tcp_timewait.c revision 161226
1/*-
2 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 4. Neither the name of the University nor the names of its contributors
14 *    may be used to endorse or promote products derived from this software
15 *    without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 *
29 *	@(#)tcp_subr.c	8.2 (Berkeley) 5/24/95
30 * $FreeBSD: head/sys/netinet/tcp_timewait.c 161226 2006-08-11 21:15:23Z mohans $
31 */
32
33#include "opt_compat.h"
34#include "opt_inet.h"
35#include "opt_inet6.h"
36#include "opt_ipsec.h"
37#include "opt_mac.h"
38#include "opt_tcpdebug.h"
39#include "opt_tcp_sack.h"
40
41#include <sys/param.h>
42#include <sys/systm.h>
43#include <sys/callout.h>
44#include <sys/kernel.h>
45#include <sys/sysctl.h>
46#include <sys/mac.h>
47#include <sys/malloc.h>
48#include <sys/mbuf.h>
49#ifdef INET6
50#include <sys/domain.h>
51#endif
52#include <sys/proc.h>
53#include <sys/socket.h>
54#include <sys/socketvar.h>
55#include <sys/protosw.h>
56#include <sys/random.h>
57
58#include <vm/uma.h>
59
60#include <net/route.h>
61#include <net/if.h>
62
63#include <netinet/in.h>
64#include <netinet/in_systm.h>
65#include <netinet/ip.h>
66#ifdef INET6
67#include <netinet/ip6.h>
68#endif
69#include <netinet/in_pcb.h>
70#ifdef INET6
71#include <netinet6/in6_pcb.h>
72#endif
73#include <netinet/in_var.h>
74#include <netinet/ip_var.h>
75#ifdef INET6
76#include <netinet6/ip6_var.h>
77#include <netinet6/scope6_var.h>
78#include <netinet6/nd6.h>
79#endif
80#include <netinet/ip_icmp.h>
81#include <netinet/tcp.h>
82#include <netinet/tcp_fsm.h>
83#include <netinet/tcp_seq.h>
84#include <netinet/tcp_timer.h>
85#include <netinet/tcp_var.h>
86#ifdef INET6
87#include <netinet6/tcp6_var.h>
88#endif
89#include <netinet/tcpip.h>
90#ifdef TCPDEBUG
91#include <netinet/tcp_debug.h>
92#endif
93#include <netinet6/ip6protosw.h>
94
95#ifdef IPSEC
96#include <netinet6/ipsec.h>
97#ifdef INET6
98#include <netinet6/ipsec6.h>
99#endif
100#include <netkey/key.h>
101#endif /*IPSEC*/
102
103#ifdef FAST_IPSEC
104#include <netipsec/ipsec.h>
105#include <netipsec/xform.h>
106#ifdef INET6
107#include <netipsec/ipsec6.h>
108#endif
109#include <netipsec/key.h>
110#define	IPSEC
111#endif /*FAST_IPSEC*/
112
113#include <machine/in_cksum.h>
114#include <sys/md5.h>
115
116int	tcp_mssdflt = TCP_MSS;
117SYSCTL_INT(_net_inet_tcp, TCPCTL_MSSDFLT, mssdflt, CTLFLAG_RW,
118    &tcp_mssdflt , 0, "Default TCP Maximum Segment Size");
119
120#ifdef INET6
121int	tcp_v6mssdflt = TCP6_MSS;
122SYSCTL_INT(_net_inet_tcp, TCPCTL_V6MSSDFLT, v6mssdflt,
123	CTLFLAG_RW, &tcp_v6mssdflt , 0,
124	"Default TCP Maximum Segment Size for IPv6");
125#endif
126
127/*
128 * Minimum MSS we accept and use. This prevents DoS attacks where
129 * we are forced to a ridiculous low MSS like 20 and send hundreds
130 * of packets instead of one. The effect scales with the available
131 * bandwidth and quickly saturates the CPU and network interface
132 * with packet generation and sending. Set to zero to disable MINMSS
133 * checking. This setting prevents us from sending too small packets.
134 */
135int	tcp_minmss = TCP_MINMSS;
136SYSCTL_INT(_net_inet_tcp, OID_AUTO, minmss, CTLFLAG_RW,
137    &tcp_minmss , 0, "Minmum TCP Maximum Segment Size");
138/*
139 * Number of TCP segments per second we accept from remote host
140 * before we start to calculate average segment size. If average
141 * segment size drops below the minimum TCP MSS we assume a DoS
142 * attack and reset+drop the connection. Care has to be taken not to
143 * set this value too small to not kill interactive type connections
144 * (telnet, SSH) which send many small packets.
145 */
146int     tcp_minmssoverload = TCP_MINMSSOVERLOAD;
147SYSCTL_INT(_net_inet_tcp, OID_AUTO, minmssoverload, CTLFLAG_RW,
148    &tcp_minmssoverload , 0, "Number of TCP Segments per Second allowed to"
149    "be under the MINMSS Size");
150
151#if 0
152static int	tcp_rttdflt = TCPTV_SRTTDFLT / PR_SLOWHZ;
153SYSCTL_INT(_net_inet_tcp, TCPCTL_RTTDFLT, rttdflt, CTLFLAG_RW,
154    &tcp_rttdflt , 0, "Default maximum TCP Round Trip Time");
155#endif
156
157int	tcp_do_rfc1323 = 1;
158SYSCTL_INT(_net_inet_tcp, TCPCTL_DO_RFC1323, rfc1323, CTLFLAG_RW,
159    &tcp_do_rfc1323 , 0, "Enable rfc1323 (high performance TCP) extensions");
160
161static int	tcp_tcbhashsize = 0;
162SYSCTL_INT(_net_inet_tcp, OID_AUTO, tcbhashsize, CTLFLAG_RDTUN,
163     &tcp_tcbhashsize, 0, "Size of TCP control-block hashtable");
164
165static int	do_tcpdrain = 1;
166SYSCTL_INT(_net_inet_tcp, OID_AUTO, do_tcpdrain, CTLFLAG_RW, &do_tcpdrain, 0,
167     "Enable tcp_drain routine for extra help when low on mbufs");
168
169SYSCTL_INT(_net_inet_tcp, OID_AUTO, pcbcount, CTLFLAG_RD,
170    &tcbinfo.ipi_count, 0, "Number of active PCBs");
171
172static int	icmp_may_rst = 1;
173SYSCTL_INT(_net_inet_tcp, OID_AUTO, icmp_may_rst, CTLFLAG_RW, &icmp_may_rst, 0,
174    "Certain ICMP unreachable messages may abort connections in SYN_SENT");
175
176static int	tcp_isn_reseed_interval = 0;
177SYSCTL_INT(_net_inet_tcp, OID_AUTO, isn_reseed_interval, CTLFLAG_RW,
178    &tcp_isn_reseed_interval, 0, "Seconds between reseeding of ISN secret");
179
180static int	maxtcptw;
181SYSCTL_INT(_net_inet_tcp, OID_AUTO, maxtcptw, CTLFLAG_RDTUN,
182    &maxtcptw, 0, "Maximum number of compressed TCP TIME_WAIT entries");
183
184/*
185 * TCP bandwidth limiting sysctls.  Note that the default lower bound of
186 * 1024 exists only for debugging.  A good production default would be
187 * something like 6100.
188 */
189SYSCTL_NODE(_net_inet_tcp, OID_AUTO, inflight, CTLFLAG_RW, 0,
190    "TCP inflight data limiting");
191
192static int	tcp_inflight_enable = 1;
193SYSCTL_INT(_net_inet_tcp_inflight, OID_AUTO, enable, CTLFLAG_RW,
194    &tcp_inflight_enable, 0, "Enable automatic TCP inflight data limiting");
195
196static int	tcp_inflight_debug = 0;
197SYSCTL_INT(_net_inet_tcp_inflight, OID_AUTO, debug, CTLFLAG_RW,
198    &tcp_inflight_debug, 0, "Debug TCP inflight calculations");
199
200static int	tcp_inflight_rttthresh;
201SYSCTL_PROC(_net_inet_tcp_inflight, OID_AUTO, rttthresh, CTLTYPE_INT|CTLFLAG_RW,
202    &tcp_inflight_rttthresh, 0, sysctl_msec_to_ticks, "I",
203    "RTT threshold below which inflight will deactivate itself");
204
205static int	tcp_inflight_min = 6144;
206SYSCTL_INT(_net_inet_tcp_inflight, OID_AUTO, min, CTLFLAG_RW,
207    &tcp_inflight_min, 0, "Lower-bound for TCP inflight window");
208
209static int	tcp_inflight_max = TCP_MAXWIN << TCP_MAX_WINSHIFT;
210SYSCTL_INT(_net_inet_tcp_inflight, OID_AUTO, max, CTLFLAG_RW,
211    &tcp_inflight_max, 0, "Upper-bound for TCP inflight window");
212
213static int	tcp_inflight_stab = 20;
214SYSCTL_INT(_net_inet_tcp_inflight, OID_AUTO, stab, CTLFLAG_RW,
215    &tcp_inflight_stab, 0, "Inflight Algorithm Stabilization 20 = 2 packets");
216
217uma_zone_t sack_hole_zone;
218
219static struct inpcb *tcp_notify(struct inpcb *, int);
220static void	tcp_isn_tick(void *);
221
222/*
223 * Target size of TCP PCB hash tables. Must be a power of two.
224 *
225 * Note that this can be overridden by the kernel environment
226 * variable net.inet.tcp.tcbhashsize
227 */
228#ifndef TCBHASHSIZE
229#define TCBHASHSIZE	512
230#endif
231
232/*
233 * XXX
234 * Callouts should be moved into struct tcp directly.  They are currently
235 * separate because the tcpcb structure is exported to userland for sysctl
236 * parsing purposes, which do not know about callouts.
237 */
238struct	tcpcb_mem {
239	struct	tcpcb tcb;
240	struct	callout tcpcb_mem_rexmt, tcpcb_mem_persist, tcpcb_mem_keep;
241	struct	callout tcpcb_mem_2msl, tcpcb_mem_delack;
242};
243
244static uma_zone_t tcpcb_zone;
245static uma_zone_t tcptw_zone;
246struct callout isn_callout;
247static struct mtx isn_mtx;
248
249#define	ISN_LOCK_INIT()	mtx_init(&isn_mtx, "isn_mtx", NULL, MTX_DEF)
250#define	ISN_LOCK()	mtx_lock(&isn_mtx)
251#define	ISN_UNLOCK()	mtx_unlock(&isn_mtx)
252
253/*
254 * TCP initialization.
255 */
256static void
257tcp_zone_change(void *tag)
258{
259
260	uma_zone_set_max(tcbinfo.ipi_zone, maxsockets);
261	uma_zone_set_max(tcpcb_zone, maxsockets);
262	uma_zone_set_max(tcptw_zone, maxsockets / 5);
263}
264
265static int
266tcp_inpcb_init(void *mem, int size, int flags)
267{
268	struct inpcb *inp = (struct inpcb *) mem;
269	INP_LOCK_INIT(inp, "inp", "tcpinp");
270	return (0);
271}
272
273void
274tcp_init(void)
275{
276	int hashsize = TCBHASHSIZE;
277
278	tcp_delacktime = TCPTV_DELACK;
279	tcp_keepinit = TCPTV_KEEP_INIT;
280	tcp_keepidle = TCPTV_KEEP_IDLE;
281	tcp_keepintvl = TCPTV_KEEPINTVL;
282	tcp_maxpersistidle = TCPTV_KEEP_IDLE;
283	tcp_msl = TCPTV_MSL;
284	tcp_rexmit_min = TCPTV_MIN;
285	tcp_rexmit_slop = TCPTV_CPU_VAR;
286	tcp_inflight_rttthresh = TCPTV_INFLIGHT_RTTTHRESH;
287
288	INP_INFO_LOCK_INIT(&tcbinfo, "tcp");
289	LIST_INIT(&tcb);
290	tcbinfo.listhead = &tcb;
291	TUNABLE_INT_FETCH("net.inet.tcp.tcbhashsize", &hashsize);
292	if (!powerof2(hashsize)) {
293		printf("WARNING: TCB hash size not a power of 2\n");
294		hashsize = 512; /* safe default */
295	}
296	tcp_tcbhashsize = hashsize;
297	tcbinfo.hashbase = hashinit(hashsize, M_PCB, &tcbinfo.hashmask);
298	tcbinfo.porthashbase = hashinit(hashsize, M_PCB,
299					&tcbinfo.porthashmask);
300	tcbinfo.ipi_zone = uma_zcreate("inpcb", sizeof(struct inpcb),
301	    NULL, NULL, tcp_inpcb_init, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
302	uma_zone_set_max(tcbinfo.ipi_zone, maxsockets);
303#ifdef INET6
304#define TCP_MINPROTOHDR (sizeof(struct ip6_hdr) + sizeof(struct tcphdr))
305#else /* INET6 */
306#define TCP_MINPROTOHDR (sizeof(struct tcpiphdr))
307#endif /* INET6 */
308	if (max_protohdr < TCP_MINPROTOHDR)
309		max_protohdr = TCP_MINPROTOHDR;
310	if (max_linkhdr + TCP_MINPROTOHDR > MHLEN)
311		panic("tcp_init");
312#undef TCP_MINPROTOHDR
313	/*
314	 * These have to be type stable for the benefit of the timers.
