tcp_timewait.c revision 157478
1/*-
2 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 4. Neither the name of the University nor the names of its contributors
14 *    may be used to endorse or promote products derived from this software
15 *    without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 *
29 *	@(#)tcp_subr.c	8.2 (Berkeley) 5/24/95
30 * $FreeBSD: head/sys/netinet/tcp_timewait.c 157478 2006-04-04 14:31:37Z glebius $
31 */
32
33#include "opt_compat.h"
34#include "opt_inet.h"
35#include "opt_inet6.h"
36#include "opt_ipsec.h"
37#include "opt_mac.h"
38#include "opt_tcpdebug.h"
39#include "opt_tcp_sack.h"
40
41#include <sys/param.h>
42#include <sys/systm.h>
43#include <sys/callout.h>
44#include <sys/kernel.h>
45#include <sys/sysctl.h>
46#include <sys/mac.h>
47#include <sys/malloc.h>
48#include <sys/mbuf.h>
49#ifdef INET6
50#include <sys/domain.h>
51#endif
52#include <sys/proc.h>
53#include <sys/socket.h>
54#include <sys/socketvar.h>
55#include <sys/protosw.h>
56#include <sys/random.h>
57
58#include <vm/uma.h>
59
60#include <net/route.h>
61#include <net/if.h>
62
63#include <netinet/in.h>
64#include <netinet/in_systm.h>
65#include <netinet/ip.h>
66#ifdef INET6
67#include <netinet/ip6.h>
68#endif
69#include <netinet/in_pcb.h>
70#ifdef INET6
71#include <netinet6/in6_pcb.h>
72#endif
73#include <netinet/in_var.h>
74#include <netinet/ip_var.h>
75#ifdef INET6
76#include <netinet6/ip6_var.h>
77#include <netinet6/scope6_var.h>
78#include <netinet6/nd6.h>
79#endif
80#include <netinet/ip_icmp.h>
81#include <netinet/tcp.h>
82#include <netinet/tcp_fsm.h>
83#include <netinet/tcp_seq.h>
84#include <netinet/tcp_timer.h>
85#include <netinet/tcp_var.h>
86#ifdef INET6
87#include <netinet6/tcp6_var.h>
88#endif
89#include <netinet/tcpip.h>
90#ifdef TCPDEBUG
91#include <netinet/tcp_debug.h>
92#endif
93#include <netinet6/ip6protosw.h>
94
95#ifdef IPSEC
96#include <netinet6/ipsec.h>
97#ifdef INET6
98#include <netinet6/ipsec6.h>
99#endif
100#include <netkey/key.h>
101#endif /*IPSEC*/
102
103#ifdef FAST_IPSEC
104#include <netipsec/ipsec.h>
105#include <netipsec/xform.h>
106#ifdef INET6
107#include <netipsec/ipsec6.h>
108#endif
109#include <netipsec/key.h>
110#define	IPSEC
111#endif /*FAST_IPSEC*/
112
113#include <machine/in_cksum.h>
114#include <sys/md5.h>
115
116int	tcp_mssdflt = TCP_MSS;
117SYSCTL_INT(_net_inet_tcp, TCPCTL_MSSDFLT, mssdflt, CTLFLAG_RW,
118    &tcp_mssdflt , 0, "Default TCP Maximum Segment Size");
119
120#ifdef INET6
121int	tcp_v6mssdflt = TCP6_MSS;
122SYSCTL_INT(_net_inet_tcp, TCPCTL_V6MSSDFLT, v6mssdflt,
123	CTLFLAG_RW, &tcp_v6mssdflt , 0,
124	"Default TCP Maximum Segment Size for IPv6");
125#endif
126
127/*
128 * Minimum MSS we accept and use. This prevents DoS attacks where
129 * we are forced to a ridiculous low MSS like 20 and send hundreds
130 * of packets instead of one. The effect scales with the available
131 * bandwidth and quickly saturates the CPU and network interface
132 * with packet generation and sending. Set to zero to disable MINMSS
133 * checking. This setting prevents us from sending too small packets.
134 */
135int	tcp_minmss = TCP_MINMSS;
136SYSCTL_INT(_net_inet_tcp, OID_AUTO, minmss, CTLFLAG_RW,
137    &tcp_minmss , 0, "Minmum TCP Maximum Segment Size");
138/*
139 * Number of TCP segments per second we accept from remote host
140 * before we start to calculate average segment size. If average
141 * segment size drops below the minimum TCP MSS we assume a DoS
142 * attack and reset+drop the connection. Care has to be taken not to
143 * set this value too small to not kill interactive type connections
144 * (telnet, SSH) which send many small packets.
145 */
146int     tcp_minmssoverload = TCP_MINMSSOVERLOAD;
147SYSCTL_INT(_net_inet_tcp, OID_AUTO, minmssoverload, CTLFLAG_RW,
148    &tcp_minmssoverload , 0, "Number of TCP Segments per Second allowed to"
149    "be under the MINMSS Size");
150
151#if 0
152static int	tcp_rttdflt = TCPTV_SRTTDFLT / PR_SLOWHZ;
153SYSCTL_INT(_net_inet_tcp, TCPCTL_RTTDFLT, rttdflt, CTLFLAG_RW,
154    &tcp_rttdflt , 0, "Default maximum TCP Round Trip Time");
155#endif
156
157int	tcp_do_rfc1323 = 1;
158SYSCTL_INT(_net_inet_tcp, TCPCTL_DO_RFC1323, rfc1323, CTLFLAG_RW,
159    &tcp_do_rfc1323 , 0, "Enable rfc1323 (high performance TCP) extensions");
160
161static int	tcp_tcbhashsize = 0;
162SYSCTL_INT(_net_inet_tcp, OID_AUTO, tcbhashsize, CTLFLAG_RDTUN,
163     &tcp_tcbhashsize, 0, "Size of TCP control-block hashtable");
164
165static int	do_tcpdrain = 1;
166SYSCTL_INT(_net_inet_tcp, OID_AUTO, do_tcpdrain, CTLFLAG_RW, &do_tcpdrain, 0,
167     "Enable tcp_drain routine for extra help when low on mbufs");
168
169SYSCTL_INT(_net_inet_tcp, OID_AUTO, pcbcount, CTLFLAG_RD,
170    &tcbinfo.ipi_count, 0, "Number of active PCBs");
171
172static int	icmp_may_rst = 1;
173SYSCTL_INT(_net_inet_tcp, OID_AUTO, icmp_may_rst, CTLFLAG_RW, &icmp_may_rst, 0,
174    "Certain ICMP unreachable messages may abort connections in SYN_SENT");
175
176static int	tcp_isn_reseed_interval = 0;
177SYSCTL_INT(_net_inet_tcp, OID_AUTO, isn_reseed_interval, CTLFLAG_RW,
178    &tcp_isn_reseed_interval, 0, "Seconds between reseeding of ISN secret");
179
180static int	maxtcptw;
181SYSCTL_INT(_net_inet_tcp, OID_AUTO, maxtcptw, CTLFLAG_RDTUN,
182    &maxtcptw, 0, "Maximum number of compressed TCP TIME_WAIT entries");
183
184/*
185 * TCP bandwidth limiting sysctls.  Note that the default lower bound of
186 * 1024 exists only for debugging.  A good production default would be
187 * something like 6100.
