug) {
2161			ltime = ticks;
2162			printf("%p bw %ld rttbest %d srtt %d bwnd %ld\n",
2163			    tp,
2164			    bw,
2165			    tp->t_rttbest,
2166			    tp->t_srtt,
2167			    bwnd
2168			);
2169		}
2170	}
2171	if ((long)bwnd < tcp_inflight_min)
2172		bwnd = tcp_inflight_min;
2173	if (bwnd > tcp_inflight_max)
2174		bwnd = tcp_inflight_max;
2175	if ((long)bwnd < tp->t_maxseg * 2)
2176		bwnd = tp->t_maxseg * 2;
2177	tp->snd_bwnd = bwnd;
2178}
2179
2180#ifdef TCP_SIGNATURE
2181/*
2182 * Callback function invoked by m_apply() to digest TCP segment data
2183 * contained within an mbuf chain.
2184 */
2185static int
2186tcp_signature_apply(void *fstate, void *data, u_int len)
2187{
2188
2189	MD5Update(fstate, (u_char *)data, len);
2190	return (0);
2191}
2192
2193/*
2194 * Compute TCP-MD5 hash of a TCPv4 segment. (RFC2385)
2195 *
2196 * Parameters:
2197 * m		pointer to head of mbuf chain
2198 * off0		offset to TCP header within the mbuf chain
2199 * len		length of TCP segment data, excluding options
2200 * optlen	length of TCP segment options
2201 * buf		pointer to storage for computed MD5 digest
2202 * direction	direction of flow (IPSEC_DIR_INBOUND or OUTBOUND)
2203 *
2204 * We do this over ip, tcphdr, segment data, and the key in the SADB.
2205 * When called from tcp_input(), we can be sure that th_sum has been
2206 * zeroed out and verified already.
2207 *
2208 * This function is for IPv4 use only. Calling this function with an
2209 * IPv6 packet in the mbuf chain will yield undefined results.
2210 *
2211 * Return 0 if successful, otherwise return -1.
2212 *
2213 * XXX The key is retrieved from the system's PF_KEY SADB, by keying a
2214 * search with the destination IP address, and a 'magic SPI' to be
2215 * determined by the application. This is hardcoded elsewhere to 1179
2216 * right now. Another branch of this code exists which uses the SPD to
2217 * specify per-application flows but it is unstable.
2218 */
2219int
2220tcp_signature_compute(struct mbuf *m, int off0, int len, int optlen,
2221    u_char *buf, u_int direction)
2222{
2223	union sockaddr_union dst;
2224	struct ippseudo ippseudo;
2225	MD5_CTX ctx;
2226	int doff;
2227	struct ip *ip;
2228	struct ipovly *ipovly;
2229	struct secasvar *sav;
2230	struct tcphdr *th;
2231	u_short savecsum;
2232
2233	KASSERT(m != NULL, ("NULL mbuf chain"));
2234	KASSERT(buf != NULL, ("NULL signature pointer"));
2235
2236	/* Extract the destination from the IP header in the mbuf. */
2237	ip = mtod(m, struct ip *);
2238	bzero(&dst, sizeof(union sockaddr_union));
2239	dst.sa.sa_len = sizeof(struct sockaddr_in);
2240	dst.sa.sa_family = AF_INET;
2241	dst.sin.sin_addr = (direction == IPSEC_DIR_INBOUND) ?
2242	    ip->ip_src : ip->ip_dst;
2243
2244	/* Look up an SADB entry which matches the address of the peer. */
2245	sav = KEY_ALLOCSA(&dst, IPPROTO_TCP, htonl(TCP_SIG_SPI));
2246	if (sav == NULL) {
2247		printf("%s: SADB lookup failed for %s\n", __func__,
2248		    inet_ntoa(dst.sin.sin_addr));
2249		return (EINVAL);
2250	}
2251
2252	MD5Init(&ctx);
2253	ipovly = (struct ipovly *)ip;
2254	th = (struct tcphdr *)((u_char *)ip + off0);
2255	doff = off0 + sizeof(struct tcphdr) + optlen;
2256
2257	/*
2258	 * Step 1: Update MD5 hash with IP pseudo-header.
2259	 *
2260	 * XXX The ippseudo header MUST be digested in network byte order,
2261	 * or else we'll fail the regression test. Assume all fields we've
2262	 * been doing arithmetic on have been in host byte order.
2263	 * XXX One cannot depend on ipovly->ih_len here. When called from
2264	 * tcp_output(), the underlying ip_len member has not yet been set.
2265	 */
2266	ippseudo.ippseudo_src = ipovly->ih_src;
2267	ippseudo.ippseudo_dst = ipovly->ih_dst;
2268	ippseudo.ippseudo_pad = 0;
2269	ippseudo.ippseudo_p = IPPROTO_TCP;
2270	ippseudo.ippseudo_len = htons(len + sizeof(struct tcphdr) + optlen);
2271	MD5Update(&ctx, (char *)&ippseudo, sizeof(struct ippseudo));
2272
2273	/*
2274	 * Step 2: Update MD5 hash with TCP header, excluding options.
2275	 * The TCP checksum must be set to zero.
2276	 */
2277	savecsum = th->th_sum;
2278	th->th_sum = 0;
2279	MD5Update(&ctx, (char *)th, sizeof(struct tcphdr));
2280	th->th_sum = savecsum;
2281
2282	/*
2283	 * Step 3: Update MD5 hash with TCP segment data.