315	 */
316	tcpcb_zone = uma_zcreate("tcpcb", sizeof(struct tcpcb_mem),
317	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
318	uma_zone_set_max(tcpcb_zone, maxsockets);
319	TUNABLE_INT_FETCH("net.inet.tcp.maxtcptw", &maxtcptw);
320	if (maxtcptw == 0)
321		maxtcptw = maxsockets / 5;
322	tcptw_zone = uma_zcreate("tcptw", sizeof(struct tcptw),
323	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
324	uma_zone_set_max(tcptw_zone, maxtcptw);
325	tcp_timer_init();
326	syncache_init();
327	tcp_hc_init();
328	tcp_reass_init();
329	ISN_LOCK_INIT();
330	callout_init(&isn_callout, CALLOUT_MPSAFE);
331	tcp_isn_tick(NULL);
332	EVENTHANDLER_REGISTER(shutdown_pre_sync, tcp_fini, NULL,
333		SHUTDOWN_PRI_DEFAULT);
334	sack_hole_zone = uma_zcreate("sackhole", sizeof(struct sackhole),
335	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
336	EVENTHANDLER_REGISTER(maxsockets_change, tcp_zone_change, NULL,
337		EVENTHANDLER_PRI_ANY);
338}
339
340void
341tcp_fini(void *xtp)
342{
343
344	callout_stop(&isn_callout);
345}
346
347/*
348 * Fill in the IP and TCP headers for an outgoing packet, given the tcpcb.
349 * tcp_template used to store this data in mbufs, but we now recopy it out
350 * of the tcpcb each time to conserve mbufs.
351 */
352void
353tcpip_fillheaders(struct inpcb *inp, void *ip_ptr, void *tcp_ptr)
354{
355	struct tcphdr *th = (struct tcphdr *)tcp_ptr;
356
357	INP_LOCK_ASSERT(inp);
358
359#ifdef INET6
360	if ((inp->inp_vflag & INP_IPV6) != 0) {
361		struct ip6_hdr *ip6;
362
363		ip6 = (struct ip6_hdr *)ip_ptr;
364		ip6->ip6_flow = (ip6->ip6_flow & ~IPV6_FLOWINFO_MASK) |
365			(inp->in6p_flowinfo & IPV6_FLOWINFO_MASK);
366		ip6->ip6_vfc = (ip6->ip6_vfc & ~IPV6_VERSION_MASK) |
367			(IPV6_VERSION & IPV6_VERSION_MASK);
368		ip6->ip6_nxt = IPPROTO_TCP;
369		ip6->ip6_plen = sizeof(struct tcphdr);
370		ip6->ip6_src = inp->in6p_laddr;
371		ip6->ip6_dst = inp->in6p_faddr;
372	} else
373#endif
374	{
375		struct ip *ip;
376
377		ip = (struct ip *)ip_ptr;
378		ip->ip_v = IPVERSION;
379		ip->ip_hl = 5;
380		ip->ip_tos = inp->inp_ip_tos;
381		ip->ip_len = 0;
382		ip->ip_id = 0;
383		ip->ip_off = 0;
384		ip->ip_ttl = inp->inp_ip_ttl;
385		ip->ip_sum = 0;
386		ip->ip_p = IPPROTO_TCP;
387		ip->ip_src = inp->inp_laddr;
388		ip->ip_dst = inp->inp_faddr;
389	}
390	th->th_sport = inp->inp_lport;
391	th->th_dport = inp->inp_fport;
392	th->th_seq = 0;
393	th->th_ack = 0;
394	th->th_x2 = 0;
395	th->th_off = 5;
396	th->th_flags = 0;
397	th->th_win = 0;
398	th->th_urp = 0;
399	th->th_sum = 0;		/* in_pseudo() is called later for ipv4 */
400}
401
402/*
403 * Create template to be used to send tcp packets on a connection.
404 * Allocates an mbuf and fills in a skeletal tcp/ip header.  The only
405 * use for this function is in keepalives, which use tcp_respond.
406 */
407struct tcptemp *
408tcpip_maketemplate(struct inpcb *inp)
409{
410	struct mbuf *m;
411	struct tcptemp *n;
412
413	m = m_get(M_DONTWAIT, MT_DATA);
414	if (m == NULL)
415		return (0);
416	m->m_len = sizeof(struct tcptemp);
417	n = mtod(m, struct tcptemp *);
418
419	tcpip_fillheaders(inp, (void *)&n->tt_ipgen, (void *)&n->tt_t);
420	return (n);
421}
422
423/*
424 * Send a single message to the TCP at address specified by
425 * the given TCP/IP header.  If m == NULL, then we make a copy
426 * of the tcpiphdr at ti and send directly to the addressed host.
427 * This is used to force keep alive messages out using the TCP
428 * template for a connection.  If flags are given then we send
429 * a message back to the TCP which originated the * segment ti,
430 * and discard the mbuf containing it and any other attached mbufs.
431 *
432 * In any case the ack and sequence number of the transmitted
433 * segment are as specified by the parameters.
434 *
435 * NOTE: If m != NULL, then ti must point to *inside* the mbuf.
436 */
437void
438tcp_respond(struct tcpcb *tp, void *ipgen, register struct tcphdr *th,
439    register struct mbuf *m, tcp_seq ack, tcp_seq seq, int flags)
440{
441	register int tlen;
442	int win = 0;
443	struct ip *ip;
444	struct tcphdr *nth;
445#ifdef INET6
446	struct ip6_hdr *ip6;
447	int isipv6;
448#endif /* INET6 */
449	int ipflags = 0;
450	struct inpcb *inp;
451
452	KASSERT(tp != NULL || m != NULL, ("tcp_respond: tp and m both NULL"));
453
454#ifdef INET6
455	isipv6 = ((struct ip *)ipgen)->ip_v == 6;
456	ip6 = ipgen;
457#endif /* INET6 */
458	ip = ipgen;
459
460	if (tp != NULL) {
461		inp = tp->t_inpcb;
462		KASSERT(inp != NULL, ("tcp control block w/o inpcb"));
463		INP_INFO_WLOCK_ASSERT(&tcbinfo);
464		INP_LOCK_ASSERT(inp);
465	} else
466		inp = NULL;
467
468	if (tp != NULL) {
469		if (!(flags & TH_RST)) {
470			win = sbspace(&inp->inp_socket->so_rcv);
471			if (win > (long)TCP_MAXWIN << tp->rcv_scale)
472				win = (long)TCP_MAXWIN << tp->rcv_scale;
473		}
474	}
475	if (m == NULL) {
476		m = m_gethdr(M_DONTWAIT, MT_DATA);
477		if (m == NULL)
478			return;
479		tlen = 0;
480		m->m_data += max_linkhdr;
481#ifdef INET6
482		if (isipv6) {
483			bcopy((caddr_t)ip6, mtod(m, caddr_t),
484			      sizeof(struct ip6_hdr));
485			ip6 = mtod(m, struct ip6_hdr *);
486			nth = (struct tcphdr *)(ip6 + 1);
487		} else
488#endif /* INET6 */
489	      {
490		bcopy((caddr_t)ip, mtod(m, caddr_t), sizeof(struct ip));
491		ip = mtod(m, struct ip *);
492		nth = (struct tcphdr *)(ip + 1);
493	      }
494		bcopy((caddr_t)th, (caddr_t)nth, sizeof(struct tcphdr));
495		flags = TH_ACK;
496	} else {
497		m_freem(m->m_next);
498		m->m_next = NULL;
499		m->m_data = (caddr_t)ipgen;
500		/* m_len is set later */
501		tlen = 0;
502#define xchg(a,b,type) { type t; t=a; a=b; b=t; }
503#ifdef INET6
504		if (isipv6) {
505			xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr);
506			nth = (struct tcphdr *)(ip6 + 1);
507		} else
508#endif /* INET6 */
509	      {
510		xchg(ip->ip_dst.s_addr, ip->ip_src.s_addr, n_long);
511		nth = (struct tcphdr *)(ip + 1);
512	      }
513		if (th != nth) {
514			/*
515			 * this is usually a case when an extension header
516			 * exists between the IPv6 header and the
517			 * TCP header.
518			 */
519			nth->th_sport = th->th_sport;
520			nth->th_dport = th->th_dport;
521		}
522		xchg(nth->th_dport, nth->th_sport, n_short);
523#undef xchg
524	}
525#ifdef INET6
526	if (isipv6) {
527		ip6->ip6_flow = 0;
528		ip6->ip6_vfc = IPV6_VERSION;
529		ip6->ip6_nxt = IPPROTO_TCP;
530		ip6->ip6_plen = htons((u_short)(sizeof (struct tcphdr) +
531						tlen));
532		tlen += sizeof (struct ip6_hdr) + sizeof (struct tcphdr);
533	} else
534#endif
535	{
536		tlen += sizeof (struct tcpiphdr);
537		ip->ip_len = tlen;
538		ip->ip_ttl = ip_defttl;
539		if (path_mtu_discovery)
540			ip->ip_off |= IP_DF;
541	}
542	m->m_len = tlen;
543	m->m_pkthdr.len = tlen;
544	m->m_pkthdr.rcvif = NULL;
545#ifdef MAC
546	if (inp != NULL) {
547		/*
548		 * Packet is associated with a socket, so allow the
549		 * label of the response to reflect the socket label.
550		 */
551		INP_LOCK_ASSERT(inp);
552		mac_create_mbuf_from_inpcb(inp, m);
553	} else {
554		/*
555		 * Packet is not associated with a socket, so possibly
556		 * update the label in place.
557		 */
558		mac_reflect_mbuf_tcp(m);
559	}
560#endif
561	nth->th_seq = htonl(seq);
562	nth->th_ack = htonl(ack);
563	nth->th_x2 = 0;
564	nth->th_off = sizeof (struct tcphdr) >> 2;
565	nth->th_flags = flags;
566	if (tp != NULL)
567		nth->th_win = htons((u_short) (win >> tp->rcv_scale));
568	else
569		nth->th_win = htons((u_short)win);
570	nth->th_urp = 0;
571#ifdef INET6
572	if (isipv6) {
573		nth->th_sum = 0;
574		nth->th_sum = in6_cksum(m, IPPROTO_TCP,
575					sizeof(struct ip6_hdr),
576					tlen - sizeof(struct ip6_hdr));
577		ip6->ip6_hlim = in6_selecthlim(tp != NULL ? tp->t_inpcb :
578		    NULL, NULL);
579	} else
580#endif /* INET6 */
581	{
582		nth->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
583		    htons((u_short)(tlen - sizeof(struct ip) + ip->ip_p)));
584		m->m_pkthdr.csum_flags = CSUM_TCP;
585		m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
586	}
587#ifdef TCPDEBUG
588	if (tp == NULL || (inp->inp_socket->so_options & SO_DEBUG))
589		tcp_trace(TA_OUTPUT, 0, tp, mtod(m, void *), th, 0);
590#endif
591#ifdef INET6
592	if (isipv6)
593		(void) ip6_output(m, NULL, NULL, ipflags, NULL, NULL, inp);
594	else
595#endif /* INET6 */
596	(void) ip_output(m, NULL, NULL, ipflags, NULL, inp);
597}
598
599/*
600 * Create a new TCP control block, making an
601 * empty reassembly queue and hooking it to the argument
602 * protocol control block.  The `inp' parameter must have
603 * come from the zone allocator set up in tcp_init().
