tcp_timewait.c revision 162768
1/*-
2 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 4. Neither the name of the University nor the names of its contributors
14 *    may be used to endorse or promote products derived from this software
15 *    without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 *
29 *	@(#)tcp_subr.c	8.2 (Berkeley) 5/24/95
30 * $FreeBSD: head/sys/netinet/tcp_timewait.c 162768 2006-09-29 06:46:31Z maxim $
31 */
32
33#include "opt_compat.h"
34#include "opt_inet.h"
35#include "opt_inet6.h"
36#include "opt_ipsec.h"
37#include "opt_mac.h"
38#include "opt_tcpdebug.h"
39#include "opt_tcp_sack.h"
40
41#include <sys/param.h>
42#include <sys/systm.h>
43#include <sys/callout.h>
44#include <sys/kernel.h>
45#include <sys/sysctl.h>
46#include <sys/mac.h>
47#include <sys/malloc.h>
48#include <sys/mbuf.h>
49#ifdef INET6
50#include <sys/domain.h>
51#endif
52#include <sys/proc.h>
53#include <sys/socket.h>
54#include <sys/socketvar.h>
55#include <sys/protosw.h>
56#include <sys/random.h>
57
58#include <vm/uma.h>
59
60#include <net/route.h>
61#include <net/if.h>
62
63#include <netinet/in.h>
64#include <netinet/in_systm.h>
65#include <netinet/ip.h>
66#ifdef INET6
67#include <netinet/ip6.h>
68#endif
69#include <netinet/in_pcb.h>
70#ifdef INET6
71#include <netinet6/in6_pcb.h>
72#endif
73#include <netinet/in_var.h>
74#include <netinet/ip_var.h>
75#ifdef INET6
76#include <netinet6/ip6_var.h>
77#include <netinet6/scope6_var.h>
78#include <netinet6/nd6.h>
79#endif
80#include <netinet/ip_icmp.h>
81#include <netinet/tcp.h>
82#include <netinet/tcp_fsm.h>
83#include <netinet/tcp_seq.h>
84#include <netinet/tcp_timer.h>
85#include <netinet/tcp_var.h>
86#ifdef INET6
87#include <netinet6/tcp6_var.h>
88#endif
89#include <netinet/tcpip.h>
90#ifdef TCPDEBUG
91#include <netinet/tcp_debug.h>
92#endif
93#include <netinet6/ip6protosw.h>
94
95#ifdef IPSEC
96#include <netinet6/ipsec.h>
97#ifdef INET6
98#include <netinet6/ipsec6.h>
99#endif
100#include <netkey/key.h>
101#endif /*IPSEC*/
102
103#ifdef FAST_IPSEC
104#include <netipsec/ipsec.h>
105#include <netipsec/xform.h>
106#ifdef INET6
107#include <netipsec/ipsec6.h>
108#endif
109#include <netipsec/key.h>
110#define	IPSEC
111#endif /*FAST_IPSEC*/
112
113#include <machine/in_cksum.h>
114#include <sys/md5.h>
115
116int	tcp_mssdflt = TCP_MSS;
117SYSCTL_INT(_net_inet_tcp, TCPCTL_MSSDFLT, mssdflt, CTLFLAG_RW,
118    &tcp_mssdflt , 0, "Default TCP Maximum Segment Size");
119
120#ifdef INET6
121int	tcp_v6mssdflt = TCP6_MSS;
122SYSCTL_INT(_net_inet_tcp, TCPCTL_V6MSSDFLT, v6mssdflt,
123	CTLFLAG_RW, &tcp_v6mssdflt , 0,
124	"Default TCP Maximum Segment Size for IPv6");
125#endif
126
127/*
128 * Minimum MSS we accept and use. This prevents DoS attacks where
129 * we are forced to a ridiculous low MSS like 20 and send hundreds
130 * of packets instead of one. The effect scales with the available
131 * bandwidth and quickly saturates the CPU and network interface
132 * with packet generation and sending. Set to zero to disable MINMSS
133 * checking. This setting prevents us from sending too small packets.
134 */
135int	tcp_minmss = TCP_MINMSS;
136SYSCTL_INT(_net_inet_tcp, OID_AUTO, minmss, CTLFLAG_RW,
137    &tcp_minmss , 0, "Minmum TCP Maximum Segment Size");
138/*
139 * Number of TCP segments per second we accept from remote host
140 * before we start to calculate average segment size. If average
141 * segment size drops below the minimum TCP MSS we assume a DoS
142 * attack and reset+drop the connection. Care has to be taken not to
143 * set this value too small to not kill interactive type connections
144 * (telnet, SSH) which send many small packets.
145 */
146int     tcp_minmssoverload = TCP_MINMSSOVERLOAD;
147SYSCTL_INT(_net_inet_tcp, OID_AUTO, minmssoverload, CTLFLAG_RW,
148    &tcp_minmssoverload , 0, "Number of TCP Segments per Second allowed to"
149    "be under the MINMSS Size");
150
151#if 0
152static int	tcp_rttdflt = TCPTV_SRTTDFLT / PR_SLOWHZ;
153SYSCTL_INT(_net_inet_tcp, TCPCTL_RTTDFLT, rttdflt, CTLFLAG_RW,
154    &tcp_rttdflt , 0, "Default maximum TCP Round Trip Time");
155#endif
156
157int	tcp_do_rfc1323 = 1;
158SYSCTL_INT(_net_inet_tcp, TCPCTL_DO_RFC1323, rfc1323, CTLFLAG_RW,
159    &tcp_do_rfc1323 , 0, "Enable rfc1323 (high performance TCP) extensions");
160
161static int	tcp_tcbhashsize = 0;
162SYSCTL_INT(_net_inet_tcp, OID_AUTO, tcbhashsize, CTLFLAG_RDTUN,
163     &tcp_tcbhashsize, 0, "Size of TCP control-block hashtable");
164
165static int	do_tcpdrain = 1;
166SYSCTL_INT(_net_inet_tcp, OID_AUTO, do_tcpdrain, CTLFLAG_RW, &do_tcpdrain, 0,
167     "Enable tcp_drain routine for extra help when low on mbufs");
168
169SYSCTL_INT(_net_inet_tcp, OID_AUTO, pcbcount, CTLFLAG_RD,
170    &tcbinfo.ipi_count, 0, "Number of active PCBs");
171
172static int	icmp_may_rst = 1;
173SYSCTL_INT(_net_inet_tcp, OID_AUTO, icmp_may_rst, CTLFLAG_RW, &icmp_may_rst, 0,
174    "Certain ICMP unreachable messages may abort connections in SYN_SENT");
175
176static int	tcp_isn_reseed_interval = 0;
177SYSCTL_INT(_net_inet_tcp, OID_AUTO, isn_reseed_interval, CTLFLAG_RW,
178    &tcp_isn_reseed_interval, 0, "Seconds between reseeding of ISN secret");
179
180static uma_zone_t tcptw_zone;
181static int	maxtcptw;
182
183static int
184tcptw_auto_size(void)
185{
186	int halfrange;
187
188	/*
189	 * Max out at half the ephemeral port range so that TIME_WAIT
190	 * sockets don't tie up too many ephemeral ports.
191	 */
192	if (ipport_lastauto > ipport_firstauto)
193		halfrange = (ipport_lastauto - ipport_firstauto) / 2;
194	else
195		halfrange = (ipport_firstauto - ipport_lastauto) / 2;
196	/* Protect against goofy port ranges smaller than 32. */
197	return (imin(imax(halfrange, 32), maxsockets / 5));
198}
199
200static int
201sysctl_maxtcptw(SYSCTL_HANDLER_ARGS)
202{
203	int error, new;
204
205	if (maxtcptw == 0)
206		new = tcptw_auto_size();
207	else
208		new = maxtcptw;
209	error = sysctl_handle_int(oidp, &new, sizeof(int), req);
210	if (error == 0 && req->newptr)
211		if (new >= 32) {
212			maxtcptw = new;
213			uma_zone_set_max(tcptw_zone, maxtcptw);
214		}
215	return (error);
216}
217SYSCTL_PROC(_net_inet_tcp, OID_AUTO, maxtcptw, CTLTYPE_INT|CTLFLAG_RW,
218    &maxtcptw, 0, sysctl_maxtcptw, "IU",
219    "Maximum number of compressed TCP TIME_WAIT entries");
220
221static int	nolocaltimewait = 0;
222SYSCTL_INT(_net_inet_tcp, OID_AUTO, nolocaltimewait, CTLFLAG_RW,
223    &nolocaltimewait, 0, "Do not create compressed TCP TIME_WAIT entries"
224			 "for local connections");
225
226/*
227 * TCP bandwidth limiting sysctls.  Note that the default lower bound of
228 * 1024 exists only for debugging.  A good production default would be
229 * something like 6100.
230 */
231SYSCTL_NODE(_net_inet_tcp, OID_AUTO, inflight, CTLFLAG_RW, 0,
232    "TCP inflight data limiting");
233
234static int	tcp_inflight_enable = 1;
235SYSCTL_INT(_net_inet_tcp_inflight, OID_AUTO, enable, CTLFLAG_RW,
236    &tcp_inflight_enable, 0, "Enable automatic TCP inflight data limiting");
237
238static int	tcp_inflight_debug = 0;
239SYSCTL_INT(_net_inet_tcp_inflight, OID_AUTO, debug, CTLFLAG_RW,
240    &tcp_inflight_debug, 0, "Debug TCP inflight calculations");
241
242static int	tcp_inflight_rttthresh;
243SYSCTL_PROC(_net_inet_tcp_inflight, OID_AUTO, rttthresh, CTLTYPE_INT|CTLFLAG_RW,
244    &tcp_inflight_rttthresh, 0, sysctl_msec_to_ticks, "I",
245    "RTT threshold below which inflight will deactivate itself");
246
247static int	tcp_inflight_min = 6144;
248SYSCTL_INT(_net_inet_tcp_inflight, OID_AUTO, min, CTLFLAG_RW,
249    &tcp_inflight_min, 0, "Lower-bound for TCP inflight window");
250
251static int	tcp_inflight_max = TCP_MAXWIN << TCP_MAX_WINSHIFT;
252SYSCTL_INT(_net_inet_tcp_inflight, OID_AUTO, max, CTLFLAG_RW,
253    &tcp_inflight_max, 0, "Upper-bound for TCP inflight window");
254
255static int	tcp_inflight_stab = 20;
256SYSCTL_INT(_net_inet_tcp_inflight, OID_AUTO, stab, CTLFLAG_RW,
257    &tcp_inflight_stab, 0, "Inflight Algorithm Stabilization 20 = 2 packets");
258
259uma_zone_t sack_hole_zone;
260
261static struct inpcb *tcp_notify(struct inpcb *, int);
262static void	tcp_isn_tick(void *);
263
264/*
265 * Target size of TCP PCB hash tables. Must be a power of two.
266 *
267 * Note that this can be overridden by the kernel environment
268 * variable net.inet.tcp.tcbhashsize
269 */
270#ifndef TCBHASHSIZE
271#define TCBHASHSIZE	512
272#endif
273
274/*
275 * XXX
276 * Callouts should be moved into struct tcp directly.  They are currently
277 * separate because the tcpcb structure is exported to userland for sysctl
278 * parsing purposes, which do not know about callouts.
279 */
280struct	tcpcb_mem {
281	struct	tcpcb tcb;
282	struct	callout tcpcb_mem_rexmt, tcpcb_mem_persist, tcpcb_mem_keep;
283	struct	callout tcpcb_mem_2msl, tcpcb_mem_delack;
284};
285
286static uma_zone_t tcpcb_zone;
287struct callout isn_callout;
288static struct mtx isn_mtx;
289
290#define	ISN_LOCK_INIT()	mtx_init(&isn_mtx, "isn_mtx", NULL, MTX_DEF)
291#define	ISN_LOCK()	mtx_lock(&isn_mtx)
292#define	ISN_UNLOCK()	mtx_unlock(&isn_mtx)
293
294/*
295 * TCP initialization.
