tcp_timewait.c revision 160549
1/*-
2 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 4. Neither the name of the University nor the names of its contributors
14 *    may be used to endorse or promote products derived from this software
15 *    without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 *
29 *	@(#)tcp_subr.c	8.2 (Berkeley) 5/24/95
30 * $FreeBSD: head/sys/netinet/tcp_timewait.c 160549 2006-07-21 17:11:15Z rwatson $
31 */
32
33#include "opt_compat.h"
34#include "opt_inet.h"
35#include "opt_inet6.h"
36#include "opt_ipsec.h"
37#include "opt_mac.h"
38#include "opt_tcpdebug.h"
39#include "opt_tcp_sack.h"
40
41#include <sys/param.h>
42#include <sys/systm.h>
43#include <sys/callout.h>
44#include <sys/kernel.h>
45#include <sys/sysctl.h>
46#include <sys/mac.h>
47#include <sys/malloc.h>
48#include <sys/mbuf.h>
49#ifdef INET6
50#include <sys/domain.h>
51#endif
52#include <sys/proc.h>
53#include <sys/socket.h>
54#include <sys/socketvar.h>
55#include <sys/protosw.h>
56#include <sys/random.h>
57
58#include <vm/uma.h>
59
60#include <net/route.h>
61#include <net/if.h>
62
63#include <netinet/in.h>
64#include <netinet/in_systm.h>
65#include <netinet/ip.h>
66#ifdef INET6
67#include <netinet/ip6.h>
68#endif
69#include <netinet/in_pcb.h>
70#ifdef INET6
71#include <netinet6/in6_pcb.h>
72#endif
73#include <netinet/in_var.h>
74#include <netinet/ip_var.h>
75#ifdef INET6
76#include <netinet6/ip6_var.h>
77#include <netinet6/scope6_var.h>
78#include <netinet6/nd6.h>
79#endif
80#include <netinet/ip_icmp.h>
81#include <netinet/tcp.h>
82#include <netinet/tcp_fsm.h>
83#include <netinet/tcp_seq.h>
84#include <netinet/tcp_timer.h>
85#include <netinet/tcp_var.h>
86#ifdef INET6
87#include <netinet6/tcp6_var.h>
88#endif
89#include <netinet/tcpip.h>
90#ifdef TCPDEBUG
91#include <netinet/tcp_debug.h>
92#endif
93#include <netinet6/ip6protosw.h>
94
95#ifdef IPSEC
96#include <netinet6/ipsec.h>
97#ifdef INET6
98#include <netinet6/ipsec6.h>
99#endif
100#include <netkey/key.h>
101#endif /*IPSEC*/
102
103#ifdef FAST_IPSEC
104#include <netipsec/ipsec.h>
105#include <netipsec/xform.h>
106#ifdef INET6
107#include <netipsec/ipsec6.h>
108#endif
109#include <netipsec/key.h>
110#define	IPSEC
111#endif /*FAST_IPSEC*/
112
113#include <machine/in_cksum.h>
114#include <sys/md5.h>
115
116int	tcp_mssdflt = TCP_MSS;
117SYSCTL_INT(_net_inet_tcp, TCPCTL_MSSDFLT, mssdflt, CTLFLAG_RW,
118    &tcp_mssdflt , 0, "Default TCP Maximum Segment Size");
119
120#ifdef INET6
121int	tcp_v6mssdflt = TCP6_MSS;
122SYSCTL_INT(_net_inet_tcp, TCPCTL_V6MSSDFLT, v6mssdflt,
123	CTLFLAG_RW, &tcp_v6mssdflt , 0,
124	"Default TCP Maximum Segment Size for IPv6");
125#endif
126
127/*
128 * Minimum MSS we accept and use. This prevents DoS attacks where
129 * we are forced to a ridiculous low MSS like 20 and send hundreds
130 * of packets instead of one. The effect scales with the available
131 * bandwidth and quickly saturates the CPU and network interface
132 * with packet generation and sending. Set to zero to disable MINMSS
133 * checking. This setting prevents us from sending too small packets.
134 */
135int	tcp_minmss = TCP_MINMSS;
136SYSCTL_INT(_net_inet_tcp, OID_AUTO, minmss, CTLFLAG_RW,
137    &tcp_minmss , 0, "Minmum TCP Maximum Segment Size");
138/*
139 * Number of TCP segments per second we accept from remote host
140 * before we start to calculate average segment size. If average
141 * segment size drops below the minimum TCP MSS we assume a DoS
142 * attack and reset+drop the connection. Care has to be taken not to
143 * set this value too small to not kill interactive type connections
144 * (telnet, SSH) which send many small packets.
145 */
146int     tcp_minmssoverload = TCP_MINMSSOVERLOAD;
147SYSCTL_INT(_net_inet_tcp, OID_AUTO, minmssoverload, CTLFLAG_RW,
148    &tcp_minmssoverload , 0, "Number of TCP Segments per Second allowed to"
149    "be under the MINMSS Size");
150
151#if 0
152static int	tcp_rttdflt = TCPTV_SRTTDFLT / PR_SLOWHZ;
153SYSCTL_INT(_net_inet_tcp, TCPCTL_RTTDFLT, rttdflt, CTLFLAG_RW,
154    &tcp_rttdflt , 0, "Default maximum TCP Round Trip Time");
155#endif
156
157int	tcp_do_rfc1323 = 1;
158SYSCTL_INT(_net_inet_tcp, TCPCTL_DO_RFC1323, rfc1323, CTLFLAG_RW,
159    &tcp_do_rfc1323 , 0, "Enable rfc1323 (high performance TCP) extensions");
160
161static int	tcp_tcbhashsize = 0;
162SYSCTL_INT(_net_inet_tcp, OID_AUTO, tcbhashsize, CTLFLAG_RDTUN,
163     &tcp_tcbhashsize, 0, "Size of TCP control-block hashtable");
164
165static int	do_tcpdrain = 1;
166SYSCTL_INT(_net_inet_tcp, OID_AUTO, do_tcpdrain, CTLFLAG_RW, &do_tcpdrain, 0,
167     "Enable tcp_drain routine for extra help when low on mbufs");
168
169SYSCTL_INT(_net_inet_tcp, OID_AUTO, pcbcount, CTLFLAG_RD,
170    &tcbinfo.ipi_count, 0, "Number of active PCBs");
171
172static int	icmp_may_rst = 1;
173SYSCTL_INT(_net_inet_tcp, OID_AUTO, icmp_may_rst, CTLFLAG_RW, &icmp_may_rst, 0,
174    "Certain ICMP unreachable messages may abort connections in SYN_SENT");
175
176static int	tcp_isn_reseed_interval = 0;
177SYSCTL_INT(_net_inet_tcp, OID_AUTO, isn_reseed_interval, CTLFLAG_RW,
178    &tcp_isn_reseed_interval, 0, "Seconds between reseeding of ISN secret");
179
180static int	maxtcptw;
181SYSCTL_INT(_net_inet_tcp, OID_AUTO, maxtcptw, CTLFLAG_RDTUN,
182    &maxtcptw, 0, "Maximum number of compressed TCP TIME_WAIT entries");
183
184/*
185 * TCP bandwidth limiting sysctls.  Note that the default lower bound of
186 * 1024 exists only for debugging.  A good production default would be
187 * something like 6100.
188 */
189SYSCTL_NODE(_net_inet_tcp, OID_AUTO, inflight, CTLFLAG_RW, 0,
190    "TCP inflight data limiting");
191
192static int	tcp_inflight_enable = 1;
193SYSCTL_INT(_net_inet_tcp_inflight, OID_AUTO, enable, CTLFLAG_RW,
194    &tcp_inflight_enable, 0, "Enable automatic TCP inflight data limiting");
195
196static int	tcp_inflight_debug = 0;
197SYSCTL_INT(_net_inet_tcp_inflight, OID_AUTO, debug, CTLFLAG_RW,
198    &tcp_inflight_debug, 0, "Debug TCP inflight calculations");
199
200static int	tcp_inflight_rttthresh;
201SYSCTL_PROC(_net_inet_tcp_inflight, OID_AUTO, rttthresh, CTLTYPE_INT|CTLFLAG_RW,
202    &tcp_inflight_rttthresh, 0, sysctl_msec_to_ticks, "I",
203    "RTT threshold below which inflight will deactivate itself");
204
205static int	tcp_inflight_min = 6144;
206SYSCTL_INT(_net_inet_tcp_inflight, OID_AUTO, min, CTLFLAG_RW,
207    &tcp_inflight_min, 0, "Lower-bound for TCP inflight window");
208
209static int	tcp_inflight_max = TCP_MAXWIN << TCP_MAX_WINSHIFT;
210SYSCTL_INT(_net_inet_tcp_inflight, OID_AUTO, max, CTLFLAG_RW,
211    &tcp_inflight_max, 0, "Upper-bound for TCP inflight window");
212
213static int	tcp_inflight_stab = 20;
214SYSCTL_INT(_net_inet_tcp_inflight, OID_AUTO, stab, CTLFLAG_RW,
215    &tcp_inflight_stab, 0, "Inflight Algorithm Stabilization 20 = 2 packets");
216
217uma_zone_t sack_hole_zone;
218
219static struct inpcb *tcp_notify(struct inpcb *, int);
220static void	tcp_isn_tick(void *);
221
222/*
223 * Target size of TCP PCB hash tables. Must be a power of two.
224 *
225 * Note that this can be overridden by the kernel environment
226 * variable net.inet.tcp.tcbhashsize
227 */
228#ifndef TCBHASHSIZE
229#define TCBHASHSIZE	512
230#endif
231
232/*
233 * XXX
234 * Callouts should be moved into struct tcp directly.  They are currently
235 * separate because the tcpcb structure is exported to userland for sysctl
236 * parsing purposes, which do not know about callouts.
237 */
238struct	tcpcb_mem {
239	struct	tcpcb tcb;
240	struct	callout tcpcb_mem_rexmt, tcpcb_mem_persist, tcpcb_mem_keep;
241	struct	callout tcpcb_mem_2msl, tcpcb_mem_delack;
242};
243
244static uma_zone_t tcpcb_zone;
245static uma_zone_t tcptw_zone;
246struct callout isn_callout;
247static struct mtx isn_mtx;
248
249#define	ISN_LOCK_INIT()	mtx_init(&isn_mtx, "isn_mtx", NULL, MTX_DEF)
250#define	ISN_LOCK()	mtx_lock(&isn_mtx)
251#define	ISN_UNLOCK()	mtx_unlock(&isn_mtx)
252
253/*
254 * TCP initialization.
255 */
256static void
257tcp_zone_change(void *tag)
258{
259
260	uma_zone_set_max(tcbinfo.ipi_zone, maxsockets);
261	uma_zone_set_max(tcpcb_zone, maxsockets);
262	uma_zone_set_max(tcptw_zone, maxsockets / 5);
263}
264
265static int
266tcp_inpcb_init(void *mem, int size, int flags)
267{
268	struct inpcb *inp = (struct inpcb *) mem;
269	INP_LOCK_INIT(inp, "inp", "tcpinp");
270	return (0);
271}
272
273void
274tcp_init(void)
275{
276	int hashsize = TCBHASHSIZE;
277
278	tcp_delacktime = TCPTV_DELACK;
279	tcp_keepinit = TCPTV_KEEP_INIT;
280	tcp_keepidle = TCPTV_KEEP_IDLE;
281	tcp_keepintvl = TCPTV_KEEPINTVL;
282	tcp_maxpersistidle = TCPTV_KEEP_IDLE;
283	tcp_msl = TCPTV_MSL;
284	tcp_rexmit_min = TCPTV_MIN;
285	tcp_rexmit_slop = TCPTV_CPU_VAR;
286	tcp_inflight_rttthresh = TCPTV_INFLIGHT_RTTTHRESH;
287
288	INP_INFO_LOCK_INIT(&tcbinfo, "tcp");
289	LIST_INIT(&tcb);
290	tcbinfo.listhead = &tcb;
291	TUNABLE_INT_FETCH("net.inet.tcp.tcbhashsize", &hashsize);
292	if (!powerof2(hashsize)) {
293		printf("WARNING: TCB hash size not a power of 2\n");
294		hashsize = 512; /* safe default */
295	}
296	tcp_tcbhashsize = hashsize;
297	tcbinfo.hashbase = hashinit(hashsize, M_PCB, &tcbinfo.hashmask);
298	tcbinfo.porthashbase = hashinit(hashsize, M_PCB,
299					&tcbinfo.porthashmask);
300	tcbinfo.ipi_zone = uma_zcreate("inpcb", sizeof(struct inpcb),
301	    NULL, NULL, tcp_inpcb_init, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
302	uma_zone_set_max(tcbinfo.ipi_zone, maxsockets);
303#ifdef INET6
304#define TCP_MINPROTOHDR (sizeof(struct ip6_hdr) + sizeof(struct tcphdr))
305#else /* INET6 */
306#define TCP_MINPROTOHDR (sizeof(struct tcpiphdr))
307#endif /* INET6 */
308	if (max_protohdr < TCP_MINPROTOHDR)
309		max_protohdr = TCP_MINPROTOHDR;
310	if (max_linkhdr + TCP_MINPROTOHDR > MHLEN)
311		panic("tcp_init");
312#undef TCP_MINPROTOHDR
313	/*
314	 * These have to be type stable for the benefit of the timers.