604 */
605struct tcpcb *
606tcp_newtcpcb(struct inpcb *inp)
607{
608	struct tcpcb_mem *tm;
609	struct tcpcb *tp;
610#ifdef INET6
611	int isipv6 = (inp->inp_vflag & INP_IPV6) != 0;
612#endif /* INET6 */
613
614	tm = uma_zalloc(tcpcb_zone, M_NOWAIT | M_ZERO);
615	if (tm == NULL)
616		return (NULL);
617	tp = &tm->tcb;
618	/*	LIST_INIT(&tp->t_segq); */	/* XXX covered by M_ZERO */
619	tp->t_maxseg = tp->t_maxopd =
620#ifdef INET6
621		isipv6 ? tcp_v6mssdflt :
622#endif /* INET6 */
623		tcp_mssdflt;
624
625	/* Set up our timeouts. */
626	callout_init(tp->tt_rexmt = &tm->tcpcb_mem_rexmt, NET_CALLOUT_MPSAFE);
627	callout_init(tp->tt_persist = &tm->tcpcb_mem_persist, NET_CALLOUT_MPSAFE);
628	callout_init(tp->tt_keep = &tm->tcpcb_mem_keep, NET_CALLOUT_MPSAFE);
629	callout_init(tp->tt_2msl = &tm->tcpcb_mem_2msl, NET_CALLOUT_MPSAFE);
630	callout_init(tp->tt_delack = &tm->tcpcb_mem_delack, NET_CALLOUT_MPSAFE);
631
632	if (tcp_do_rfc1323)
633		tp->t_flags = (TF_REQ_SCALE|TF_REQ_TSTMP);
634	tp->sack_enable = tcp_do_sack;
635	TAILQ_INIT(&tp->snd_holes);
636	tp->t_inpcb = inp;	/* XXX */
637	/*
638	 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
639	 * rtt estimate.  Set rttvar so that srtt + 4 * rttvar gives
640	 * reasonable initial retransmit time.
641	 */
642	tp->t_srtt = TCPTV_SRTTBASE;
643	tp->t_rttvar = ((TCPTV_RTOBASE - TCPTV_SRTTBASE) << TCP_RTTVAR_SHIFT) / 4;
644	tp->t_rttmin = tcp_rexmit_min;
645	tp->t_rxtcur = TCPTV_RTOBASE;
646	tp->snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
647	tp->snd_bwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
648	tp->snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT;
649	tp->t_rcvtime = ticks;
650	tp->t_bw_rtttime = ticks;
651	/*
652	 * IPv4 TTL initialization is necessary for an IPv6 socket as well,
653	 * because the socket may be bound to an IPv6 wildcard address,
654	 * which may match an IPv4-mapped IPv6 address.
655	 */
656	inp->inp_ip_ttl = ip_defttl;
657	inp->inp_ppcb = tp;
658	return (tp);		/* XXX */
659}
660
661/*
662 * Drop a TCP connection, reporting
663 * the specified error.  If connection is synchronized,
664 * then send a RST to peer.
665 */
666struct tcpcb *
667tcp_drop(struct tcpcb *tp, int errno)
668{
669	struct socket *so = tp->t_inpcb->inp_socket;
670
671	INP_INFO_WLOCK_ASSERT(&tcbinfo);
672	INP_LOCK_ASSERT(tp->t_inpcb);
673
674	if (TCPS_HAVERCVDSYN(tp->t_state)) {
675		tp->t_state = TCPS_CLOSED;
676		(void) tcp_output(tp);
677		tcpstat.tcps_drops++;
678	} else
679		tcpstat.tcps_conndrops++;
680	if (errno == ETIMEDOUT && tp->t_softerror)
681		errno = tp->t_softerror;
682	so->so_error = errno;
683	return (tcp_close(tp));
684}
685
686void
687tcp_discardcb(struct tcpcb *tp)
688{
689	struct tseg_qent *q;
690	struct inpcb *inp = tp->t_inpcb;
691	struct socket *so = inp->inp_socket;
692#ifdef INET6
693	int isipv6 = (inp->inp_vflag & INP_IPV6) != 0;
694#endif /* INET6 */
695
696	INP_LOCK_ASSERT(inp);
697
698	/*
699	 * Make sure that all of our timers are stopped before we
700	 * delete the PCB.
701	 */
702	callout_stop(tp->tt_rexmt);
703	callout_stop(tp->tt_persist);
704	callout_stop(tp->tt_keep);
705	callout_stop(tp->tt_2msl);
706	callout_stop(tp->tt_delack);
707
708	/*
709	 * If we got enough samples through the srtt filter,
710	 * save the rtt and rttvar in the routing entry.
711	 * 'Enough' is arbitrarily defined as 4 rtt samples.
712	 * 4 samples is enough for the srtt filter to converge
713	 * to within enough % of the correct value; fewer samples
714	 * and we could save a bogus rtt. The danger is not high
715	 * as tcp quickly recovers from everything.
716	 * XXX: Works very well but needs some more statistics!
717	 */
718	if (tp->t_rttupdated >= 4) {
719		struct hc_metrics_lite metrics;
720		u_long ssthresh;
721
722		bzero(&metrics, sizeof(metrics));
723		/*
724		 * Update the ssthresh always when the conditions below
725		 * are satisfied. This gives us better new start value
726		 * for the congestion avoidance for new connections.
727		 * ssthresh is only set if packet loss occured on a session.
728		 *
729		 * XXXRW: 'so' may be NULL here, and/or socket buffer may be
730		 * being torn down.  Ideally this code would not use 'so'.
731		 */
732		ssthresh = tp->snd_ssthresh;
733		if (ssthresh != 0 && ssthresh < so->so_snd.sb_hiwat / 2) {
734			/*
735			 * convert the limit from user data bytes to
736			 * packets then to packet data bytes.
737			 */
738			ssthresh = (ssthresh + tp->t_maxseg / 2) / tp->t_maxseg;
739			if (ssthresh < 2)
740				ssthresh = 2;
741			ssthresh *= (u_long)(tp->t_maxseg +
742#ifdef INET6
743				      (isipv6 ? sizeof (struct ip6_hdr) +
744					       sizeof (struct tcphdr) :
745#endif
746				       sizeof (struct tcpiphdr)
747#ifdef INET6
748				       )
749#endif
750				      );
751		} else
752			ssthresh = 0;
753		metrics.rmx_ssthresh = ssthresh;
754
755		metrics.rmx_rtt = tp->t_srtt;
756		metrics.rmx_rttvar = tp->t_rttvar;
757		/* XXX: This wraps if the pipe is more than 4 Gbit per second */
758		metrics.rmx_bandwidth = tp->snd_bandwidth;
759		metrics.rmx_cwnd = tp->snd_cwnd;
760		metrics.rmx_sendpipe = 0;
761		metrics.rmx_recvpipe = 0;
762
763		tcp_hc_update(&inp->inp_inc, &metrics);
764	}
765
766	/* free the reassembly queue, if any */
767	while ((q = LIST_FIRST(&tp->t_segq)) != NULL) {
768		LIST_REMOVE(q, tqe_q);
769		m_freem(q->tqe_m);
770		uma_zfree(tcp_reass_zone, q);
771		tp->t_segqlen--;
772		tcp_reass_qsize--;
773	}
774	tcp_free_sackholes(tp);
775	inp->inp_ppcb = NULL;
776	tp->t_inpcb = NULL;
777	uma_zfree(tcpcb_zone, tp);
778}
779
780/*
781 * Attempt to close a TCP control block, marking it as dropped, and freeing
782 * the socket if we hold the only reference.
783 */
784struct tcpcb *
785tcp_close(struct tcpcb *tp)
786{
787	struct inpcb *inp = tp->t_inpcb;
788	struct socket *so;
789
790	INP_INFO_WLOCK_ASSERT(&tcbinfo);
791	INP_LOCK_ASSERT(inp);
792
793	in_pcbdrop(inp);
794	tcpstat.tcps_closed++;
795	KASSERT(inp->inp_socket != NULL, ("tcp_close: inp_socket NULL"));
796	so = inp->inp_socket;
797	soisdisconnected(so);
798	if (inp->inp_vflag & INP_SOCKREF) {
799		KASSERT(so->so_state & SS_PROTOREF,
800		    ("tcp_close: !SS_PROTOREF"));
801		inp->inp_vflag &= ~INP_SOCKREF;
802		INP_UNLOCK(inp);
803		ACCEPT_LOCK();
804		SOCK_LOCK(so);
805		so->so_state &= ~SS_PROTOREF;
806		sofree(so);
807		return (NULL);
808	}
809	return (tp);
810}
811
812void
813tcp_drain(void)
814{
815
816	if (do_tcpdrain) {
817		struct inpcb *inpb;
818		struct tcpcb *tcpb;
819		struct tseg_qent *te;
820
821	/*
822	 * Walk the tcpbs, if existing, and flush the reassembly queue,
823	 * if there is one...
824	 * XXX: The "Net/3" implementation doesn't imply that the TCP
825	 *      reassembly queue should be flushed, but in a situation
826	 *	where we're really low on mbufs, this is potentially
827	 *	usefull.
828	 */
829		INP_INFO_RLOCK(&tcbinfo);
830		LIST_FOREACH(inpb, tcbinfo.listhead, inp_list) {
831			if (inpb->inp_vflag & INP_TIMEWAIT)
832				continue;
833			INP_LOCK(inpb);
834			if ((tcpb = intotcpcb(inpb)) != NULL) {
835				while ((te = LIST_FIRST(&tcpb->t_segq))
836			            != NULL) {
837					LIST_REMOVE(te, tqe_q);
838					m_freem(te->tqe_m);
839					uma_zfree(tcp_reass_zone, te);
840					tcpb->t_segqlen--;
841					tcp_reass_qsize--;
842				}
843				tcp_clean_sackreport(tcpb);
844			}
845			INP_UNLOCK(inpb);
846		}
847		INP_INFO_RUNLOCK(&tcbinfo);
848	}
849}
850
851/*
852 * Notify a tcp user of an asynchronous error;
853 * store error as soft error, but wake up user
854 * (for now, won't do anything until can select for soft error).
855 *
856 * Do not wake up user since there currently is no mechanism for
857 * reporting soft errors (yet - a kqueue filter may be added).
858 */
859static struct inpcb *
860tcp_notify(struct inpcb *inp, int error)
861{
862	struct tcpcb *tp;
863
864	INP_INFO_WLOCK_ASSERT(&tcbinfo);
865	INP_LOCK_ASSERT(inp);
866
867	if ((inp->inp_vflag & INP_TIMEWAIT) ||
868	    (inp->inp_vflag & INP_DROPPED))
869		return (inp);
870
871	tp = intotcpcb(inp);
872	KASSERT(tp != NULL, ("tcp_notify: tp == NULL"));
873
874	/*
875	 * Ignore some errors if we are hooked up.
876	 * If connection hasn't completed, has retransmitted several times,
877	 * and receives a second error, give up now.  This is better
878	 * than waiting a long time to establish a connection that
879	 * can never complete.
880	 */
881	if (tp->t_state == TCPS_ESTABLISHED &&
882	    (error == EHOSTUNREACH || error == ENETUNREACH ||
883	     error == EHOSTDOWN)) {
884		return (inp);
885	} else if (tp->t_state < TCPS_ESTABLISHED && tp->t_rxtshift > 3 &&
886	    tp->t_softerror) {
887		tp = tcp_drop(tp, error);
888		if (tp != NULL)
889			return (inp);
890		else
891			return (NULL);
892	} else {
893		tp->t_softerror = error;
894		return (inp);
895	}
896#if 0
897	wakeup( &so->so_timeo);
898	sorwakeup(so);
899	sowwakeup(so);
900#endif
901}
902
903static int
904tcp_pcblist(SYSCTL_HANDLER_ARGS)
905{
906	int error, i, n;
907	struct inpcb *inp, **inp_list;
908	inp_gen_t gencnt;
909	struct xinpgen xig;
910
911	/*
912	 * The process of preparing the TCB list is too time-consuming and
913	 * resource-intensive to repeat twice on every request.