2284	 *         Use m_apply() to avoid an early m_pullup().
2285	 */
2286	if (len > 0)
2287		m_apply(m, doff, len, tcp_signature_apply, &ctx);
2288
2289	/*
2290	 * Step 4: Update MD5 hash with shared secret.
2291	 */
2292	MD5Update(&ctx, _KEYBUF(sav->key_auth), _KEYLEN(sav->key_auth));
2293	MD5Final(buf, &ctx);
2294
2295	key_sa_recordxfer(sav, m);
2296	KEY_FREESAV(&sav);
2297	return (0);
2298}
2299#endif /* TCP_SIGNATURE */
2300
2301static int
2302sysctl_drop(SYSCTL_HANDLER_ARGS)
2303{
2304	/* addrs[0] is a foreign socket, addrs[1] is a local one. */
2305	struct sockaddr_storage addrs[2];
2306	struct inpcb *inp;
2307	struct tcpcb *tp;
2308	struct tcptw *tw;
2309	struct sockaddr_in *fin, *lin;
2310#ifdef INET6
2311	struct sockaddr_in6 *fin6, *lin6;
2312	struct in6_addr f6, l6;
2313#endif
2314	int error;
2315
2316	inp = NULL;
2317	fin = lin = NULL;
2318#ifdef INET6
2319	fin6 = lin6 = NULL;
2320#endif
2321	error = 0;
2322
2323	if (req->oldptr != NULL || req->oldlen != 0)
2324		return (EINVAL);
2325	if (req->newptr == NULL)
2326		return (EPERM);
2327	if (req->newlen < sizeof(addrs))
2328		return (ENOMEM);
2329	error = SYSCTL_IN(req, &addrs, sizeof(addrs));
2330	if (error)
2331		return (error);
2332
2333	switch (addrs[0].ss_family) {
2334#ifdef INET6
2335	case AF_INET6:
2336		fin6 = (struct sockaddr_in6 *)&addrs[0];
2337		lin6 = (struct sockaddr_in6 *)&addrs[1];
2338		if (fin6->sin6_len != sizeof(struct sockaddr_in6) ||
2339		    lin6->sin6_len != sizeof(struct sockaddr_in6))
2340			return (EINVAL);
2341		if (IN6_IS_ADDR_V4MAPPED(&fin6->sin6_addr)) {
2342			if (!IN6_IS_ADDR_V4MAPPED(&lin6->sin6_addr))
2343				return (EINVAL);
2344			in6_sin6_2_sin_in_sock((struct sockaddr *)&addrs[0]);
2345			in6_sin6_2_sin_in_sock((struct sockaddr *)&addrs[1]);
2346			fin = (struct sockaddr_in *)&addrs[0];
2347			lin = (struct sockaddr_in *)&addrs[1];
2348			break;
2349		}
2350		error = sa6_embedscope(fin6, ip6_use_defzone);
2351		if (error)
2352			return (error);
2353		error = sa6_embedscope(lin6, ip6_use_defzone);
2354		if (error)
2355			return (error);
2356		break;
2357#endif
2358	case AF_INET:
2359		fin = (struct sockaddr_in *)&addrs[0];
2360		lin = (struct sockaddr_in *)&addrs[1];
2361		if (fin->sin_len != sizeof(struct sockaddr_in) ||
2362		    lin->sin_len != sizeof(struct sockaddr_in))
2363			return (EINVAL);
2364		break;
2365	default:
2366		return (EINVAL);
2367	}
2368	INP_INFO_WLOCK(&tcbinfo);
2369	switch (addrs[0].ss_family) {
2370#ifdef INET6
2371	case AF_INET6:
2372		inp = in6_pcblookup_hash(&tcbinfo, &f6, fin6->sin6_port,
2373		    &l6, lin6->sin6_port, 0, NULL);
2374		break;
2375#endif
2376	case AF_INET:
2377		inp = in_pcblookup_hash(&tcbinfo, fin->sin_addr, fin->sin_port,
2378		    lin->sin_addr, lin->sin_port, 0, NULL);
2379		break;
2380	}
2381	if (inp != NULL) {
2382		INP_LOCK(inp);
2383		if (inp->inp_vflag & INP_TIMEWAIT) {
2384			/*
2385			 * XXXRW: There currently exists a state where an
2386			 * inpcb is present, but its timewait state has been
2387			 * discarded.  For now, don't allow dropping of this
2388			 * type of inpcb.
2389			 */
2390			tw = intotw(inp);
2391			if (tw != NULL)
2392				tcp_twclose(tw, 0);
2393		} else if (!(inp->inp_vflag & INP_DROPPED) &&
2394			   !(inp->inp_socket->so_options & SO_ACCEPTCONN)) {
2395			tp = intotcpcb(inp);
2396			tcp_drop(tp, ECONNABORTED);
2397		}
2398		INP_UNLOCK(inp);
2399	} else
2400		error = ESRCH;
2401	INP_INFO_WUNLOCK(&tcbinfo);
2402	return (error);
2403}
2404
2405SYSCTL_PROC(_net_inet_tcp, TCPCTL_DROP, drop,
2406    CTLTYPE_STRUCT|CTLFLAG_WR|CTLFLAG_SKIP, NULL,
2407    0, sysctl_drop, "", "Drop TCP connection");
2408