315	 */
316	tcpcb_zone = uma_zcreate("tcpcb", sizeof(struct tcpcb_mem),
317	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
318	uma_zone_set_max(tcpcb_zone, maxsockets);
319	TUNABLE_INT_FETCH("net.inet.tcp.maxtcptw", &maxtcptw);
320	if (maxtcptw == 0)
321		maxtcptw = maxsockets / 5;
322	tcptw_zone = uma_zcreate("tcptw", sizeof(struct tcptw),
323	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
324	uma_zone_set_max(tcptw_zone, maxtcptw);
325	tcp_timer_init();
326	syncache_init();
327	tcp_hc_init();
328	tcp_reass_init();
329	ISN_LOCK_INIT();
330	callout_init(&isn_callout, CALLOUT_MPSAFE);
331	tcp_isn_tick(NULL);
332	EVENTHANDLER_REGISTER(shutdown_pre_sync, tcp_fini, NULL,
333		SHUTDOWN_PRI_DEFAULT);
334	sack_hole_zone = uma_zcreate("sackhole", sizeof(struct sackhole),
335	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
336	EVENTHANDLER_REGISTER(maxsockets_change, tcp_zone_change, NULL,
337		EVENTHANDLER_PRI_ANY);
338}
339
340void
341tcp_fini(void *xtp)
342{
343
344	callout_stop(&isn_callout);
345}
346
347/*
348 * Fill in the IP and TCP headers for an outgoing packet, given the tcpcb.
349 * tcp_template used to store this data in mbufs, but we now recopy it out
350 * of the tcpcb each time to conserve mbufs.
351 */
352void
353tcpip_fillheaders(struct inpcb *inp, void *ip_ptr, void *tcp_ptr)
354{
355	struct tcphdr *th = (struct tcphdr *)tcp_ptr;
356
357	INP_LOCK_ASSERT(inp);
358
359#ifdef INET6
360	if ((inp->inp_vflag & INP_IPV6) != 0) {
361		struct ip6_hdr *ip6;
362
363		ip6 = (struct ip6_hdr *)ip_ptr;
364		ip6->ip6_flow = (ip6->ip6_flow & ~IPV6_FLOWINFO_MASK) |
365			(inp->in6p_flowinfo & IPV6_FLOWINFO_MASK);
366		ip6->ip6_vfc = (ip6->ip6_vfc & ~IPV6_VERSION_MASK) |
367			(IPV6_VERSION & IPV6_VERSION_MASK);
368		ip6->ip6_nxt = IPPROTO_TCP;
369		ip6->ip6_plen = sizeof(struct tcphdr);
370		ip6->ip6_src = inp->in6p_laddr;
371		ip6->ip6_dst = inp->in6p_faddr;
372	} else
373#endif
374	{
375		struct ip *ip;
376
377		ip = (struct ip *)ip_ptr;
378		ip->ip_v = IPVERSION;
379		ip->ip_hl = 5;
380		ip->ip_tos = inp->inp_ip_tos;
381		ip->ip_len = 0;
382		ip->ip_id = 0;
383		ip->ip_off = 0;
384		ip->ip_ttl = inp->inp_ip_ttl;
385		ip->ip_sum = 0;
386		ip->ip_p = IPPROTO_TCP;
387		ip->ip_src = inp->inp_laddr;
388		ip->ip_dst = inp->inp_faddr;
389	}
390	th->th_sport = inp->inp_lport;
391	th->th_dport = inp->inp_fport;
392	th->th_seq = 0;
393	th->th_ack = 0;
394	th->th_x2 = 0;
395	th->th_off = 5;
396	th->th_flags = 0;
397	th->th_win = 0;
398	th->th_urp = 0;
399	th->th_sum = 0;		/* in_pseudo() is called later for ipv4 */
400}
401
402/*
403 * Create template to be used to send tcp packets on a connection.
404 * Allocates an mbuf and fills in a skeletal tcp/ip header.  The only
405 * use for this function is in keepalives, which use tcp_respond.
406 */
407struct tcptemp *
408tcpip_maketemplate(struct inpcb *inp)
409{
410	struct mbuf *m;
411	struct tcptemp *n;
412
413	m = m_get(M_DONTWAIT, MT_DATA);
414	if (m == NULL)
415		return (0);
416	m->m_len = sizeof(struct tcptemp);
417	n = mtod(m, struct tcptemp *);
418
419	tcpip_fillheaders(inp, (void *)&n->tt_ipgen, (void *)&n->tt_t);
420	return (n);
421}
422
423/*
424 * Send a single message to the TCP at address specified by
425 * the given TCP/IP header.  If m == NULL, then we make a copy
426 * of the tcpiphdr at ti and send directly to the addressed host.
427 * This is used to force keep alive messages out using the TCP
428 * template for a connection.  If flags are given then we send
429 * a message back to the TCP which originated the * segment ti,
430 * and discard the mbuf containing it and any other attached mbufs.
431 *
432 * In any case the ack and sequence number of the transmitted
433 * segment are as specified by the parameters.
434 *
435 * NOTE: If m != NULL, then ti must point to *inside* the mbuf.
436 */
437void
438tcp_respond(struct tcpcb *tp, void *ipgen, register struct tcphdr *th,
439    register struct mbuf *m, tcp_seq ack, tcp_seq seq, int flags)
440{
441	register int tlen;
442	int win = 0;
443	struct ip *ip;
444	struct tcphdr *nth;
445#ifdef INET6
446	struct ip6_hdr *ip6;
447	int isipv6;
448#endif /* INET6 */
449	int ipflags = 0;
450	struct inpcb *inp;
451
452	KASSERT(tp != NULL || m != NULL, ("tcp_respond: tp and m both NULL"));
453
454#ifdef INET6
455	isipv6 = ((struct ip *)ipgen)->ip_v == 6;
456	ip6 = ipgen;
457#endif /* INET6 */
458	ip = ipgen;
459
460	if (tp != NULL) {
461		inp = tp->t_inpcb;
462		KASSERT(inp != NULL, ("tcp control block w/o inpcb"));
463		INP_INFO_WLOCK_ASSERT(&tcbinfo);
464		INP_LOCK_ASSERT(inp);
465	} else
466		inp = NULL;
467
468	if (tp != NULL) {
469		if (!(flags & TH_RST)) {
470			win = sbspace(&inp->inp_socket->so_rcv);
471			if (win > (long)TCP_MAXWIN << tp->rcv_scale)
472				win = (long)TCP_MAXWIN << tp->rcv_scale;
473		}
474	}
475	if (m == NULL) {
476		m = m_gethdr(M_DONTWAIT, MT_DATA);
477		if (m == NULL)
478			return;
479		tlen = 0;
480		m->m_data += max_linkhdr;
481#ifdef INET6
482		if (isipv6) {
483			bcopy((caddr_t)ip6, mtod(m, caddr_t),
484			      sizeof(struct ip6_hdr));
485			ip6 = mtod(m, struct ip6_hdr *);
486			nth = (struct tcphdr *)(ip6 + 1);
487		} else
488#endif /* INET6 */
489	      {
490		bcopy((caddr_t)ip, mtod(m, caddr_t), sizeof(struct ip));
491		ip = mtod(m, struct ip *);
492		nth = (struct tcphdr *)(ip + 1);
493	      }
494		bcopy((caddr_t)th, (caddr_t)nth, sizeof(struct tcphdr));
495		flags = TH_ACK;
496	} else {
497		m_freem(m->m_next);
498		m->m_next = NULL;
499		m->m_data = (caddr_t)ipgen;
500		/* m_len is set later */
501		tlen = 0;
502#define xchg(a,b,type) { type t; t=a; a=b; b=t; }
503#ifdef INET6
504		if (isipv6) {
505			xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr);
506			nth = (struct tcphdr *)(ip6 + 1);
507		} else
508#endif /* INET6 */
509	      {
510		xchg(ip->ip_dst.s_addr, ip->ip_src.s_addr, n_long);
511		nth = (struct tcphdr *)(ip + 1);
512	      }
513		if (th != nth) {
514			/*
515			 * this is usually a case when an extension header
516			 * exists between the IPv6 header and the
517			 * TCP header.
518			 */
519			nth->th_sport = th->th_sport;
520			nth->th_dport = th->th_dport;
521		}
522		xchg(nth->th_dport, nth->th_sport, n_short);
523#undef xchg
524	}
525#ifdef INET6
526	if (isipv6) {
527		ip6->ip6_flow = 0;
528		ip6->ip6_vfc = IPV6_VERSION;
529		ip6->ip6_nxt = IPPROTO_TCP;
530		ip6->ip6_plen = htons((u_short)(sizeof (struct tcphdr) +
531						tlen));
532		tlen += sizeof (struct ip6_hdr) + sizeof (struct tcphdr);
533	} else
534#endif
535	{
536		tlen += sizeof (struct tcpiphdr);
537		ip->ip_len = tlen;
538		ip->ip_ttl = ip_defttl;
539		if (path_mtu_discovery)
540			ip->ip_off |= IP_DF;
541	}
542	m->m_len = tlen;
543	m->m_pkthdr.len = tlen;
544	m->m_pkthdr.rcvif = NULL;
545#ifdef MAC
546	if (inp != NULL) {
547		/*
548		 * Packet is associated with a socket, so allow the
549		 * label of the response to reflect the socket label.
550		 */
551		INP_LOCK_ASSERT(inp);
552		mac_create_mbuf_from_inpcb(inp, m);
553	} else {
554		/*
555		 * Packet is not associated with a socket, so possibly
556		 * update the label in place.
557		 */
558		mac_reflect_mbuf_tcp(m);
559	}
560#endif
561	nth->th_seq = htonl(seq);
562	nth->th_ack = htonl(ack);
563	nth->th_x2 = 0;
564	nth->th_off = sizeof (struct tcphdr) >> 2;
565	nth->th_flags = flags;
566	if (tp != NULL)
567		nth->th_win = htons((u_short) (win >> tp->rcv_scale));
568	else
569		nth->th_win = htons((u_short)win);
570	nth->th_urp = 0;
571#ifdef INET6
572	if (isipv6) {
573		nth->th_sum = 0;
574		nth->th_sum = in6_cksum(m, IPPROTO_TCP,
575					sizeof(struct ip6_hdr),
576					tlen - sizeof(struct ip6_hdr));
577		ip6->ip6_hlim = in6_selecthlim(tp != NULL ? tp->t_inpcb :
578		    NULL, NULL);
579	} else
580#endif /* INET6 */
581	{
582		nth->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
583		    htons((u_short)(tlen - sizeof(struct ip) + ip->ip_p)));
584		m->m_pkthdr.csum_flags = CSUM_TCP;
585		m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
586	}
587#ifdef TCPDEBUG
588	if (tp == NULL || (inp->inp_socket->so_options & SO_DEBUG))
589		tcp_trace(TA_OUTPUT, 0, tp, mtod(m, void *), th, 0);
590#endif
591#ifdef INET6
592	if (isipv6)
593		(void) ip6_output(m, NULL, NULL, ipflags, NULL, NULL, inp);
594	else
595#endif /* INET6 */
596	(void) ip_output(m, NULL, NULL, ipflags, NULL, inp);
597}
598
599/*
600 * Create a new TCP control block, making an
601 * empty reassembly queue and hooking it to the argument
602 * protocol control block.  The `inp' parameter must have
603 * come from the zone allocator set up in tcp_init().