296 */
297static void
298tcp_zone_change(void *tag)
299{
300
301	uma_zone_set_max(tcbinfo.ipi_zone, maxsockets);
302	uma_zone_set_max(tcpcb_zone, maxsockets);
303	if (maxtcptw == 0)
304		uma_zone_set_max(tcptw_zone, tcptw_auto_size());
305}
306
307static int
308tcp_inpcb_init(void *mem, int size, int flags)
309{
310	struct inpcb *inp = (struct inpcb *) mem;
311	INP_LOCK_INIT(inp, "inp", "tcpinp");
312	return (0);
313}
314
315void
316tcp_init(void)
317{
318	int hashsize = TCBHASHSIZE;
319
320	tcp_delacktime = TCPTV_DELACK;
321	tcp_keepinit = TCPTV_KEEP_INIT;
322	tcp_keepidle = TCPTV_KEEP_IDLE;
323	tcp_keepintvl = TCPTV_KEEPINTVL;
324	tcp_maxpersistidle = TCPTV_KEEP_IDLE;
325	tcp_msl = TCPTV_MSL;
326	tcp_rexmit_min = TCPTV_MIN;
327	tcp_rexmit_slop = TCPTV_CPU_VAR;
328	tcp_inflight_rttthresh = TCPTV_INFLIGHT_RTTTHRESH;
329
330	INP_INFO_LOCK_INIT(&tcbinfo, "tcp");
331	LIST_INIT(&tcb);
332	tcbinfo.listhead = &tcb;
333	TUNABLE_INT_FETCH("net.inet.tcp.tcbhashsize", &hashsize);
334	if (!powerof2(hashsize)) {
335		printf("WARNING: TCB hash size not a power of 2\n");
336		hashsize = 512; /* safe default */
337	}
338	tcp_tcbhashsize = hashsize;
339	tcbinfo.hashbase = hashinit(hashsize, M_PCB, &tcbinfo.hashmask);
340	tcbinfo.porthashbase = hashinit(hashsize, M_PCB,
341					&tcbinfo.porthashmask);
342	tcbinfo.ipi_zone = uma_zcreate("inpcb", sizeof(struct inpcb),
343	    NULL, NULL, tcp_inpcb_init, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
344	uma_zone_set_max(tcbinfo.ipi_zone, maxsockets);
345#ifdef INET6
346#define TCP_MINPROTOHDR (sizeof(struct ip6_hdr) + sizeof(struct tcphdr))
347#else /* INET6 */
348#define TCP_MINPROTOHDR (sizeof(struct tcpiphdr))
349#endif /* INET6 */
350	if (max_protohdr < TCP_MINPROTOHDR)
351		max_protohdr = TCP_MINPROTOHDR;
352	if (max_linkhdr + TCP_MINPROTOHDR > MHLEN)
353		panic("tcp_init");
354#undef TCP_MINPROTOHDR
355	/*
356	 * These have to be type stable for the benefit of the timers.
357	 */
358	tcpcb_zone = uma_zcreate("tcpcb", sizeof(struct tcpcb_mem),
359	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
360	uma_zone_set_max(tcpcb_zone, maxsockets);
361	tcptw_zone = uma_zcreate("tcptw", sizeof(struct tcptw),
362	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
363	TUNABLE_INT_FETCH("net.inet.tcp.maxtcptw", &maxtcptw);
364	if (maxtcptw == 0)
365		uma_zone_set_max(tcptw_zone, tcptw_auto_size());
366	else
367		uma_zone_set_max(tcptw_zone, maxtcptw);
368	tcp_timer_init();
369	syncache_init();
370	tcp_hc_init();
371	tcp_reass_init();
372	ISN_LOCK_INIT();
373	callout_init(&isn_callout, CALLOUT_MPSAFE);
374	tcp_isn_tick(NULL);
375	EVENTHANDLER_REGISTER(shutdown_pre_sync, tcp_fini, NULL,
376		SHUTDOWN_PRI_DEFAULT);
377	sack_hole_zone = uma_zcreate("sackhole", sizeof(struct sackhole),
378	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
379	EVENTHANDLER_REGISTER(maxsockets_change, tcp_zone_change, NULL,
380		EVENTHANDLER_PRI_ANY);
381}
382
383void
384tcp_fini(void *xtp)
385{
386
387	callout_stop(&isn_callout);
388}
389
390/*
391 * Fill in the IP and TCP headers for an outgoing packet, given the tcpcb.
392 * tcp_template used to store this data in mbufs, but we now recopy it out
393 * of the tcpcb each time to conserve mbufs.
394 */
395void
396tcpip_fillheaders(struct inpcb *inp, void *ip_ptr, void *tcp_ptr)
397{
398	struct tcphdr *th = (struct tcphdr *)tcp_ptr;
399
400	INP_LOCK_ASSERT(inp);
401
402#ifdef INET6
403	if ((inp->inp_vflag & INP_IPV6) != 0) {
404		struct ip6_hdr *ip6;
405
406		ip6 = (struct ip6_hdr *)ip_ptr;
407		ip6->ip6_flow = (ip6->ip6_flow & ~IPV6_FLOWINFO_MASK) |
408			(inp->in6p_flowinfo & IPV6_FLOWINFO_MASK);
409		ip6->ip6_vfc = (ip6->ip6_vfc & ~IPV6_VERSION_MASK) |
410			(IPV6_VERSION & IPV6_VERSION_MASK);
411		ip6->ip6_nxt = IPPROTO_TCP;
412		ip6->ip6_plen = sizeof(struct tcphdr);
413		ip6->ip6_src = inp->in6p_laddr;
414		ip6->ip6_dst = inp->in6p_faddr;
415	} else
416#endif
417	{
418		struct ip *ip;
419
420		ip = (struct ip *)ip_ptr;
421		ip->ip_v = IPVERSION;
422		ip->ip_hl = 5;
423		ip->ip_tos = inp->inp_ip_tos;
424		ip->ip_len = 0;
425		ip->ip_id = 0;
426		ip->ip_off = 0;
427		ip->ip_ttl = inp->inp_ip_ttl;
428		ip->ip_sum = 0;
429		ip->ip_p = IPPROTO_TCP;
430		ip->ip_src = inp->inp_laddr;
431		ip->ip_dst = inp->inp_faddr;
432	}
433	th->th_sport = inp->inp_lport;
434	th->th_dport = inp->inp_fport;
435	th->th_seq = 0;
436	th->th_ack = 0;
437	th->th_x2 = 0;
438	th->th_off = 5;
439	th->th_flags = 0;
440	th->th_win = 0;
441	th->th_urp = 0;
442	th->th_sum = 0;		/* in_pseudo() is called later for ipv4 */
443}
444
445/*
446 * Create template to be used to send tcp packets on a connection.
447 * Allocates an mbuf and fills in a skeletal tcp/ip header.  The only
448 * use for this function is in keepalives, which use tcp_respond.
449 */
450struct tcptemp *
451tcpip_maketemplate(struct inpcb *inp)
452{
453	struct mbuf *m;
454	struct tcptemp *n;
455
456	m = m_get(M_DONTWAIT, MT_DATA);
457	if (m == NULL)
458		return (0);
459	m->m_len = sizeof(struct tcptemp);
460	n = mtod(m, struct tcptemp *);
461
462	tcpip_fillheaders(inp, (void *)&n->tt_ipgen, (void *)&n->tt_t);
463	return (n);
464}
465
466/*
467 * Send a single message to the TCP at address specified by
468 * the given TCP/IP header.  If m == NULL, then we make a copy
469 * of the tcpiphdr at ti and send directly to the addressed host.
470 * This is used to force keep alive messages out using the TCP
471 * template for a connection.  If flags are given then we send
472 * a message back to the TCP which originated the * segment ti,
473 * and discard the mbuf containing it and any other attached mbufs.
474 *
475 * In any case the ack and sequence number of the transmitted
476 * segment are as specified by the parameters.
477 *
478 * NOTE: If m != NULL, then ti must point to *inside* the mbuf.
479 */
480void
481tcp_respond(struct tcpcb *tp, void *ipgen, register struct tcphdr *th,
482    register struct mbuf *m, tcp_seq ack, tcp_seq seq, int flags)
483{
484	register int tlen;
485	int win = 0;
486	struct ip *ip;
487	struct tcphdr *nth;
488#ifdef INET6
489	struct ip6_hdr *ip6;
490	int isipv6;
491#endif /* INET6 */
492	int ipflags = 0;
493	struct inpcb *inp;
494
495	KASSERT(tp != NULL || m != NULL, ("tcp_respond: tp and m both NULL"));
496
497#ifdef INET6
498	isipv6 = ((struct ip *)ipgen)->ip_v == 6;
499	ip6 = ipgen;
500#endif /* INET6 */
501	ip = ipgen;
502
503	if (tp != NULL) {
504		inp = tp->t_inpcb;
505		KASSERT(inp != NULL, ("tcp control block w/o inpcb"));
506		INP_INFO_WLOCK_ASSERT(&tcbinfo);
507		INP_LOCK_ASSERT(inp);
508	} else
509		inp = NULL;
510
511	if (tp != NULL) {
512		if (!(flags & TH_RST)) {
513			win = sbspace(&inp->inp_socket->so_rcv);
514			if (win > (long)TCP_MAXWIN << tp->rcv_scale)
515				win = (long)TCP_MAXWIN << tp->rcv_scale;
516		}
517	}
518	if (m == NULL) {
519		m = m_gethdr(M_DONTWAIT, MT_DATA);
520		if (m == NULL)
521			return;
522		tlen = 0;
523		m->m_data += max_linkhdr;
524#ifdef INET6
525		if (isipv6) {
526			bcopy((caddr_t)ip6, mtod(m, caddr_t),
527			      sizeof(struct ip6_hdr));
528			ip6 = mtod(m, struct ip6_hdr *);
529			nth = (struct tcphdr *)(ip6 + 1);
530		} else
531#endif /* INET6 */
532	      {
533		bcopy((caddr_t)ip, mtod(m, caddr_t), sizeof(struct ip));
534		ip = mtod(m, struct ip *);
535		nth = (struct tcphdr *)(ip + 1);
536	      }
537		bcopy((caddr_t)th, (caddr_t)nth, sizeof(struct tcphdr));
538		flags = TH_ACK;
539	} else {
540		m_freem(m->m_next);
541		m->m_next = NULL;
542		m->m_data = (caddr_t)ipgen;
543		/* m_len is set later */
544		tlen = 0;
545#define xchg(a,b,type) { type t; t=a; a=b; b=t; }
546#ifdef INET6
547		if (isipv6) {
548			xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr);
549			nth = (struct tcphdr *)(ip6 + 1);
550		} else
551#endif /* INET6 */
552	      {
553		xchg(ip->ip_dst.s_addr, ip->ip_src.s_addr, n_long);
554		nth = (struct tcphdr *)(ip + 1);
555	      }
556		if (th != nth) {
557			/*
558			 * this is usually a case when an extension header
559			 * exists between the IPv6 header and the
560			 * TCP header.
561			 */
562			nth->th_sport = th->th_sport;
563			nth->th_dport = th->th_dport;
564		}
565		xchg(nth->th_dport, nth->th_sport, n_short);
566#undef xchg
567	}
568#ifdef INET6
569	if (isipv6) {
570		ip6->ip6_flow = 0;
571		ip6->ip6_vfc = IPV6_VERSION;
572		ip6->ip6_nxt = IPPROTO_TCP;
573		ip6->ip6_plen = htons((u_short)(sizeof (struct tcphdr) +
574						tlen));
575		tlen += sizeof (struct ip6_hdr) + sizeof (struct tcphdr);
576	} else
577#endif
578	{
579		tlen += sizeof (struct tcpiphdr);
580		ip->ip_len = tlen;
581		ip->ip_ttl = ip_defttl;
582		if (path_mtu_discovery)
583			ip->ip_off |= IP_DF;
584	}
585	m->m_len = tlen;
586	m->m_pkthdr.len = tlen;
587	m->m_pkthdr.rcvif = NULL;
588#ifdef MAC
589	if (inp != NULL) {
590		/*
591		 * Packet is associated with a socket, so allow the
592		 * label of the response to reflect the socket label.
593		 */
594		INP_LOCK_ASSERT(inp);
595		mac_create_mbuf_from_inpcb(inp, m);
596	} else {
597		/*
598		 * Packet is not associated with a socket, so possibly
599		 * update the label in place.