188 */
189SYSCTL_NODE(_net_inet_tcp, OID_AUTO, inflight, CTLFLAG_RW, 0,
190    "TCP inflight data limiting");
191
192static int	tcp_inflight_enable = 1;
193SYSCTL_INT(_net_inet_tcp_inflight, OID_AUTO, enable, CTLFLAG_RW,
194    &tcp_inflight_enable, 0, "Enable automatic TCP inflight data limiting");
195
196static int	tcp_inflight_debug = 0;
197SYSCTL_INT(_net_inet_tcp_inflight, OID_AUTO, debug, CTLFLAG_RW,
198    &tcp_inflight_debug, 0, "Debug TCP inflight calculations");
199
200static int	tcp_inflight_rttthresh;
201SYSCTL_PROC(_net_inet_tcp_inflight, OID_AUTO, rttthresh, CTLTYPE_INT|CTLFLAG_RW,
202    &tcp_inflight_rttthresh, 0, sysctl_msec_to_ticks, "I",
203    "RTT threshold below which inflight will deactivate itself");
204
205static int	tcp_inflight_min = 6144;
206SYSCTL_INT(_net_inet_tcp_inflight, OID_AUTO, min, CTLFLAG_RW,
207    &tcp_inflight_min, 0, "Lower-bound for TCP inflight window");
208
209static int	tcp_inflight_max = TCP_MAXWIN << TCP_MAX_WINSHIFT;
210SYSCTL_INT(_net_inet_tcp_inflight, OID_AUTO, max, CTLFLAG_RW,
211    &tcp_inflight_max, 0, "Upper-bound for TCP inflight window");
212
213static int	tcp_inflight_stab = 20;
214SYSCTL_INT(_net_inet_tcp_inflight, OID_AUTO, stab, CTLFLAG_RW,
215    &tcp_inflight_stab, 0, "Inflight Algorithm Stabilization 20 = 2 packets");
216
217uma_zone_t sack_hole_zone;
218
219static struct inpcb *tcp_notify(struct inpcb *, int);
220static void	tcp_isn_tick(void *);
221
222/*
223 * Target size of TCP PCB hash tables. Must be a power of two.
224 *
225 * Note that this can be overridden by the kernel environment
226 * variable net.inet.tcp.tcbhashsize
227 */
228#ifndef TCBHASHSIZE
229#define TCBHASHSIZE	512
230#endif
231
232/*
233 * XXX
234 * Callouts should be moved into struct tcp directly.  They are currently
235 * separate because the tcpcb structure is exported to userland for sysctl
236 * parsing purposes, which do not know about callouts.
237 */
238struct	tcpcb_mem {
239	struct	tcpcb tcb;
240	struct	callout tcpcb_mem_rexmt, tcpcb_mem_persist, tcpcb_mem_keep;
241	struct	callout tcpcb_mem_2msl, tcpcb_mem_delack;
242};
243
244static uma_zone_t tcpcb_zone;
245static uma_zone_t tcptw_zone;
246struct callout isn_callout;
247
248/*
249 * TCP initialization.
250 */
251void
252tcp_init(void)
253{
254	int hashsize = TCBHASHSIZE;
255
256	tcp_delacktime = TCPTV_DELACK;
257	tcp_keepinit = TCPTV_KEEP_INIT;
258	tcp_keepidle = TCPTV_KEEP_IDLE;
259	tcp_keepintvl = TCPTV_KEEPINTVL;
260	tcp_maxpersistidle = TCPTV_KEEP_IDLE;
261	tcp_msl = TCPTV_MSL;
262	tcp_rexmit_min = TCPTV_MIN;
263	tcp_rexmit_slop = TCPTV_CPU_VAR;
264	tcp_inflight_rttthresh = TCPTV_INFLIGHT_RTTTHRESH;
265
266	INP_INFO_LOCK_INIT(&tcbinfo, "tcp");
267	LIST_INIT(&tcb);
268	tcbinfo.listhead = &tcb;
269	TUNABLE_INT_FETCH("net.inet.tcp.tcbhashsize", &hashsize);
270	if (!powerof2(hashsize)) {
271		printf("WARNING: TCB hash size not a power of 2\n");
272		hashsize = 512; /* safe default */
273	}
274	tcp_tcbhashsize = hashsize;
275	tcbinfo.hashbase = hashinit(hashsize, M_PCB, &tcbinfo.hashmask);
276	tcbinfo.porthashbase = hashinit(hashsize, M_PCB,
277					&tcbinfo.porthashmask);
278	tcbinfo.ipi_zone = uma_zcreate("inpcb", sizeof(struct inpcb),
279	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
280	uma_zone_set_max(tcbinfo.ipi_zone, maxsockets);
281#ifdef INET6
282#define TCP_MINPROTOHDR (sizeof(struct ip6_hdr) + sizeof(struct tcphdr))
283#else /* INET6 */
284#define TCP_MINPROTOHDR (sizeof(struct tcpiphdr))
285#endif /* INET6 */
286	if (max_protohdr < TCP_MINPROTOHDR)
287		max_protohdr = TCP_MINPROTOHDR;
288	if (max_linkhdr + TCP_MINPROTOHDR > MHLEN)
289		panic("tcp_init");
290#undef TCP_MINPROTOHDR
291	/*
292	 * These have to be type stable for the benefit of the timers.
293	 */
294	tcpcb_zone = uma_zcreate("tcpcb", sizeof(struct tcpcb_mem),
295	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
296	uma_zone_set_max(tcpcb_zone, maxsockets);
297	TUNABLE_INT_FETCH("net.inet.tcp.maxtcptw", &maxtcptw);
298	if (maxtcptw == 0)
299		maxtcptw = maxsockets / 5;
300	tcptw_zone = uma_zcreate("tcptw", sizeof(struct tcptw),
301	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
302	uma_zone_set_max(tcptw_zone, maxtcptw);
303	tcp_timer_init();
304	syncache_init();
305	tcp_hc_init();
306	tcp_reass_init();
307	callout_init(&isn_callout, CALLOUT_MPSAFE);
308	tcp_isn_tick(NULL);
309	EVENTHANDLER_REGISTER(shutdown_pre_sync, tcp_fini, NULL,
310		SHUTDOWN_PRI_DEFAULT);
311	sack_hole_zone = uma_zcreate("sackhole", sizeof(struct sackhole),
312	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
313}
314
315void
316tcp_fini(void *xtp)
317{
318
319	callout_stop(&isn_callout);
320}
321
322/*
323 * Fill in the IP and TCP headers for an outgoing packet, given the tcpcb.
324 * tcp_template used to store this data in mbufs, but we now recopy it out
325 * of the tcpcb each time to conserve mbufs.
326 */
327void
328tcpip_fillheaders(struct inpcb *inp, void *ip_ptr, void *tcp_ptr)
329{
330	struct tcphdr *th = (struct tcphdr *)tcp_ptr;
331
332	INP_LOCK_ASSERT(inp);
333
334#ifdef INET6
335	if ((inp->inp_vflag & INP_IPV6) != 0) {
336		struct ip6_hdr *ip6;
337
338		ip6 = (struct ip6_hdr *)ip_ptr;
339		ip6->ip6_flow = (ip6->ip6_flow & ~IPV6_FLOWINFO_MASK) |
340			(inp->in6p_flowinfo & IPV6_FLOWINFO_MASK);
341		ip6->ip6_vfc = (ip6->ip6_vfc & ~IPV6_VERSION_MASK) |
342			(IPV6_VERSION & IPV6_VERSION_MASK);
343		ip6->ip6_nxt = IPPROTO_TCP;
344		ip6->ip6_plen = sizeof(struct tcphdr);
345		ip6->ip6_src = inp->in6p_laddr;
346		ip6->ip6_dst = inp->in6p_faddr;
347	} else
348#endif
349	{
350		struct ip *ip;
351
352		ip = (struct ip *)ip_ptr;
353		ip->ip_v = IPVERSION;
354		ip->ip_hl = 5;
355		ip->ip_tos = inp->inp_ip_tos;
356		ip->ip_len = 0;
357		ip->ip_id = 0;
358		ip->ip_off = 0;
359		ip->ip_ttl = inp->inp_ip_ttl;
360		ip->ip_sum = 0;
361		ip->ip_p = IPPROTO_TCP;
362		ip->ip_src = inp->inp_laddr;
363		ip->ip_dst = inp->inp_faddr;
364	}
365	th->th_sport = inp->inp_lport;
366	th->th_dport = inp->inp_fport;
367	th->th_seq = 0;
368	th->th_ack = 0;
369	th->th_x2 = 0;
370	th->th_off = 5;
371	th->th_flags = 0;
372	th->th_win = 0;
373	th->th_urp = 0;
374	th->th_sum = 0;		/* in_pseudo() is called later for ipv4 */
375}
376
377/*
378 * Create template to be used to send tcp packets on a connection.
379 * Allocates an mbuf and fills in a skeletal tcp/ip header.  The only
380 * use for this function is in keepalives, which use tcp_respond.