604 */
605struct tcpcb *
606tcp_newtcpcb(struct inpcb *inp)
607{
608	struct tcpcb_mem *tm;
609	struct tcpcb *tp;
610#ifdef INET6
611	int isipv6 = (inp->inp_vflag & INP_IPV6) != 0;
612#endif /* INET6 */
613
614	tm = uma_zalloc(tcpcb_zone, M_NOWAIT | M_ZERO);
615	if (tm == NULL)
616		return (NULL);
617	tp = &tm->tcb;
618	/*	LIST_INIT(&tp->t_segq); */	/* XXX covered by M_ZERO */
619	tp->t_maxseg = tp->t_maxopd =
620#ifdef INET6
621		isipv6 ? tcp_v6mssdflt :
622#endif /* INET6 */
623		tcp_mssdflt;
624
625	/* Set up our timeouts. */
626	callout_init(tp->tt_rexmt = &tm->tcpcb_mem_rexmt, NET_CALLOUT_MPSAFE);
627	callout_init(tp->tt_persist = &tm->tcpcb_mem_persist, NET_CALLOUT_MPSAFE);
628	callout_init(tp->tt_keep = &tm->tcpcb_mem_keep, NET_CALLOUT_MPSAFE);
629	callout_init(tp->tt_2msl = &tm->tcpcb_mem_2msl, NET_CALLOUT_MPSAFE);
630	callout_init(tp->tt_delack = &tm->tcpcb_mem_delack, NET_CALLOUT_MPSAFE);
631
632	if (tcp_do_rfc1323)
633		tp->t_flags = (TF_REQ_SCALE|TF_REQ_TSTMP);
634	tp->sack_enable = tcp_do_sack;
635	TAILQ_INIT(&tp->snd_holes);
636	tp->t_inpcb = inp;	/* XXX */
637	/*
638	 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
639	 * rtt estimate.  Set rttvar so that srtt + 4 * rttvar gives
640	 * reasonable initial retransmit time.
641	 */
642	tp->t_srtt = TCPTV_SRTTBASE;
643	tp->t_rttvar = ((TCPTV_RTOBASE - TCPTV_SRTTBASE) << TCP_RTTVAR_SHIFT) / 4;
644	tp->t_rttmin = tcp_rexmit_min;
645	tp->t_rxtcur = TCPTV_RTOBASE;
646	tp->snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
647	tp->snd_bwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
648	tp->snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT;
649	tp->t_rcvtime = ticks;
650	tp->t_bw_rtttime = ticks;
651	/*
652	 * IPv4 TTL initialization is necessary for an IPv6 socket as well,
653	 * because the socket may be bound to an IPv6 wildcard address,
654	 * which may match an IPv4-mapped IPv6 address.
655	 */
656	inp->inp_ip_ttl = ip_defttl;
657	inp->inp_ppcb = tp;
658	return (tp);		/* XXX */
659}
660
661/*
662 * Drop a TCP connection, reporting
663 * the specified error.  If connection is synchronized,
664 * then send a RST to peer.
665 */
666struct tcpcb *
667tcp_drop(struct tcpcb *tp, int errno)
668{
669	struct socket *so = tp->t_inpcb->inp_socket;
670
671	INP_INFO_WLOCK_ASSERT(&tcbinfo);
672	INP_LOCK_ASSERT(tp->t_inpcb);
673
674	if (TCPS_HAVERCVDSYN(tp->t_state)) {
675		tp->t_state = TCPS_CLOSED;
676		(void) tcp_output(tp);
677		tcpstat.tcps_drops++;
678	} else
679		tcpstat.tcps_conndrops++;
680	if (errno == ETIMEDOUT && tp->t_softerror)
681		errno = tp->t_softerror;
682	so->so_error = errno;
683	return (tcp_close(tp));
684}
685
686void
687tcp_discardcb(struct tcpcb *tp)
688{
689	struct tseg_qent *q;
690	struct inpcb *inp = tp->t_inpcb;
691	struct socket *so = inp->inp_socket;
692#ifdef INET6
693	int isipv6 = (inp->inp_vflag & INP_IPV6) != 0;
694#endif /* INET6 */
695
696	/*
697	 * XXXRW: This is all very well and good, but actually, we might be
698	 * discarding the tcpcb after the socket is gone, so we can't do
699	 * this:
700	KASSERT(so != NULL, ("tcp_discardcb: so == NULL"));
701	 */
702	INP_LOCK_ASSERT(inp);
703
704	/*
705	 * Make sure that all of our timers are stopped before we
706	 * delete the PCB.
707	 */
708	callout_stop(tp->tt_rexmt);
709	callout_stop(tp->tt_persist);
710	callout_stop(tp->tt_keep);
711	callout_stop(tp->tt_2msl);
712	callout_stop(tp->tt_delack);
713
714	/*
715	 * If we got enough samples through the srtt filter,
716	 * save the rtt and rttvar in the routing entry.
717	 * 'Enough' is arbitrarily defined as 4 rtt samples.
718	 * 4 samples is enough for the srtt filter to converge
719	 * to within enough % of the correct value; fewer samples
720	 * and we could save a bogus rtt. The danger is not high
721	 * as tcp quickly recovers from everything.
722	 * XXX: Works very well but needs some more statistics!
723	 */
724	if (tp->t_rttupdated >= 4) {
725		struct hc_metrics_lite metrics;
726		u_long ssthresh;
727
728		bzero(&metrics, sizeof(metrics));
729		/*
730		 * Update the ssthresh always when the conditions below
731		 * are satisfied. This gives us better new start value
732		 * for the congestion avoidance for new connections.
733		 * ssthresh is only set if packet loss occured on a session.
734		 */
735		ssthresh = tp->snd_ssthresh;
736		if (ssthresh != 0 && ssthresh < so->so_snd.sb_hiwat / 2) {
737			/*
738			 * convert the limit from user data bytes to
739			 * packets then to packet data bytes.
740			 */
741			ssthresh = (ssthresh + tp->t_maxseg / 2) / tp->t_maxseg;
742			if (ssthresh < 2)
743				ssthresh = 2;
744			ssthresh *= (u_long)(tp->t_maxseg +
745#ifdef INET6
746				      (isipv6 ? sizeof (struct ip6_hdr) +
747					       sizeof (struct tcphdr) :
748#endif
749				       sizeof (struct tcpiphdr)
750#ifdef INET6
751				       )
752#endif
753				      );
754		} else
755			ssthresh = 0;
756		metrics.rmx_ssthresh = ssthresh;
757
758		metrics.rmx_rtt = tp->t_srtt;
759		metrics.rmx_rttvar = tp->t_rttvar;
760		/* XXX: This wraps if the pipe is more than 4 Gbit per second */
761		metrics.rmx_bandwidth = tp->snd_bandwidth;
762		metrics.rmx_cwnd = tp->snd_cwnd;
763		metrics.rmx_sendpipe = 0;
764		metrics.rmx_recvpipe = 0;
765
766		tcp_hc_update(&inp->inp_inc, &metrics);
767	}
768
769	/* free the reassembly queue, if any */
770	while ((q = LIST_FIRST(&tp->t_segq)) != NULL) {
771		LIST_REMOVE(q, tqe_q);
772		m_freem(q->tqe_m);
773		uma_zfree(tcp_reass_zone, q);
774		tp->t_segqlen--;
775		tcp_reass_qsize--;
776	}
777	tcp_free_sackholes(tp);
778	inp->inp_ppcb = NULL;
779	tp->t_inpcb = NULL;
780	uma_zfree(tcpcb_zone, tp);
781
782	/*
783	 * XXXRW: This seems a bit unclean.
784	 */
785	if (so != NULL)
786		soisdisconnected(so);
787}
788
789/*
790 * Attempt to close a TCP control block, marking it as dropped, and freeing
791 * the socket if we hold the only reference.
792 */
793struct tcpcb *
794tcp_close(struct tcpcb *tp)
795{
796	struct inpcb *inp = tp->t_inpcb;
797	struct socket *so;
798
799	INP_INFO_WLOCK_ASSERT(&tcbinfo);
800	INP_LOCK_ASSERT(inp);
801
802	in_pcbdrop(inp);
803	tcpstat.tcps_closed++;
804	KASSERT(inp->inp_socket != NULL, ("tcp_close: inp_socket NULL"));
805	so = inp->inp_socket;
806	soisdisconnected(so);
807	if (inp->inp_vflag & INP_SOCKREF) {
808		KASSERT(so->so_state & SS_PROTOREF,
809		    ("tcp_close: !SS_PROTOREF"));
810		inp->inp_vflag &= ~INP_SOCKREF;
811		INP_UNLOCK(inp);
812		ACCEPT_LOCK();
813		SOCK_LOCK(so);
814		so->so_state &= ~SS_PROTOREF;
815		sofree(so);
816		return (NULL);
817	}
818	return (tp);
819}
820
821void
822tcp_drain(void)
823{
824
825	if (do_tcpdrain) {
826		struct inpcb *inpb;
827		struct tcpcb *tcpb;
828		struct tseg_qent *te;
829
830	/*
831	 * Walk the tcpbs, if existing, and flush the reassembly queue,
832	 * if there is one...
833	 * XXX: The "Net/3" implementation doesn't imply that the TCP
834	 *      reassembly queue should be flushed, but in a situation
835	 *	where we're really low on mbufs, this is potentially
836	 *	usefull.
837	 */
838		INP_INFO_RLOCK(&tcbinfo);
839		LIST_FOREACH(inpb, tcbinfo.listhead, inp_list) {
840			if (inpb->inp_vflag & INP_TIMEWAIT)
841				continue;
842			INP_LOCK(inpb);
843			if ((tcpb = intotcpcb(inpb)) != NULL) {
844				while ((te = LIST_FIRST(&tcpb->t_segq))
845			            != NULL) {
846					LIST_REMOVE(te, tqe_q);
847					m_freem(te->tqe_m);
848					uma_zfree(tcp_reass_zone, te);
849					tcpb->t_segqlen--;
850					tcp_reass_qsize--;
851				}
852				tcp_clean_sackreport(tcpb);
853			}
854			INP_UNLOCK(inpb);
855		}
856		INP_INFO_RUNLOCK(&tcbinfo);
857	}
858}
859
860/*
861 * Notify a tcp user of an asynchronous error;
862 * store error as soft error, but wake up user
863 * (for now, won't do anything until can select for soft error).
864 *
865 * Do not wake up user since there currently is no mechanism for
866 * reporting soft errors (yet - a kqueue filter may be added).
867 */
868static struct inpcb *
869tcp_notify(struct inpcb *inp, int error)
870{
871	struct tcpcb *tp;
872
873	INP_INFO_WLOCK_ASSERT(&tcbinfo);
874	INP_LOCK_ASSERT(inp);
875
876	if ((inp->inp_vflag & INP_TIMEWAIT) ||
877	    (inp->inp_vflag & INP_DROPPED))
878		return (inp);
879
880	tp = intotcpcb(inp);
881	KASSERT(tp != NULL, ("tcp_notify: tp == NULL"));
882
883	/*
884	 * Ignore some errors if we are hooked up.
885	 * If connection hasn't completed, has retransmitted several times,
886	 * and receives a second error, give up now.  This is better
887	 * than waiting a long time to establish a connection that
888	 * can never complete.
889	 */
890	if (tp->t_state == TCPS_ESTABLISHED &&
891	    (error == EHOSTUNREACH || error == ENETUNREACH ||
892	     error == EHOSTDOWN)) {
893		return (inp);
894	} else if (tp->t_state < TCPS_ESTABLISHED && tp->t_rxtshift > 3 &&
895	    tp->t_softerror) {
896		tp = tcp_drop(tp, error);
897		if (tp != NULL)
898			return (inp);
899		else
900			return (NULL);
901	} else {
902		tp->t_softerror = error;
903		return (inp);
904	}
905#if 0
906	wakeup( &so->so_timeo);
907	sorwakeup(so);
908	sowwakeup(so);
909#endif
910}
911
912static int
913tcp_pcblist(SYSCTL_HANDLER_ARGS)
914{
915	int error, i, n;
916	struct inpcb *inp, **inp_list;
917	inp_gen_t gencnt;
918	struct xinpgen xig;
919
920	/*
921	 * The process of preparing the TCB list is too time-consuming and
922	 * resource-intensive to repeat twice on every request.