914	 */
915	if (req->oldptr == NULL) {
916		n = tcbinfo.ipi_count;
917		req->oldidx = 2 * (sizeof xig)
918			+ (n + n/8) * sizeof(struct xtcpcb);
919		return (0);
920	}
921
922	if (req->newptr != NULL)
923		return (EPERM);
924
925	/*
926	 * OK, now we're committed to doing something.
927	 */
928	INP_INFO_RLOCK(&tcbinfo);
929	gencnt = tcbinfo.ipi_gencnt;
930	n = tcbinfo.ipi_count;
931	INP_INFO_RUNLOCK(&tcbinfo);
932
933	error = sysctl_wire_old_buffer(req, 2 * (sizeof xig)
934		+ n * sizeof(struct xtcpcb));
935	if (error != 0)
936		return (error);
937
938	xig.xig_len = sizeof xig;
939	xig.xig_count = n;
940	xig.xig_gen = gencnt;
941	xig.xig_sogen = so_gencnt;
942	error = SYSCTL_OUT(req, &xig, sizeof xig);
943	if (error)
944		return (error);
945
946	inp_list = malloc(n * sizeof *inp_list, M_TEMP, M_WAITOK);
947	if (inp_list == NULL)
948		return (ENOMEM);
949
950	INP_INFO_RLOCK(&tcbinfo);
951	for (inp = LIST_FIRST(tcbinfo.listhead), i = 0; inp != NULL && i < n;
952	     inp = LIST_NEXT(inp, inp_list)) {
953		INP_LOCK(inp);
954		if (inp->inp_gencnt <= gencnt) {
955			/*
956			 * XXX: This use of cr_cansee(), introduced with
957			 * TCP state changes, is not quite right, but for
958			 * now, better than nothing.
959			 */
960			if (inp->inp_vflag & INP_TIMEWAIT) {
961				if (intotw(inp) != NULL)
962					error = cr_cansee(req->td->td_ucred,
963					    intotw(inp)->tw_cred);
964				else
965					error = EINVAL;	/* Skip this inp. */
966			} else
967				error = cr_canseesocket(req->td->td_ucred,
968				    inp->inp_socket);
969			if (error == 0)
970				inp_list[i++] = inp;
971		}
972		INP_UNLOCK(inp);
973	}
974	INP_INFO_RUNLOCK(&tcbinfo);
975	n = i;
976
977	error = 0;
978	for (i = 0; i < n; i++) {
979		inp = inp_list[i];
980		INP_LOCK(inp);
981		if (inp->inp_gencnt <= gencnt) {
982			struct xtcpcb xt;
983			void *inp_ppcb;
984
985			bzero(&xt, sizeof(xt));
986			xt.xt_len = sizeof xt;
987			/* XXX should avoid extra copy */
988			bcopy(inp, &xt.xt_inp, sizeof *inp);
989			inp_ppcb = inp->inp_ppcb;
990			if (inp_ppcb == NULL)
991				bzero((char *) &xt.xt_tp, sizeof xt.xt_tp);
992			else if (inp->inp_vflag & INP_TIMEWAIT) {
993				bzero((char *) &xt.xt_tp, sizeof xt.xt_tp);
994				xt.xt_tp.t_state = TCPS_TIME_WAIT;
995			} else
996				bcopy(inp_ppcb, &xt.xt_tp, sizeof xt.xt_tp);
997			if (inp->inp_socket != NULL)
998				sotoxsocket(inp->inp_socket, &xt.xt_socket);
999			else {
1000				bzero(&xt.xt_socket, sizeof xt.xt_socket);
1001				xt.xt_socket.xso_protocol = IPPROTO_TCP;
1002			}
1003			xt.xt_inp.inp_gencnt = inp->inp_gencnt;
1004			INP_UNLOCK(inp);
1005			error = SYSCTL_OUT(req, &xt, sizeof xt);
1006		} else
1007			INP_UNLOCK(inp);
1008
1009	}
1010	if (!error) {
1011		/*
1012		 * Give the user an updated idea of our state.
1013		 * If the generation differs from what we told
1014		 * her before, she knows that something happened
1015		 * while we were processing this request, and it
1016		 * might be necessary to retry.
1017		 */
1018		INP_INFO_RLOCK(&tcbinfo);
1019		xig.xig_gen = tcbinfo.ipi_gencnt;
1020		xig.xig_sogen = so_gencnt;
1021		xig.xig_count = tcbinfo.ipi_count;
1022		INP_INFO_RUNLOCK(&tcbinfo);
1023		error = SYSCTL_OUT(req, &xig, sizeof xig);
1024	}
1025	free(inp_list, M_TEMP);
1026	return (error);
1027}
1028
1029SYSCTL_PROC(_net_inet_tcp, TCPCTL_PCBLIST, pcblist, CTLFLAG_RD, 0, 0,
1030	    tcp_pcblist, "S,xtcpcb", "List of active TCP connections");
1031
1032static int
1033tcp_getcred(SYSCTL_HANDLER_ARGS)
1034{
1035	struct xucred xuc;
1036	struct sockaddr_in addrs[2];
1037	struct inpcb *inp;
1038	int error;
1039
1040	error = suser_cred(req->td->td_ucred, SUSER_ALLOWJAIL);
1041	if (error)
1042		return (error);
1043	error = SYSCTL_IN(req, addrs, sizeof(addrs));
1044	if (error)
1045		return (error);
1046	INP_INFO_RLOCK(&tcbinfo);
1047	inp = in_pcblookup_hash(&tcbinfo, addrs[1].sin_addr, addrs[1].sin_port,
1048	    addrs[0].sin_addr, addrs[0].sin_port, 0, NULL);
1049	if (inp == NULL) {
1050		error = ENOENT;
1051		goto outunlocked;
1052	}
1053	INP_LOCK(inp);
1054	if (inp->inp_socket == NULL) {
1055		error = ENOENT;
1056		goto out;
1057	}
1058	error = cr_canseesocket(req->td->td_ucred, inp->inp_socket);
1059	if (error)
1060		goto out;
1061	cru2x(inp->inp_socket->so_cred, &xuc);
1062out:
1063	INP_UNLOCK(inp);
1064outunlocked:
1065	INP_INFO_RUNLOCK(&tcbinfo);
1066	if (error == 0)
1067		error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred));
1068	return (error);
1069}
1070
1071SYSCTL_PROC(_net_inet_tcp, OID_AUTO, getcred,
1072    CTLTYPE_OPAQUE|CTLFLAG_RW|CTLFLAG_PRISON, 0, 0,
1073    tcp_getcred, "S,xucred", "Get the xucred of a TCP connection");
1074
1075#ifdef INET6
1076static int
1077tcp6_getcred(SYSCTL_HANDLER_ARGS)
1078{
1079	struct xucred xuc;
1080	struct sockaddr_in6 addrs[2];
1081	struct inpcb *inp;
1082	int error, mapped = 0;
1083
1084	error = suser_cred(req->td->td_ucred, SUSER_ALLOWJAIL);
1085	if (error)
1086		return (error);
1087	error = SYSCTL_IN(req, addrs, sizeof(addrs));
1088	if (error)
1089		return (error);
1090	if ((error = sa6_embedscope(&addrs[0], ip6_use_defzone)) != 0 ||
1091	    (error = sa6_embedscope(&addrs[1], ip6_use_defzone)) != 0) {
1092		return (error);
1093	}
1094	if (IN6_IS_ADDR_V4MAPPED(&addrs[0].sin6_addr)) {
1095		if (IN6_IS_ADDR_V4MAPPED(&addrs[1].sin6_addr))
1096			mapped = 1;
1097		else
1098			return (EINVAL);
1099	}
1100
1101	INP_INFO_RLOCK(&tcbinfo);
1102	if (mapped == 1)
1103		inp = in_pcblookup_hash(&tcbinfo,
1104			*(struct in_addr *)&addrs[1].sin6_addr.s6_addr[12],
1105			addrs[1].sin6_port,
1106			*(struct in_addr *)&addrs[0].sin6_addr.s6_addr[12],
1107			addrs[0].sin6_port,
1108			0, NULL);
1109	else
1110		inp = in6_pcblookup_hash(&tcbinfo,
1111			&addrs[1].sin6_addr, addrs[1].sin6_port,
1112			&addrs[0].sin6_addr, addrs[0].sin6_port, 0, NULL);
1113	if (inp == NULL) {
1114		error = ENOENT;
1115		goto outunlocked;
1116	}
1117	INP_LOCK(inp);
1118	if (inp->inp_socket == NULL) {
1119		error = ENOENT;
1120		goto out;
1121	}
1122	error = cr_canseesocket(req->td->td_ucred, inp->inp_socket);
1123	if (error)
1124		goto out;
1125	cru2x(inp->inp_socket->so_cred, &xuc);
1126out:
1127	INP_UNLOCK(inp);
1128outunlocked:
1129	INP_INFO_RUNLOCK(&tcbinfo);
1130	if (error == 0)
1131		error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred));
1132	return (error);
1133}
1134
1135SYSCTL_PROC(_net_inet6_tcp6, OID_AUTO, getcred,
1136    CTLTYPE_OPAQUE|CTLFLAG_RW|CTLFLAG_PRISON, 0, 0,
1137    tcp6_getcred, "S,xucred", "Get the xucred of a TCP6 connection");
1138#endif
1139
1140
1141void
1142tcp_ctlinput(int cmd, struct sockaddr *sa, void *vip)
1143{
1144	struct ip *ip = vip;
1145	struct tcphdr *th;
1146	struct in_addr faddr;
1147	struct inpcb *inp;
1148	struct tcpcb *tp;
1149	struct inpcb *(*notify)(struct inpcb *, int) = tcp_notify;
1150	struct icmp *icp;
1151	struct in_conninfo inc;
1152	tcp_seq icmp_tcp_seq;
1153	int mtu;
1154
1155	faddr = ((struct sockaddr_in *)sa)->sin_addr;
1156	if (sa->sa_family != AF_INET || faddr.s_addr == INADDR_ANY)
1157		return;
1158
1159	if (cmd == PRC_MSGSIZE)
1160		notify = tcp_mtudisc;
1161	else if (icmp_may_rst && (cmd == PRC_UNREACH_ADMIN_PROHIB ||
1162		cmd == PRC_UNREACH_PORT || cmd == PRC_TIMXCEED_INTRANS) && ip)
1163		notify = tcp_drop_syn_sent;
1164	/*
1165	 * Redirects don't need to be handled up here.
1166	 */
1167	else if (PRC_IS_REDIRECT(cmd))
1168		return;
1169	/*
1170	 * Source quench is depreciated.
1171	 */
1172	else if (cmd == PRC_QUENCH)
1173		return;
1174	/*
1175	 * Hostdead is ugly because it goes linearly through all PCBs.
1176	 * XXX: We never get this from ICMP, otherwise it makes an
1177	 * excellent DoS attack on machines with many connections.
1178	 */
1179	else if (cmd == PRC_HOSTDEAD)
1180		ip = NULL;
1181	else if ((unsigned)cmd >= PRC_NCMDS || inetctlerrmap[cmd] == 0)
1182		return;
1183	if (ip != NULL) {
1184		icp = (struct icmp *)((caddr_t)ip
1185				      - offsetof(struct icmp, icmp_ip));
1186		th = (struct tcphdr *)((caddr_t)ip
1187				       + (ip->ip_hl << 2));
1188		INP_INFO_WLOCK(&tcbinfo);
1189		inp = in_pcblookup_hash(&tcbinfo, faddr, th->th_dport,
1190		    ip->ip_src, th->th_sport, 0, NULL);
1191		if (inp != NULL)  {
1192			INP_LOCK(inp);
1193			if (!(inp->inp_vflag & INP_TIMEWAIT) &&
1194			    !(inp->inp_vflag & INP_DROPPED) &&
1195			    !(inp->inp_socket == NULL)) {
1196				icmp_tcp_seq = htonl(th->th_seq);
1197				tp = intotcpcb(inp);
1198				if (SEQ_GEQ(icmp_tcp_seq, tp->snd_una) &&
1199				    SEQ_LT(icmp_tcp_seq, tp->snd_max)) {
1200					if (cmd == PRC_MSGSIZE) {
1201					    /*
1202					     * MTU discovery:
1203					     * If we got a needfrag set the MTU
1204					     * in the route to the suggested new
1205					     * value (if given) and then notify.