381 */
382struct tcptemp *
383tcpip_maketemplate(struct inpcb *inp)
384{
385	struct mbuf *m;
386	struct tcptemp *n;
387
388	m = m_get(M_DONTWAIT, MT_DATA);
389	if (m == NULL)
390		return (0);
391	m->m_len = sizeof(struct tcptemp);
392	n = mtod(m, struct tcptemp *);
393
394	tcpip_fillheaders(inp, (void *)&n->tt_ipgen, (void *)&n->tt_t);
395	return (n);
396}
397
398/*
399 * Send a single message to the TCP at address specified by
400 * the given TCP/IP header.  If m == NULL, then we make a copy
401 * of the tcpiphdr at ti and send directly to the addressed host.
402 * This is used to force keep alive messages out using the TCP
403 * template for a connection.  If flags are given then we send
404 * a message back to the TCP which originated the * segment ti,
405 * and discard the mbuf containing it and any other attached mbufs.
406 *
407 * In any case the ack and sequence number of the transmitted
408 * segment are as specified by the parameters.
409 *
410 * NOTE: If m != NULL, then ti must point to *inside* the mbuf.
411 */
412void
413tcp_respond(struct tcpcb *tp, void *ipgen, register struct tcphdr *th,
414    register struct mbuf *m, tcp_seq ack, tcp_seq seq, int flags)
415{
416	register int tlen;
417	int win = 0;
418	struct ip *ip;
419	struct tcphdr *nth;
420#ifdef INET6
421	struct ip6_hdr *ip6;
422	int isipv6;
423#endif /* INET6 */
424	int ipflags = 0;
425	struct inpcb *inp;
426
427	KASSERT(tp != NULL || m != NULL, ("tcp_respond: tp and m both NULL"));
428
429#ifdef INET6
430	isipv6 = ((struct ip *)ipgen)->ip_v == 6;
431	ip6 = ipgen;
432#endif /* INET6 */
433	ip = ipgen;
434
435	if (tp != NULL) {
436		inp = tp->t_inpcb;
437		KASSERT(inp != NULL, ("tcp control block w/o inpcb"));
438		INP_INFO_WLOCK_ASSERT(&tcbinfo);
439		INP_LOCK_ASSERT(inp);
440	} else
441		inp = NULL;
442
443	if (tp != NULL) {
444		if (!(flags & TH_RST)) {
445			win = sbspace(&inp->inp_socket->so_rcv);
446			if (win > (long)TCP_MAXWIN << tp->rcv_scale)
447				win = (long)TCP_MAXWIN << tp->rcv_scale;
448		}
449	}
450	if (m == NULL) {
451		m = m_gethdr(M_DONTWAIT, MT_DATA);
452		if (m == NULL)
453			return;
454		tlen = 0;
455		m->m_data += max_linkhdr;
456#ifdef INET6
457		if (isipv6) {
458			bcopy((caddr_t)ip6, mtod(m, caddr_t),
459			      sizeof(struct ip6_hdr));
460			ip6 = mtod(m, struct ip6_hdr *);
461			nth = (struct tcphdr *)(ip6 + 1);
462		} else
463#endif /* INET6 */
464	      {
465		bcopy((caddr_t)ip, mtod(m, caddr_t), sizeof(struct ip));
466		ip = mtod(m, struct ip *);
467		nth = (struct tcphdr *)(ip + 1);
468	      }
469		bcopy((caddr_t)th, (caddr_t)nth, sizeof(struct tcphdr));
470		flags = TH_ACK;
471	} else {
472		m_freem(m->m_next);
473		m->m_next = NULL;
474		m->m_data = (caddr_t)ipgen;
475		/* m_len is set later */
476		tlen = 0;
477#define xchg(a,b,type) { type t; t=a; a=b; b=t; }
478#ifdef INET6
479		if (isipv6) {
480			xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr);
481			nth = (struct tcphdr *)(ip6 + 1);
482		} else
483#endif /* INET6 */
484	      {
485		xchg(ip->ip_dst.s_addr, ip->ip_src.s_addr, n_long);
486		nth = (struct tcphdr *)(ip + 1);
487	      }
488		if (th != nth) {
489			/*
490			 * this is usually a case when an extension header
491			 * exists between the IPv6 header and the
492			 * TCP header.
493			 */
494			nth->th_sport = th->th_sport;
495			nth->th_dport = th->th_dport;
496		}
497		xchg(nth->th_dport, nth->th_sport, n_short);
498#undef xchg
499	}
500#ifdef INET6
501	if (isipv6) {
502		ip6->ip6_flow = 0;
503		ip6->ip6_vfc = IPV6_VERSION;
504		ip6->ip6_nxt = IPPROTO_TCP;
505		ip6->ip6_plen = htons((u_short)(sizeof (struct tcphdr) +
506						tlen));
507		tlen += sizeof (struct ip6_hdr) + sizeof (struct tcphdr);
508	} else
509#endif
510	{
511		tlen += sizeof (struct tcpiphdr);
512		ip->ip_len = tlen;
513		ip->ip_ttl = ip_defttl;
514		if (path_mtu_discovery)
515			ip->ip_off |= IP_DF;
516	}
517	m->m_len = tlen;
518	m->m_pkthdr.len = tlen;
519	m->m_pkthdr.rcvif = NULL;
520#ifdef MAC
521	if (inp != NULL) {
522		/*
523		 * Packet is associated with a socket, so allow the
524		 * label of the response to reflect the socket label.
525		 */
526		INP_LOCK_ASSERT(inp);
527		mac_create_mbuf_from_inpcb(inp, m);
528	} else {
529		/*
530		 * Packet is not associated with a socket, so possibly
531		 * update the label in place.
532		 */
533		mac_reflect_mbuf_tcp(m);
534	}
535#endif
536	nth->th_seq = htonl(seq);
537	nth->th_ack = htonl(ack);
538	nth->th_x2 = 0;
539	nth->th_off = sizeof (struct tcphdr) >> 2;
540	nth->th_flags = flags;
541	if (tp != NULL)
542		nth->th_win = htons((u_short) (win >> tp->rcv_scale));
543	else
544		nth->th_win = htons((u_short)win);
545	nth->th_urp = 0;
546#ifdef INET6
547	if (isipv6) {
548		nth->th_sum = 0;
549		nth->th_sum = in6_cksum(m, IPPROTO_TCP,
550					sizeof(struct ip6_hdr),
551					tlen - sizeof(struct ip6_hdr));
552		ip6->ip6_hlim = in6_selecthlim(tp != NULL ? tp->t_inpcb :
553		    NULL, NULL);
554	} else
555#endif /* INET6 */
556	{
557		nth->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
558		    htons((u_short)(tlen - sizeof(struct ip) + ip->ip_p)));
559		m->m_pkthdr.csum_flags = CSUM_TCP;
560		m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
561	}
562#ifdef TCPDEBUG
563	if (tp == NULL || (inp->inp_socket->so_options & SO_DEBUG))
564		tcp_trace(TA_OUTPUT, 0, tp, mtod(m, void *), th, 0);
565#endif
566#ifdef INET6
567	if (isipv6)
568		(void) ip6_output(m, NULL, NULL, ipflags, NULL, NULL, inp);
569	else
570#endif /* INET6 */
571	(void) ip_output(m, NULL, NULL, ipflags, NULL, inp);
572}
573
574/*
575 * Create a new TCP control block, making an
576 * empty reassembly queue and hooking it to the argument
577 * protocol control block.  The `inp' parameter must have
578 * come from the zone allocator set up in tcp_init().