923	 */
924	if (req->oldptr == NULL) {
925		n = tcbinfo.ipi_count;
926		req->oldidx = 2 * (sizeof xig)
927			+ (n + n/8) * sizeof(struct xtcpcb);
928		return (0);
929	}
930
931	if (req->newptr != NULL)
932		return (EPERM);
933
934	/*
935	 * OK, now we're committed to doing something.
936	 */
937	INP_INFO_RLOCK(&tcbinfo);
938	gencnt = tcbinfo.ipi_gencnt;
939	n = tcbinfo.ipi_count;
940	INP_INFO_RUNLOCK(&tcbinfo);
941
942	error = sysctl_wire_old_buffer(req, 2 * (sizeof xig)
943		+ n * sizeof(struct xtcpcb));
944	if (error != 0)
945		return (error);
946
947	xig.xig_len = sizeof xig;
948	xig.xig_count = n;
949	xig.xig_gen = gencnt;
950	xig.xig_sogen = so_gencnt;
951	error = SYSCTL_OUT(req, &xig, sizeof xig);
952	if (error)
953		return (error);
954
955	inp_list = malloc(n * sizeof *inp_list, M_TEMP, M_WAITOK);
956	if (inp_list == NULL)
957		return (ENOMEM);
958
959	INP_INFO_RLOCK(&tcbinfo);
960	for (inp = LIST_FIRST(tcbinfo.listhead), i = 0; inp != NULL && i < n;
961	     inp = LIST_NEXT(inp, inp_list)) {
962		INP_LOCK(inp);
963		if (inp->inp_gencnt <= gencnt) {
964			/*
965			 * XXX: This use of cr_cansee(), introduced with
966			 * TCP state changes, is not quite right, but for
967			 * now, better than nothing.
968			 */
969			if (inp->inp_vflag & INP_TIMEWAIT) {
970				if (intotw(inp) != NULL)
971					error = cr_cansee(req->td->td_ucred,
972					    intotw(inp)->tw_cred);
973				else
974					error = EINVAL;	/* Skip this inp. */
975			} else
976				error = cr_canseesocket(req->td->td_ucred,
977				    inp->inp_socket);
978			if (error == 0)
979				inp_list[i++] = inp;
980		}
981		INP_UNLOCK(inp);
982	}
983	INP_INFO_RUNLOCK(&tcbinfo);
984	n = i;
985
986	error = 0;
987	for (i = 0; i < n; i++) {
988		inp = inp_list[i];
989		INP_LOCK(inp);
990		if (inp->inp_gencnt <= gencnt) {
991			struct xtcpcb xt;
992			void *inp_ppcb;
993
994			bzero(&xt, sizeof(xt));
995			xt.xt_len = sizeof xt;
996			/* XXX should avoid extra copy */
997			bcopy(inp, &xt.xt_inp, sizeof *inp);
998			inp_ppcb = inp->inp_ppcb;
999			if (inp_ppcb == NULL)
1000				bzero((char *) &xt.xt_tp, sizeof xt.xt_tp);
1001			else if (inp->inp_vflag & INP_TIMEWAIT) {
1002				bzero((char *) &xt.xt_tp, sizeof xt.xt_tp);
1003				xt.xt_tp.t_state = TCPS_TIME_WAIT;
1004			} else
1005				bcopy(inp_ppcb, &xt.xt_tp, sizeof xt.xt_tp);
1006			if (inp->inp_socket != NULL)
1007				sotoxsocket(inp->inp_socket, &xt.xt_socket);
1008			else {
1009				bzero(&xt.xt_socket, sizeof xt.xt_socket);
1010				xt.xt_socket.xso_protocol = IPPROTO_TCP;
1011			}
1012			xt.xt_inp.inp_gencnt = inp->inp_gencnt;
1013			INP_UNLOCK(inp);
1014			error = SYSCTL_OUT(req, &xt, sizeof xt);
1015		} else
1016			INP_UNLOCK(inp);
1017
1018	}
1019	if (!error) {
1020		/*
1021		 * Give the user an updated idea of our state.
1022		 * If the generation differs from what we told
1023		 * her before, she knows that something happened
1024		 * while we were processing this request, and it
1025		 * might be necessary to retry.
1026		 */
1027		INP_INFO_RLOCK(&tcbinfo);
1028		xig.xig_gen = tcbinfo.ipi_gencnt;
1029		xig.xig_sogen = so_gencnt;
1030		xig.xig_count = tcbinfo.ipi_count;
1031		INP_INFO_RUNLOCK(&tcbinfo);
1032		error = SYSCTL_OUT(req, &xig, sizeof xig);
1033	}
1034	free(inp_list, M_TEMP);
1035	return (error);
1036}
1037
1038SYSCTL_PROC(_net_inet_tcp, TCPCTL_PCBLIST, pcblist, CTLFLAG_RD, 0, 0,
1039	    tcp_pcblist, "S,xtcpcb", "List of active TCP connections");
1040
1041static int
1042tcp_getcred(SYSCTL_HANDLER_ARGS)
1043{
1044	struct xucred xuc;
1045	struct sockaddr_in addrs[2];
1046	struct inpcb *inp;
1047	int error;
1048
1049	error = suser_cred(req->td->td_ucred, SUSER_ALLOWJAIL);
1050	if (error)
1051		return (error);
1052	error = SYSCTL_IN(req, addrs, sizeof(addrs));
1053	if (error)
1054		return (error);
1055	INP_INFO_RLOCK(&tcbinfo);
1056	inp = in_pcblookup_hash(&tcbinfo, addrs[1].sin_addr, addrs[1].sin_port,
1057	    addrs[0].sin_addr, addrs[0].sin_port, 0, NULL);
1058	if (inp == NULL) {
1059		error = ENOENT;
1060		goto outunlocked;
1061	}
1062	INP_LOCK(inp);
1063	if (inp->inp_socket == NULL) {
1064		error = ENOENT;
1065		goto out;
1066	}
1067	error = cr_canseesocket(req->td->td_ucred, inp->inp_socket);
1068	if (error)
1069		goto out;
1070	cru2x(inp->inp_socket->so_cred, &xuc);
1071out:
1072	INP_UNLOCK(inp);
1073outunlocked:
1074	INP_INFO_RUNLOCK(&tcbinfo);
1075	if (error == 0)
1076		error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred));
1077	return (error);
1078}
1079
1080SYSCTL_PROC(_net_inet_tcp, OID_AUTO, getcred,
1081    CTLTYPE_OPAQUE|CTLFLAG_RW|CTLFLAG_PRISON, 0, 0,
1082    tcp_getcred, "S,xucred", "Get the xucred of a TCP connection");
1083
1084#ifdef INET6
1085static int
1086tcp6_getcred(SYSCTL_HANDLER_ARGS)
1087{
1088	struct xucred xuc;
1089	struct sockaddr_in6 addrs[2];
1090	struct inpcb *inp;
1091	int error, mapped = 0;
1092
1093	error = suser_cred(req->td->td_ucred, SUSER_ALLOWJAIL);
1094	if (error)
1095		return (error);
1096	error = SYSCTL_IN(req, addrs, sizeof(addrs));
1097	if (error)
1098		return (error);
1099	if ((error = sa6_embedscope(&addrs[0], ip6_use_defzone)) != 0 ||
1100	    (error = sa6_embedscope(&addrs[1], ip6_use_defzone)) != 0) {
1101		return (error);
1102	}
1103	if (IN6_IS_ADDR_V4MAPPED(&addrs[0].sin6_addr)) {
1104		if (IN6_IS_ADDR_V4MAPPED(&addrs[1].sin6_addr))
1105			mapped = 1;
1106		else
1107			return (EINVAL);
1108	}
1109
1110	INP_INFO_RLOCK(&tcbinfo);
1111	if (mapped == 1)
1112		inp = in_pcblookup_hash(&tcbinfo,
1113			*(struct in_addr *)&addrs[1].sin6_addr.s6_addr[12],
1114			addrs[1].sin6_port,
1115			*(struct in_addr *)&addrs[0].sin6_addr.s6_addr[12],
1116			addrs[0].sin6_port,
1117			0, NULL);
1118	else
1119		inp = in6_pcblookup_hash(&tcbinfo,
1120			&addrs[1].sin6_addr, addrs[1].sin6_port,
1121			&addrs[0].sin6_addr, addrs[0].sin6_port, 0, NULL);
1122	if (inp == NULL) {
1123		error = ENOENT;
1124		goto outunlocked;
1125	}
1126	INP_LOCK(inp);
1127	if (inp->inp_socket == NULL) {
1128		error = ENOENT;
1129		goto out;
1130	}
1131	error = cr_canseesocket(req->td->td_ucred, inp->inp_socket);
1132	if (error)
1133		goto out;
1134	cru2x(inp->inp_socket->so_cred, &xuc);
1135out:
1136	INP_UNLOCK(inp);
1137outunlocked:
1138	INP_INFO_RUNLOCK(&tcbinfo);
1139	if (error == 0)
1140		error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred));
1141	return (error);
1142}
1143
1144SYSCTL_PROC(_net_inet6_tcp6, OID_AUTO, getcred,
1145    CTLTYPE_OPAQUE|CTLFLAG_RW|CTLFLAG_PRISON, 0, 0,
1146    tcp6_getcred, "S,xucred", "Get the xucred of a TCP6 connection");
1147#endif
1148
1149
1150void
1151tcp_ctlinput(int cmd, struct sockaddr *sa, void *vip)
1152{
1153	struct ip *ip = vip;
1154	struct tcphdr *th;
1155	struct in_addr faddr;
1156	struct inpcb *inp;
1157	struct tcpcb *tp;
1158	struct inpcb *(*notify)(struct inpcb *, int) = tcp_notify;
1159	struct icmp *icp;
1160	struct in_conninfo inc;
1161	tcp_seq icmp_tcp_seq;
1162	int mtu;
1163
1164	faddr = ((struct sockaddr_in *)sa)->sin_addr;
1165	if (sa->sa_family != AF_INET || faddr.s_addr == INADDR_ANY)
1166		return;
1167
1168	if (cmd == PRC_MSGSIZE)
1169		notify = tcp_mtudisc;
1170	else if (icmp_may_rst && (cmd == PRC_UNREACH_ADMIN_PROHIB ||
1171		cmd == PRC_UNREACH_PORT || cmd == PRC_TIMXCEED_INTRANS) && ip)
1172		notify = tcp_drop_syn_sent;
1173	/*
1174	 * Redirects don't need to be handled up here.
1175	 */
1176	else if (PRC_IS_REDIRECT(cmd))
1177		return;
1178	/*
1179	 * Source quench is depreciated.
1180	 */
1181	else if (cmd == PRC_QUENCH)
1182		return;
1183	/*
1184	 * Hostdead is ugly because it goes linearly through all PCBs.
1185	 * XXX: We never get this from ICMP, otherwise it makes an
1186	 * excellent DoS attack on machines with many connections.
1187	 */
1188	else if (cmd == PRC_HOSTDEAD)
1189		ip = NULL;
1190	else if ((unsigned)cmd >= PRC_NCMDS || inetctlerrmap[cmd] == 0)
1191		return;
1192	if (ip != NULL) {
1193		icp = (struct icmp *)((caddr_t)ip
1194				      - offsetof(struct icmp, icmp_ip));
1195		th = (struct tcphdr *)((caddr_t)ip
1196				       + (ip->ip_hl << 2));
1197		INP_INFO_WLOCK(&tcbinfo);
1198		inp = in_pcblookup_hash(&tcbinfo, faddr, th->th_dport,
1199		    ip->ip_src, th->th_sport, 0, NULL);
1200		if (inp != NULL)  {
1201			INP_LOCK(inp);
1202			if (!(inp->inp_vflag & INP_TIMEWAIT) &&
1203			    !(inp->inp_vflag & INP_DROPPED) &&
1204			    !(inp->inp_socket == NULL)) {
1205				icmp_tcp_seq = htonl(th->th_seq);
1206				tp = intotcpcb(inp);
1207				if (SEQ_GEQ(icmp_tcp_seq, tp->snd_una) &&
1208				    SEQ_LT(icmp_tcp_seq, tp->snd_max)) {
1209					if (cmd == PRC_MSGSIZE) {
1210					    /*
1211					     * MTU discovery:
1212					     * If we got a needfrag set the MTU
1213					     * in the route to the suggested new
1214					     * value (if given) and then notify.