1206					     */
1207					    bzero(&inc, sizeof(inc));
1208					    inc.inc_flags = 0;	/* IPv4 */
1209					    inc.inc_faddr = faddr;
1210
1211					    mtu = ntohs(icp->icmp_nextmtu);
1212					    /*
1213					     * If no alternative MTU was
1214					     * proposed, try the next smaller
1215					     * one.  ip->ip_len has already
1216					     * been swapped in icmp_input().
1217					     */
1218					    if (!mtu)
1219						mtu = ip_next_mtu(ip->ip_len,
1220						 1);
1221					    if (mtu < max(296, (tcp_minmss)
1222						 + sizeof(struct tcpiphdr)))
1223						mtu = 0;
1224					    if (!mtu)
1225						mtu = tcp_mssdflt
1226						 + sizeof(struct tcpiphdr);
1227					    /*
1228					     * Only cache the the MTU if it
1229					     * is smaller than the interface
1230					     * or route MTU.  tcp_mtudisc()
1231					     * will do right thing by itself.
1232					     */
1233					    if (mtu <= tcp_maxmtu(&inc))
1234						tcp_hc_updatemtu(&inc, mtu);
1235					}
1236
1237					inp = (*notify)(inp, inetctlerrmap[cmd]);
1238				}
1239			}
1240			if (inp != NULL)
1241				INP_UNLOCK(inp);
1242		} else {
1243			inc.inc_fport = th->th_dport;
1244			inc.inc_lport = th->th_sport;
1245			inc.inc_faddr = faddr;
1246			inc.inc_laddr = ip->ip_src;
1247#ifdef INET6
1248			inc.inc_isipv6 = 0;
1249#endif
1250			syncache_unreach(&inc, th);
1251		}
1252		INP_INFO_WUNLOCK(&tcbinfo);
1253	} else
1254		in_pcbnotifyall(&tcbinfo, faddr, inetctlerrmap[cmd], notify);
1255}
1256
1257#ifdef INET6
1258void
1259tcp6_ctlinput(int cmd, struct sockaddr *sa, void *d)
1260{
1261	struct tcphdr th;
1262	struct inpcb *(*notify)(struct inpcb *, int) = tcp_notify;
1263	struct ip6_hdr *ip6;
1264	struct mbuf *m;
1265	struct ip6ctlparam *ip6cp = NULL;
1266	const struct sockaddr_in6 *sa6_src = NULL;
1267	int off;
1268	struct tcp_portonly {
1269		u_int16_t th_sport;
1270		u_int16_t th_dport;
1271	} *thp;
1272
1273	if (sa->sa_family != AF_INET6 ||
1274	    sa->sa_len != sizeof(struct sockaddr_in6))
1275		return;
1276
1277	if (cmd == PRC_MSGSIZE)
1278		notify = tcp_mtudisc;
1279	else if (!PRC_IS_REDIRECT(cmd) &&
1280		 ((unsigned)cmd >= PRC_NCMDS || inet6ctlerrmap[cmd] == 0))
1281		return;
1282	/* Source quench is depreciated. */
1283	else if (cmd == PRC_QUENCH)
1284		return;
1285
1286	/* if the parameter is from icmp6, decode it. */
1287	if (d != NULL) {
1288		ip6cp = (struct ip6ctlparam *)d;
1289		m = ip6cp->ip6c_m;
1290		ip6 = ip6cp->ip6c_ip6;
1291		off = ip6cp->ip6c_off;
1292		sa6_src = ip6cp->ip6c_src;
1293	} else {
1294		m = NULL;
1295		ip6 = NULL;
1296		off = 0;	/* fool gcc */
1297		sa6_src = &sa6_any;
1298	}
1299
1300	if (ip6 != NULL) {
1301		struct in_conninfo inc;
1302		/*
1303		 * XXX: We assume that when IPV6 is non NULL,
1304		 * M and OFF are valid.
1305		 */
1306
1307		/* check if we can safely examine src and dst ports */
1308		if (m->m_pkthdr.len < off + sizeof(*thp))
1309			return;
1310
1311		bzero(&th, sizeof(th));
1312		m_copydata(m, off, sizeof(*thp), (caddr_t)&th);
1313
1314		in6_pcbnotify(&tcbinfo, sa, th.th_dport,
1315		    (struct sockaddr *)ip6cp->ip6c_src,
1316		    th.th_sport, cmd, NULL, notify);
1317
1318		inc.inc_fport = th.th_dport;
1319		inc.inc_lport = th.th_sport;
1320		inc.inc6_faddr = ((struct sockaddr_in6 *)sa)->sin6_addr;
1321		inc.inc6_laddr = ip6cp->ip6c_src->sin6_addr;
1322		inc.inc_isipv6 = 1;
1323		INP_INFO_WLOCK(&tcbinfo);
1324		syncache_unreach(&inc, &th);
1325		INP_INFO_WUNLOCK(&tcbinfo);
1326	} else
1327		in6_pcbnotify(&tcbinfo, sa, 0, (const struct sockaddr *)sa6_src,
1328			      0, cmd, NULL, notify);
1329}
1330#endif /* INET6 */
1331
1332
1333/*
1334 * Following is where TCP initial sequence number generation occurs.
1335 *
1336 * There are two places where we must use initial sequence numbers:
1337 * 1.  In SYN-ACK packets.
1338 * 2.  In SYN packets.
1339 *
1340 * All ISNs for SYN-ACK packets are generated by the syncache.  See
1341 * tcp_syncache.c for details.
1342 *
1343 * The ISNs in SYN packets must be monotonic; TIME_WAIT recycling
1344 * depends on this property.  In addition, these ISNs should be
1345 * unguessable so as to prevent connection hijacking.  To satisfy
1346 * the requirements of this situation, the algorithm outlined in
1347 * RFC 1948 is used, with only small modifications.
1348 *
1349 * Implementation details:
1350 *
1351 * Time is based off the system timer, and is corrected so that it
1352 * increases by one megabyte per second.  This allows for proper
1353 * recycling on high speed LANs while still leaving over an hour
1354 * before rollover.
1355 *
1356 * As reading the *exact* system time is too expensive to be done
1357 * whenever setting up a TCP connection, we increment the time
1358 * offset in two ways.  First, a small random positive increment
1359 * is added to isn_offset for each connection that is set up.
1360 * Second, the function tcp_isn_tick fires once per clock tick
1361 * and increments isn_offset as necessary so that sequence numbers
1362 * are incremented at approximately ISN_BYTES_PER_SECOND.  The
1363 * random positive increments serve only to ensure that the same
1364 * exact sequence number is never sent out twice (as could otherwise
1365 * happen when a port is recycled in less than the system tick
1366 * interval.)
1367 *
1368 * net.inet.tcp.isn_reseed_interval controls the number of seconds
1369 * between seeding of isn_secret.  This is normally set to zero,
1370 * as reseeding should not be necessary.
1371 *
1372 * Locking of the global variables isn_secret, isn_last_reseed, isn_offset,
1373 * isn_offset_old, and isn_ctx is performed using the TCP pcbinfo lock.  In
1374 * general, this means holding an exclusive (write) lock.
1375 */
1376
1377#define ISN_BYTES_PER_SECOND 1048576
1378#define ISN_STATIC_INCREMENT 4096
1379#define ISN_RANDOM_INCREMENT (4096 - 1)
1380
1381static u_char isn_secret[32];
1382static int isn_last_reseed;
1383static u_int32_t isn_offset, isn_offset_old;
1384static MD5_CTX isn_ctx;
1385
1386tcp_seq
1387tcp_new_isn(struct tcpcb *tp)
1388{
1389	u_int32_t md5_buffer[4];
1390	tcp_seq new_isn;
1391
1392	INP_LOCK_ASSERT(tp->t_inpcb);
1393
1394	ISN_LOCK();
1395	/* Seed if this is the first use, reseed if requested. */
1396	if ((isn_last_reseed == 0) || ((tcp_isn_reseed_interval > 0) &&
1397	     (((u_int)isn_last_reseed + (u_int)tcp_isn_reseed_interval*hz)
1398		< (u_int)ticks))) {
1399		read_random(&isn_secret, sizeof(isn_secret));
1400		isn_last_reseed = ticks;
1401	}
1402
1403	/* Compute the md5 hash and return the ISN. */
1404	MD5Init(&isn_ctx);
1405	MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_fport, sizeof(u_short));
1406	MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_lport, sizeof(u_short));
1407#ifdef INET6
1408	if ((tp->t_inpcb->inp_vflag & INP_IPV6) != 0) {
1409		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_faddr,
1410			  sizeof(struct in6_addr));
1411		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_laddr,
1412			  sizeof(struct in6_addr));
1413	} else
1414#endif
1415	{
1416		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_faddr,
1417			  sizeof(struct in_addr));
1418		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_laddr,
1419			  sizeof(struct in_addr));
1420	}
1421	MD5Update(&isn_ctx, (u_char *) &isn_secret, sizeof(isn_secret));
1422	MD5Final((u_char *) &md5_buffer, &isn_ctx);
1423	new_isn = (tcp_seq) md5_buffer[0];
1424	isn_offset += ISN_STATIC_INCREMENT +
1425		(arc4random() & ISN_RANDOM_INCREMENT);
1426	new_isn += isn_offset;
1427	ISN_UNLOCK();
1428	return (new_isn);
1429}
1430
1431/*
1432 * Increment the offset to the next ISN_BYTES_PER_SECOND / hz boundary
1433 * to keep time flowing at a relatively constant rate.  If the random
1434 * increments have already pushed us past the projected offset, do nothing.
1435 */
1436static void
1437tcp_isn_tick(void *xtp)
1438{
1439	u_int32_t projected_offset;
1440
1441	ISN_LOCK();
1442	projected_offset = isn_offset_old + ISN_BYTES_PER_SECOND / 100;
1443
1444	if (projected_offset > isn_offset)
1445		isn_offset = projected_offset;
1446
1447	isn_offset_old = isn_offset;
1448	callout_reset(&isn_callout, hz/100, tcp_isn_tick, NULL);
1449	ISN_UNLOCK();
1450}
1451
1452/*
1453 * When a specific ICMP unreachable message is received and the
1454 * connection state is SYN-SENT, drop the connection.  This behavior
1455 * is controlled by the icmp_may_rst sysctl.
1456 */
1457struct inpcb *
1458tcp_drop_syn_sent(struct inpcb *inp, int errno)
1459{
1460	struct tcpcb *tp;
1461
1462	INP_INFO_WLOCK_ASSERT(&tcbinfo);
1463	INP_LOCK_ASSERT(inp);
1464
1465	if ((inp->inp_vflag & INP_TIMEWAIT) ||
1466	    (inp->inp_vflag & INP_DROPPED))
1467		return (inp);
1468
1469	tp = intotcpcb(inp);
1470	if (tp->t_state != TCPS_SYN_SENT)
1471		return (inp);
1472
1473	tp = tcp_drop(tp, errno);
1474	if (tp != NULL)
1475		return (inp);
1476	else
1477		return (NULL);
1478}
1479
1480/*
1481 * When `need fragmentation' ICMP is received, update our idea of the MSS
1482 * based on the new value in the route.  Also nudge TCP to send something,
1483 * since we know the packet we just sent was dropped.
1484 * This duplicates some code in the tcp_mss() function in tcp_input.c.