579 */
580struct tcpcb *
581tcp_newtcpcb(struct inpcb *inp)
582{
583	struct tcpcb_mem *tm;
584	struct tcpcb *tp;
585#ifdef INET6
586	int isipv6 = (inp->inp_vflag & INP_IPV6) != 0;
587#endif /* INET6 */
588
589	tm = uma_zalloc(tcpcb_zone, M_NOWAIT | M_ZERO);
590	if (tm == NULL)
591		return (NULL);
592	tp = &tm->tcb;
593	/*	LIST_INIT(&tp->t_segq); */	/* XXX covered by M_ZERO */
594	tp->t_maxseg = tp->t_maxopd =
595#ifdef INET6
596		isipv6 ? tcp_v6mssdflt :
597#endif /* INET6 */
598		tcp_mssdflt;
599
600	/* Set up our timeouts. */
601	callout_init(tp->tt_rexmt = &tm->tcpcb_mem_rexmt, NET_CALLOUT_MPSAFE);
602	callout_init(tp->tt_persist = &tm->tcpcb_mem_persist, NET_CALLOUT_MPSAFE);
603	callout_init(tp->tt_keep = &tm->tcpcb_mem_keep, NET_CALLOUT_MPSAFE);
604	callout_init(tp->tt_2msl = &tm->tcpcb_mem_2msl, NET_CALLOUT_MPSAFE);
605	callout_init(tp->tt_delack = &tm->tcpcb_mem_delack, NET_CALLOUT_MPSAFE);
606
607	if (tcp_do_rfc1323)
608		tp->t_flags = (TF_REQ_SCALE|TF_REQ_TSTMP);
609	tp->sack_enable = tcp_do_sack;
610	TAILQ_INIT(&tp->snd_holes);
611	tp->t_inpcb = inp;	/* XXX */
612	/*
613	 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
614	 * rtt estimate.  Set rttvar so that srtt + 4 * rttvar gives
615	 * reasonable initial retransmit time.
616	 */
617	tp->t_srtt = TCPTV_SRTTBASE;
618	tp->t_rttvar = ((TCPTV_RTOBASE - TCPTV_SRTTBASE) << TCP_RTTVAR_SHIFT) / 4;
619	tp->t_rttmin = tcp_rexmit_min;
620	tp->t_rxtcur = TCPTV_RTOBASE;
621	tp->snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
622	tp->snd_bwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
623	tp->snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT;
624	tp->t_rcvtime = ticks;
625	tp->t_bw_rtttime = ticks;
626	/*
627	 * IPv4 TTL initialization is necessary for an IPv6 socket as well,
628	 * because the socket may be bound to an IPv6 wildcard address,
629	 * which may match an IPv4-mapped IPv6 address.
630	 */
631	inp->inp_ip_ttl = ip_defttl;
632	inp->inp_ppcb = tp;
633	return (tp);		/* XXX */
634}
635
636/*
637 * Drop a TCP connection, reporting
638 * the specified error.  If connection is synchronized,
639 * then send a RST to peer.
640 */
641struct tcpcb *
642tcp_drop(struct tcpcb *tp, int errno)
643{
644	struct socket *so = tp->t_inpcb->inp_socket;
645
646	INP_INFO_WLOCK_ASSERT(&tcbinfo);
647	INP_LOCK_ASSERT(tp->t_inpcb);
648
649	if (TCPS_HAVERCVDSYN(tp->t_state)) {
650		tp->t_state = TCPS_CLOSED;
651		(void) tcp_output(tp);
652		tcpstat.tcps_drops++;
653	} else
654		tcpstat.tcps_conndrops++;
655	if (errno == ETIMEDOUT && tp->t_softerror)
656		errno = tp->t_softerror;
657	so->so_error = errno;
658	return (tcp_close(tp));
659}
660
661void
662tcp_discardcb(struct tcpcb *tp)
663{
664	struct tseg_qent *q;
665	struct inpcb *inp = tp->t_inpcb;
666	struct socket *so = inp->inp_socket;
667#ifdef INET6
668	int isipv6 = (inp->inp_vflag & INP_IPV6) != 0;
669#endif /* INET6 */
670
671	/*
672	 * XXXRW: This is all very well and good, but actually, we might be
673	 * discarding the tcpcb after the socket is gone, so we can't do
674	 * this:
675	KASSERT(so != NULL, ("tcp_discardcb: so == NULL"));
676	 */
677	INP_LOCK_ASSERT(inp);
678
679	/*
680	 * Make sure that all of our timers are stopped before we
681	 * delete the PCB.
682	 */
683	callout_stop(tp->tt_rexmt);
684	callout_stop(tp->tt_persist);
685	callout_stop(tp->tt_keep);
686	callout_stop(tp->tt_2msl);
687	callout_stop(tp->tt_delack);
688
689	/*
690	 * If we got enough samples through the srtt filter,
691	 * save the rtt and rttvar in the routing entry.
692	 * 'Enough' is arbitrarily defined as 4 rtt samples.
693	 * 4 samples is enough for the srtt filter to converge
694	 * to within enough % of the correct value; fewer samples
695	 * and we could save a bogus rtt. The danger is not high
696	 * as tcp quickly recovers from everything.
697	 * XXX: Works very well but needs some more statistics!
698	 */
699	if (tp->t_rttupdated >= 4) {
700		struct hc_metrics_lite metrics;
701		u_long ssthresh;
702
703		bzero(&metrics, sizeof(metrics));
704		/*
705		 * Update the ssthresh always when the conditions below
706		 * are satisfied. This gives us better new start value
707		 * for the congestion avoidance for new connections.
708		 * ssthresh is only set if packet loss occured on a session.
709		 */
710		ssthresh = tp->snd_ssthresh;
711		if (ssthresh != 0 && ssthresh < so->so_snd.sb_hiwat / 2) {
712			/*
713			 * convert the limit from user data bytes to
714			 * packets then to packet data bytes.
715			 */
716			ssthresh = (ssthresh + tp->t_maxseg / 2) / tp->t_maxseg;
717			if (ssthresh < 2)
718				ssthresh = 2;
719			ssthresh *= (u_long)(tp->t_maxseg +
720#ifdef INET6
721				      (isipv6 ? sizeof (struct ip6_hdr) +
722					       sizeof (struct tcphdr) :
723#endif
724				       sizeof (struct tcpiphdr)
725#ifdef INET6
726				       )
727#endif
728				      );
729		} else
730			ssthresh = 0;
731		metrics.rmx_ssthresh = ssthresh;
732
733		metrics.rmx_rtt = tp->t_srtt;
734		metrics.rmx_rttvar = tp->t_rttvar;
735		/* XXX: This wraps if the pipe is more than 4 Gbit per second */
736		metrics.rmx_bandwidth = tp->snd_bandwidth;
737		metrics.rmx_cwnd = tp->snd_cwnd;
738		metrics.rmx_sendpipe = 0;
739		metrics.rmx_recvpipe = 0;
740
741		tcp_hc_update(&inp->inp_inc, &metrics);
742	}
743
744	/* free the reassembly queue, if any */
745	while ((q = LIST_FIRST(&tp->t_segq)) != NULL) {
746		LIST_REMOVE(q, tqe_q);
747		m_freem(q->tqe_m);
748		uma_zfree(tcp_reass_zone, q);
749		tp->t_segqlen--;
750		tcp_reass_qsize--;
751	}
752	tcp_free_sackholes(tp);
753	inp->inp_ppcb = NULL;
754	tp->t_inpcb = NULL;
755	uma_zfree(tcpcb_zone, tp);
756
757	/*
758	 * XXXRW: This seems a bit unclean.
759	 */
760	if (so != NULL)
761		soisdisconnected(so);
762}
763
764/*
765 * Attempt to close a TCP control block, marking it as dropped, and freeing
766 * the socket if we hold the only reference.
767 */
768struct tcpcb *
769tcp_close(struct tcpcb *tp)
770{
771	struct inpcb *inp = tp->t_inpcb;
772	struct socket *so;
773
774	INP_INFO_WLOCK_ASSERT(&tcbinfo);
775	INP_LOCK_ASSERT(inp);
776
777	inp->inp_vflag |= INP_DROPPED;
778
779	tcpstat.tcps_closed++;
780	KASSERT(inp->inp_socket != NULL, ("tcp_close: inp_socket NULL"));
781	so = inp->inp_socket;
782	soisdisconnected(so);
783	if (inp->inp_vflag & INP_SOCKREF) {
784		KASSERT(so->so_state & SS_PROTOREF,
785		    ("tcp_close: !SS_PROTOREF"));
786		inp->inp_vflag &= ~INP_SOCKREF;
787		tcp_discardcb(tp);
788#ifdef INET6
789		if (inp->inp_vflag & INP_IPV6PROTO) {
790			in6_pcbdetach(inp);
791			in6_pcbfree(inp);
792		} else {
793#endif
794			in_pcbdetach(inp);
795			in_pcbfree(inp);
796#ifdef INET6
797		}
798#endif
799		ACCEPT_LOCK();
800		SOCK_LOCK(so);
801		so->so_state &= ~SS_PROTOREF;
802		sofree(so);
803		return (NULL);
804	}
805	return (tp);
806}
807
808void
809tcp_drain(void)
810{
811
812	if (do_tcpdrain) {
813		struct inpcb *inpb;
814		struct tcpcb *tcpb;
815		struct tseg_qent *te;
816
817	/*
818	 * Walk the tcpbs, if existing, and flush the reassembly queue,
819	 * if there is one...