600		 */
601		mac_reflect_mbuf_tcp(m);
602	}
603#endif
604	nth->th_seq = htonl(seq);
605	nth->th_ack = htonl(ack);
606	nth->th_x2 = 0;
607	nth->th_off = sizeof (struct tcphdr) >> 2;
608	nth->th_flags = flags;
609	if (tp != NULL)
610		nth->th_win = htons((u_short) (win >> tp->rcv_scale));
611	else
612		nth->th_win = htons((u_short)win);
613	nth->th_urp = 0;
614#ifdef INET6
615	if (isipv6) {
616		nth->th_sum = 0;
617		nth->th_sum = in6_cksum(m, IPPROTO_TCP,
618					sizeof(struct ip6_hdr),
619					tlen - sizeof(struct ip6_hdr));
620		ip6->ip6_hlim = in6_selecthlim(tp != NULL ? tp->t_inpcb :
621		    NULL, NULL);
622	} else
623#endif /* INET6 */
624	{
625		nth->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
626		    htons((u_short)(tlen - sizeof(struct ip) + ip->ip_p)));
627		m->m_pkthdr.csum_flags = CSUM_TCP;
628		m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
629	}
630#ifdef TCPDEBUG
631	if (tp == NULL || (inp->inp_socket->so_options & SO_DEBUG))
632		tcp_trace(TA_OUTPUT, 0, tp, mtod(m, void *), th, 0);
633#endif
634#ifdef INET6
635	if (isipv6)
636		(void) ip6_output(m, NULL, NULL, ipflags, NULL, NULL, inp);
637	else
638#endif /* INET6 */
639	(void) ip_output(m, NULL, NULL, ipflags, NULL, inp);
640}
641
642/*
643 * Create a new TCP control block, making an
644 * empty reassembly queue and hooking it to the argument
645 * protocol control block.  The `inp' parameter must have
646 * come from the zone allocator set up in tcp_init().
647 */
648struct tcpcb *
649tcp_newtcpcb(struct inpcb *inp)
650{
651	struct tcpcb_mem *tm;
652	struct tcpcb *tp;
653#ifdef INET6
654	int isipv6 = (inp->inp_vflag & INP_IPV6) != 0;
655#endif /* INET6 */
656
657	tm = uma_zalloc(tcpcb_zone, M_NOWAIT | M_ZERO);
658	if (tm == NULL)
659		return (NULL);
660	tp = &tm->tcb;
661	/*	LIST_INIT(&tp->t_segq); */	/* XXX covered by M_ZERO */
662	tp->t_maxseg = tp->t_maxopd =
663#ifdef INET6
664		isipv6 ? tcp_v6mssdflt :
665#endif /* INET6 */
666		tcp_mssdflt;
667
668	/* Set up our timeouts. */
669	callout_init(tp->tt_rexmt = &tm->tcpcb_mem_rexmt, NET_CALLOUT_MPSAFE);
670	callout_init(tp->tt_persist = &tm->tcpcb_mem_persist, NET_CALLOUT_MPSAFE);
671	callout_init(tp->tt_keep = &tm->tcpcb_mem_keep, NET_CALLOUT_MPSAFE);
672	callout_init(tp->tt_2msl = &tm->tcpcb_mem_2msl, NET_CALLOUT_MPSAFE);
673	callout_init(tp->tt_delack = &tm->tcpcb_mem_delack, NET_CALLOUT_MPSAFE);
674
675	if (tcp_do_rfc1323)
676		tp->t_flags = (TF_REQ_SCALE|TF_REQ_TSTMP);
677	tp->sack_enable = tcp_do_sack;
678	TAILQ_INIT(&tp->snd_holes);
679	tp->t_inpcb = inp;	/* XXX */
680	/*
681	 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
682	 * rtt estimate.  Set rttvar so that srtt + 4 * rttvar gives
683	 * reasonable initial retransmit time.
684	 */
685	tp->t_srtt = TCPTV_SRTTBASE;
686	tp->t_rttvar = ((TCPTV_RTOBASE - TCPTV_SRTTBASE) << TCP_RTTVAR_SHIFT) / 4;
687	tp->t_rttmin = tcp_rexmit_min;
688	tp->t_rxtcur = TCPTV_RTOBASE;
689	tp->snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
690	tp->snd_bwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
691	tp->snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT;
692	tp->t_rcvtime = ticks;
693	tp->t_bw_rtttime = ticks;
694	/*
695	 * IPv4 TTL initialization is necessary for an IPv6 socket as well,
696	 * because the socket may be bound to an IPv6 wildcard address,
697	 * which may match an IPv4-mapped IPv6 address.
698	 */
699	inp->inp_ip_ttl = ip_defttl;
700	inp->inp_ppcb = tp;
701	return (tp);		/* XXX */
702}
703
704/*
705 * Drop a TCP connection, reporting
706 * the specified error.  If connection is synchronized,
707 * then send a RST to peer.
708 */
709struct tcpcb *
710tcp_drop(struct tcpcb *tp, int errno)
711{
712	struct socket *so = tp->t_inpcb->inp_socket;
713
714	INP_INFO_WLOCK_ASSERT(&tcbinfo);
715	INP_LOCK_ASSERT(tp->t_inpcb);
716
717	if (TCPS_HAVERCVDSYN(tp->t_state)) {
718		tp->t_state = TCPS_CLOSED;
719		(void) tcp_output(tp);
720		tcpstat.tcps_drops++;
721	} else
722		tcpstat.tcps_conndrops++;
723	if (errno == ETIMEDOUT && tp->t_softerror)
724		errno = tp->t_softerror;
725	so->so_error = errno;
726	return (tcp_close(tp));
727}
728
729void
730tcp_discardcb(struct tcpcb *tp)
731{
732	struct tseg_qent *q;
733	struct inpcb *inp = tp->t_inpcb;
734	struct socket *so = inp->inp_socket;
735#ifdef INET6
736	int isipv6 = (inp->inp_vflag & INP_IPV6) != 0;
737#endif /* INET6 */
738
739	INP_LOCK_ASSERT(inp);
740
741	/*
742	 * Make sure that all of our timers are stopped before we
743	 * delete the PCB.
744	 */
745	callout_stop(tp->tt_rexmt);
746	callout_stop(tp->tt_persist);
747	callout_stop(tp->tt_keep);
748	callout_stop(tp->tt_2msl);
749	callout_stop(tp->tt_delack);
750
751	/*
752	 * If we got enough samples through the srtt filter,
753	 * save the rtt and rttvar in the routing entry.
754	 * 'Enough' is arbitrarily defined as 4 rtt samples.
755	 * 4 samples is enough for the srtt filter to converge
756	 * to within enough % of the correct value; fewer samples
757	 * and we could save a bogus rtt. The danger is not high
758	 * as tcp quickly recovers from everything.
759	 * XXX: Works very well but needs some more statistics!
760	 */
761	if (tp->t_rttupdated >= 4) {
762		struct hc_metrics_lite metrics;
763		u_long ssthresh;
764
765		bzero(&metrics, sizeof(metrics));
766		/*
767		 * Update the ssthresh always when the conditions below
768		 * are satisfied. This gives us better new start value
769		 * for the congestion avoidance for new connections.
770		 * ssthresh is only set if packet loss occured on a session.
771		 *
772		 * XXXRW: 'so' may be NULL here, and/or socket buffer may be
773		 * being torn down.  Ideally this code would not use 'so'.
774		 */
775		ssthresh = tp->snd_ssthresh;
776		if (ssthresh != 0 && ssthresh < so->so_snd.sb_hiwat / 2) {
777			/*
778			 * convert the limit from user data bytes to
779			 * packets then to packet data bytes.
780			 */
781			ssthresh = (ssthresh + tp->t_maxseg / 2) / tp->t_maxseg;
782			if (ssthresh < 2)
783				ssthresh = 2;
784			ssthresh *= (u_long)(tp->t_maxseg +
785#ifdef INET6
786				      (isipv6 ? sizeof (struct ip6_hdr) +
787					       sizeof (struct tcphdr) :
788#endif
789				       sizeof (struct tcpiphdr)
790#ifdef INET6
791				       )
792#endif
793				      );
794		} else
795			ssthresh = 0;
796		metrics.rmx_ssthresh = ssthresh;
797
798		metrics.rmx_rtt = tp->t_srtt;
799		metrics.rmx_rttvar = tp->t_rttvar;
800		/* XXX: This wraps if the pipe is more than 4 Gbit per second */
801		metrics.rmx_bandwidth = tp->snd_bandwidth;
802		metrics.rmx_cwnd = tp->snd_cwnd;
803		metrics.rmx_sendpipe = 0;
804		metrics.rmx_recvpipe = 0;
805
806		tcp_hc_update(&inp->inp_inc, &metrics);
807	}
808
809	/* free the reassembly queue, if any */
810	while ((q = LIST_FIRST(&tp->t_segq)) != NULL) {
811		LIST_REMOVE(q, tqe_q);
812		m_freem(q->tqe_m);
813		uma_zfree(tcp_reass_zone, q);
814		tp->t_segqlen--;
815		tcp_reass_qsize--;
816	}
817	tcp_free_sackholes(tp);
818	inp->inp_ppcb = NULL;
819	tp->t_inpcb = NULL;
820	uma_zfree(tcpcb_zone, tp);
821}
822
823/*
824 * Attempt to close a TCP control block, marking it as dropped, and freeing
825 * the socket if we hold the only reference.
826 */
827struct tcpcb *
828tcp_close(struct tcpcb *tp)
829{
830	struct inpcb *inp = tp->t_inpcb;
831	struct socket *so;
832
833	INP_INFO_WLOCK_ASSERT(&tcbinfo);
834	INP_LOCK_ASSERT(inp);
835
836	in_pcbdrop(inp);
837	tcpstat.tcps_closed++;
838	KASSERT(inp->inp_socket != NULL, ("tcp_close: inp_socket NULL"));
839	so = inp->inp_socket;
840	soisdisconnected(so);
841	if (inp->inp_vflag & INP_SOCKREF) {
842		KASSERT(so->so_state & SS_PROTOREF,
843		    ("tcp_close: !SS_PROTOREF"));
844		inp->inp_vflag &= ~INP_SOCKREF;
845		INP_UNLOCK(inp);
846		ACCEPT_LOCK();
847		SOCK_LOCK(so);
848		so->so_state &= ~SS_PROTOREF;
849		sofree(so);
850		return (NULL);
851	}
852	return (tp);
853}
854
855void
856tcp_drain(void)
857{
858
859	if (do_tcpdrain) {
860		struct inpcb *inpb;
861		struct tcpcb *tcpb;
862		struct tseg_qent *te;
863
864	/*
865	 * Walk the tcpbs, if existing, and flush the reassembly queue,
866	 * if there is one...
867	 * XXX: The "Net/3" implementation doesn't imply that the TCP
868	 *      reassembly queue should be flushed, but in a situation
869	 *	where we're really low on mbufs, this is potentially
870	 *	usefull.
871	 */
872		INP_INFO_RLOCK(&tcbinfo);
873		LIST_FOREACH(inpb, tcbinfo.listhead, inp_list) {
874			if (inpb->inp_vflag & INP_TIMEWAIT)
875				continue;
876			INP_LOCK(inpb);
877			if ((tcpb = intotcpcb(inpb)) != NULL) {
878				while ((te = LIST_FIRST(&tcpb->t_segq))
879			            != NULL) {
880					LIST_REMOVE(te, tqe_q);
881					m_freem(te->tqe_m);
882					uma_zfree(tcp_reass_zone, te);
883					tcpb->t_segqlen--;
884					tcp_reass_qsize--;
885				}
886				tcp_clean_sackreport(tcpb);
887			}
888			INP_UNLOCK(inpb);
889		}
890		INP_INFO_RUNLOCK(&tcbinfo);
891	}
892}
893
894/*
895 * Notify a tcp user of an asynchronous error;
896 * store error as soft error, but wake up user
897 * (for now, won't do anything until can select for soft error).
898 *
899 * Do not wake up user since there currently is no mechanism for
900 * reporting soft errors (yet - a kqueue filter may be added).
901 */
902static struct inpcb *
903tcp_notify(struct inpcb *inp, int error)
904{
905	struct tcpcb *tp;
906
907	INP_INFO_WLOCK_ASSERT(&tcbinfo);
908	INP_LOCK_ASSERT(inp);
909
910	if ((inp->inp_vflag & INP_TIMEWAIT) ||
911	    (inp->inp_vflag & INP_DROPPED))
912		return (inp);
913
914	tp = intotcpcb(inp);
915	KASSERT(tp != NULL, ("tcp_notify: tp == NULL"));
916
917	/*
918	 * Ignore some errors if we are hooked up.
919	 * If connection hasn't completed, has retransmitted several times,
920	 * and receives a second error, give up now.  This is better
921	 * than waiting a long time to establish a connection that
922	 * can never complete.