1215					     */
1216					    bzero(&inc, sizeof(inc));
1217					    inc.inc_flags = 0;	/* IPv4 */
1218					    inc.inc_faddr = faddr;
1219
1220					    mtu = ntohs(icp->icmp_nextmtu);
1221					    /*
1222					     * If no alternative MTU was
1223					     * proposed, try the next smaller
1224					     * one.  ip->ip_len has already
1225					     * been swapped in icmp_input().
1226					     */
1227					    if (!mtu)
1228						mtu = ip_next_mtu(ip->ip_len,
1229						 1);
1230					    if (mtu < max(296, (tcp_minmss)
1231						 + sizeof(struct tcpiphdr)))
1232						mtu = 0;
1233					    if (!mtu)
1234						mtu = tcp_mssdflt
1235						 + sizeof(struct tcpiphdr);
1236					    /*
1237					     * Only cache the the MTU if it
1238					     * is smaller than the interface
1239					     * or route MTU.  tcp_mtudisc()
1240					     * will do right thing by itself.
1241					     */
1242					    if (mtu <= tcp_maxmtu(&inc))
1243						tcp_hc_updatemtu(&inc, mtu);
1244					}
1245
1246					inp = (*notify)(inp, inetctlerrmap[cmd]);
1247				}
1248			}
1249			if (inp != NULL)
1250				INP_UNLOCK(inp);
1251		} else {
1252			inc.inc_fport = th->th_dport;
1253			inc.inc_lport = th->th_sport;
1254			inc.inc_faddr = faddr;
1255			inc.inc_laddr = ip->ip_src;
1256#ifdef INET6
1257			inc.inc_isipv6 = 0;
1258#endif
1259			syncache_unreach(&inc, th);
1260		}
1261		INP_INFO_WUNLOCK(&tcbinfo);
1262	} else
1263		in_pcbnotifyall(&tcbinfo, faddr, inetctlerrmap[cmd], notify);
1264}
1265
1266#ifdef INET6
1267void
1268tcp6_ctlinput(int cmd, struct sockaddr *sa, void *d)
1269{
1270	struct tcphdr th;
1271	struct inpcb *(*notify)(struct inpcb *, int) = tcp_notify;
1272	struct ip6_hdr *ip6;
1273	struct mbuf *m;
1274	struct ip6ctlparam *ip6cp = NULL;
1275	const struct sockaddr_in6 *sa6_src = NULL;
1276	int off;
1277	struct tcp_portonly {
1278		u_int16_t th_sport;
1279		u_int16_t th_dport;
1280	} *thp;
1281
1282	if (sa->sa_family != AF_INET6 ||
1283	    sa->sa_len != sizeof(struct sockaddr_in6))
1284		return;
1285
1286	if (cmd == PRC_MSGSIZE)
1287		notify = tcp_mtudisc;
1288	else if (!PRC_IS_REDIRECT(cmd) &&
1289		 ((unsigned)cmd >= PRC_NCMDS || inet6ctlerrmap[cmd] == 0))
1290		return;
1291	/* Source quench is depreciated. */
1292	else if (cmd == PRC_QUENCH)
1293		return;
1294
1295	/* if the parameter is from icmp6, decode it. */
1296	if (d != NULL) {
1297		ip6cp = (struct ip6ctlparam *)d;
1298		m = ip6cp->ip6c_m;
1299		ip6 = ip6cp->ip6c_ip6;
1300		off = ip6cp->ip6c_off;
1301		sa6_src = ip6cp->ip6c_src;
1302	} else {
1303		m = NULL;
1304		ip6 = NULL;
1305		off = 0;	/* fool gcc */
1306		sa6_src = &sa6_any;
1307	}
1308
1309	if (ip6 != NULL) {
1310		struct in_conninfo inc;
1311		/*
1312		 * XXX: We assume that when IPV6 is non NULL,
1313		 * M and OFF are valid.
1314		 */
1315
1316		/* check if we can safely examine src and dst ports */
1317		if (m->m_pkthdr.len < off + sizeof(*thp))
1318			return;
1319
1320		bzero(&th, sizeof(th));
1321		m_copydata(m, off, sizeof(*thp), (caddr_t)&th);
1322
1323		in6_pcbnotify(&tcbinfo, sa, th.th_dport,
1324		    (struct sockaddr *)ip6cp->ip6c_src,
1325		    th.th_sport, cmd, NULL, notify);
1326
1327		inc.inc_fport = th.th_dport;
1328		inc.inc_lport = th.th_sport;
1329		inc.inc6_faddr = ((struct sockaddr_in6 *)sa)->sin6_addr;
1330		inc.inc6_laddr = ip6cp->ip6c_src->sin6_addr;
1331		inc.inc_isipv6 = 1;
1332		INP_INFO_WLOCK(&tcbinfo);
1333		syncache_unreach(&inc, &th);
1334		INP_INFO_WUNLOCK(&tcbinfo);
1335	} else
1336		in6_pcbnotify(&tcbinfo, sa, 0, (const struct sockaddr *)sa6_src,
1337			      0, cmd, NULL, notify);
1338}
1339#endif /* INET6 */
1340
1341
1342/*
1343 * Following is where TCP initial sequence number generation occurs.
1344 *
1345 * There are two places where we must use initial sequence numbers:
1346 * 1.  In SYN-ACK packets.
1347 * 2.  In SYN packets.
1348 *
1349 * All ISNs for SYN-ACK packets are generated by the syncache.  See
1350 * tcp_syncache.c for details.
1351 *
1352 * The ISNs in SYN packets must be monotonic; TIME_WAIT recycling
1353 * depends on this property.  In addition, these ISNs should be
1354 * unguessable so as to prevent connection hijacking.  To satisfy
1355 * the requirements of this situation, the algorithm outlined in
1356 * RFC 1948 is used, with only small modifications.
1357 *
1358 * Implementation details:
1359 *
1360 * Time is based off the system timer, and is corrected so that it
1361 * increases by one megabyte per second.  This allows for proper
1362 * recycling on high speed LANs while still leaving over an hour
1363 * before rollover.
1364 *
1365 * As reading the *exact* system time is too expensive to be done
1366 * whenever setting up a TCP connection, we increment the time
1367 * offset in two ways.  First, a small random positive increment
1368 * is added to isn_offset for each connection that is set up.
1369 * Second, the function tcp_isn_tick fires once per clock tick
1370 * and increments isn_offset as necessary so that sequence numbers
1371 * are incremented at approximately ISN_BYTES_PER_SECOND.  The
1372 * random positive increments serve only to ensure that the same
1373 * exact sequence number is never sent out twice (as could otherwise
1374 * happen when a port is recycled in less than the system tick
1375 * interval.)
1376 *
1377 * net.inet.tcp.isn_reseed_interval controls the number of seconds
1378 * between seeding of isn_secret.  This is normally set to zero,
1379 * as reseeding should not be necessary.
1380 *
1381 * Locking of the global variables isn_secret, isn_last_reseed, isn_offset,
1382 * isn_offset_old, and isn_ctx is performed using the TCP pcbinfo lock.  In
1383 * general, this means holding an exclusive (write) lock.
1384 */
1385
1386#define ISN_BYTES_PER_SECOND 1048576
1387#define ISN_STATIC_INCREMENT 4096
1388#define ISN_RANDOM_INCREMENT (4096 - 1)
1389
1390static u_char isn_secret[32];
1391static int isn_last_reseed;
1392static u_int32_t isn_offset, isn_offset_old;
1393static MD5_CTX isn_ctx;
1394
1395tcp_seq
1396tcp_new_isn(struct tcpcb *tp)
1397{
1398	u_int32_t md5_buffer[4];
1399	tcp_seq new_isn;
1400
1401	INP_LOCK_ASSERT(tp->t_inpcb);
1402
1403	ISN_LOCK();
1404	/* Seed if this is the first use, reseed if requested. */
1405	if ((isn_last_reseed == 0) || ((tcp_isn_reseed_interval > 0) &&
1406	     (((u_int)isn_last_reseed + (u_int)tcp_isn_reseed_interval*hz)
1407		< (u_int)ticks))) {
1408		read_random(&isn_secret, sizeof(isn_secret));
1409		isn_last_reseed = ticks;
1410	}
1411
1412	/* Compute the md5 hash and return the ISN. */
1413	MD5Init(&isn_ctx);
1414	MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_fport, sizeof(u_short));
1415	MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_lport, sizeof(u_short));
1416#ifdef INET6
1417	if ((tp->t_inpcb->inp_vflag & INP_IPV6) != 0) {
1418		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_faddr,
1419			  sizeof(struct in6_addr));
1420		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_laddr,
1421			  sizeof(struct in6_addr));
1422	} else
1423#endif
1424	{
1425		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_faddr,
1426			  sizeof(struct in_addr));
1427		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_laddr,
1428			  sizeof(struct in_addr));
1429	}
1430	MD5Update(&isn_ctx, (u_char *) &isn_secret, sizeof(isn_secret));
1431	MD5Final((u_char *) &md5_buffer, &isn_ctx);
1432	new_isn = (tcp_seq) md5_buffer[0];
1433	isn_offset += ISN_STATIC_INCREMENT +
1434		(arc4random() & ISN_RANDOM_INCREMENT);
1435	new_isn += isn_offset;
1436	ISN_UNLOCK();
1437	return (new_isn);
1438}
1439
1440/*
1441 * Increment the offset to the next ISN_BYTES_PER_SECOND / hz boundary
1442 * to keep time flowing at a relatively constant rate.  If the random
1443 * increments have already pushed us past the projected offset, do nothing.
1444 */
1445static void
1446tcp_isn_tick(void *xtp)
1447{
1448	u_int32_t projected_offset;
1449
1450	ISN_LOCK();
1451	projected_offset = isn_offset_old + ISN_BYTES_PER_SECOND / 100;
1452
1453	if (projected_offset > isn_offset)
1454		isn_offset = projected_offset;
1455
1456	isn_offset_old = isn_offset;
1457	callout_reset(&isn_callout, hz/100, tcp_isn_tick, NULL);
1458	ISN_UNLOCK();
1459}
1460
1461/*
1462 * When a specific ICMP unreachable message is received and the
1463 * connection state is SYN-SENT, drop the connection.  This behavior
1464 * is controlled by the icmp_may_rst sysctl.
1465 */
1466struct inpcb *
1467tcp_drop_syn_sent(struct inpcb *inp, int errno)
1468{
1469	struct tcpcb *tp;
1470
1471	INP_INFO_WLOCK_ASSERT(&tcbinfo);
1472	INP_LOCK_ASSERT(inp);
1473
1474	if ((inp->inp_vflag & INP_TIMEWAIT) ||
1475	    (inp->inp_vflag & INP_DROPPED))
1476		return (inp);
1477
1478	tp = intotcpcb(inp);
1479	if (tp->t_state != TCPS_SYN_SENT)
1480		return (inp);
1481
1482	tp = tcp_drop(tp, errno);
1483	if (tp != NULL)
1484		return (inp);
1485	else
1486		return (NULL);
1487}
1488
1489/*
1490 * When `need fragmentation' ICMP is received, update our idea of the MSS
1491 * based on the new value in the route.  Also nudge TCP to send something,
1492 * since we know the packet we just sent was dropped.
1493 * This duplicates some code in the tcp_mss() function in tcp_input.c.