820	 * XXX: The "Net/3" implementation doesn't imply that the TCP
821	 *      reassembly queue should be flushed, but in a situation
822	 *	where we're really low on mbufs, this is potentially
823	 *	usefull.
824	 */
825		INP_INFO_RLOCK(&tcbinfo);
826		LIST_FOREACH(inpb, tcbinfo.listhead, inp_list) {
827			if (inpb->inp_vflag & INP_TIMEWAIT)
828				continue;
829			INP_LOCK(inpb);
830			if ((tcpb = intotcpcb(inpb)) != NULL) {
831				while ((te = LIST_FIRST(&tcpb->t_segq))
832			            != NULL) {
833					LIST_REMOVE(te, tqe_q);
834					m_freem(te->tqe_m);
835					uma_zfree(tcp_reass_zone, te);
836					tcpb->t_segqlen--;
837					tcp_reass_qsize--;
838				}
839				tcp_clean_sackreport(tcpb);
840			}
841			INP_UNLOCK(inpb);
842		}
843		INP_INFO_RUNLOCK(&tcbinfo);
844	}
845}
846
847/*
848 * Notify a tcp user of an asynchronous error;
849 * store error as soft error, but wake up user
850 * (for now, won't do anything until can select for soft error).
851 *
852 * Do not wake up user since there currently is no mechanism for
853 * reporting soft errors (yet - a kqueue filter may be added).
854 */
855static struct inpcb *
856tcp_notify(struct inpcb *inp, int error)
857{
858	struct tcpcb *tp;
859
860	INP_INFO_WLOCK_ASSERT(&tcbinfo);
861	INP_LOCK_ASSERT(inp);
862
863	if ((inp->inp_vflag & INP_TIMEWAIT) ||
864	    (inp->inp_vflag & INP_DROPPED))
865		return (inp);
866
867	tp = intotcpcb(inp);
868	KASSERT(tp != NULL, ("tcp_notify: tp == NULL"));
869
870	/*
871	 * Ignore some errors if we are hooked up.
872	 * If connection hasn't completed, has retransmitted several times,
873	 * and receives a second error, give up now.  This is better
874	 * than waiting a long time to establish a connection that
875	 * can never complete.
876	 */
877	if (tp->t_state == TCPS_ESTABLISHED &&
878	    (error == EHOSTUNREACH || error == ENETUNREACH ||
879	     error == EHOSTDOWN)) {
880		return (inp);
881	} else if (tp->t_state < TCPS_ESTABLISHED && tp->t_rxtshift > 3 &&
882	    tp->t_softerror) {
883		tp = tcp_drop(tp, error);
884		if (tp != NULL)
885			return (inp);
886		else
887			return (NULL);
888	} else {
889		tp->t_softerror = error;
890		return (inp);
891	}
892#if 0
893	wakeup( &so->so_timeo);
894	sorwakeup(so);
895	sowwakeup(so);
896#endif
897}
898
899static int
900tcp_pcblist(SYSCTL_HANDLER_ARGS)
901{
902	int error, i, n;
903	struct inpcb *inp, **inp_list;
904	inp_gen_t gencnt;
905	struct xinpgen xig;
906
907	/*
908	 * The process of preparing the TCB list is too time-consuming and
909	 * resource-intensive to repeat twice on every request.
910	 */
911	if (req->oldptr == NULL) {
912		n = tcbinfo.ipi_count;
913		req->oldidx = 2 * (sizeof xig)
914			+ (n + n/8) * sizeof(struct xtcpcb);
915		return (0);
916	}
917
918	if (req->newptr != NULL)
919		return (EPERM);
920
921	/*
922	 * OK, now we're committed to doing something.
923	 */
924	INP_INFO_RLOCK(&tcbinfo);
925	gencnt = tcbinfo.ipi_gencnt;
926	n = tcbinfo.ipi_count;
927	INP_INFO_RUNLOCK(&tcbinfo);
928
929	error = sysctl_wire_old_buffer(req, 2 * (sizeof xig)
930		+ n * sizeof(struct xtcpcb));
931	if (error != 0)
932		return (error);
933
934	xig.xig_len = sizeof xig;
935	xig.xig_count = n;
936	xig.xig_gen = gencnt;
937	xig.xig_sogen = so_gencnt;
938	error = SYSCTL_OUT(req, &xig, sizeof xig);
939	if (error)
940		return (error);
941
942	inp_list = malloc(n * sizeof *inp_list, M_TEMP, M_WAITOK);
943	if (inp_list == NULL)
944		return (ENOMEM);
945
946	INP_INFO_RLOCK(&tcbinfo);
947	for (inp = LIST_FIRST(tcbinfo.listhead), i = 0; inp != NULL && i < n;
948	     inp = LIST_NEXT(inp, inp_list)) {
949		INP_LOCK(inp);
950		if (inp->inp_gencnt <= gencnt) {
951			/*
952			 * XXX: This use of cr_cansee(), introduced with
953			 * TCP state changes, is not quite right, but for
954			 * now, better than nothing.
955			 */
956			if (inp->inp_vflag & INP_TIMEWAIT) {
957				if (intotw(inp) != NULL)
958					error = cr_cansee(req->td->td_ucred,
959					    intotw(inp)->tw_cred);
960				else
961					error = EINVAL;	/* Skip this inp. */
962			} else
963				error = cr_canseesocket(req->td->td_ucred,
964				    inp->inp_socket);
965			if (error == 0)
966				inp_list[i++] = inp;
967		}
968		INP_UNLOCK(inp);
969	}
970	INP_INFO_RUNLOCK(&tcbinfo);
971	n = i;
972
973	error = 0;
974	for (i = 0; i < n; i++) {
975		inp = inp_list[i];
976		if (inp->inp_gencnt <= gencnt) {
977			struct xtcpcb xt;
978			void *inp_ppcb;
979
980			bzero(&xt, sizeof(xt));
981			xt.xt_len = sizeof xt;
982			/* XXX should avoid extra copy */
983			bcopy(inp, &xt.xt_inp, sizeof *inp);
984			inp_ppcb = inp->inp_ppcb;
985			if (inp_ppcb == NULL)
986				bzero((char *) &xt.xt_tp, sizeof xt.xt_tp);
987			else if (inp->inp_vflag & INP_TIMEWAIT) {
988				bzero((char *) &xt.xt_tp, sizeof xt.xt_tp);
989				xt.xt_tp.t_state = TCPS_TIME_WAIT;
990			} else
991				bcopy(inp_ppcb, &xt.xt_tp, sizeof xt.xt_tp);
992			if (inp->inp_socket != NULL)
993				sotoxsocket(inp->inp_socket, &xt.xt_socket);
994			else {
995				bzero(&xt.xt_socket, sizeof xt.xt_socket);
996				xt.xt_socket.xso_protocol = IPPROTO_TCP;
997			}
998			xt.xt_inp.inp_gencnt = inp->inp_gencnt;
999			error = SYSCTL_OUT(req, &xt, sizeof xt);
1000		}
1001	}
1002	if (!error) {
1003		/*
1004		 * Give the user an updated idea of our state.
1005		 * If the generation differs from what we told
1006		 * her before, she knows that something happened
1007		 * while we were processing this request, and it
1008		 * might be necessary to retry.