923	 */
924	if (tp->t_state == TCPS_ESTABLISHED &&
925	    (error == EHOSTUNREACH || error == ENETUNREACH ||
926	     error == EHOSTDOWN)) {
927		return (inp);
928	} else if (tp->t_state < TCPS_ESTABLISHED && tp->t_rxtshift > 3 &&
929	    tp->t_softerror) {
930		tp = tcp_drop(tp, error);
931		if (tp != NULL)
932			return (inp);
933		else
934			return (NULL);
935	} else {
936		tp->t_softerror = error;
937		return (inp);
938	}
939#if 0
940	wakeup( &so->so_timeo);
941	sorwakeup(so);
942	sowwakeup(so);
943#endif
944}
945
946static int
947tcp_pcblist(SYSCTL_HANDLER_ARGS)
948{
949	int error, i, n;
950	struct inpcb *inp, **inp_list;
951	inp_gen_t gencnt;
952	struct xinpgen xig;
953
954	/*
955	 * The process of preparing the TCB list is too time-consuming and
956	 * resource-intensive to repeat twice on every request.
957	 */
958	if (req->oldptr == NULL) {
959		n = tcbinfo.ipi_count;
960		req->oldidx = 2 * (sizeof xig)
961			+ (n + n/8) * sizeof(struct xtcpcb);
962		return (0);
963	}
964
965	if (req->newptr != NULL)
966		return (EPERM);
967
968	/*
969	 * OK, now we're committed to doing something.
970	 */
971	INP_INFO_RLOCK(&tcbinfo);
972	gencnt = tcbinfo.ipi_gencnt;
973	n = tcbinfo.ipi_count;
974	INP_INFO_RUNLOCK(&tcbinfo);
975
976	error = sysctl_wire_old_buffer(req, 2 * (sizeof xig)
977		+ n * sizeof(struct xtcpcb));
978	if (error != 0)
979		return (error);
980
981	xig.xig_len = sizeof xig;
982	xig.xig_count = n;
983	xig.xig_gen = gencnt;
984	xig.xig_sogen = so_gencnt;
985	error = SYSCTL_OUT(req, &xig, sizeof xig);
986	if (error)
987		return (error);
988
989	inp_list = malloc(n * sizeof *inp_list, M_TEMP, M_WAITOK);
990	if (inp_list == NULL)
991		return (ENOMEM);
992
993	INP_INFO_RLOCK(&tcbinfo);
994	for (inp = LIST_FIRST(tcbinfo.listhead), i = 0; inp != NULL && i < n;
995	     inp = LIST_NEXT(inp, inp_list)) {
996		INP_LOCK(inp);
997		if (inp->inp_gencnt <= gencnt) {
998			/*
999			 * XXX: This use of cr_cansee(), introduced with
1000			 * TCP state changes, is not quite right, but for
1001			 * now, better than nothing.
1002			 */
1003			if (inp->inp_vflag & INP_TIMEWAIT) {
1004				if (intotw(inp) != NULL)
1005					error = cr_cansee(req->td->td_ucred,
1006					    intotw(inp)->tw_cred);
1007				else
1008					error = EINVAL;	/* Skip this inp. */
1009			} else
1010				error = cr_canseesocket(req->td->td_ucred,
1011				    inp->inp_socket);
1012			if (error == 0)
1013				inp_list[i++] = inp;
1014		}
1015		INP_UNLOCK(inp);
1016	}
1017	INP_INFO_RUNLOCK(&tcbinfo);
1018	n = i;
1019
1020	error = 0;
1021	for (i = 0; i < n; i++) {
1022		inp = inp_list[i];
1023		INP_LOCK(inp);
1024		if (inp->inp_gencnt <= gencnt) {
1025			struct xtcpcb xt;
1026			void *inp_ppcb;
1027
1028			bzero(&xt, sizeof(xt));
1029			xt.xt_len = sizeof xt;
1030			/* XXX should avoid extra copy */
1031			bcopy(inp, &xt.xt_inp, sizeof *inp);
1032			inp_ppcb = inp->inp_ppcb;
1033			if (inp_ppcb == NULL)
1034				bzero((char *) &xt.xt_tp, sizeof xt.xt_tp);
1035			else if (inp->inp_vflag & INP_TIMEWAIT) {
1036				bzero((char *) &xt.xt_tp, sizeof xt.xt_tp);
1037				xt.xt_tp.t_state = TCPS_TIME_WAIT;
1038			} else
1039				bcopy(inp_ppcb, &xt.xt_tp, sizeof xt.xt_tp);
1040			if (inp->inp_socket != NULL)
1041				sotoxsocket(inp->inp_socket, &xt.xt_socket);
1042			else {
1043				bzero(&xt.xt_socket, sizeof xt.xt_socket);
1044				xt.xt_socket.xso_protocol = IPPROTO_TCP;
1045			}
1046			xt.xt_inp.inp_gencnt = inp->inp_gencnt;
1047			INP_UNLOCK(inp);
1048			error = SYSCTL_OUT(req, &xt, sizeof xt);
1049		} else
1050			INP_UNLOCK(inp);
1051
1052	}
1053	if (!error) {
1054		/*
1055		 * Give the user an updated idea of our state.
1056		 * If the generation differs from what we told
1057		 * her before, she knows that something happened
1058		 * while we were processing this request, and it
1059		 * might be necessary to retry.
1060		 */
1061		INP_INFO_RLOCK(&tcbinfo);
1062		xig.xig_gen = tcbinfo.ipi_gencnt;
1063		xig.xig_sogen = so_gencnt;
1064		xig.xig_count = tcbinfo.ipi_count;
1065		INP_INFO_RUNLOCK(&tcbinfo);
1066		error = SYSCTL_OUT(req, &xig, sizeof xig);
1067	}
1068	free(inp_list, M_TEMP);
1069	return (error);
1070}
1071
1072SYSCTL_PROC(_net_inet_tcp, TCPCTL_PCBLIST, pcblist, CTLFLAG_RD, 0, 0,
1073	    tcp_pcblist, "S,xtcpcb", "List of active TCP connections");
1074
1075static int
1076tcp_getcred(SYSCTL_HANDLER_ARGS)
1077{
1078	struct xucred xuc;
1079	struct sockaddr_in addrs[2];
1080	struct inpcb *inp;
1081	int error;
1082
1083	error = suser_cred(req->td->td_ucred, SUSER_ALLOWJAIL);
1084	if (error)
1085		return (error);
1086	error = SYSCTL_IN(req, addrs, sizeof(addrs));
1087	if (error)
1088		return (error);
1089	INP_INFO_RLOCK(&tcbinfo);
1090	inp = in_pcblookup_hash(&tcbinfo, addrs[1].sin_addr, addrs[1].sin_port,
1091	    addrs[0].sin_addr, addrs[0].sin_port, 0, NULL);
1092	if (inp == NULL) {
1093		error = ENOENT;
1094		goto outunlocked;
1095	}
1096	INP_LOCK(inp);
1097	if (inp->inp_socket == NULL) {
1098		error = ENOENT;
1099		goto out;
1100	}
1101	error = cr_canseesocket(req->td->td_ucred, inp->inp_socket);
1102	if (error)
1103		goto out;
1104	cru2x(inp->inp_socket->so_cred, &xuc);
1105out:
1106	INP_UNLOCK(inp);
1107outunlocked:
1108	INP_INFO_RUNLOCK(&tcbinfo);
1109	if (error == 0)
1110		error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred));
1111	return (error);
1112}
1113
1114SYSCTL_PROC(_net_inet_tcp, OID_AUTO, getcred,
1115    CTLTYPE_OPAQUE|CTLFLAG_RW|CTLFLAG_PRISON, 0, 0,
1116    tcp_getcred, "S,xucred", "Get the xucred of a TCP connection");
1117
1118#ifdef INET6
1119static int
1120tcp6_getcred(SYSCTL_HANDLER_ARGS)
1121{
1122	struct xucred xuc;
1123	struct sockaddr_in6 addrs[2];
1124	struct inpcb *inp;
1125	int error, mapped = 0;
1126
1127	error = suser_cred(req->td->td_ucred, SUSER_ALLOWJAIL);
1128	if (error)
1129		return (error);
1130	error = SYSCTL_IN(req, addrs, sizeof(addrs));
1131	if (error)
1132		return (error);
1133	if ((error = sa6_embedscope(&addrs[0], ip6_use_defzone)) != 0 ||
1134	    (error = sa6_embedscope(&addrs[1], ip6_use_defzone)) != 0) {
1135		return (error);
1136	}
1137	if (IN6_IS_ADDR_V4MAPPED(&addrs[0].sin6_addr)) {
1138		if (IN6_IS_ADDR_V4MAPPED(&addrs[1].sin6_addr))
1139			mapped = 1;
1140		else
1141			return (EINVAL);
1142	}
1143
1144	INP_INFO_RLOCK(&tcbinfo);
1145	if (mapped == 1)
1146		inp = in_pcblookup_hash(&tcbinfo,
1147			*(struct in_addr *)&addrs[1].sin6_addr.s6_addr[12],
1148			addrs[1].sin6_port,
1149			*(struct in_addr *)&addrs[0].sin6_addr.s6_addr[12],
1150			addrs[0].sin6_port,
1151			0, NULL);
1152	else
1153		inp = in6_pcblookup_hash(&tcbinfo,
1154			&addrs[1].sin6_addr, addrs[1].sin6_port,
1155			&addrs[0].sin6_addr, addrs[0].sin6_port, 0, NULL);
1156	if (inp == NULL) {
1157		error = ENOENT;
1158		goto outunlocked;
1159	}
1160	INP_LOCK(inp);
1161	if (inp->inp_socket == NULL) {
1162		error = ENOENT;
1163		goto out;
1164	}
1165	error = cr_canseesocket(req->td->td_ucred, inp->inp_socket);
1166	if (error)
1167		goto out;
1168	cru2x(inp->inp_socket->so_cred, &xuc);
1169out:
1170	INP_UNLOCK(inp);
1171outunlocked:
1172	INP_INFO_RUNLOCK(&tcbinfo);
1173	if (error == 0)
1174		error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred));
1175	return (error);
1176}
1177
1178SYSCTL_PROC(_net_inet6_tcp6, OID_AUTO, getcred,
1179    CTLTYPE_OPAQUE|CTLFLAG_RW|CTLFLAG_PRISON, 0, 0,
1180    tcp6_getcred, "S,xucred", "Get the xucred of a TCP6 connection");
1181#endif
1182
1183
1184void
1185tcp_ctlinput(int cmd, struct sockaddr *sa, void *vip)
1186{
1187	struct ip *ip = vip;
1188	struct tcphdr *th;
1189	struct in_addr faddr;
1190	struct inpcb *inp;
1191	struct tcpcb *tp;
1192	struct inpcb *(*notify)(struct inpcb *, int) = tcp_notify;
1193	struct icmp *icp;
1194	struct in_conninfo inc;
1195	tcp_seq icmp_tcp_seq;
1196	int mtu;
1197
1198	faddr = ((struct sockaddr_in *)sa)->sin_addr;
1199	if (sa->sa_family != AF_INET || faddr.s_addr == INADDR_ANY)
1200		return;
1201
1202	if (cmd == PRC_MSGSIZE)
1203		notify = tcp_mtudisc;
1204	else if (icmp_may_rst && (cmd == PRC_UNREACH_ADMIN_PROHIB ||
1205		cmd == PRC_UNREACH_PORT || cmd == PRC_TIMXCEED_INTRANS) && ip)
1206		notify = tcp_drop_syn_sent;
1207	/*
1208	 * Redirects don't need to be handled up here.
1209	 */
1210	else if (PRC_IS_REDIRECT(cmd))
1211		return;
1212	/*
1213	 * Source quench is depreciated.
1214	 */
1215	else if (cmd == PRC_QUENCH)
1216		return;
1217	/*
1218	 * Hostdead is ugly because it goes linearly through all PCBs.
1219	 * XXX: We never get this from ICMP, otherwise it makes an
1220	 * excellent DoS attack on machines with many connections.