1494 */
1495struct inpcb *
1496tcp_mtudisc(struct inpcb *inp, int errno)
1497{
1498	struct tcpcb *tp;
1499	struct socket *so = inp->inp_socket;
1500	u_int maxmtu;
1501	u_int romtu;
1502	int mss;
1503#ifdef INET6
1504	int isipv6;
1505#endif /* INET6 */
1506
1507	INP_LOCK_ASSERT(inp);
1508	if ((inp->inp_vflag & INP_TIMEWAIT) ||
1509	    (inp->inp_vflag & INP_DROPPED))
1510		return (inp);
1511
1512	tp = intotcpcb(inp);
1513	KASSERT(tp != NULL, ("tcp_mtudisc: tp == NULL"));
1514
1515#ifdef INET6
1516	isipv6 = (tp->t_inpcb->inp_vflag & INP_IPV6) != 0;
1517#endif
1518	maxmtu = tcp_hc_getmtu(&inp->inp_inc); /* IPv4 and IPv6 */
1519	romtu =
1520#ifdef INET6
1521	    isipv6 ? tcp_maxmtu6(&inp->inp_inc) :
1522#endif /* INET6 */
1523	    tcp_maxmtu(&inp->inp_inc);
1524	if (!maxmtu)
1525		maxmtu = romtu;
1526	else
1527		maxmtu = min(maxmtu, romtu);
1528	if (!maxmtu) {
1529		tp->t_maxopd = tp->t_maxseg =
1530#ifdef INET6
1531			isipv6 ? tcp_v6mssdflt :
1532#endif /* INET6 */
1533			tcp_mssdflt;
1534		return (inp);
1535	}
1536	mss = maxmtu -
1537#ifdef INET6
1538		(isipv6 ? sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
1539#endif /* INET6 */
1540		 sizeof(struct tcpiphdr)
1541#ifdef INET6
1542		 )
1543#endif /* INET6 */
1544		;
1545
1546	/*
1547	 * XXX - The above conditional probably violates the TCP
1548	 * spec.  The problem is that, since we don't know the
1549	 * other end's MSS, we are supposed to use a conservative
1550	 * default.  But, if we do that, then MTU discovery will
1551	 * never actually take place, because the conservative
1552	 * default is much less than the MTUs typically seen
1553	 * on the Internet today.  For the moment, we'll sweep
1554	 * this under the carpet.
1555	 *
1556	 * The conservative default might not actually be a problem
1557	 * if the only case this occurs is when sending an initial
1558	 * SYN with options and data to a host we've never talked
1559	 * to before.  Then, they will reply with an MSS value which
1560	 * will get recorded and the new parameters should get
1561	 * recomputed.  For Further Study.
1562	 */
1563	if (tp->t_maxopd <= mss)
1564		return (inp);
1565	tp->t_maxopd = mss;
1566
1567	if ((tp->t_flags & (TF_REQ_TSTMP|TF_NOOPT)) == TF_REQ_TSTMP &&
1568	    (tp->t_flags & TF_RCVD_TSTMP) == TF_RCVD_TSTMP)
1569		mss -= TCPOLEN_TSTAMP_APPA;
1570#if	(MCLBYTES & (MCLBYTES - 1)) == 0
1571	if (mss > MCLBYTES)
1572		mss &= ~(MCLBYTES-1);
1573#else
1574	if (mss > MCLBYTES)
1575		mss = mss / MCLBYTES * MCLBYTES;
1576#endif
1577	if (so->so_snd.sb_hiwat < mss)
1578		mss = so->so_snd.sb_hiwat;
1579
1580	tp->t_maxseg = mss;
1581
1582	tcpstat.tcps_mturesent++;
1583	tp->t_rtttime = 0;
1584	tp->snd_nxt = tp->snd_una;
1585	tcp_output(tp);
1586	return (inp);
1587}
1588
1589/*
1590 * Look-up the routing entry to the peer of this inpcb.  If no route
1591 * is found and it cannot be allocated, then return NULL.  This routine
1592 * is called by TCP routines that access the rmx structure and by tcp_mss
1593 * to get the interface MTU.
1594 */
1595u_long
1596tcp_maxmtu(struct in_conninfo *inc)
1597{
1598	struct route sro;
1599	struct sockaddr_in *dst;
1600	struct ifnet *ifp;
1601	u_long maxmtu = 0;
1602
1603	KASSERT(inc != NULL, ("tcp_maxmtu with NULL in_conninfo pointer"));
1604
1605	bzero(&sro, sizeof(sro));
1606	if (inc->inc_faddr.s_addr != INADDR_ANY) {
1607	        dst = (struct sockaddr_in *)&sro.ro_dst;
1608		dst->sin_family = AF_INET;
1609		dst->sin_len = sizeof(*dst);
1610		dst->sin_addr = inc->inc_faddr;
1611		rtalloc_ign(&sro, RTF_CLONING);
1612	}
1613	if (sro.ro_rt != NULL) {
1614		ifp = sro.ro_rt->rt_ifp;
1615		if (sro.ro_rt->rt_rmx.rmx_mtu == 0)
1616			maxmtu = ifp->if_mtu;
1617		else
1618			maxmtu = min(sro.ro_rt->rt_rmx.rmx_mtu, ifp->if_mtu);
1619		RTFREE(sro.ro_rt);
1620	}
1621	return (maxmtu);
1622}
1623
1624#ifdef INET6
1625u_long
1626tcp_maxmtu6(struct in_conninfo *inc)
1627{
1628	struct route_in6 sro6;
1629	struct ifnet *ifp;
1630	u_long maxmtu = 0;
1631
1632	KASSERT(inc != NULL, ("tcp_maxmtu6 with NULL in_conninfo pointer"));
1633
1634	bzero(&sro6, sizeof(sro6));
1635	if (!IN6_IS_ADDR_UNSPECIFIED(&inc->inc6_faddr)) {
1636		sro6.ro_dst.sin6_family = AF_INET6;
1637		sro6.ro_dst.sin6_len = sizeof(struct sockaddr_in6);
1638		sro6.ro_dst.sin6_addr = inc->inc6_faddr;
1639		rtalloc_ign((struct route *)&sro6, RTF_CLONING);
1640	}
1641	if (sro6.ro_rt != NULL) {
1642		ifp = sro6.ro_rt->rt_ifp;
1643		if (sro6.ro_rt->rt_rmx.rmx_mtu == 0)
1644			maxmtu = IN6_LINKMTU(sro6.ro_rt->rt_ifp);
1645		else
1646			maxmtu = min(sro6.ro_rt->rt_rmx.rmx_mtu,
1647				     IN6_LINKMTU(sro6.ro_rt->rt_ifp));
1648		RTFREE(sro6.ro_rt);
1649	}
1650
1651	return (maxmtu);
1652}
1653#endif /* INET6 */
1654
1655#ifdef IPSEC
1656/* compute ESP/AH header size for TCP, including outer IP header. */
1657size_t
1658ipsec_hdrsiz_tcp(struct tcpcb *tp)
1659{
1660	struct inpcb *inp;
1661	struct mbuf *m;
1662	size_t hdrsiz;
1663	struct ip *ip;
1664#ifdef INET6
1665	struct ip6_hdr *ip6;
1666#endif
1667	struct tcphdr *th;
1668
1669	if ((tp == NULL) || ((inp = tp->t_inpcb) == NULL))
1670		return (0);
1671	MGETHDR(m, M_DONTWAIT, MT_DATA);
1672	if (!m)
1673		return (0);
1674
1675#ifdef INET6
1676	if ((inp->inp_vflag & INP_IPV6) != 0) {
1677		ip6 = mtod(m, struct ip6_hdr *);
1678		th = (struct tcphdr *)(ip6 + 1);
1679		m->m_pkthdr.len = m->m_len =
1680			sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
1681		tcpip_fillheaders(inp, ip6, th);
1682		hdrsiz = ipsec6_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
1683	} else
1684#endif /* INET6 */
1685	{
1686		ip = mtod(m, struct ip *);
1687		th = (struct tcphdr *)(ip + 1);
1688		m->m_pkthdr.len = m->m_len = sizeof(struct tcpiphdr);
1689		tcpip_fillheaders(inp, ip, th);
1690		hdrsiz = ipsec4_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
1691	}
1692
1693	m_free(m);
1694	return (hdrsiz);
1695}
1696#endif /*IPSEC*/
1697
1698/*
1699 * Move a TCP connection into TIME_WAIT state.
1700 *    tcbinfo is locked.
1701 *    inp is locked, and is unlocked before returning.
1702 */
1703void
1704tcp_twstart(struct tcpcb *tp)
1705{
1706	struct tcptw *tw;
1707	struct inpcb *inp;
1708	int tw_time, acknow;
1709	struct socket *so;
1710
1711	INP_INFO_WLOCK_ASSERT(&tcbinfo);	/* tcp_timer_2msl_reset(). */
1712	INP_LOCK_ASSERT(tp->t_inpcb);
1713
1714	tw = uma_zalloc(tcptw_zone, M_NOWAIT);
1715	if (tw == NULL) {
1716		tw = tcp_timer_2msl_tw(1);
1717		if (tw == NULL) {
1718			tp = tcp_close(tp);
1719			if (tp != NULL)
1720				INP_UNLOCK(tp->t_inpcb);
1721			return;
1722		}
1723	}
1724	inp = tp->t_inpcb;
1725	tw->tw_inpcb = inp;
1726
1727	/*
1728	 * Recover last window size sent.
1729	 */
1730	tw->last_win = (tp->rcv_adv - tp->rcv_nxt) >> tp->rcv_scale;
1731
1732	/*
1733	 * Set t_recent if timestamps are used on the connection.
1734	 */
1735	if ((tp->t_flags & (TF_REQ_TSTMP|TF_RCVD_TSTMP|TF_NOOPT)) ==
1736	    (TF_REQ_TSTMP|TF_RCVD_TSTMP))
1737		tw->t_recent = tp->ts_recent;
1738	else
1739		tw->t_recent = 0;
1740
1741	tw->snd_nxt = tp->snd_nxt;
1742	tw->rcv_nxt = tp->rcv_nxt;
1743	tw->iss     = tp->iss;
1744	tw->irs     = tp->irs;
1745	tw->t_starttime = tp->t_starttime;
1746	tw->tw_time = 0;
1747
1748/* XXX
1749 * If this code will
1750 * be used for fin-wait-2 state also, then we may need
1751 * a ts_recent from the last segment.
1752 */
1753	tw_time = 2 * tcp_msl;
1754	acknow = tp->t_flags & TF_ACKNOW;
1755
1756	/*
1757	 * First, discard tcpcb state, which includes stopping its timers and
1758	 * freeing it.  tcp_discardcb() used to also release the inpcb, but
1759	 * that work is now done in the caller.
1760	 */
1761	tcp_discardcb(tp);
1762	so = inp->inp_socket;
1763	SOCK_LOCK(so);
1764	tw->tw_cred = crhold(so->so_cred);
1765	tw->tw_so_options = so->so_options;
1766	SOCK_UNLOCK(so);
1767	if (acknow)
1768		tcp_twrespond(tw, TH_ACK);
1769	inp->inp_ppcb = tw;
1770	inp->inp_vflag |= INP_TIMEWAIT;
1771	tcp_timer_2msl_reset(tw, tw_time);
1772
1773	/*
1774	 * If the inpcb owns the sole reference to the socket, then we can
1775	 * detach and free the socket as it is not needed in time wait.
1776	 */
1777	if (inp->inp_vflag & INP_SOCKREF) {
1778		KASSERT(so->so_state & SS_PROTOREF,
1779		    ("tcp_twstart: !SS_PROTOREF"));
1780		inp->inp_vflag &= ~INP_SOCKREF;
1781		INP_UNLOCK(inp);
1782		ACCEPT_LOCK();
1783		SOCK_LOCK(so);
1784		so->so_state &= ~SS_PROTOREF;
1785		sofree(so);
1786	} else
1787		INP_UNLOCK(inp);
1788}
1789
1790/*
1791 * The appromixate rate of ISN increase of Microsoft TCP stacks;
1792 * the actual rate is slightly higher due to the addition of
1793 * random positive increments.
1794 *
1795 * Most other new OSes use semi-randomized ISN values, so we
1796 * do not need to worry about them.
1797 */
1798#define MS_ISN_BYTES_PER_SECOND		250000
1799
1800/*
1801 * Determine if the ISN we will generate has advanced beyond the last
1802 * sequence number used by the previous connection.  If so, indicate
1803 * that it is safe to recycle this tw socket by returning 1.