1485 */
1486struct inpcb *
1487tcp_mtudisc(struct inpcb *inp, int errno)
1488{
1489	struct tcpcb *tp;
1490	struct socket *so = inp->inp_socket;
1491	u_int maxmtu;
1492	u_int romtu;
1493	int mss;
1494#ifdef INET6
1495	int isipv6;
1496#endif /* INET6 */
1497
1498	INP_LOCK_ASSERT(inp);
1499	if ((inp->inp_vflag & INP_TIMEWAIT) ||
1500	    (inp->inp_vflag & INP_DROPPED))
1501		return (inp);
1502
1503	tp = intotcpcb(inp);
1504	KASSERT(tp != NULL, ("tcp_mtudisc: tp == NULL"));
1505
1506#ifdef INET6
1507	isipv6 = (tp->t_inpcb->inp_vflag & INP_IPV6) != 0;
1508#endif
1509	maxmtu = tcp_hc_getmtu(&inp->inp_inc); /* IPv4 and IPv6 */
1510	romtu =
1511#ifdef INET6
1512	    isipv6 ? tcp_maxmtu6(&inp->inp_inc) :
1513#endif /* INET6 */
1514	    tcp_maxmtu(&inp->inp_inc);
1515	if (!maxmtu)
1516		maxmtu = romtu;
1517	else
1518		maxmtu = min(maxmtu, romtu);
1519	if (!maxmtu) {
1520		tp->t_maxopd = tp->t_maxseg =
1521#ifdef INET6
1522			isipv6 ? tcp_v6mssdflt :
1523#endif /* INET6 */
1524			tcp_mssdflt;
1525		return (inp);
1526	}
1527	mss = maxmtu -
1528#ifdef INET6
1529		(isipv6 ? sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
1530#endif /* INET6 */
1531		 sizeof(struct tcpiphdr)
1532#ifdef INET6
1533		 )
1534#endif /* INET6 */
1535		;
1536
1537	/*
1538	 * XXX - The above conditional probably violates the TCP
1539	 * spec.  The problem is that, since we don't know the
1540	 * other end's MSS, we are supposed to use a conservative
1541	 * default.  But, if we do that, then MTU discovery will
1542	 * never actually take place, because the conservative
1543	 * default is much less than the MTUs typically seen
1544	 * on the Internet today.  For the moment, we'll sweep
1545	 * this under the carpet.
1546	 *
1547	 * The conservative default might not actually be a problem
1548	 * if the only case this occurs is when sending an initial
1549	 * SYN with options and data to a host we've never talked
1550	 * to before.  Then, they will reply with an MSS value which
1551	 * will get recorded and the new parameters should get
1552	 * recomputed.  For Further Study.
1553	 */
1554	if (tp->t_maxopd <= mss)
1555		return (inp);
1556	tp->t_maxopd = mss;
1557
1558	if ((tp->t_flags & (TF_REQ_TSTMP|TF_NOOPT)) == TF_REQ_TSTMP &&
1559	    (tp->t_flags & TF_RCVD_TSTMP) == TF_RCVD_TSTMP)
1560		mss -= TCPOLEN_TSTAMP_APPA;
1561#if	(MCLBYTES & (MCLBYTES - 1)) == 0
1562	if (mss > MCLBYTES)
1563		mss &= ~(MCLBYTES-1);
1564#else
1565	if (mss > MCLBYTES)
1566		mss = mss / MCLBYTES * MCLBYTES;
1567#endif
1568	if (so->so_snd.sb_hiwat < mss)
1569		mss = so->so_snd.sb_hiwat;
1570
1571	tp->t_maxseg = mss;
1572
1573	tcpstat.tcps_mturesent++;
1574	tp->t_rtttime = 0;
1575	tp->snd_nxt = tp->snd_una;
1576	tcp_output(tp);
1577	return (inp);
1578}
1579
1580/*
1581 * Look-up the routing entry to the peer of this inpcb.  If no route
1582 * is found and it cannot be allocated, then return NULL.  This routine
1583 * is called by TCP routines that access the rmx structure and by tcp_mss
1584 * to get the interface MTU.
1585 */
1586u_long
1587tcp_maxmtu(struct in_conninfo *inc)
1588{
1589	struct route sro;
1590	struct sockaddr_in *dst;
1591	struct ifnet *ifp;
1592	u_long maxmtu = 0;
1593
1594	KASSERT(inc != NULL, ("tcp_maxmtu with NULL in_conninfo pointer"));
1595
1596	bzero(&sro, sizeof(sro));
1597	if (inc->inc_faddr.s_addr != INADDR_ANY) {
1598	        dst = (struct sockaddr_in *)&sro.ro_dst;
1599		dst->sin_family = AF_INET;
1600		dst->sin_len = sizeof(*dst);
1601		dst->sin_addr = inc->inc_faddr;
1602		rtalloc_ign(&sro, RTF_CLONING);
1603	}
1604	if (sro.ro_rt != NULL) {
1605		ifp = sro.ro_rt->rt_ifp;
1606		if (sro.ro_rt->rt_rmx.rmx_mtu == 0)
1607			maxmtu = ifp->if_mtu;
1608		else
1609			maxmtu = min(sro.ro_rt->rt_rmx.rmx_mtu, ifp->if_mtu);
1610		RTFREE(sro.ro_rt);
1611	}
1612	return (maxmtu);
1613}
1614
1615#ifdef INET6
1616u_long
1617tcp_maxmtu6(struct in_conninfo *inc)
1618{
1619	struct route_in6 sro6;
1620	struct ifnet *ifp;
1621	u_long maxmtu = 0;
1622
1623	KASSERT(inc != NULL, ("tcp_maxmtu6 with NULL in_conninfo pointer"));
1624
1625	bzero(&sro6, sizeof(sro6));
1626	if (!IN6_IS_ADDR_UNSPECIFIED(&inc->inc6_faddr)) {
1627		sro6.ro_dst.sin6_family = AF_INET6;
1628		sro6.ro_dst.sin6_len = sizeof(struct sockaddr_in6);
1629		sro6.ro_dst.sin6_addr = inc->inc6_faddr;
1630		rtalloc_ign((struct route *)&sro6, RTF_CLONING);
1631	}
1632	if (sro6.ro_rt != NULL) {
1633		ifp = sro6.ro_rt->rt_ifp;
1634		if (sro6.ro_rt->rt_rmx.rmx_mtu == 0)
1635			maxmtu = IN6_LINKMTU(sro6.ro_rt->rt_ifp);
1636		else
1637			maxmtu = min(sro6.ro_rt->rt_rmx.rmx_mtu,
1638				     IN6_LINKMTU(sro6.ro_rt->rt_ifp));
1639		RTFREE(sro6.ro_rt);
1640	}
1641
1642	return (maxmtu);
1643}
1644#endif /* INET6 */
1645
1646#ifdef IPSEC
1647/* compute ESP/AH header size for TCP, including outer IP header. */
1648size_t
1649ipsec_hdrsiz_tcp(struct tcpcb *tp)
1650{
1651	struct inpcb *inp;
1652	struct mbuf *m;
1653	size_t hdrsiz;
1654	struct ip *ip;
1655#ifdef INET6
1656	struct ip6_hdr *ip6;
1657#endif
1658	struct tcphdr *th;
1659
1660	if ((tp == NULL) || ((inp = tp->t_inpcb) == NULL))
1661		return (0);
1662	MGETHDR(m, M_DONTWAIT, MT_DATA);
1663	if (!m)
1664		return (0);
1665
1666#ifdef INET6
1667	if ((inp->inp_vflag & INP_IPV6) != 0) {
1668		ip6 = mtod(m, struct ip6_hdr *);
1669		th = (struct tcphdr *)(ip6 + 1);
1670		m->m_pkthdr.len = m->m_len =
1671			sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
1672		tcpip_fillheaders(inp, ip6, th);
1673		hdrsiz = ipsec6_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
1674	} else
1675#endif /* INET6 */
1676	{
1677		ip = mtod(m, struct ip *);
1678		th = (struct tcphdr *)(ip + 1);
1679		m->m_pkthdr.len = m->m_len = sizeof(struct tcpiphdr);
1680		tcpip_fillheaders(inp, ip, th);
1681		hdrsiz = ipsec4_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
1682	}
1683
1684	m_free(m);
1685	return (hdrsiz);
1686}
1687#endif /*IPSEC*/
1688
1689/*
1690 * Move a TCP connection into TIME_WAIT state.
1691 *    tcbinfo is locked.
1692 *    inp is locked, and is unlocked before returning.
1693 */
1694void
1695tcp_twstart(struct tcpcb *tp)
1696{
1697	struct tcptw *tw;
1698	struct inpcb *inp;
1699	int tw_time, acknow;
1700	struct socket *so;
1701
1702	INP_INFO_WLOCK_ASSERT(&tcbinfo);	/* tcp_timer_2msl_reset(). */
1703	INP_LOCK_ASSERT(tp->t_inpcb);
1704
1705	tw = uma_zalloc(tcptw_zone, M_NOWAIT);
1706	if (tw == NULL) {
1707		tw = tcp_timer_2msl_tw(1);
1708		if (tw == NULL) {
1709			tp = tcp_close(tp);
1710			if (tp != NULL)
1711				INP_UNLOCK(tp->t_inpcb);
1712			return;
1713		}
1714	}
1715	inp = tp->t_inpcb;
1716	tw->tw_inpcb = inp;
1717
1718	/*
1719	 * Recover last window size sent.
1720	 */
1721	tw->last_win = (tp->rcv_adv - tp->rcv_nxt) >> tp->rcv_scale;
1722
1723	/*
1724	 * Set t_recent if timestamps are used on the connection.
1725	 */
1726	if ((tp->t_flags & (TF_REQ_TSTMP|TF_RCVD_TSTMP|TF_NOOPT)) ==
1727	    (TF_REQ_TSTMP|TF_RCVD_TSTMP))
1728		tw->t_recent = tp->ts_recent;
1729	else
1730		tw->t_recent = 0;
1731
1732	tw->snd_nxt = tp->snd_nxt;
1733	tw->rcv_nxt = tp->rcv_nxt;
1734	tw->iss     = tp->iss;
1735	tw->irs     = tp->irs;
1736	tw->t_starttime = tp->t_starttime;
1737	tw->tw_time = 0;
1738
1739/* XXX
1740 * If this code will
1741 * be used for fin-wait-2 state also, then we may need
1742 * a ts_recent from the last segment.
1743 */
1744	tw_time = 2 * tcp_msl;
1745	acknow = tp->t_flags & TF_ACKNOW;
1746
1747	/*
1748	 * First, discard tcpcb state, which includes stopping its timers and
1749	 * freeing it.  tcp_discardcb() used to also release the inpcb, but
1750	 * that work is now done in the caller.
1751	 *
1752	 * Note: soisdisconnected() call used to be made in tcp_discardcb(),
1753	 * and might not be needed here any longer.
1754	 */
1755	tcp_discardcb(tp);
1756	so = inp->inp_socket;
1757	soisdisconnected(so);
1758	SOCK_LOCK(so);
1759	tw->tw_cred = crhold(so->so_cred);
1760	tw->tw_so_options = so->so_options;
1761	SOCK_UNLOCK(so);
1762	if (acknow)
1763		tcp_twrespond(tw, TH_ACK);
1764	inp->inp_ppcb = tw;
1765	inp->inp_vflag |= INP_TIMEWAIT;
1766	tcp_timer_2msl_reset(tw, tw_time, 0);
1767
1768	/*
1769	 * If the inpcb owns the sole reference to the socket, then we can
1770	 * detach and free the socket as it is not needed in time wait.
1771	 */
1772	if (inp->inp_vflag & INP_SOCKREF) {
1773		KASSERT(so->so_state & SS_PROTOREF,
1774		    ("tcp_twstart: !SS_PROTOREF"));
1775		inp->inp_vflag &= ~INP_SOCKREF;
1776		INP_UNLOCK(inp);
1777		ACCEPT_LOCK();
1778		SOCK_LOCK(so);
1779		so->so_state &= ~SS_PROTOREF;
1780		sofree(so);
1781	} else
1782		INP_UNLOCK(inp);
1783}
1784
1785/*
1786 * The appromixate rate of ISN increase of Microsoft TCP stacks;
1787 * the actual rate is slightly higher due to the addition of
1788 * random positive increments.
1789 *
1790 * Most other new OSes use semi-randomized ISN values, so we
1791 * do not need to worry about them.
1792 */
1793#define MS_ISN_BYTES_PER_SECOND		250000
1794
1795/*
1796 * Determine if the ISN we will generate has advanced beyond the last
1797 * sequence number used by the previous connection.  If so, indicate
1798 * that it is safe to recycle this tw socket by returning 1.