1221	 */
1222	else if (cmd == PRC_HOSTDEAD)
1223		ip = NULL;
1224	else if ((unsigned)cmd >= PRC_NCMDS || inetctlerrmap[cmd] == 0)
1225		return;
1226	if (ip != NULL) {
1227		icp = (struct icmp *)((caddr_t)ip
1228				      - offsetof(struct icmp, icmp_ip));
1229		th = (struct tcphdr *)((caddr_t)ip
1230				       + (ip->ip_hl << 2));
1231		INP_INFO_WLOCK(&tcbinfo);
1232		inp = in_pcblookup_hash(&tcbinfo, faddr, th->th_dport,
1233		    ip->ip_src, th->th_sport, 0, NULL);
1234		if (inp != NULL)  {
1235			INP_LOCK(inp);
1236			if (!(inp->inp_vflag & INP_TIMEWAIT) &&
1237			    !(inp->inp_vflag & INP_DROPPED) &&
1238			    !(inp->inp_socket == NULL)) {
1239				icmp_tcp_seq = htonl(th->th_seq);
1240				tp = intotcpcb(inp);
1241				if (SEQ_GEQ(icmp_tcp_seq, tp->snd_una) &&
1242				    SEQ_LT(icmp_tcp_seq, tp->snd_max)) {
1243					if (cmd == PRC_MSGSIZE) {
1244					    /*
1245					     * MTU discovery:
1246					     * If we got a needfrag set the MTU
1247					     * in the route to the suggested new
1248					     * value (if given) and then notify.
1249					     */
1250					    bzero(&inc, sizeof(inc));
1251					    inc.inc_flags = 0;	/* IPv4 */
1252					    inc.inc_faddr = faddr;
1253
1254					    mtu = ntohs(icp->icmp_nextmtu);
1255					    /*
1256					     * If no alternative MTU was
1257					     * proposed, try the next smaller
1258					     * one.  ip->ip_len has already
1259					     * been swapped in icmp_input().
1260					     */
1261					    if (!mtu)
1262						mtu = ip_next_mtu(ip->ip_len,
1263						 1);
1264					    if (mtu < max(296, (tcp_minmss)
1265						 + sizeof(struct tcpiphdr)))
1266						mtu = 0;
1267					    if (!mtu)
1268						mtu = tcp_mssdflt
1269						 + sizeof(struct tcpiphdr);
1270					    /*
1271					     * Only cache the the MTU if it
1272					     * is smaller than the interface
1273					     * or route MTU.  tcp_mtudisc()
1274					     * will do right thing by itself.
1275					     */
1276					    if (mtu <= tcp_maxmtu(&inc, NULL))
1277						tcp_hc_updatemtu(&inc, mtu);
1278					}
1279
1280					inp = (*notify)(inp, inetctlerrmap[cmd]);
1281				}
1282			}
1283			if (inp != NULL)
1284				INP_UNLOCK(inp);
1285		} else {
1286			inc.inc_fport = th->th_dport;
1287			inc.inc_lport = th->th_sport;
1288			inc.inc_faddr = faddr;
1289			inc.inc_laddr = ip->ip_src;
1290#ifdef INET6
1291			inc.inc_isipv6 = 0;
1292#endif
1293			syncache_unreach(&inc, th);
1294		}
1295		INP_INFO_WUNLOCK(&tcbinfo);
1296	} else
1297		in_pcbnotifyall(&tcbinfo, faddr, inetctlerrmap[cmd], notify);
1298}
1299
1300#ifdef INET6
1301void
1302tcp6_ctlinput(int cmd, struct sockaddr *sa, void *d)
1303{
1304	struct tcphdr th;
1305	struct inpcb *(*notify)(struct inpcb *, int) = tcp_notify;
1306	struct ip6_hdr *ip6;
1307	struct mbuf *m;
1308	struct ip6ctlparam *ip6cp = NULL;
1309	const struct sockaddr_in6 *sa6_src = NULL;
1310	int off;
1311	struct tcp_portonly {
1312		u_int16_t th_sport;
1313		u_int16_t th_dport;
1314	} *thp;
1315
1316	if (sa->sa_family != AF_INET6 ||
1317	    sa->sa_len != sizeof(struct sockaddr_in6))
1318		return;
1319
1320	if (cmd == PRC_MSGSIZE)
1321		notify = tcp_mtudisc;
1322	else if (!PRC_IS_REDIRECT(cmd) &&
1323		 ((unsigned)cmd >= PRC_NCMDS || inet6ctlerrmap[cmd] == 0))
1324		return;
1325	/* Source quench is depreciated. */
1326	else if (cmd == PRC_QUENCH)
1327		return;
1328
1329	/* if the parameter is from icmp6, decode it. */
1330	if (d != NULL) {
1331		ip6cp = (struct ip6ctlparam *)d;
1332		m = ip6cp->ip6c_m;
1333		ip6 = ip6cp->ip6c_ip6;
1334		off = ip6cp->ip6c_off;
1335		sa6_src = ip6cp->ip6c_src;
1336	} else {
1337		m = NULL;
1338		ip6 = NULL;
1339		off = 0;	/* fool gcc */
1340		sa6_src = &sa6_any;
1341	}
1342
1343	if (ip6 != NULL) {
1344		struct in_conninfo inc;
1345		/*
1346		 * XXX: We assume that when IPV6 is non NULL,
1347		 * M and OFF are valid.
1348		 */
1349
1350		/* check if we can safely examine src and dst ports */
1351		if (m->m_pkthdr.len < off + sizeof(*thp))
1352			return;
1353
1354		bzero(&th, sizeof(th));
1355		m_copydata(m, off, sizeof(*thp), (caddr_t)&th);
1356
1357		in6_pcbnotify(&tcbinfo, sa, th.th_dport,
1358		    (struct sockaddr *)ip6cp->ip6c_src,
1359		    th.th_sport, cmd, NULL, notify);
1360
1361		inc.inc_fport = th.th_dport;
1362		inc.inc_lport = th.th_sport;
1363		inc.inc6_faddr = ((struct sockaddr_in6 *)sa)->sin6_addr;
1364		inc.inc6_laddr = ip6cp->ip6c_src->sin6_addr;
1365		inc.inc_isipv6 = 1;
1366		INP_INFO_WLOCK(&tcbinfo);
1367		syncache_unreach(&inc, &th);
1368		INP_INFO_WUNLOCK(&tcbinfo);
1369	} else
1370		in6_pcbnotify(&tcbinfo, sa, 0, (const struct sockaddr *)sa6_src,
1371			      0, cmd, NULL, notify);
1372}
1373#endif /* INET6 */
1374
1375
1376/*
1377 * Following is where TCP initial sequence number generation occurs.
1378 *
1379 * There are two places where we must use initial sequence numbers:
1380 * 1.  In SYN-ACK packets.
1381 * 2.  In SYN packets.
1382 *
1383 * All ISNs for SYN-ACK packets are generated by the syncache.  See
1384 * tcp_syncache.c for details.
1385 *
1386 * The ISNs in SYN packets must be monotonic; TIME_WAIT recycling
1387 * depends on this property.  In addition, these ISNs should be
1388 * unguessable so as to prevent connection hijacking.  To satisfy
1389 * the requirements of this situation, the algorithm outlined in
1390 * RFC 1948 is used, with only small modifications.
1391 *
1392 * Implementation details:
1393 *
1394 * Time is based off the system timer, and is corrected so that it
1395 * increases by one megabyte per second.  This allows for proper
1396 * recycling on high speed LANs while still leaving over an hour
1397 * before rollover.
1398 *
1399 * As reading the *exact* system time is too expensive to be done
1400 * whenever setting up a TCP connection, we increment the time
1401 * offset in two ways.  First, a small random positive increment
1402 * is added to isn_offset for each connection that is set up.
1403 * Second, the function tcp_isn_tick fires once per clock tick
1404 * and increments isn_offset as necessary so that sequence numbers
1405 * are incremented at approximately ISN_BYTES_PER_SECOND.  The
1406 * random positive increments serve only to ensure that the same
1407 * exact sequence number is never sent out twice (as could otherwise
1408 * happen when a port is recycled in less than the system tick
1409 * interval.)
1410 *
1411 * net.inet.tcp.isn_reseed_interval controls the number of seconds
1412 * between seeding of isn_secret.  This is normally set to zero,
1413 * as reseeding should not be necessary.
1414 *
1415 * Locking of the global variables isn_secret, isn_last_reseed, isn_offset,
1416 * isn_offset_old, and isn_ctx is performed using the TCP pcbinfo lock.  In
1417 * general, this means holding an exclusive (write) lock.
1418 */
1419
1420#define ISN_BYTES_PER_SECOND 1048576
1421#define ISN_STATIC_INCREMENT 4096
1422#define ISN_RANDOM_INCREMENT (4096 - 1)
1423
1424static u_char isn_secret[32];
1425static int isn_last_reseed;
1426static u_int32_t isn_offset, isn_offset_old;
1427static MD5_CTX isn_ctx;
1428
1429tcp_seq
1430tcp_new_isn(struct tcpcb *tp)
1431{
1432	u_int32_t md5_buffer[4];
1433	tcp_seq new_isn;
1434
1435	INP_LOCK_ASSERT(tp->t_inpcb);
1436
1437	ISN_LOCK();
1438	/* Seed if this is the first use, reseed if requested. */
1439	if ((isn_last_reseed == 0) || ((tcp_isn_reseed_interval > 0) &&
1440	     (((u_int)isn_last_reseed + (u_int)tcp_isn_reseed_interval*hz)
1441		< (u_int)ticks))) {
1442		read_random(&isn_secret, sizeof(isn_secret));
1443		isn_last_reseed = ticks;
1444	}
1445
1446	/* Compute the md5 hash and return the ISN. */
1447	MD5Init(&isn_ctx);
1448	MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_fport, sizeof(u_short));
1449	MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_lport, sizeof(u_short));
1450#ifdef INET6
1451	if ((tp->t_inpcb->inp_vflag & INP_IPV6) != 0) {
1452		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_faddr,
1453			  sizeof(struct in6_addr));
1454		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_laddr,
1455			  sizeof(struct in6_addr));
1456	} else
1457#endif
1458	{
1459		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_faddr,
1460			  sizeof(struct in_addr));
1461		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_laddr,
1462			  sizeof(struct in_addr));
1463	}
1464	MD5Update(&isn_ctx, (u_char *) &isn_secret, sizeof(isn_secret));
1465	MD5Final((u_char *) &md5_buffer, &isn_ctx);
1466	new_isn = (tcp_seq) md5_buffer[0];
1467	isn_offset += ISN_STATIC_INCREMENT +
1468		(arc4random() & ISN_RANDOM_INCREMENT);
1469	new_isn += isn_offset;
1470	ISN_UNLOCK();
1471	return (new_isn);
1472}
1473
1474/*
1475 * Increment the offset to the next ISN_BYTES_PER_SECOND / hz boundary
1476 * to keep time flowing at a relatively constant rate.  If the random
1477 * increments have already pushed us past the projected offset, do nothing.
1478 */
1479static void
1480tcp_isn_tick(void *xtp)
1481{
1482	u_int32_t projected_offset;
1483
1484	ISN_LOCK();
1485	projected_offset = isn_offset_old + ISN_BYTES_PER_SECOND / 100;
1486
1487	if (projected_offset > isn_offset)
1488		isn_offset = projected_offset;
1489
1490	isn_offset_old = isn_offset;
1491	callout_reset(&isn_callout, hz/100, tcp_isn_tick, NULL);
1492	ISN_UNLOCK();
1493}
1494
1495/*
1496 * When a specific ICMP unreachable message is received and the
1497 * connection state is SYN-SENT, drop the connection.  This behavior
1498 * is controlled by the icmp_may_rst sysctl.
1499 */
1500struct inpcb *
1501tcp_drop_syn_sent(struct inpcb *inp, int errno)
1502{
1503	struct tcpcb *tp;
1504
1505	INP_INFO_WLOCK_ASSERT(&tcbinfo);
1506	INP_LOCK_ASSERT(inp);
1507
1508	if ((inp->inp_vflag & INP_TIMEWAIT) ||
1509	    (inp->inp_vflag & INP_DROPPED))
1510		return (inp);
1511
1512	tp = intotcpcb(inp);
1513	if (tp->t_state != TCPS_SYN_SENT)
1514		return (inp);
1515
1516	tp = tcp_drop(tp, errno);
1517	if (tp != NULL)
1518		return (inp);
1519	else
1520		return (NULL);
1521}
1522
1523/*
1524 * When `need fragmentation' ICMP is received, update our idea of the MSS
1525 * based on the new value in the route.  Also nudge TCP to send something,
1526 * since we know the packet we just sent was dropped.
1527 * This duplicates some code in the tcp_mss() function in tcp_input.c.