1804 *
1805 * XXXRW: This function should assert the inpcb lock as it does multiple
1806 * non-atomic reads from the tcptw, but is currently called without it from
1807 * in_pcb.c:in_pcblookup_local().
1808 */
1809int
1810tcp_twrecycleable(struct tcptw *tw)
1811{
1812	tcp_seq new_iss = tw->iss;
1813	tcp_seq new_irs = tw->irs;
1814
1815	new_iss += (ticks - tw->t_starttime) * (ISN_BYTES_PER_SECOND / hz);
1816	new_irs += (ticks - tw->t_starttime) * (MS_ISN_BYTES_PER_SECOND / hz);
1817
1818	if (SEQ_GT(new_iss, tw->snd_nxt) && SEQ_GT(new_irs, tw->rcv_nxt))
1819		return (1);
1820	else
1821		return (0);
1822}
1823
1824void
1825tcp_twclose(struct tcptw *tw, int reuse)
1826{
1827	struct socket *so;
1828	struct inpcb *inp;
1829
1830	/*
1831	 * At this point, we are in one of two situations:
1832	 *
1833	 * (1) We have no socket, just an inpcb<->twtcp pair.  We can free
1834	 *     all state.
1835	 *
1836	 * (2) We have a socket -- if we own a reference, release it and
1837	 *     notify the socket layer.
1838	 */
1839	inp = tw->tw_inpcb;
1840	KASSERT((inp->inp_vflag & INP_TIMEWAIT), ("tcp_twclose: !timewait"));
1841	KASSERT(intotw(inp) == tw, ("tcp_twclose: inp_ppcb != tw"));
1842	INP_INFO_WLOCK_ASSERT(&tcbinfo);	/* tcp_timer_2msl_stop(). */
1843	INP_LOCK_ASSERT(inp);
1844
1845	tw->tw_inpcb = NULL;
1846	tcp_timer_2msl_stop(tw);
1847	inp->inp_ppcb = NULL;
1848	in_pcbdrop(inp);
1849
1850	so = inp->inp_socket;
1851	if (so != NULL) {
1852		/*
1853		 * If there's a socket, handle two cases: first, we own a
1854		 * strong reference, which we will now release, or we don't
1855		 * in which case another reference exists (XXXRW: think
1856		 * about this more), and we don't need to take action.
1857		 */
1858		if (inp->inp_vflag & INP_SOCKREF) {
1859			inp->inp_vflag &= ~INP_SOCKREF;
1860			INP_UNLOCK(inp);
1861			ACCEPT_LOCK();
1862			SOCK_LOCK(so);
1863			KASSERT(so->so_state & SS_PROTOREF,
1864			    ("tcp_twclose: INP_SOCKREF && !SS_PROTOREF"));
1865			so->so_state &= ~SS_PROTOREF;
1866			sofree(so);
1867		} else {
1868			/*
1869			 * If we don't own the only reference, the socket and
1870			 * inpcb need to be left around to be handled by
1871			 * tcp_usr_detach() later.
1872			 */
1873			INP_UNLOCK(inp);
1874		}
1875	} else {
1876#ifdef INET6
1877		if (inp->inp_vflag & INP_IPV6PROTO)
1878			in6_pcbfree(inp);
1879		else
1880#endif
1881			in_pcbfree(inp);
1882	}
1883	tcpstat.tcps_closed++;
1884	crfree(tw->tw_cred);
1885	tw->tw_cred = NULL;
1886	if (reuse)
1887		return;
1888	uma_zfree(tcptw_zone, tw);
1889}
1890
1891int
1892tcp_twrespond(struct tcptw *tw, int flags)
1893{
1894	struct inpcb *inp = tw->tw_inpcb;
1895	struct tcphdr *th;
1896	struct mbuf *m;
1897	struct ip *ip = NULL;
1898	u_int8_t *optp;
1899	u_int hdrlen, optlen;
1900	int error;
1901#ifdef INET6
1902	struct ip6_hdr *ip6 = NULL;
1903	int isipv6 = inp->inp_inc.inc_isipv6;
1904#endif
1905
1906	INP_LOCK_ASSERT(inp);
1907
1908	m = m_gethdr(M_DONTWAIT, MT_DATA);
1909	if (m == NULL)
1910		return (ENOBUFS);
1911	m->m_data += max_linkhdr;
1912
1913#ifdef MAC
1914	mac_create_mbuf_from_inpcb(inp, m);
1915#endif
1916
1917#ifdef INET6
1918	if (isipv6) {
1919		hdrlen = sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
1920		ip6 = mtod(m, struct ip6_hdr *);
1921		th = (struct tcphdr *)(ip6 + 1);
1922		tcpip_fillheaders(inp, ip6, th);
1923	} else
1924#endif
1925	{
1926		hdrlen = sizeof(struct tcpiphdr);
1927		ip = mtod(m, struct ip *);
1928		th = (struct tcphdr *)(ip + 1);
1929		tcpip_fillheaders(inp, ip, th);
1930	}
1931	optp = (u_int8_t *)(th + 1);
1932
1933	/*
1934	 * Send a timestamp and echo-reply if both our side and our peer
1935	 * have sent timestamps in our SYN's and this is not a RST.
1936	 */
1937	if (tw->t_recent && flags == TH_ACK) {
1938		u_int32_t *lp = (u_int32_t *)optp;
1939
1940		/* Form timestamp option as shown in appendix A of RFC 1323. */
1941		*lp++ = htonl(TCPOPT_TSTAMP_HDR);
1942		*lp++ = htonl(ticks);
1943		*lp   = htonl(tw->t_recent);
1944		optp += TCPOLEN_TSTAMP_APPA;
1945	}
1946
1947	optlen = optp - (u_int8_t *)(th + 1);
1948
1949	m->m_len = hdrlen + optlen;
1950	m->m_pkthdr.len = m->m_len;
1951
1952	KASSERT(max_linkhdr + m->m_len <= MHLEN, ("tcptw: mbuf too small"));
1953
1954	th->th_seq = htonl(tw->snd_nxt);
1955	th->th_ack = htonl(tw->rcv_nxt);
1956	th->th_off = (sizeof(struct tcphdr) + optlen) >> 2;
1957	th->th_flags = flags;
1958	th->th_win = htons(tw->last_win);
1959
1960#ifdef INET6
1961	if (isipv6) {
1962		th->th_sum = in6_cksum(m, IPPROTO_TCP, sizeof(struct ip6_hdr),
1963		    sizeof(struct tcphdr) + optlen);
1964		ip6->ip6_hlim = in6_selecthlim(inp, NULL);
1965		error = ip6_output(m, inp->in6p_outputopts, NULL,
1966		    (tw->tw_so_options & SO_DONTROUTE), NULL, NULL, inp);
1967	} else
1968#endif
1969	{
1970		th->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
1971		    htons(sizeof(struct tcphdr) + optlen + IPPROTO_TCP));
1972		m->m_pkthdr.csum_flags = CSUM_TCP;
1973		m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
1974		ip->ip_len = m->m_pkthdr.len;
1975		if (path_mtu_discovery)
1976			ip->ip_off |= IP_DF;
1977		error = ip_output(m, inp->inp_options, NULL,
1978		    ((tw->tw_so_options & SO_DONTROUTE) ? IP_ROUTETOIF : 0),
1979		    NULL, inp);
1980	}
1981	if (flags & TH_ACK)
1982		tcpstat.tcps_sndacks++;
1983	else
1984		tcpstat.tcps_sndctrl++;
1985	tcpstat.tcps_sndtotal++;
1986	return (error);
1987}
1988
1989/*
1990 * TCP BANDWIDTH DELAY PRODUCT WINDOW LIMITING
1991 *
1992 * This code attempts to calculate the bandwidth-delay product as a
1993 * means of determining the optimal window size to maximize bandwidth,
1994 * minimize RTT, and avoid the over-allocation of buffers on interfaces and
1995 * routers.  This code also does a fairly good job keeping RTTs in check
1996 * across slow links like modems.  We implement an algorithm which is very
1997 * similar (but not meant to be) TCP/Vegas.  The code operates on the
1998 * transmitter side of a TCP connection and so only effects the transmit
1999 * side of the connection.
2000 *
2001 * BACKGROUND:  TCP makes no provision for the management of buffer space
2002 * at the end points or at the intermediate routers and switches.  A TCP
2003 * stream, whether using NewReno or not, will eventually buffer as
2004 * many packets as it is able and the only reason this typically works is
2005 * due to the fairly small default buffers made available for a connection
2006 * (typicaly 16K or 32K).  As machines use larger windows and/or window
2007 * scaling it is now fairly easy for even a single TCP connection to blow-out
2008 * all available buffer space not only on the local interface, but on
2009 * intermediate routers and switches as well.  NewReno makes a misguided
2010 * attempt to 'solve' this problem by waiting for an actual failure to occur,
2011 * then backing off, then steadily increasing the window again until another
2012 * failure occurs, ad-infinitum.  This results in terrible oscillation that
2013 * is only made worse as network loads increase and the idea of intentionally
2014 * blowing out network buffers is, frankly, a terrible way to manage network
2015 * resources.
2016 *
2017 * It is far better to limit the transmit window prior to the failure
2018 * condition being achieved.  There are two general ways to do this:  First
2019 * you can 'scan' through different transmit window sizes and locate the
2020 * point where the RTT stops increasing, indicating that you have filled the
2021 * pipe, then scan backwards until you note that RTT stops decreasing, then
2022 * repeat ad-infinitum.  This method works in principle but has severe
2023 * implementation issues due to RTT variances, timer granularity, and
2024 * instability in the algorithm which can lead to many false positives and
2025 * create oscillations as well as interact badly with other TCP streams
2026 * implementing the same algorithm.
2027 *
2028 * The second method is to limit the window to the bandwidth delay product
2029 * of the link.  This is the method we implement.  RTT variances and our
2030 * own manipulation of the congestion window, bwnd, can potentially
2031 * destabilize the algorithm.  For this reason we have to stabilize the
2032 * elements used to calculate the window.  We do this by using the minimum
2033 * observed RTT, the long term average of the observed bandwidth, and
2034 * by adding two segments worth of slop.  It isn't perfect but it is able
2035 * to react to changing conditions and gives us a very stable basis on
2036 * which to extend the algorithm.
2037 */
2038void
2039tcp_xmit_bandwidth_limit(struct tcpcb *tp, tcp_seq ack_seq)
2040{
2041	u_long bw;
2042	u_long bwnd;
2043	int save_ticks;
2044
2045	INP_LOCK_ASSERT(tp->t_inpcb);
2046
2047	/*
2048	 * If inflight_enable is disabled in the middle of a tcp connection,
2049	 * make sure snd_bwnd is effectively disabled.
2050	 */
2051	if (tcp_inflight_enable == 0 || tp->t_rttlow < tcp_inflight_rttthresh) {
2052		tp->snd_bwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
2053		tp->snd_bandwidth = 0;
2054		return;
2055	}
2056
2057	/*
2058	 * Figure out the bandwidth.  Due to the tick granularity this
2059	 * is a very rough number and it MUST be averaged over a fairly
2060	 * long period of time.  XXX we need to take into account a link
2061	 * that is not using all available bandwidth, but for now our
2062	 * slop will ramp us up if this case occurs and the bandwidth later
2063	 * increases.
2064	 *
2065	 * Note: if ticks rollover 'bw' may wind up negative.  We must
2066	 * effectively reset t_bw_rtttime for this case.
2067	 */
2068	save_ticks = ticks;
2069	if ((u_int)(save_ticks - tp->t_bw_rtttime) < 1)
2070		return;
2071
2072	bw = (int64_t)(ack_seq - tp->t_bw_rtseq) * hz /
2073	    (save_ticks - tp->t_bw_rtttime);
2074	tp->t_bw_rtttime = save_ticks;
2075	tp->t_bw_rtseq = ack_seq;
2076	if (tp->t_bw_rtttime == 0 || (int)bw < 0)
2077		return;
2078	bw = ((int64_t)tp->snd_bandwidth * 15 + bw) >> 4;
2079
2080	tp->snd_bandwidth = bw;
2081
2082	/*
2083	 * Calculate the semi-static bandwidth delay product, plus two maximal
2084	 * segments.  The additional slop puts us squarely in the sweet
2085	 * spot and also handles the bandwidth run-up case and stabilization.