1009		 */
1010		INP_INFO_RLOCK(&tcbinfo);
1011		xig.xig_gen = tcbinfo.ipi_gencnt;
1012		xig.xig_sogen = so_gencnt;
1013		xig.xig_count = tcbinfo.ipi_count;
1014		INP_INFO_RUNLOCK(&tcbinfo);
1015		error = SYSCTL_OUT(req, &xig, sizeof xig);
1016	}
1017	free(inp_list, M_TEMP);
1018	return (error);
1019}
1020
1021SYSCTL_PROC(_net_inet_tcp, TCPCTL_PCBLIST, pcblist, CTLFLAG_RD, 0, 0,
1022	    tcp_pcblist, "S,xtcpcb", "List of active TCP connections");
1023
1024static int
1025tcp_getcred(SYSCTL_HANDLER_ARGS)
1026{
1027	struct xucred xuc;
1028	struct sockaddr_in addrs[2];
1029	struct inpcb *inp;
1030	int error;
1031
1032	error = suser_cred(req->td->td_ucred, SUSER_ALLOWJAIL);
1033	if (error)
1034		return (error);
1035	error = SYSCTL_IN(req, addrs, sizeof(addrs));
1036	if (error)
1037		return (error);
1038	INP_INFO_RLOCK(&tcbinfo);
1039	inp = in_pcblookup_hash(&tcbinfo, addrs[1].sin_addr, addrs[1].sin_port,
1040	    addrs[0].sin_addr, addrs[0].sin_port, 0, NULL);
1041	if (inp == NULL) {
1042		error = ENOENT;
1043		goto outunlocked;
1044	}
1045	INP_LOCK(inp);
1046	if (inp->inp_socket == NULL) {
1047		error = ENOENT;
1048		goto out;
1049	}
1050	error = cr_canseesocket(req->td->td_ucred, inp->inp_socket);
1051	if (error)
1052		goto out;
1053	cru2x(inp->inp_socket->so_cred, &xuc);
1054out:
1055	INP_UNLOCK(inp);
1056outunlocked:
1057	INP_INFO_RUNLOCK(&tcbinfo);
1058	if (error == 0)
1059		error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred));
1060	return (error);
1061}
1062
1063SYSCTL_PROC(_net_inet_tcp, OID_AUTO, getcred,
1064    CTLTYPE_OPAQUE|CTLFLAG_RW|CTLFLAG_PRISON, 0, 0,
1065    tcp_getcred, "S,xucred", "Get the xucred of a TCP connection");
1066
1067#ifdef INET6
1068static int
1069tcp6_getcred(SYSCTL_HANDLER_ARGS)
1070{
1071	struct xucred xuc;
1072	struct sockaddr_in6 addrs[2];
1073	struct inpcb *inp;
1074	int error, mapped = 0;
1075
1076	error = suser_cred(req->td->td_ucred, SUSER_ALLOWJAIL);
1077	if (error)
1078		return (error);
1079	error = SYSCTL_IN(req, addrs, sizeof(addrs));
1080	if (error)
1081		return (error);
1082	if ((error = sa6_embedscope(&addrs[0], ip6_use_defzone)) != 0 ||
1083	    (error = sa6_embedscope(&addrs[1], ip6_use_defzone)) != 0) {
1084		return (error);
1085	}
1086	if (IN6_IS_ADDR_V4MAPPED(&addrs[0].sin6_addr)) {
1087		if (IN6_IS_ADDR_V4MAPPED(&addrs[1].sin6_addr))
1088			mapped = 1;
1089		else
1090			return (EINVAL);
1091	}
1092
1093	INP_INFO_RLOCK(&tcbinfo);
1094	if (mapped == 1)
1095		inp = in_pcblookup_hash(&tcbinfo,
1096			*(struct in_addr *)&addrs[1].sin6_addr.s6_addr[12],
1097			addrs[1].sin6_port,
1098			*(struct in_addr *)&addrs[0].sin6_addr.s6_addr[12],
1099			addrs[0].sin6_port,
1100			0, NULL);
1101	else
1102		inp = in6_pcblookup_hash(&tcbinfo,
1103			&addrs[1].sin6_addr, addrs[1].sin6_port,
1104			&addrs[0].sin6_addr, addrs[0].sin6_port, 0, NULL);
1105	if (inp == NULL) {
1106		error = ENOENT;
1107		goto outunlocked;
1108	}
1109	INP_LOCK(inp);
1110	if (inp->inp_socket == NULL) {
1111		error = ENOENT;
1112		goto out;
1113	}
1114	error = cr_canseesocket(req->td->td_ucred, inp->inp_socket);
1115	if (error)
1116		goto out;
1117	cru2x(inp->inp_socket->so_cred, &xuc);
1118out:
1119	INP_UNLOCK(inp);
1120outunlocked:
1121	INP_INFO_RUNLOCK(&tcbinfo);
1122	if (error == 0)
1123		error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred));
1124	return (error);
1125}
1126
1127SYSCTL_PROC(_net_inet6_tcp6, OID_AUTO, getcred,
1128    CTLTYPE_OPAQUE|CTLFLAG_RW|CTLFLAG_PRISON, 0, 0,
1129    tcp6_getcred, "S,xucred", "Get the xucred of a TCP6 connection");
1130#endif
1131
1132
1133void
1134tcp_ctlinput(int cmd, struct sockaddr *sa, void *vip)
1135{
1136	struct ip *ip = vip;
1137	struct tcphdr *th;
1138	struct in_addr faddr;
1139	struct inpcb *inp;
1140	struct tcpcb *tp;
1141	struct inpcb *(*notify)(struct inpcb *, int) = tcp_notify;
1142	struct icmp *icp;
1143	struct in_conninfo inc;
1144	tcp_seq icmp_tcp_seq;
1145	int mtu;
1146
1147	faddr = ((struct sockaddr_in *)sa)->sin_addr;
1148	if (sa->sa_family != AF_INET || faddr.s_addr == INADDR_ANY)
1149		return;
1150
1151	if (cmd == PRC_MSGSIZE)
1152		notify = tcp_mtudisc;
1153	else if (icmp_may_rst && (cmd == PRC_UNREACH_ADMIN_PROHIB ||
1154		cmd == PRC_UNREACH_PORT || cmd == PRC_TIMXCEED_INTRANS) && ip)
1155		notify = tcp_drop_syn_sent;
1156	/*
1157	 * Redirects don't need to be handled up here.
1158	 */
1159	else if (PRC_IS_REDIRECT(cmd))
1160		return;
1161	/*
1162	 * Source quench is depreciated.
1163	 */
1164	else if (cmd == PRC_QUENCH)
1165		return;
1166	/*
1167	 * Hostdead is ugly because it goes linearly through all PCBs.
1168	 * XXX: We never get this from ICMP, otherwise it makes an
1169	 * excellent DoS attack on machines with many connections.
1170	 */
1171	else if (cmd == PRC_HOSTDEAD)
1172		ip = NULL;
1173	else if ((unsigned)cmd >= PRC_NCMDS || inetctlerrmap[cmd] == 0)
1174		return;
1175	if (ip != NULL) {
1176		icp = (struct icmp *)((caddr_t)ip
1177				      - offsetof(struct icmp, icmp_ip));
1178		th = (struct tcphdr *)((caddr_t)ip
1179				       + (ip->ip_hl << 2));
1180		INP_INFO_WLOCK(&tcbinfo);
1181		inp = in_pcblookup_hash(&tcbinfo, faddr, th->th_dport,
1182		    ip->ip_src, th->th_sport, 0, NULL);
1183		if (inp != NULL)  {
1184			INP_LOCK(inp);
1185			if (!(inp->inp_vflag & INP_TIMEWAIT) &&
1186			    !(inp->inp_vflag & INP_DROPPED) &&
1187			    !(inp->inp_socket == NULL)) {
1188				icmp_tcp_seq = htonl(th->th_seq);
1189				tp = intotcpcb(inp);
1190				if (SEQ_GEQ(icmp_tcp_seq, tp->snd_una) &&
1191				    SEQ_LT(icmp_tcp_seq, tp->snd_max)) {
1192					if (cmd == PRC_MSGSIZE) {
1193					    /*
1194					     * MTU discovery:
1195					     * If we got a needfrag set the MTU
1196					     * in the route to the suggested new
1197					     * value (if given) and then notify.
1198					     */
1199					    bzero(&inc, sizeof(inc));
1200					    inc.inc_flags = 0;	/* IPv4 */
1201					    inc.inc_faddr = faddr;
1202
1203					    mtu = ntohs(icp->icmp_nextmtu);
1204					    /*
1205					     * If no alternative MTU was
1206					     * proposed, try the next smaller
1207					     * one.  ip->ip_len has already
1208					     * been swapped in icmp_input().