1528 */
1529struct inpcb *
1530tcp_mtudisc(struct inpcb *inp, int errno)
1531{
1532	struct tcpcb *tp;
1533	struct socket *so = inp->inp_socket;
1534	u_int maxmtu;
1535	u_int romtu;
1536	int mss;
1537#ifdef INET6
1538	int isipv6;
1539#endif /* INET6 */
1540
1541	INP_LOCK_ASSERT(inp);
1542	if ((inp->inp_vflag & INP_TIMEWAIT) ||
1543	    (inp->inp_vflag & INP_DROPPED))
1544		return (inp);
1545
1546	tp = intotcpcb(inp);
1547	KASSERT(tp != NULL, ("tcp_mtudisc: tp == NULL"));
1548
1549#ifdef INET6
1550	isipv6 = (tp->t_inpcb->inp_vflag & INP_IPV6) != 0;
1551#endif
1552	maxmtu = tcp_hc_getmtu(&inp->inp_inc); /* IPv4 and IPv6 */
1553	romtu =
1554#ifdef INET6
1555	    isipv6 ? tcp_maxmtu6(&inp->inp_inc, NULL) :
1556#endif /* INET6 */
1557	    tcp_maxmtu(&inp->inp_inc, NULL);
1558	if (!maxmtu)
1559		maxmtu = romtu;
1560	else
1561		maxmtu = min(maxmtu, romtu);
1562	if (!maxmtu) {
1563		tp->t_maxopd = tp->t_maxseg =
1564#ifdef INET6
1565			isipv6 ? tcp_v6mssdflt :
1566#endif /* INET6 */
1567			tcp_mssdflt;
1568		return (inp);
1569	}
1570	mss = maxmtu -
1571#ifdef INET6
1572		(isipv6 ? sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
1573#endif /* INET6 */
1574		 sizeof(struct tcpiphdr)
1575#ifdef INET6
1576		 )
1577#endif /* INET6 */
1578		;
1579
1580	/*
1581	 * XXX - The above conditional probably violates the TCP
1582	 * spec.  The problem is that, since we don't know the
1583	 * other end's MSS, we are supposed to use a conservative
1584	 * default.  But, if we do that, then MTU discovery will
1585	 * never actually take place, because the conservative
1586	 * default is much less than the MTUs typically seen
1587	 * on the Internet today.  For the moment, we'll sweep
1588	 * this under the carpet.
1589	 *
1590	 * The conservative default might not actually be a problem
1591	 * if the only case this occurs is when sending an initial
1592	 * SYN with options and data to a host we've never talked
1593	 * to before.  Then, they will reply with an MSS value which
1594	 * will get recorded and the new parameters should get
1595	 * recomputed.  For Further Study.
1596	 */
1597	if (tp->t_maxopd <= mss)
1598		return (inp);
1599	tp->t_maxopd = mss;
1600
1601	if ((tp->t_flags & (TF_REQ_TSTMP|TF_NOOPT)) == TF_REQ_TSTMP &&
1602	    (tp->t_flags & TF_RCVD_TSTMP) == TF_RCVD_TSTMP)
1603		mss -= TCPOLEN_TSTAMP_APPA;
1604#if	(MCLBYTES & (MCLBYTES - 1)) == 0
1605	if (mss > MCLBYTES)
1606		mss &= ~(MCLBYTES-1);
1607#else
1608	if (mss > MCLBYTES)
1609		mss = mss / MCLBYTES * MCLBYTES;
1610#endif
1611	if (so->so_snd.sb_hiwat < mss)
1612		mss = so->so_snd.sb_hiwat;
1613
1614	tp->t_maxseg = mss;
1615
1616	tcpstat.tcps_mturesent++;
1617	tp->t_rtttime = 0;
1618	tp->snd_nxt = tp->snd_una;
1619	tcp_free_sackholes(tp);
1620	tp->snd_recover = tp->snd_max;
1621	if (tp->sack_enable)
1622		EXIT_FASTRECOVERY(tp);
1623	tcp_output(tp);
1624	return (inp);
1625}
1626
1627/*
1628 * Look-up the routing entry to the peer of this inpcb.  If no route
1629 * is found and it cannot be allocated, then return NULL.  This routine
1630 * is called by TCP routines that access the rmx structure and by tcp_mss
1631 * to get the interface MTU.
1632 */
1633u_long
1634tcp_maxmtu(struct in_conninfo *inc, int *flags)
1635{
1636	struct route sro;
1637	struct sockaddr_in *dst;
1638	struct ifnet *ifp;
1639	u_long maxmtu = 0;
1640
1641	KASSERT(inc != NULL, ("tcp_maxmtu with NULL in_conninfo pointer"));
1642
1643	bzero(&sro, sizeof(sro));
1644	if (inc->inc_faddr.s_addr != INADDR_ANY) {
1645	        dst = (struct sockaddr_in *)&sro.ro_dst;
1646		dst->sin_family = AF_INET;
1647		dst->sin_len = sizeof(*dst);
1648		dst->sin_addr = inc->inc_faddr;
1649		rtalloc_ign(&sro, RTF_CLONING);
1650	}
1651	if (sro.ro_rt != NULL) {
1652		ifp = sro.ro_rt->rt_ifp;
1653		if (sro.ro_rt->rt_rmx.rmx_mtu == 0)
1654			maxmtu = ifp->if_mtu;
1655		else
1656			maxmtu = min(sro.ro_rt->rt_rmx.rmx_mtu, ifp->if_mtu);
1657
1658		/* Report additional interface capabilities. */
1659		if (flags != NULL) {
1660			if (ifp->if_capenable & IFCAP_TSO4 &&
1661			    ifp->if_hwassist & CSUM_TSO)
1662				*flags |= CSUM_TSO;
1663		}
1664		RTFREE(sro.ro_rt);
1665	}
1666	return (maxmtu);
1667}
1668
1669#ifdef INET6
1670u_long
1671tcp_maxmtu6(struct in_conninfo *inc, int *flags)
1672{
1673	struct route_in6 sro6;
1674	struct ifnet *ifp;
1675	u_long maxmtu = 0;
1676
1677	KASSERT(inc != NULL, ("tcp_maxmtu6 with NULL in_conninfo pointer"));
1678
1679	bzero(&sro6, sizeof(sro6));
1680	if (!IN6_IS_ADDR_UNSPECIFIED(&inc->inc6_faddr)) {
1681		sro6.ro_dst.sin6_family = AF_INET6;
1682		sro6.ro_dst.sin6_len = sizeof(struct sockaddr_in6);
1683		sro6.ro_dst.sin6_addr = inc->inc6_faddr;
1684		rtalloc_ign((struct route *)&sro6, RTF_CLONING);
1685	}
1686	if (sro6.ro_rt != NULL) {
1687		ifp = sro6.ro_rt->rt_ifp;
1688		if (sro6.ro_rt->rt_rmx.rmx_mtu == 0)
1689			maxmtu = IN6_LINKMTU(sro6.ro_rt->rt_ifp);
1690		else
1691			maxmtu = min(sro6.ro_rt->rt_rmx.rmx_mtu,
1692				     IN6_LINKMTU(sro6.ro_rt->rt_ifp));
1693
1694		/* Report additional interface capabilities. */
1695		if (flags != NULL) {
1696			if (ifp->if_capenable & IFCAP_TSO6 &&
1697			    ifp->if_hwassist & CSUM_TSO)
1698				*flags |= CSUM_TSO;
1699		}
1700		RTFREE(sro6.ro_rt);
1701	}
1702
1703	return (maxmtu);
1704}
1705#endif /* INET6 */
1706
1707#ifdef IPSEC
1708/* compute ESP/AH header size for TCP, including outer IP header. */
1709size_t
1710ipsec_hdrsiz_tcp(struct tcpcb *tp)
1711{
1712	struct inpcb *inp;
1713	struct mbuf *m;
1714	size_t hdrsiz;
1715	struct ip *ip;
1716#ifdef INET6
1717	struct ip6_hdr *ip6;
1718#endif
1719	struct tcphdr *th;
1720
1721	if ((tp == NULL) || ((inp = tp->t_inpcb) == NULL))
1722		return (0);
1723	MGETHDR(m, M_DONTWAIT, MT_DATA);
1724	if (!m)
1725		return (0);
1726
1727#ifdef INET6
1728	if ((inp->inp_vflag & INP_IPV6) != 0) {
1729		ip6 = mtod(m, struct ip6_hdr *);
1730		th = (struct tcphdr *)(ip6 + 1);
1731		m->m_pkthdr.len = m->m_len =
1732			sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
1733		tcpip_fillheaders(inp, ip6, th);
1734		hdrsiz = ipsec6_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
1735	} else
1736#endif /* INET6 */
1737	{
1738		ip = mtod(m, struct ip *);
1739		th = (struct tcphdr *)(ip + 1);
1740		m->m_pkthdr.len = m->m_len = sizeof(struct tcpiphdr);
1741		tcpip_fillheaders(inp, ip, th);
1742		hdrsiz = ipsec4_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
1743	}
1744
1745	m_free(m);
1746	return (hdrsiz);
1747}
1748#endif /*IPSEC*/
1749
1750/*
1751 * Move a TCP connection into TIME_WAIT state.
1752 *    tcbinfo is locked.
1753 *    inp is locked, and is unlocked before returning.
1754 */
1755void
1756tcp_twstart(struct tcpcb *tp)
1757{
1758	struct tcptw *tw;
1759	struct inpcb *inp = tp->t_inpcb;
1760	int acknow;
1761	struct socket *so;
1762
1763	INP_INFO_WLOCK_ASSERT(&tcbinfo);	/* tcp_timer_2msl_reset(). */
1764	INP_LOCK_ASSERT(inp);
1765
1766	if (nolocaltimewait && in_localip(inp->inp_faddr)) {
1767		tp = tcp_close(tp);
1768		if (tp != NULL)
1769			INP_UNLOCK(inp);
1770		return;
1771	}
1772
1773	tw = uma_zalloc(tcptw_zone, M_NOWAIT);
1774	if (tw == NULL) {
1775		tw = tcp_timer_2msl_tw(1);
1776		if (tw == NULL) {
1777			tp = tcp_close(tp);
1778			if (tp != NULL)
1779				INP_UNLOCK(inp);
1780			return;
1781		}
1782	}
1783	tw->tw_inpcb = inp;
1784
1785	/*
1786	 * Recover last window size sent.
1787	 */
1788	tw->last_win = (tp->rcv_adv - tp->rcv_nxt) >> tp->rcv_scale;
1789
1790	/*
1791	 * Set t_recent if timestamps are used on the connection.
1792	 */
1793	if ((tp->t_flags & (TF_REQ_TSTMP|TF_RCVD_TSTMP|TF_NOOPT)) ==
1794	    (TF_REQ_TSTMP|TF_RCVD_TSTMP))
1795		tw->t_recent = tp->ts_recent;
1796	else
1797		tw->t_recent = 0;
1798
1799	tw->snd_nxt = tp->snd_nxt;
1800	tw->rcv_nxt = tp->rcv_nxt;
1801	tw->iss     = tp->iss;
1802	tw->irs     = tp->irs;
1803	tw->t_starttime = tp->t_starttime;
1804	tw->tw_time = 0;
1805
1806/* XXX
1807 * If this code will
1808 * be used for fin-wait-2 state also, then we may need
1809 * a ts_recent from the last segment.
1810 */
1811	acknow = tp->t_flags & TF_ACKNOW;
1812
1813	/*
1814	 * First, discard tcpcb state, which includes stopping its timers and
1815	 * freeing it.  tcp_discardcb() used to also release the inpcb, but
1816	 * that work is now done in the caller.
1817	 *
1818	 * Note: soisdisconnected() call used to be made in tcp_discardcb(),
1819	 * and might not be needed here any longer.
1820	 */
1821	tcp_discardcb(tp);
1822	so = inp->inp_socket;
1823	soisdisconnected(so);
1824	SOCK_LOCK(so);
1825	tw->tw_cred = crhold(so->so_cred);
1826	tw->tw_so_options = so->so_options;
1827	SOCK_UNLOCK(so);
1828	if (acknow)
1829		tcp_twrespond(tw, TH_ACK);
1830	inp->inp_ppcb = tw;
1831	inp->inp_vflag |= INP_TIMEWAIT;
1832	tcp_timer_2msl_reset(tw, 0);
1833
1834	/*
1835	 * If the inpcb owns the sole reference to the socket, then we can
1836	 * detach and free the socket as it is not needed in time wait.
1837	 */
1838	if (inp->inp_vflag & INP_SOCKREF) {
1839		KASSERT(so->so_state & SS_PROTOREF,
1840		    ("tcp_twstart: !SS_PROTOREF"));
1841		inp->inp_vflag &= ~INP_SOCKREF;
1842		INP_UNLOCK(inp);
1843		ACCEPT_LOCK();
1844		SOCK_LOCK(so);
1845		so->so_state &= ~SS_PROTOREF;
1846		sofree(so);
1847	} else
1848		INP_UNLOCK(inp);
1849}
1850
1851#if 0
1852/*
1853 * The appromixate rate of ISN increase of Microsoft TCP stacks;
1854 * the actual rate is slightly higher due to the addition of
1855 * random positive increments.