1799 *
1800 * XXXRW: This function should assert the inpcb lock as it does multiple
1801 * non-atomic reads from the tcptw, but is currently called without it from
1802 * in_pcb.c:in_pcblookup_local().
1803 */
1804int
1805tcp_twrecycleable(struct tcptw *tw)
1806{
1807	tcp_seq new_iss = tw->iss;
1808	tcp_seq new_irs = tw->irs;
1809
1810	new_iss += (ticks - tw->t_starttime) * (ISN_BYTES_PER_SECOND / hz);
1811	new_irs += (ticks - tw->t_starttime) * (MS_ISN_BYTES_PER_SECOND / hz);
1812
1813	if (SEQ_GT(new_iss, tw->snd_nxt) && SEQ_GT(new_irs, tw->rcv_nxt))
1814		return (1);
1815	else
1816		return (0);
1817}
1818
1819void
1820tcp_twclose(struct tcptw *tw, int reuse)
1821{
1822	struct socket *so;
1823	struct inpcb *inp;
1824
1825	/*
1826	 * At this point, we are in one of two situations:
1827	 *
1828	 * (1) We have no socket, just an inpcb<->twtcp pair.  We can free
1829	 *     all state.
1830	 *
1831	 * (2) We have a socket -- if we own a reference, release it and
1832	 *     notify the socket layer.
1833	 */
1834	inp = tw->tw_inpcb;
1835	KASSERT((inp->inp_vflag & INP_TIMEWAIT), ("tcp_twclose: !timewait"));
1836	KASSERT(intotw(inp) == tw, ("tcp_twclose: inp_ppcb != tw"));
1837	INP_INFO_WLOCK_ASSERT(&tcbinfo);	/* tcp_timer_2msl_stop(). */
1838	INP_LOCK_ASSERT(inp);
1839
1840	tw->tw_inpcb = NULL;
1841	tcp_timer_2msl_stop(tw);
1842	inp->inp_ppcb = NULL;
1843	in_pcbdrop(inp);
1844
1845	so = inp->inp_socket;
1846	if (so != NULL) {
1847		/*
1848		 * If there's a socket, handle two cases: first, we own a
1849		 * strong reference, which we will now release, or we don't
1850		 * in which case another reference exists (XXXRW: think
1851		 * about this more), and we don't need to take action.
1852		 */
1853		if (inp->inp_vflag & INP_SOCKREF) {
1854			inp->inp_vflag &= ~INP_SOCKREF;
1855			INP_UNLOCK(inp);
1856			ACCEPT_LOCK();
1857			SOCK_LOCK(so);
1858			KASSERT(so->so_state & SS_PROTOREF,
1859			    ("tcp_twclose: INP_SOCKREF && !SS_PROTOREF"));
1860			so->so_state &= ~SS_PROTOREF;
1861			sofree(so);
1862		} else {
1863			/*
1864			 * If we don't own the only reference, the socket and
1865			 * inpcb need to be left around to be handled by
1866			 * tcp_usr_detach() later.
1867			 */
1868			INP_UNLOCK(inp);
1869		}
1870	} else {
1871#ifdef INET6
1872		if (inp->inp_vflag & INP_IPV6PROTO)
1873			in6_pcbfree(inp);
1874		else
1875#endif
1876			in_pcbfree(inp);
1877	}
1878	tcpstat.tcps_closed++;
1879	crfree(tw->tw_cred);
1880	tw->tw_cred = NULL;
1881	if (reuse)
1882		return;
1883	uma_zfree(tcptw_zone, tw);
1884}
1885
1886int
1887tcp_twrespond(struct tcptw *tw, int flags)
1888{
1889	struct inpcb *inp = tw->tw_inpcb;
1890	struct tcphdr *th;
1891	struct mbuf *m;
1892	struct ip *ip = NULL;
1893	u_int8_t *optp;
1894	u_int hdrlen, optlen;
1895	int error;
1896#ifdef INET6
1897	struct ip6_hdr *ip6 = NULL;
1898	int isipv6 = inp->inp_inc.inc_isipv6;
1899#endif
1900
1901	INP_LOCK_ASSERT(inp);
1902
1903	m = m_gethdr(M_DONTWAIT, MT_DATA);
1904	if (m == NULL)
1905		return (ENOBUFS);
1906	m->m_data += max_linkhdr;
1907
1908#ifdef MAC
1909	mac_create_mbuf_from_inpcb(inp, m);
1910#endif
1911
1912#ifdef INET6
1913	if (isipv6) {
1914		hdrlen = sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
1915		ip6 = mtod(m, struct ip6_hdr *);
1916		th = (struct tcphdr *)(ip6 + 1);
1917		tcpip_fillheaders(inp, ip6, th);
1918	} else
1919#endif
1920	{
1921		hdrlen = sizeof(struct tcpiphdr);
1922		ip = mtod(m, struct ip *);
1923		th = (struct tcphdr *)(ip + 1);
1924		tcpip_fillheaders(inp, ip, th);
1925	}
1926	optp = (u_int8_t *)(th + 1);
1927
1928	/*
1929	 * Send a timestamp and echo-reply if both our side and our peer
1930	 * have sent timestamps in our SYN's and this is not a RST.
1931	 */
1932	if (tw->t_recent && flags == TH_ACK) {
1933		u_int32_t *lp = (u_int32_t *)optp;
1934
1935		/* Form timestamp option as shown in appendix A of RFC 1323. */
1936		*lp++ = htonl(TCPOPT_TSTAMP_HDR);
1937		*lp++ = htonl(ticks);
1938		*lp   = htonl(tw->t_recent);
1939		optp += TCPOLEN_TSTAMP_APPA;
1940	}
1941
1942	optlen = optp - (u_int8_t *)(th + 1);
1943
1944	m->m_len = hdrlen + optlen;
1945	m->m_pkthdr.len = m->m_len;
1946
1947	KASSERT(max_linkhdr + m->m_len <= MHLEN, ("tcptw: mbuf too small"));
1948
1949	th->th_seq = htonl(tw->snd_nxt);
1950	th->th_ack = htonl(tw->rcv_nxt);
1951	th->th_off = (sizeof(struct tcphdr) + optlen) >> 2;
1952	th->th_flags = flags;
1953	th->th_win = htons(tw->last_win);
1954
1955#ifdef INET6
1956	if (isipv6) {
1957		th->th_sum = in6_cksum(m, IPPROTO_TCP, sizeof(struct ip6_hdr),
1958		    sizeof(struct tcphdr) + optlen);
1959		ip6->ip6_hlim = in6_selecthlim(inp, NULL);
1960		error = ip6_output(m, inp->in6p_outputopts, NULL,
1961		    (tw->tw_so_options & SO_DONTROUTE), NULL, NULL, inp);
1962	} else
1963#endif
1964	{
1965		th->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
1966		    htons(sizeof(struct tcphdr) + optlen + IPPROTO_TCP));
1967		m->m_pkthdr.csum_flags = CSUM_TCP;
1968		m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
1969		ip->ip_len = m->m_pkthdr.len;
1970		if (path_mtu_discovery)
1971			ip->ip_off |= IP_DF;
1972		error = ip_output(m, inp->inp_options, NULL,
1973		    ((tw->tw_so_options & SO_DONTROUTE) ? IP_ROUTETOIF : 0),
1974		    NULL, inp);
1975	}
1976	if (flags & TH_ACK)
1977		tcpstat.tcps_sndacks++;
1978	else
1979		tcpstat.tcps_sndctrl++;
1980	tcpstat.tcps_sndtotal++;
1981	return (error);
1982}
1983
1984/*
1985 * TCP BANDWIDTH DELAY PRODUCT WINDOW LIMITING
1986 *
1987 * This code attempts to calculate the bandwidth-delay product as a
1988 * means of determining the optimal window size to maximize bandwidth,
1989 * minimize RTT, and avoid the over-allocation of buffers on interfaces and
1990 * routers.  This code also does a fairly good job keeping RTTs in check
1991 * across slow links like modems.  We implement an algorithm which is very
1992 * similar (but not meant to be) TCP/Vegas.  The code operates on the
1993 * transmitter side of a TCP connection and so only effects the transmit
1994 * side of the connection.
1995 *
1996 * BACKGROUND:  TCP makes no provision for the management of buffer space
1997 * at the end points or at the intermediate routers and switches.  A TCP
1998 * stream, whether using NewReno or not, will eventually buffer as
1999 * many packets as it is able and the only reason this typically works is
2000 * due to the fairly small default buffers made available for a connection
2001 * (typicaly 16K or 32K).  As machines use larger windows and/or window
2002 * scaling it is now fairly easy for even a single TCP connection to blow-out
2003 * all available buffer space not only on the local interface, but on
2004 * intermediate routers and switches as well.  NewReno makes a misguided
2005 * attempt to 'solve' this problem by waiting for an actual failure to occur,
2006 * then backing off, then steadily increasing the window again until another
2007 * failure occurs, ad-infinitum.  This results in terrible oscillation that
2008 * is only made worse as network loads increase and the idea of intentionally
2009 * blowing out network buffers is, frankly, a terrible way to manage network
2010 * resources.
2011 *
2012 * It is far better to limit the transmit window prior to the failure
2013 * condition being achieved.  There are two general ways to do this:  First
2014 * you can 'scan' through different transmit window sizes and locate the
2015 * point where the RTT stops increasing, indicating that you have filled the
2016 * pipe, then scan backwards until you note that RTT stops decreasing, then
2017 * repeat ad-infinitum.  This method works in principle but has severe
2018 * implementation issues due to RTT variances, timer granularity, and
2019 * instability in the algorithm which can lead to many false positives and
2020 * create oscillations as well as interact badly with other TCP streams
2021 * implementing the same algorithm.
2022 *
2023 * The second method is to limit the window to the bandwidth delay product
2024 * of the link.  This is the method we implement.  RTT variances and our
2025 * own manipulation of the congestion window, bwnd, can potentially
2026 * destabilize the algorithm.  For this reason we have to stabilize the
2027 * elements used to calculate the window.  We do this by using the minimum
2028 * observed RTT, the long term average of the observed bandwidth, and
2029 * by adding two segments worth of slop.  It isn't perfect but it is able
2030 * to react to changing conditions and gives us a very stable basis on
2031 * which to extend the algorithm.
2032 */
2033void
2034tcp_xmit_bandwidth_limit(struct tcpcb *tp, tcp_seq ack_seq)
2035{
2036	u_long bw;
2037	u_long bwnd;
2038	int save_ticks;
2039
2040	INP_LOCK_ASSERT(tp->t_inpcb);
2041
2042	/*
2043	 * If inflight_enable is disabled in the middle of a tcp connection,
2044	 * make sure snd_bwnd is effectively disabled.
2045	 */
2046	if (tcp_inflight_enable == 0 || tp->t_rttlow < tcp_inflight_rttthresh) {
2047		tp->snd_bwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
2048		tp->snd_bandwidth = 0;
2049		return;
2050	}
2051
2052	/*
2053	 * Figure out the bandwidth.  Due to the tick granularity this
2054	 * is a very rough number and it MUST be averaged over a fairly
2055	 * long period of time.  XXX we need to take into account a link
2056	 * that is not using all available bandwidth, but for now our
2057	 * slop will ramp us up if this case occurs and the bandwidth later
2058	 * increases.
2059	 *
2060	 * Note: if ticks rollover 'bw' may wind up negative.  We must
2061	 * effectively reset t_bw_rtttime for this case.
2062	 */
2063	save_ticks = ticks;
2064	if ((u_int)(save_ticks - tp->t_bw_rtttime) < 1)
2065		return;
2066
2067	bw = (int64_t)(ack_seq - tp->t_bw_rtseq) * hz /
2068	    (save_ticks - tp->t_bw_rtttime);
2069	tp->t_bw_rtttime = save_ticks;
2070	tp->t_bw_rtseq = ack_seq;
2071	if (tp->t_bw_rtttime == 0 || (int)bw < 0)
2072		return;
2073	bw = ((int64_t)tp->snd_bandwidth * 15 + bw) >> 4;
2074
2075	tp->snd_bandwidth = bw;
2076
2077	/*
2078	 * Calculate the semi-static bandwidth delay product, plus two maximal
2079	 * segments.  The additional slop puts us squarely in the sweet
2080	 * spot and also handles the bandwidth run-up case and stabilization.