2086	 * Without the slop we could be locking ourselves into a lower
2087	 * bandwidth.
2088	 *
2089	 * Situations Handled:
2090	 *	(1) Prevents over-queueing of packets on LANs, especially on
2091	 *	    high speed LANs, allowing larger TCP buffers to be
2092	 *	    specified, and also does a good job preventing
2093	 *	    over-queueing of packets over choke points like modems
2094	 *	    (at least for the transmit side).
2095	 *
2096	 *	(2) Is able to handle changing network loads (bandwidth
2097	 *	    drops so bwnd drops, bandwidth increases so bwnd
2098	 *	    increases).
2099	 *
2100	 *	(3) Theoretically should stabilize in the face of multiple
2101	 *	    connections implementing the same algorithm (this may need
2102	 *	    a little work).
2103	 *
2104	 *	(4) Stability value (defaults to 20 = 2 maximal packets) can
2105	 *	    be adjusted with a sysctl but typically only needs to be
2106	 *	    on very slow connections.  A value no smaller then 5
2107	 *	    should be used, but only reduce this default if you have
2108	 *	    no other choice.
2109	 */
2110#define USERTT	((tp->t_srtt + tp->t_rttbest) / 2)
2111	bwnd = (int64_t)bw * USERTT / (hz << TCP_RTT_SHIFT) + tcp_inflight_stab * tp->t_maxseg / 10;
2112#undef USERTT
2113
2114	if (tcp_inflight_debug > 0) {
2115		static int ltime;
2116		if ((u_int)(ticks - ltime) >= hz / tcp_inflight_debug) {
2117			ltime = ticks;
2118			printf("%p bw %ld rttbest %d srtt %d bwnd %ld\n",
2119			    tp,
2120			    bw,
2121			    tp->t_rttbest,
2122			    tp->t_srtt,
2123			    bwnd
2124			);
2125		}
2126	}
2127	if ((long)bwnd < tcp_inflight_min)
2128		bwnd = tcp_inflight_min;
2129	if (bwnd > tcp_inflight_max)
2130		bwnd = tcp_inflight_max;
2131	if ((long)bwnd < tp->t_maxseg * 2)
2132		bwnd = tp->t_maxseg * 2;
2133	tp->snd_bwnd = bwnd;
2134}
2135
2136#ifdef TCP_SIGNATURE
2137/*
2138 * Callback function invoked by m_apply() to digest TCP segment data
2139 * contained within an mbuf chain.
2140 */
2141static int
2142tcp_signature_apply(void *fstate, void *data, u_int len)
2143{
2144
2145	MD5Update(fstate, (u_char *)data, len);
2146	return (0);
2147}
2148
2149/*
2150 * Compute TCP-MD5 hash of a TCPv4 segment. (RFC2385)
2151 *
2152 * Parameters:
2153 * m		pointer to head of mbuf chain
2154 * off0		offset to TCP header within the mbuf chain
2155 * len		length of TCP segment data, excluding options
2156 * optlen	length of TCP segment options
2157 * buf		pointer to storage for computed MD5 digest
2158 * direction	direction of flow (IPSEC_DIR_INBOUND or OUTBOUND)
2159 *
2160 * We do this over ip, tcphdr, segment data, and the key in the SADB.
2161 * When called from tcp_input(), we can be sure that th_sum has been
2162 * zeroed out and verified already.
2163 *
2164 * This function is for IPv4 use only. Calling this function with an
2165 * IPv6 packet in the mbuf chain will yield undefined results.
2166 *
2167 * Return 0 if successful, otherwise return -1.
2168 *
2169 * XXX The key is retrieved from the system's PF_KEY SADB, by keying a
2170 * search with the destination IP address, and a 'magic SPI' to be
2171 * determined by the application. This is hardcoded elsewhere to 1179
2172 * right now. Another branch of this code exists which uses the SPD to
2173 * specify per-application flows but it is unstable.
2174 */
2175int
2176tcp_signature_compute(struct mbuf *m, int off0, int len, int optlen,
2177    u_char *buf, u_int direction)
2178{
2179	union sockaddr_union dst;
2180	struct ippseudo ippseudo;
2181	MD5_CTX ctx;
2182	int doff;
2183	struct ip *ip;
2184	struct ipovly *ipovly;
2185	struct secasvar *sav;
2186	struct tcphdr *th;
2187	u_short savecsum;
2188
2189	KASSERT(m != NULL, ("NULL mbuf chain"));
2190	KASSERT(buf != NULL, ("NULL signature pointer"));
2191
2192	/* Extract the destination from the IP header in the mbuf. */
2193	ip = mtod(m, struct ip *);
2194	bzero(&dst, sizeof(union sockaddr_union));
2195	dst.sa.sa_len = sizeof(struct sockaddr_in);
2196	dst.sa.sa_family = AF_INET;
2197	dst.sin.sin_addr = (direction == IPSEC_DIR_INBOUND) ?
2198	    ip->ip_src : ip->ip_dst;
2199
2200	/* Look up an SADB entry which matches the address of the peer. */
2201	sav = KEY_ALLOCSA(&dst, IPPROTO_TCP, htonl(TCP_SIG_SPI));
2202	if (sav == NULL) {
2203		printf("%s: SADB lookup failed for %s\n", __func__,
2204		    inet_ntoa(dst.sin.sin_addr));
2205		return (EINVAL);
2206	}
2207
2208	MD5Init(&ctx);
2209	ipovly = (struct ipovly *)ip;
2210	th = (struct tcphdr *)((u_char *)ip + off0);
2211	doff = off0 + sizeof(struct tcphdr) + optlen;
2212
2213	/*
2214	 * Step 1: Update MD5 hash with IP pseudo-header.
2215	 *
2216	 * XXX The ippseudo header MUST be digested in network byte order,
2217	 * or else we'll fail the regression test. Assume all fields we've
2218	 * been doing arithmetic on have been in host byte order.
2219	 * XXX One cannot depend on ipovly->ih_len here. When called from
2220	 * tcp_output(), the underlying ip_len member has not yet been set.
2221	 */
2222	ippseudo.ippseudo_src = ipovly->ih_src;
2223	ippseudo.ippseudo_dst = ipovly->ih_dst;
2224	ippseudo.ippseudo_pad = 0;
2225	ippseudo.ippseudo_p = IPPROTO_TCP;
2226	ippseudo.ippseudo_len = htons(len + sizeof(struct tcphdr) + optlen);
2227	MD5Update(&ctx, (char *)&ippseudo, sizeof(struct ippseudo));
2228
2229	/*
2230	 * Step 2: Update MD5 hash with TCP header, excluding options.
2231	 * The TCP checksum must be set to zero.
2232	 */
2233	savecsum = th->th_sum;
2234	th->th_sum = 0;
2235	MD5Update(&ctx, (char *)th, sizeof(struct tcphdr));
2236	th->th_sum = savecsum;
2237
2238	/*
2239	 * Step 3: Update MD5 hash with TCP segment data.
2240	 *         Use m_apply() to avoid an early m_pullup().
2241	 */
2242	if (len > 0)
2243		m_apply(m, doff, len, tcp_signature_apply, &ctx);
2244
2245	/*
2246	 * Step 4: Update MD5 hash with shared secret.
2247	 */
2248	MD5Update(&ctx, _KEYBUF(sav->key_auth), _KEYLEN(sav->key_auth));
2249	MD5Final(buf, &ctx);
2250
2251	key_sa_recordxfer(sav, m);
2252	KEY_FREESAV(&sav);
2253	return (0);
2254}
2255#endif /* TCP_SIGNATURE */
2256
2257static int
2258sysctl_drop(SYSCTL_HANDLER_ARGS)
2259{
2260	/* addrs[0] is a foreign socket, addrs[1] is a local one. */
2261	struct sockaddr_storage addrs[2];
2262	struct inpcb *inp;
2263	struct tcpcb *tp;
2264	struct tcptw *tw;
2265	struct sockaddr_in *fin, *lin;
2266#ifdef INET6
2267	struct sockaddr_in6 *fin6, *lin6;
2268	struct in6_addr f6, l6;
2269#endif
2270	int error;
2271
2272	inp = NULL;
2273	fin = lin = NULL;
2274#ifdef INET6
2275	fin6 = lin6 = NULL;
2276#endif
2277	error = 0;
2278
2279	if (req->oldptr != NULL || req->oldlen != 0)
2280		return (EINVAL);
2281	if (req->newptr == NULL)
2282		return (EPERM);
2283	if (req->newlen < sizeof(addrs))
2284		return (ENOMEM);
2285	error = SYSCTL_IN(req, &addrs, sizeof(addrs));
2286	if (error)
2287		return (error);
2288
2289	switch (addrs[0].ss_family) {
2290#ifdef INET6
2291	case AF_INET6:
2292		fin6 = (struct sockaddr_in6 *)&addrs[0];
2293		lin6 = (struct sockaddr_in6 *)&addrs[1];
2294		if (fin6->sin6_len != sizeof(struct sockaddr_in6) ||
2295		    lin6->sin6_len != sizeof(struct sockaddr_in6))
2296			return (EINVAL);
2297		if (IN6_IS_ADDR_V4MAPPED(&fin6->sin6_addr)) {
2298			if (!IN6_IS_ADDR_V4MAPPED(&lin6->sin6_addr))
2299				return (EINVAL);
2300			in6_sin6_2_sin_in_sock((struct sockaddr *)&addrs[0]);
2301			in6_sin6_2_sin_in_sock((struct sockaddr *)&addrs[1]);
2302			fin = (struct sockaddr_in *)&addrs[0];
2303			lin = (struct sockaddr_in *)&addrs[1];
2304			break;
2305		}
2306		error = sa6_embedscope(fin6, ip6_use_defzone);
2307		if (error)
2308			return (error);
2309		error = sa6_embedscope(lin6, ip6_use_defzone);
2310		if (error)
2311			return (error);
2312		break;
2313#endif
2314	case AF_INET:
2315		fin = (struct sockaddr_in *)&addrs[0];
2316		lin = (struct sockaddr_in *)&addrs[1];
2317		if (fin->sin_len != sizeof(struct sockaddr_in) ||
2318		    lin->sin_len != sizeof(struct sockaddr_in))
2319			return (EINVAL);
2320		break;
2321	default:
2322		return (EINVAL);
2323	}
2324	INP_INFO_WLOCK(&tcbinfo);
2325	switch (addrs[0].ss_family) {
2326#ifdef INET6
2327	case AF_INET6:
2328		inp = in6_pcblookup_hash(&tcbinfo, &f6, fin6->sin6_port,
2329		    &l6, lin6->sin6_port, 0, NULL);
2330		break;
2331#endif
2332	case AF_INET:
2333		inp = in_pcblookup_hash(&tcbinfo, fin->sin_addr, fin->sin_port,
2334		    lin->sin_addr, lin->sin_port, 0, NULL);
2335		break;
2336	}
2337	if (inp != NULL) {
2338		INP_LOCK(inp);
2339		if (inp->inp_vflag & INP_TIMEWAIT) {
2340			/*
2341			 * XXXRW: There currently exists a state where an
2342			 * inpcb is present, but its timewait state has been
2343			 * discarded.  For now, don't allow dropping of this
2344			 * type of inpcb.
2345			 */
2346			tw = intotw(inp);
2347			if (tw != NULL)
2348				tcp_twclose(tw, 0);
2349		} else if (!(inp->inp_vflag & INP_DROPPED) &&
2350			   !(inp->inp_socket->so_options & SO_ACCEPTCONN)) {
2351			tp = intotcpcb(inp);
2352			tcp_drop(tp, ECONNABORTED);
2353		}
2354		INP_UNLOCK(inp);
2355	} else
2356		error = ESRCH;
2357	INP_INFO_WUNLOCK(&tcbinfo);
2358	return (error);
2359}
2360
2361SYSCTL_PROC(_net_inet_tcp, TCPCTL_DROP, drop,
2362    CTLTYPE_STRUCT|CTLFLAG_WR|CTLFLAG_SKIP, NULL,
2363    0, sysctl_drop, "", "Drop TCP connection");
2364