1856 *
1857 * Most other new OSes use semi-randomized ISN values, so we
1858 * do not need to worry about them.
1859 */
1860#define MS_ISN_BYTES_PER_SECOND		250000
1861
1862/*
1863 * Determine if the ISN we will generate has advanced beyond the last
1864 * sequence number used by the previous connection.  If so, indicate
1865 * that it is safe to recycle this tw socket by returning 1.
1866 */
1867int
1868tcp_twrecycleable(struct tcptw *tw)
1869{
1870	tcp_seq new_iss = tw->iss;
1871	tcp_seq new_irs = tw->irs;
1872
1873	INP_INFO_WLOCK_ASSERT(&tcbinfo);
1874	new_iss += (ticks - tw->t_starttime) * (ISN_BYTES_PER_SECOND / hz);
1875	new_irs += (ticks - tw->t_starttime) * (MS_ISN_BYTES_PER_SECOND / hz);
1876
1877	if (SEQ_GT(new_iss, tw->snd_nxt) && SEQ_GT(new_irs, tw->rcv_nxt))
1878		return (1);
1879	else
1880		return (0);
1881}
1882#endif
1883
1884void
1885tcp_twclose(struct tcptw *tw, int reuse)
1886{
1887	struct socket *so;
1888	struct inpcb *inp;
1889
1890	/*
1891	 * At this point, we are in one of two situations:
1892	 *
1893	 * (1) We have no socket, just an inpcb<->twtcp pair.  We can free
1894	 *     all state.
1895	 *
1896	 * (2) We have a socket -- if we own a reference, release it and
1897	 *     notify the socket layer.
1898	 */
1899	inp = tw->tw_inpcb;
1900	KASSERT((inp->inp_vflag & INP_TIMEWAIT), ("tcp_twclose: !timewait"));
1901	KASSERT(intotw(inp) == tw, ("tcp_twclose: inp_ppcb != tw"));
1902	INP_INFO_WLOCK_ASSERT(&tcbinfo);	/* tcp_timer_2msl_stop(). */
1903	INP_LOCK_ASSERT(inp);
1904
1905	tw->tw_inpcb = NULL;
1906	tcp_timer_2msl_stop(tw);
1907	inp->inp_ppcb = NULL;
1908	in_pcbdrop(inp);
1909
1910	so = inp->inp_socket;
1911	if (so != NULL) {
1912		/*
1913		 * If there's a socket, handle two cases: first, we own a
1914		 * strong reference, which we will now release, or we don't
1915		 * in which case another reference exists (XXXRW: think
1916		 * about this more), and we don't need to take action.
1917		 */
1918		if (inp->inp_vflag & INP_SOCKREF) {
1919			inp->inp_vflag &= ~INP_SOCKREF;
1920			INP_UNLOCK(inp);
1921			ACCEPT_LOCK();
1922			SOCK_LOCK(so);
1923			KASSERT(so->so_state & SS_PROTOREF,
1924			    ("tcp_twclose: INP_SOCKREF && !SS_PROTOREF"));
1925			so->so_state &= ~SS_PROTOREF;
1926			sofree(so);
1927		} else {
1928			/*
1929			 * If we don't own the only reference, the socket and
1930			 * inpcb need to be left around to be handled by
1931			 * tcp_usr_detach() later.
1932			 */
1933			INP_UNLOCK(inp);
1934		}
1935	} else {
1936#ifdef INET6
1937		if (inp->inp_vflag & INP_IPV6PROTO)
1938			in6_pcbfree(inp);
1939		else
1940#endif
1941			in_pcbfree(inp);
1942	}
1943	tcpstat.tcps_closed++;
1944	crfree(tw->tw_cred);
1945	tw->tw_cred = NULL;
1946	if (reuse)
1947		return;
1948	uma_zfree(tcptw_zone, tw);
1949}
1950
1951int
1952tcp_twrespond(struct tcptw *tw, int flags)
1953{
1954	struct inpcb *inp = tw->tw_inpcb;
1955	struct tcphdr *th;
1956	struct mbuf *m;
1957	struct ip *ip = NULL;
1958	u_int8_t *optp;
1959	u_int hdrlen, optlen;
1960	int error;
1961#ifdef INET6
1962	struct ip6_hdr *ip6 = NULL;
1963	int isipv6 = inp->inp_inc.inc_isipv6;
1964#endif
1965
1966	INP_LOCK_ASSERT(inp);
1967
1968	m = m_gethdr(M_DONTWAIT, MT_DATA);
1969	if (m == NULL)
1970		return (ENOBUFS);
1971	m->m_data += max_linkhdr;
1972
1973#ifdef MAC
1974	mac_create_mbuf_from_inpcb(inp, m);
1975#endif
1976
1977#ifdef INET6
1978	if (isipv6) {
1979		hdrlen = sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
1980		ip6 = mtod(m, struct ip6_hdr *);
1981		th = (struct tcphdr *)(ip6 + 1);
1982		tcpip_fillheaders(inp, ip6, th);
1983	} else
1984#endif
1985	{
1986		hdrlen = sizeof(struct tcpiphdr);
1987		ip = mtod(m, struct ip *);
1988		th = (struct tcphdr *)(ip + 1);
1989		tcpip_fillheaders(inp, ip, th);
1990	}
1991	optp = (u_int8_t *)(th + 1);
1992
1993	/*
1994	 * Send a timestamp and echo-reply if both our side and our peer
1995	 * have sent timestamps in our SYN's and this is not a RST.
1996	 */
1997	if (tw->t_recent && flags == TH_ACK) {
1998		u_int32_t *lp = (u_int32_t *)optp;
1999
2000		/* Form timestamp option as shown in appendix A of RFC 1323. */
2001		*lp++ = htonl(TCPOPT_TSTAMP_HDR);
2002		*lp++ = htonl(ticks);
2003		*lp   = htonl(tw->t_recent);
2004		optp += TCPOLEN_TSTAMP_APPA;
2005	}
2006
2007	optlen = optp - (u_int8_t *)(th + 1);
2008
2009	m->m_len = hdrlen + optlen;
2010	m->m_pkthdr.len = m->m_len;
2011
2012	KASSERT(max_linkhdr + m->m_len <= MHLEN, ("tcptw: mbuf too small"));
2013
2014	th->th_seq = htonl(tw->snd_nxt);
2015	th->th_ack = htonl(tw->rcv_nxt);
2016	th->th_off = (sizeof(struct tcphdr) + optlen) >> 2;
2017	th->th_flags = flags;
2018	th->th_win = htons(tw->last_win);
2019
2020#ifdef INET6
2021	if (isipv6) {
2022		th->th_sum = in6_cksum(m, IPPROTO_TCP, sizeof(struct ip6_hdr),
2023		    sizeof(struct tcphdr) + optlen);
2024		ip6->ip6_hlim = in6_selecthlim(inp, NULL);
2025		error = ip6_output(m, inp->in6p_outputopts, NULL,
2026		    (tw->tw_so_options & SO_DONTROUTE), NULL, NULL, inp);
2027	} else
2028#endif
2029	{
2030		th->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
2031		    htons(sizeof(struct tcphdr) + optlen + IPPROTO_TCP));
2032		m->m_pkthdr.csum_flags = CSUM_TCP;
2033		m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
2034		ip->ip_len = m->m_pkthdr.len;
2035		if (path_mtu_discovery)
2036			ip->ip_off |= IP_DF;
2037		error = ip_output(m, inp->inp_options, NULL,
2038		    ((tw->tw_so_options & SO_DONTROUTE) ? IP_ROUTETOIF : 0),
2039		    NULL, inp);
2040	}
2041	if (flags & TH_ACK)
2042		tcpstat.tcps_sndacks++;
2043	else
2044		tcpstat.tcps_sndctrl++;
2045	tcpstat.tcps_sndtotal++;
2046	return (error);
2047}
2048
2049/*
2050 * TCP BANDWIDTH DELAY PRODUCT WINDOW LIMITING
2051 *
2052 * This code attempts to calculate the bandwidth-delay product as a
2053 * means of determining the optimal window size to maximize bandwidth,
2054 * minimize RTT, and avoid the over-allocation of buffers on interfaces and
2055 * routers.  This code also does a fairly good job keeping RTTs in check
2056 * across slow links like modems.  We implement an algorithm which is very
2057 * similar (but not meant to be) TCP/Vegas.  The code operates on the
2058 * transmitter side of a TCP connection and so only effects the transmit
2059 * side of the connection.
2060 *
2061 * BACKGROUND:  TCP makes no provision for the management of buffer space
2062 * at the end points or at the intermediate routers and switches.  A TCP
2063 * stream, whether using NewReno or not, will eventually buffer as
2064 * many packets as it is able and the only reason this typically works is
2065 * due to the fairly small default buffers made available for a connection
2066 * (typicaly 16K or 32K).  As machines use larger windows and/or window
2067 * scaling it is now fairly easy for even a single TCP connection to blow-out
2068 * all available buffer space not only on the local interface, but on
2069 * intermediate routers and switches as well.  NewReno makes a misguided
2070 * attempt to 'solve' this problem by waiting for an actual failure to occur,
2071 * then backing off, then steadily increasing the window again until another
2072 * failure occurs, ad-infinitum.  This results in terrible oscillation that
2073 * is only made worse as network loads increase and the idea of intentionally
2074 * blowing out network buffers is, frankly, a terrible way to manage network
2075 * resources.
2076 *
2077 * It is far better to limit the transmit window prior to the failure
2078 * condition being achieved.  There are two general ways to do this:  First
2079 * you can 'scan' through different transmit window sizes and locate the
2080 * point where the RTT stops increasing, indicating that you have filled the
2081 * pipe, then scan backwards until you note that RTT stops decreasing, then
2082 * repeat ad-infinitum.  This method works in principle but has severe
2083 * implementation issues due to RTT variances, timer granularity, and
2084 * instability in the algorithm which can lead to many false positives and
2085 * create oscillations as well as interact badly with other TCP streams
2086 * implementing the same algorithm.
2087 *
2088 * The second method is to limit the window to the bandwidth delay product
2089 * of the link.  This is the method we implement.  RTT variances and our
2090 * own manipulation of the congestion window, bwnd, can potentially
2091 * destabilize the algorithm.  For this reason we have to stabilize the
2092 * elements used to calculate the window.  We do this by using the minimum
2093 * observed RTT, the long term average of the observed bandwidth, and
2094 * by adding two segments worth of slop.  It isn't perfect but it is able
2095 * to react to changing conditions and gives us a very stable basis on
2096 * which to extend the algorithm.
2097 */
2098void
2099tcp_xmit_bandwidth_limit(struct tcpcb *tp, tcp_seq ack_seq)
2100{
2101	u_long bw;
2102	u_long bwnd;
2103	int save_ticks;
2104
2105	INP_LOCK_ASSERT(tp->t_inpcb);
2106
2107	/*
2108	 * If inflight_enable is disabled in the middle of a tcp connection,
2109	 * make sure snd_bwnd is effectively disabled.
2110	 */
2111	if (tcp_inflight_enable == 0 || tp->t_rttlow < tcp_inflight_rttthresh) {
2112		tp->snd_bwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
2113		tp->snd_bandwidth = 0;
2114		return;
2115	}
2116
2117	/*
2118	 * Figure out the bandwidth.  Due to the tick granularity this
2119	 * is a very rough number and it MUST be averaged over a fairly
2120	 * long period of time.  XXX we need to take into account a link
2121	 * that is not using all available bandwidth, but for now our
2122	 * slop will ramp us up if this case occurs and the bandwidth later
2123	 * increases.
2124	 *
2125	 * Note: if ticks rollover 'bw' may wind up negative.  We must
2126	 * effectively reset t_bw_rtttime for this case.
2127	 */
2128	save_ticks = ticks;
2129	if ((u_int)(save_ticks - tp->t_bw_rtttime) < 1)
2130		return;
2131
2132	bw = (int64_t)(ack_seq - tp->t_bw_rtseq) * hz /
2133	    (save_ticks - tp->t_bw_rtttime);
2134	tp->t_bw_rtttime = save_ticks;
2135	tp->t_bw_rtseq = ack_seq;
2136	if (tp->t_bw_rtttime == 0 || (int)bw < 0)
2137		return;
2138	bw = ((int64_t)tp->snd_bandwidth * 15 + bw) >> 4;
2139
2140	tp->snd_bandwidth = bw;
2141
2142	/*
2143	 * Calculate the semi-static bandwidth delay product, plus two maximal
2144	 * segments.  The additional slop puts us squarely in the sweet
2145	 * spot and also handles the bandwidth run-up case and stabilization.