2081	 * Without the slop we could be locking ourselves into a lower
2082	 * bandwidth.
2083	 *
2084	 * Situations Handled:
2085	 *	(1) Prevents over-queueing of packets on LANs, especially on
2086	 *	    high speed LANs, allowing larger TCP buffers to be
2087	 *	    specified, and also does a good job preventing
2088	 *	    over-queueing of packets over choke points like modems
2089	 *	    (at least for the transmit side).
2090	 *
2091	 *	(2) Is able to handle changing network loads (bandwidth
2092	 *	    drops so bwnd drops, bandwidth increases so bwnd
2093	 *	    increases).
2094	 *
2095	 *	(3) Theoretically should stabilize in the face of multiple
2096	 *	    connections implementing the same algorithm (this may need
2097	 *	    a little work).
2098	 *
2099	 *	(4) Stability value (defaults to 20 = 2 maximal packets) can
2100	 *	    be adjusted with a sysctl but typically only needs to be
2101	 *	    on very slow connections.  A value no smaller then 5
2102	 *	    should be used, but only reduce this default if you have
2103	 *	    no other choice.
2104	 */
2105#define USERTT	((tp->t_srtt + tp->t_rttbest) / 2)
2106	bwnd = (int64_t)bw * USERTT / (hz << TCP_RTT_SHIFT) + tcp_inflight_stab * tp->t_maxseg / 10;
2107#undef USERTT
2108
2109	if (tcp_inflight_debug > 0) {
2110		static int ltime;
2111		if ((u_int)(ticks - ltime) >= hz / tcp_inflight_debug) {
2112			ltime = ticks;
2113			printf("%p bw %ld rttbest %d srtt %d bwnd %ld\n",
2114			    tp,
2115			    bw,
2116			    tp->t_rttbest,
2117			    tp->t_srtt,
2118			    bwnd
2119			);
2120		}
2121	}
2122	if ((long)bwnd < tcp_inflight_min)
2123		bwnd = tcp_inflight_min;
2124	if (bwnd > tcp_inflight_max)
2125		bwnd = tcp_inflight_max;
2126	if ((long)bwnd < tp->t_maxseg * 2)
2127		bwnd = tp->t_maxseg * 2;
2128	tp->snd_bwnd = bwnd;
2129}
2130
2131#ifdef TCP_SIGNATURE
2132/*
2133 * Callback function invoked by m_apply() to digest TCP segment data
2134 * contained within an mbuf chain.
2135 */
2136static int
2137tcp_signature_apply(void *fstate, void *data, u_int len)
2138{
2139
2140	MD5Update(fstate, (u_char *)data, len);
2141	return (0);
2142}
2143
2144/*
2145 * Compute TCP-MD5 hash of a TCPv4 segment. (RFC2385)
2146 *
2147 * Parameters:
2148 * m		pointer to head of mbuf chain
2149 * off0		offset to TCP header within the mbuf chain
2150 * len		length of TCP segment data, excluding options
2151 * optlen	length of TCP segment options
2152 * buf		pointer to storage for computed MD5 digest
2153 * direction	direction of flow (IPSEC_DIR_INBOUND or OUTBOUND)
2154 *
2155 * We do this over ip, tcphdr, segment data, and the key in the SADB.
2156 * When called from tcp_input(), we can be sure that th_sum has been
2157 * zeroed out and verified already.
2158 *
2159 * This function is for IPv4 use only. Calling this function with an
2160 * IPv6 packet in the mbuf chain will yield undefined results.
2161 *
2162 * Return 0 if successful, otherwise return -1.
2163 *
2164 * XXX The key is retrieved from the system's PF_KEY SADB, by keying a
2165 * search with the destination IP address, and a 'magic SPI' to be
2166 * determined by the application. This is hardcoded elsewhere to 1179
2167 * right now. Another branch of this code exists which uses the SPD to
2168 * specify per-application flows but it is unstable.
2169 */
2170int
2171tcp_signature_compute(struct mbuf *m, int off0, int len, int optlen,
2172    u_char *buf, u_int direction)
2173{
2174	union sockaddr_union dst;
2175	struct ippseudo ippseudo;
2176	MD5_CTX ctx;
2177	int doff;
2178	struct ip *ip;
2179	struct ipovly *ipovly;
2180	struct secasvar *sav;
2181	struct tcphdr *th;
2182	u_short savecsum;
2183
2184	KASSERT(m != NULL, ("NULL mbuf chain"));
2185	KASSERT(buf != NULL, ("NULL signature pointer"));
2186
2187	/* Extract the destination from the IP header in the mbuf. */
2188	ip = mtod(m, struct ip *);
2189	bzero(&dst, sizeof(union sockaddr_union));
2190	dst.sa.sa_len = sizeof(struct sockaddr_in);
2191	dst.sa.sa_family = AF_INET;
2192	dst.sin.sin_addr = (direction == IPSEC_DIR_INBOUND) ?
2193	    ip->ip_src : ip->ip_dst;
2194
2195	/* Look up an SADB entry which matches the address of the peer. */
2196	sav = KEY_ALLOCSA(&dst, IPPROTO_TCP, htonl(TCP_SIG_SPI));
2197	if (sav == NULL) {
2198		printf("%s: SADB lookup failed for %s\n", __func__,
2199		    inet_ntoa(dst.sin.sin_addr));
2200		return (EINVAL);
2201	}
2202
2203	MD5Init(&ctx);
2204	ipovly = (struct ipovly *)ip;
2205	th = (struct tcphdr *)((u_char *)ip + off0);
2206	doff = off0 + sizeof(struct tcphdr) + optlen;
2207
2208	/*
2209	 * Step 1: Update MD5 hash with IP pseudo-header.
2210	 *
2211	 * XXX The ippseudo header MUST be digested in network byte order,
2212	 * or else we'll fail the regression test. Assume all fields we've
2213	 * been doing arithmetic on have been in host byte order.
2214	 * XXX One cannot depend on ipovly->ih_len here. When called from
2215	 * tcp_output(), the underlying ip_len member has not yet been set.
2216	 */
2217	ippseudo.ippseudo_src = ipovly->ih_src;
2218	ippseudo.ippseudo_dst = ipovly->ih_dst;
2219	ippseudo.ippseudo_pad = 0;
2220	ippseudo.ippseudo_p = IPPROTO_TCP;
2221	ippseudo.ippseudo_len = htons(len + sizeof(struct tcphdr) + optlen);
2222	MD5Update(&ctx, (char *)&ippseudo, sizeof(struct ippseudo));
2223
2224	/*
2225	 * Step 2: Update MD5 hash with TCP header, excluding options.
2226	 * The TCP checksum must be set to zero.
2227	 */
2228	savecsum = th->th_sum;
2229	th->th_sum = 0;
2230	MD5Update(&ctx, (char *)th, sizeof(struct tcphdr));
2231	th->th_sum = savecsum;
2232
2233	/*
2234	 * Step 3: Update MD5 hash with TCP segment data.
2235	 *         Use m_apply() to avoid an early m_pullup().
2236	 */
2237	if (len > 0)
2238		m_apply(m, doff, len, tcp_signature_apply, &ctx);
2239
2240	/*
2241	 * Step 4: Update MD5 hash with shared secret.
2242	 */
2243	MD5Update(&ctx, _KEYBUF(sav->key_auth), _KEYLEN(sav->key_auth));
2244	MD5Final(buf, &ctx);
2245
2246	key_sa_recordxfer(sav, m);
2247	KEY_FREESAV(&sav);
2248	return (0);
2249}
2250#endif /* TCP_SIGNATURE */
2251
2252static int
2253sysctl_drop(SYSCTL_HANDLER_ARGS)
2254{
2255	/* addrs[0] is a foreign socket, addrs[1] is a local one. */
2256	struct sockaddr_storage addrs[2];
2257	struct inpcb *inp;
2258	struct tcpcb *tp;
2259	struct tcptw *tw;
2260	struct sockaddr_in *fin, *lin;
2261#ifdef INET6
2262	struct sockaddr_in6 *fin6, *lin6;
2263	struct in6_addr f6, l6;
2264#endif
2265	int error;
2266
2267	inp = NULL;
2268	fin = lin = NULL;
2269#ifdef INET6
2270	fin6 = lin6 = NULL;
2271#endif
2272	error = 0;
2273
2274	if (req->oldptr != NULL || req->oldlen != 0)
2275		return (EINVAL);
2276	if (req->newptr == NULL)
2277		return (EPERM);
2278	if (req->newlen < sizeof(addrs))
2279		return (ENOMEM);
2280	error = SYSCTL_IN(req, &addrs, sizeof(addrs));
2281	if (error)
2282		return (error);
2283
2284	switch (addrs[0].ss_family) {
2285#ifdef INET6
2286	case AF_INET6:
2287		fin6 = (struct sockaddr_in6 *)&addrs[0];
2288		lin6 = (struct sockaddr_in6 *)&addrs[1];
2289		if (fin6->sin6_len != sizeof(struct sockaddr_in6) ||
2290		    lin6->sin6_len != sizeof(struct sockaddr_in6))
2291			return (EINVAL);
2292		if (IN6_IS_ADDR_V4MAPPED(&fin6->sin6_addr)) {
2293			if (!IN6_IS_ADDR_V4MAPPED(&lin6->sin6_addr))
2294				return (EINVAL);
2295			in6_sin6_2_sin_in_sock((struct sockaddr *)&addrs[0]);
2296			in6_sin6_2_sin_in_sock((struct sockaddr *)&addrs[1]);
2297			fin = (struct sockaddr_in *)&addrs[0];
2298			lin = (struct sockaddr_in *)&addrs[1];
2299			break;
2300		}
2301		error = sa6_embedscope(fin6, ip6_use_defzone);
2302		if (error)
2303			return (error);
2304		error = sa6_embedscope(lin6, ip6_use_defzone);
2305		if (error)
2306			return (error);
2307		break;
2308#endif
2309	case AF_INET:
2310		fin = (struct sockaddr_in *)&addrs[0];
2311		lin = (struct sockaddr_in *)&addrs[1];
2312		if (fin->sin_len != sizeof(struct sockaddr_in) ||
2313		    lin->sin_len != sizeof(struct sockaddr_in))
2314			return (EINVAL);
2315		break;
2316	default:
2317		return (EINVAL);
2318	}
2319	INP_INFO_WLOCK(&tcbinfo);
2320	switch (addrs[0].ss_family) {
2321#ifdef INET6
2322	case AF_INET6:
2323		inp = in6_pcblookup_hash(&tcbinfo, &f6, fin6->sin6_port,
2324		    &l6, lin6->sin6_port, 0, NULL);
2325		break;
2326#endif
2327	case AF_INET:
2328		inp = in_pcblookup_hash(&tcbinfo, fin->sin_addr, fin->sin_port,
2329		    lin->sin_addr, lin->sin_port, 0, NULL);
2330		break;
2331	}
2332	if (inp != NULL) {
2333		INP_LOCK(inp);
2334		if (inp->inp_vflag & INP_TIMEWAIT) {
2335			/*
2336			 * XXXRW: There currently exists a state where an
2337			 * inpcb is present, but its timewait state has been
2338			 * discarded.  For now, don't allow dropping of this
2339			 * type of inpcb.
2340			 */
2341			tw = intotw(inp);
2342			if (tw != NULL)
2343				tcp_twclose(tw, 0);
2344		} else if (!(inp->inp_vflag & INP_DROPPED) &&
2345			   !(inp->inp_socket->so_options & SO_ACCEPTCONN)) {
2346			tp = intotcpcb(inp);
2347			tcp_drop(tp, ECONNABORTED);
2348		}
2349		INP_UNLOCK(inp);
2350	} else
2351		error = ESRCH;
2352	INP_INFO_WUNLOCK(&tcbinfo);
2353	return (error);
2354}
2355
2356SYSCTL_PROC(_net_inet_tcp, TCPCTL_DROP, drop,
2357    CTLTYPE_STRUCT|CTLFLAG_WR|CTLFLAG_SKIP, NULL,
2358    0, sysctl_drop, "", "Drop TCP connection");
2359