1209					     */
1210					    if (!mtu)
1211						mtu = ip_next_mtu(ip->ip_len,
1212						 1);
1213					    if (mtu < max(296, (tcp_minmss)
1214						 + sizeof(struct tcpiphdr)))
1215						mtu = 0;
1216					    if (!mtu)
1217						mtu = tcp_mssdflt
1218						 + sizeof(struct tcpiphdr);
1219					    /*
1220					     * Only cache the the MTU if it
1221					     * is smaller than the interface
1222					     * or route MTU.  tcp_mtudisc()
1223					     * will do right thing by itself.
1224					     */
1225					    if (mtu <= tcp_maxmtu(&inc))
1226						tcp_hc_updatemtu(&inc, mtu);
1227					}
1228
1229					inp = (*notify)(inp, inetctlerrmap[cmd]);
1230				}
1231			}
1232			if (inp != NULL)
1233				INP_UNLOCK(inp);
1234		} else {
1235			inc.inc_fport = th->th_dport;
1236			inc.inc_lport = th->th_sport;
1237			inc.inc_faddr = faddr;
1238			inc.inc_laddr = ip->ip_src;
1239#ifdef INET6
1240			inc.inc_isipv6 = 0;
1241#endif
1242			syncache_unreach(&inc, th);
1243		}
1244		INP_INFO_WUNLOCK(&tcbinfo);
1245	} else
1246		in_pcbnotifyall(&tcbinfo, faddr, inetctlerrmap[cmd], notify);
1247}
1248
1249#ifdef INET6
1250void
1251tcp6_ctlinput(int cmd, struct sockaddr *sa, void *d)
1252{
1253	struct tcphdr th;
1254	struct inpcb *(*notify)(struct inpcb *, int) = tcp_notify;
1255	struct ip6_hdr *ip6;
1256	struct mbuf *m;
1257	struct ip6ctlparam *ip6cp = NULL;
1258	const struct sockaddr_in6 *sa6_src = NULL;
1259	int off;
1260	struct tcp_portonly {
1261		u_int16_t th_sport;
1262		u_int16_t th_dport;
1263	} *thp;
1264
1265	if (sa->sa_family != AF_INET6 ||
1266	    sa->sa_len != sizeof(struct sockaddr_in6))
1267		return;
1268
1269	if (cmd == PRC_MSGSIZE)
1270		notify = tcp_mtudisc;
1271	else if (!PRC_IS_REDIRECT(cmd) &&
1272		 ((unsigned)cmd >= PRC_NCMDS || inet6ctlerrmap[cmd] == 0))
1273		return;
1274	/* Source quench is depreciated. */
1275	else if (cmd == PRC_QUENCH)
1276		return;
1277
1278	/* if the parameter is from icmp6, decode it. */
1279	if (d != NULL) {
1280		ip6cp = (struct ip6ctlparam *)d;
1281		m = ip6cp->ip6c_m;
1282		ip6 = ip6cp->ip6c_ip6;
1283		off = ip6cp->ip6c_off;
1284		sa6_src = ip6cp->ip6c_src;
1285	} else {
1286		m = NULL;
1287		ip6 = NULL;
1288		off = 0;	/* fool gcc */
1289		sa6_src = &sa6_any;
1290	}
1291
1292	if (ip6 != NULL) {
1293		struct in_conninfo inc;
1294		/*
1295		 * XXX: We assume that when IPV6 is non NULL,
1296		 * M and OFF are valid.
1297		 */
1298
1299		/* check if we can safely examine src and dst ports */
1300		if (m->m_pkthdr.len < off + sizeof(*thp))
1301			return;
1302
1303		bzero(&th, sizeof(th));
1304		m_copydata(m, off, sizeof(*thp), (caddr_t)&th);
1305
1306		in6_pcbnotify(&tcbinfo, sa, th.th_dport,
1307		    (struct sockaddr *)ip6cp->ip6c_src,
1308		    th.th_sport, cmd, NULL, notify);
1309
1310		inc.inc_fport = th.th_dport;
1311		inc.inc_lport = th.th_sport;
1312		inc.inc6_faddr = ((struct sockaddr_in6 *)sa)->sin6_addr;
1313		inc.inc6_laddr = ip6cp->ip6c_src->sin6_addr;
1314		inc.inc_isipv6 = 1;
1315		INP_INFO_WLOCK(&tcbinfo);
1316		syncache_unreach(&inc, &th);
1317		INP_INFO_WUNLOCK(&tcbinfo);
1318	} else
1319		in6_pcbnotify(&tcbinfo, sa, 0, (const struct sockaddr *)sa6_src,
1320			      0, cmd, NULL, notify);
1321}
1322#endif /* INET6 */
1323
1324
1325/*
1326 * Following is where TCP initial sequence number generation occurs.
1327 *
1328 * There are two places where we must use initial sequence numbers:
1329 * 1.  In SYN-ACK packets.
1330 * 2.  In SYN packets.
1331 *
1332 * All ISNs for SYN-ACK packets are generated by the syncache.  See
1333 * tcp_syncache.c for details.
1334 *
1335 * The ISNs in SYN packets must be monotonic; TIME_WAIT recycling
1336 * depends on this property.  In addition, these ISNs should be
1337 * unguessable so as to prevent connection hijacking.  To satisfy
1338 * the requirements of this situation, the algorithm outlined in
1339 * RFC 1948 is used, with only small modifications.
1340 *
1341 * Implementation details:
1342 *
1343 * Time is based off the system timer, and is corrected so that it
1344 * increases by one megabyte per second.  This allows for proper
1345 * recycling on high speed LANs while still leaving over an hour
1346 * before rollover.
1347 *
1348 * As reading the *exact* system time is too expensive to be done
1349 * whenever setting up a TCP connection, we increment the time
1350 * offset in two ways.  First, a small random positive increment
1351 * is added to isn_offset for each connection that is set up.
1352 * Second, the function tcp_isn_tick fires once per clock tick
1353 * and increments isn_offset as necessary so that sequence numbers
1354 * are incremented at approximately ISN_BYTES_PER_SECOND.  The
1355 * random positive increments serve only to ensure that the same
1356 * exact sequence number is never sent out twice (as could otherwise
1357 * happen when a port is recycled in less than the system tick
1358 * interval.)
1359 *
1360 * net.inet.tcp.isn_reseed_interval controls the number of seconds
1361 * between seeding of isn_secret.  This is normally set to zero,
1362 * as reseeding should not be necessary.
1363 *
1364 * Locking of the global variables isn_secret, isn_last_reseed, isn_offset,
1365 * isn_offset_old, and isn_ctx is performed using the TCP pcbinfo lock.  In
1366 * general, this means holding an exclusive (write) lock.
1367 */
1368
1369#define ISN_BYTES_PER_SECOND 1048576
1370#define ISN_STATIC_INCREMENT 4096
1371#define ISN_RANDOM_INCREMENT (4096 - 1)
1372
1373static u_char isn_secret[32];
1374static int isn_last_reseed;
1375static u_int32_t isn_offset, isn_offset_old;
1376static MD5_CTX isn_ctx;
1377
1378tcp_seq
1379tcp_new_isn(struct tcpcb *tp)
1380{
1381	u_int32_t md5_buffer[4];
1382	tcp_seq new_isn;
1383
1384	INP_INFO_WLOCK_ASSERT(&tcbinfo);
1385	INP_LOCK_ASSERT(tp->t_inpcb);
1386
1387	/* Seed if this is the first use, reseed if requested. */
1388	if ((isn_last_reseed == 0) || ((tcp_isn_reseed_interval > 0) &&
1389	     (((u_int)isn_last_reseed + (u_int)tcp_isn_reseed_interval*hz)
1390		< (u_int)ticks))) {
1391		read_random(&isn_secret, sizeof(isn_secret));
1392		isn_last_reseed = ticks;
1393	}
1394
1395	/* Compute the md5 hash and return the ISN. */
1396	MD5Init(&isn_ctx);
1397	MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_fport, sizeof(u_short));
1398	MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_lport, sizeof(u_short));
1399#ifdef INET6
1400	if ((tp->t_inpcb->inp_vflag & INP_IPV6) != 0) {
1401		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_faddr,
1402			  sizeof(struct in6_addr));
1403		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_laddr,
1404			  sizeof(struct in6_addr));
1405	} else
1406#endif
1407	{
1408		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_faddr,
1409			  sizeof(struct in_addr));
1410		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_laddr,
1411			  sizeof(struct in_addr));
1412	}
1413	MD5Update(&isn_ctx, (u_char *) &isn_secret, sizeof(isn_secret));
1414	MD5Final((u_char *) &md5_buffer, &isn_ctx);
1415	new_isn = (tcp_seq) md5_buffer[0];
1416	isn_offset += ISN_STATIC_INCREMENT +
1417		(arc4random() & ISN_RANDOM_INCREMENT);
1418	new_isn += isn_offset;
1419	return (new_isn);
1420}
1421
1422/*
1423 * Increment the offset to the next ISN_BYTES_PER_SECOND / hz boundary
1424 * to keep time flowing at a relatively constant rate.  If the random
1425 * increments have already pushed us past the projected offset, do nothing.