2146	 * Without the slop we could be locking ourselves into a lower
2147	 * bandwidth.
2148	 *
2149	 * Situations Handled:
2150	 *	(1) Prevents over-queueing of packets on LANs, especially on
2151	 *	    high speed LANs, allowing larger TCP buffers to be
2152	 *	    specified, and also does a good job preventing
2153	 *	    over-queueing of packets over choke points like modems
2154	 *	    (at least for the transmit side).
2155	 *
2156	 *	(2) Is able to handle changing network loads (bandwidth
2157	 *	    drops so bwnd drops, bandwidth increases so bwnd
2158	 *	    increases).
2159	 *
2160	 *	(3) Theoretically should stabilize in the face of multiple
2161	 *	    connections implementing the same algorithm (this may need
2162	 *	    a little work).
2163	 *
2164	 *	(4) Stability value (defaults to 20 = 2 maximal packets) can
2165	 *	    be adjusted with a sysctl but typically only needs to be
2166	 *	    on very slow connections.  A value no smaller then 5
2167	 *	    should be used, but only reduce this default if you have
2168	 *	    no other choice.
2169	 */
2170#define USERTT	((tp->t_srtt + tp->t_rttbest) / 2)
2171	bwnd = (int64_t)bw * USERTT / (hz << TCP_RTT_SHIFT) + tcp_inflight_stab * tp->t_maxseg / 10;
2172#undef USERTT
2173
2174	if (tcp_inflight_debug > 0) {
2175		static int ltime;
2176		if ((u_int)(ticks - ltime) >= hz / tcp_inflight_debug) {
2177			ltime = ticks;
2178			printf("%p bw %ld rttbest %d srtt %d bwnd %ld\n",
2179			    tp,
2180			    bw,
2181			    tp->t_rttbest,
2182			    tp->t_srtt,
2183			    bwnd
2184			);
2185		}
2186	}
2187	if ((long)bwnd < tcp_inflight_min)
2188		bwnd = tcp_inflight_min;
2189	if (bwnd > tcp_inflight_max)
2190		bwnd = tcp_inflight_max;
2191	if ((long)bwnd < tp->t_maxseg * 2)
2192		bwnd = tp->t_maxseg * 2;
2193	tp->snd_bwnd = bwnd;
2194}
2195
2196#ifdef TCP_SIGNATURE
2197/*
2198 * Callback function invoked by m_apply() to digest TCP segment data
2199 * contained within an mbuf chain.
2200 */
2201static int
2202tcp_signature_apply(void *fstate, void *data, u_int len)
2203{
2204
2205	MD5Update(fstate, (u_char *)data, len);
2206	return (0);
2207}
2208
2209/*
2210 * Compute TCP-MD5 hash of a TCPv4 segment. (RFC2385)
2211 *
2212 * Parameters:
2213 * m		pointer to head of mbuf chain
2214 * off0		offset to TCP header within the mbuf chain
2215 * len		length of TCP segment data, excluding options
2216 * optlen	length of TCP segment options
2217 * buf		pointer to storage for computed MD5 digest
2218 * direction	direction of flow (IPSEC_DIR_INBOUND or OUTBOUND)
2219 *
2220 * We do this over ip, tcphdr, segment data, and the key in the SADB.
2221 * When called from tcp_input(), we can be sure that th_sum has been
2222 * zeroed out and verified already.
2223 *
2224 * This function is for IPv4 use only. Calling this function with an
2225 * IPv6 packet in the mbuf chain will yield undefined results.
2226 *
2227 * Return 0 if successful, otherwise return -1.
2228 *
2229 * XXX The key is retrieved from the system's PF_KEY SADB, by keying a
2230 * search with the destination IP address, and a 'magic SPI' to be
2231 * determined by the application. This is hardcoded elsewhere to 1179
2232 * right now. Another branch of this code exists which uses the SPD to
2233 * specify per-application flows but it is unstable.
2234 */
2235int
2236tcp_signature_compute(struct mbuf *m, int off0, int len, int optlen,
2237    u_char *buf, u_int direction)
2238{
2239	union sockaddr_union dst;
2240	struct ippseudo ippseudo;
2241	MD5_CTX ctx;
2242	int doff;
2243	struct ip *ip;
2244	struct ipovly *ipovly;
2245	struct secasvar *sav;
2246	struct tcphdr *th;
2247	u_short savecsum;
2248
2249	KASSERT(m != NULL, ("NULL mbuf chain"));
2250	KASSERT(buf != NULL, ("NULL signature pointer"));
2251
2252	/* Extract the destination from the IP header in the mbuf. */
2253	ip = mtod(m, struct ip *);
2254	bzero(&dst, sizeof(union sockaddr_union));
2255	dst.sa.sa_len = sizeof(struct sockaddr_in);
2256	dst.sa.sa_family = AF_INET;
2257	dst.sin.sin_addr = (direction == IPSEC_DIR_INBOUND) ?
2258	    ip->ip_src : ip->ip_dst;
2259
2260	/* Look up an SADB entry which matches the address of the peer. */
2261	sav = KEY_ALLOCSA(&dst, IPPROTO_TCP, htonl(TCP_SIG_SPI));
2262	if (sav == NULL) {
2263		printf("%s: SADB lookup failed for %s\n", __func__,
2264		    inet_ntoa(dst.sin.sin_addr));
2265		return (EINVAL);
2266	}
2267
2268	MD5Init(&ctx);
2269	ipovly = (struct ipovly *)ip;
2270	th = (struct tcphdr *)((u_char *)ip + off0);
2271	doff = off0 + sizeof(struct tcphdr) + optlen;
2272
2273	/*
2274	 * Step 1: Update MD5 hash with IP pseudo-header.
2275	 *
2276	 * XXX The ippseudo header MUST be digested in network byte order,
2277	 * or else we'll fail the regression test. Assume all fields we've
2278	 * been doing arithmetic on have been in host byte order.
2279	 * XXX One cannot depend on ipovly->ih_len here. When called from
2280	 * tcp_output(), the underlying ip_len member has not yet been set.
2281	 */
2282	ippseudo.ippseudo_src = ipovly->ih_src;
2283	ippseudo.ippseudo_dst = ipovly->ih_dst;
2284	ippseudo.ippseudo_pad = 0;
2285	ippseudo.ippseudo_p = IPPROTO_TCP;
2286	ippseudo.ippseudo_len = htons(len + sizeof(struct tcphdr) + optlen);
2287	MD5Update(&ctx, (char *)&ippseudo, sizeof(struct ippseudo));
2288
2289	/*
2290	 * Step 2: Update MD5 hash with TCP header, excluding options.
2291	 * The TCP checksum must be set to zero.
2292	 */
2293	savecsum = th->th_sum;
2294	th->th_sum = 0;
2295	MD5Update(&ctx, (char *)th, sizeof(struct tcphdr));
2296	th->th_sum = savecsum;
2297
2298	/*
2299	 * Step 3: Update MD5 hash with TCP segment data.
2300	 *         Use m_apply() to avoid an early m_pullup().
2301	 */
2302	if (len > 0)
2303		m_apply(m, doff, len, tcp_signature_apply, &ctx);
2304
2305	/*
2306	 * Step 4: Update MD5 hash with shared secret.
2307	 */
2308	MD5Update(&ctx, _KEYBUF(sav->key_auth), _KEYLEN(sav->key_auth));
2309	MD5Final(buf, &ctx);
2310
2311	key_sa_recordxfer(sav, m);
2312	KEY_FREESAV(&sav);
2313	return (0);
2314}
2315#endif /* TCP_SIGNATURE */
2316
2317static int
2318sysctl_drop(SYSCTL_HANDLER_ARGS)
2319{
2320	/* addrs[0] is a foreign socket, addrs[1] is a local one. */
2321	struct sockaddr_storage addrs[2];
2322	struct inpcb *inp;
2323	struct tcpcb *tp;
2324	struct tcptw *tw;
2325	struct sockaddr_in *fin, *lin;
2326#ifdef INET6
2327	struct sockaddr_in6 *fin6, *lin6;
2328	struct in6_addr f6, l6;
2329#endif
2330	int error;
2331
2332	inp = NULL;
2333	fin = lin = NULL;
2334#ifdef INET6
2335	fin6 = lin6 = NULL;
2336#endif
2337	error = 0;
2338
2339	if (req->oldptr != NULL || req->oldlen != 0)
2340		return (EINVAL);
2341	if (req->newptr == NULL)
2342		return (EPERM);
2343	if (req->newlen < sizeof(addrs))
2344		return (ENOMEM);
2345	error = SYSCTL_IN(req, &addrs, sizeof(addrs));
2346	if (error)
2347		return (error);
2348
2349	switch (addrs[0].ss_family) {
2350#ifdef INET6
2351	case AF_INET6:
2352		fin6 = (struct sockaddr_in6 *)&addrs[0];
2353		lin6 = (struct sockaddr_in6 *)&addrs[1];
2354		if (fin6->sin6_len != sizeof(struct sockaddr_in6) ||
2355		    lin6->sin6_len != sizeof(struct sockaddr_in6))
2356			return (EINVAL);
2357		if (IN6_IS_ADDR_V4MAPPED(&fin6->sin6_addr)) {
2358			if (!IN6_IS_ADDR_V4MAPPED(&lin6->sin6_addr))
2359				return (EINVAL);
2360			in6_sin6_2_sin_in_sock((struct sockaddr *)&addrs[0]);
2361			in6_sin6_2_sin_in_sock((struct sockaddr *)&addrs[1]);
2362			fin = (struct sockaddr_in *)&addrs[0];
2363			lin = (struct sockaddr_in *)&addrs[1];
2364			break;
2365		}
2366		error = sa6_embedscope(fin6, ip6_use_defzone);
2367		if (error)
2368			return (error);
2369		error = sa6_embedscope(lin6, ip6_use_defzone);
2370		if (error)
2371			return (error);
2372		break;
2373#endif
2374	case AF_INET:
2375		fin = (struct sockaddr_in *)&addrs[0];
2376		lin = (struct sockaddr_in *)&addrs[1];
2377		if (fin->sin_len != sizeof(struct sockaddr_in) ||
2378		    lin->sin_len != sizeof(struct sockaddr_in))
2379			return (EINVAL);
2380		break;
2381	default:
2382		return (EINVAL);
2383	}
2384	INP_INFO_WLOCK(&tcbinfo);
2385	switch (addrs[0].ss_family) {
2386#ifdef INET6
2387	case AF_INET6:
2388		inp = in6_pcblookup_hash(&tcbinfo, &f6, fin6->sin6_port,
2389		    &l6, lin6->sin6_port, 0, NULL);
2390		break;
2391#endif
2392	case AF_INET:
2393		inp = in_pcblookup_hash(&tcbinfo, fin->sin_addr, fin->sin_port,
2394		    lin->sin_addr, lin->sin_port, 0, NULL);
2395		break;
2396	}
2397	if (inp != NULL) {
2398		INP_LOCK(inp);
2399		if (inp->inp_vflag & INP_TIMEWAIT) {
2400			/*
2401			 * XXXRW: There currently exists a state where an
2402			 * inpcb is present, but its timewait state has been
2403			 * discarded.  For now, don't allow dropping of this
2404			 * type of inpcb.
2405			 */
2406			tw = intotw(inp);
2407			if (tw != NULL)
2408				tcp_twclose(tw, 0);
2409		} else if (!(inp->inp_vflag & INP_DROPPED) &&
2410			   !(inp->inp_socket->so_options & SO_ACCEPTCONN)) {
2411			tp = intotcpcb(inp);
2412			tcp_drop(tp, ECONNABORTED);
2413		}
2414		INP_UNLOCK(inp);
2415	} else
2416		error = ESRCH;
2417	INP_INFO_WUNLOCK(&tcbinfo);
2418	return (error);
2419}
2420
2421SYSCTL_PROC(_net_inet_tcp, TCPCTL_DROP, drop,
2422    CTLTYPE_STRUCT|CTLFLAG_WR|CTLFLAG_SKIP, NULL,
2423    0, sysctl_drop, "", "Drop TCP connection");
2424