1426 */
1427static void
1428tcp_isn_tick(void *xtp)
1429{
1430	u_int32_t projected_offset;
1431
1432	INP_INFO_WLOCK(&tcbinfo);
1433	projected_offset = isn_offset_old + ISN_BYTES_PER_SECOND / 100;
1434
1435	if (projected_offset > isn_offset)
1436		isn_offset = projected_offset;
1437
1438	isn_offset_old = isn_offset;
1439	callout_reset(&isn_callout, hz/100, tcp_isn_tick, NULL);
1440	INP_INFO_WUNLOCK(&tcbinfo);
1441}
1442
1443/*
1444 * When a specific ICMP unreachable message is received and the
1445 * connection state is SYN-SENT, drop the connection.  This behavior
1446 * is controlled by the icmp_may_rst sysctl.
1447 */
1448struct inpcb *
1449tcp_drop_syn_sent(struct inpcb *inp, int errno)
1450{
1451	struct tcpcb *tp;
1452
1453	INP_INFO_WLOCK_ASSERT(&tcbinfo);
1454	INP_LOCK_ASSERT(inp);
1455
1456	if ((inp->inp_vflag & INP_TIMEWAIT) ||
1457	    (inp->inp_vflag & INP_DROPPED))
1458		return (inp);
1459
1460	tp = intotcpcb(inp);
1461	if (tp->t_state != TCPS_SYN_SENT)
1462		return (inp);
1463
1464	tp = tcp_drop(tp, errno);
1465	if (tp != NULL)
1466		return (inp);
1467	else
1468		return (NULL);
1469}
1470
1471/*
1472 * When `need fragmentation' ICMP is received, update our idea of the MSS
1473 * based on the new value in the route.  Also nudge TCP to send something,
1474 * since we know the packet we just sent was dropped.
1475 * This duplicates some code in the tcp_mss() function in tcp_input.c.
1476 */
1477struct inpcb *
1478tcp_mtudisc(struct inpcb *inp, int errno)
1479{
1480	struct tcpcb *tp;
1481	struct socket *so = inp->inp_socket;
1482	u_int maxmtu;
1483	u_int romtu;
1484	int mss;
1485#ifdef INET6
1486	int isipv6;
1487#endif /* INET6 */
1488
1489	INP_LOCK_ASSERT(inp);
1490	if ((inp->inp_vflag & INP_TIMEWAIT) ||
1491	    (inp->inp_vflag & INP_DROPPED))
1492		return (inp);
1493
1494	tp = intotcpcb(inp);
1495	KASSERT(tp != NULL, ("tcp_mtudisc: tp == NULL"));
1496
1497#ifdef INET6
1498	isipv6 = (tp->t_inpcb->inp_vflag & INP_IPV6) != 0;
1499#endif
1500	maxmtu = tcp_hc_getmtu(&inp->inp_inc); /* IPv4 and IPv6 */
1501	romtu =
1502#ifdef INET6
1503	    isipv6 ? tcp_maxmtu6(&inp->inp_inc) :
1504#endif /* INET6 */
1505	    tcp_maxmtu(&inp->inp_inc);
1506	if (!maxmtu)
1507		maxmtu = romtu;
1508	else
1509		maxmtu = min(maxmtu, romtu);
1510	if (!maxmtu) {
1511		tp->t_maxopd = tp->t_maxseg =
1512#ifdef INET6
1513			isipv6 ? tcp_v6mssdflt :
1514#endif /* INET6 */
1515			tcp_mssdflt;
1516		return (inp);
1517	}
1518	mss = maxmtu -
1519#ifdef INET6
1520		(isipv6 ? sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
1521#endif /* INET6 */
1522		 sizeof(struct tcpiphdr)
1523#ifdef INET6
1524		 )
1525#endif /* INET6 */
1526		;
1527
1528	/*
1529	 * XXX - The above conditional probably violates the TCP
1530	 * spec.  The problem is that, since we don't know the
1531	 * other end's MSS, we are supposed to use a conservative
1532	 * default.  But, if we do that, then MTU discovery will
1533	 * never actually take place, because the conservative
1534	 * default is much less than the MTUs typically seen
1535	 * on the Internet today.  For the moment, we'll sweep
1536	 * this under the carpet.
1537	 *
1538	 * The conservative default might not actually be a problem
1539	 * if the only case this occurs is when sending an initial
1540	 * SYN with options and data to a host we've never talked
1541	 * to before.  Then, they will reply with an MSS value which
1542	 * will get recorded and the new parameters should get
1543	 * recomputed.  For Further Study.
1544	 */
1545	if (tp->t_maxopd <= mss)
1546		return (inp);
1547	tp->t_maxopd = mss;
1548
1549	if ((tp->t_flags & (TF_REQ_TSTMP|TF_NOOPT)) == TF_REQ_TSTMP &&
1550	    (tp->t_flags & TF_RCVD_TSTMP) == TF_RCVD_TSTMP)
1551		mss -= TCPOLEN_TSTAMP_APPA;
1552#if	(MCLBYTES & (MCLBYTES - 1)) == 0
1553	if (mss > MCLBYTES)
1554		mss &= ~(MCLBYTES-1);
1555#else
1556	if (mss > MCLBYTES)
1557		mss = mss / MCLBYTES * MCLBYTES;
1558#endif
1559	if (so->so_snd.sb_hiwat < mss)
1560		mss = so->so_snd.sb_hiwat;
1561
1562	tp->t_maxseg = mss;
1563
1564	tcpstat.tcps_mturesent++;
1565	tp->t_rtttime = 0;
1566	tp->snd_nxt = tp->snd_una;
1567	tcp_output(tp);
1568	return (inp);
1569}
1570
1571/*
1572 * Look-up the routing entry to the peer of this inpcb.  If no route
1573 * is found and it cannot be allocated, then return NULL.  This routine
1574 * is called by TCP routines that access the rmx structure and by tcp_mss
1575 * to get the interface MTU.
1576 */
1577u_long
1578tcp_maxmtu(struct in_conninfo *inc)
1579{
1580	struct route sro;
1581	struct sockaddr_in *dst;
1582	struct ifnet *ifp;
1583	u_long maxmtu = 0;
1584
1585	KASSERT(inc != NULL, ("tcp_maxmtu with NULL in_conninfo pointer"));
1586
1587	bzero(&sro, sizeof(sro));
1588	if (inc->inc_faddr.s_addr != INADDR_ANY) {
1589	        dst = (struct sockaddr_in *)&sro.ro_dst;
1590		dst->sin_family = AF_INET;
1591		dst->sin_len = sizeof(*dst);
1592		dst->sin_addr = inc->inc_faddr;
1593		rtalloc_ign(&sro, RTF_CLONING);
1594	}
1595	if (sro.ro_rt != NULL) {
1596		ifp = sro.ro_rt->rt_ifp;
1597		if (sro.ro_rt->rt_rmx.rmx_mtu == 0)
1598			maxmtu = ifp->if_mtu;
1599		else
1600			maxmtu = min(sro.ro_rt->rt_rmx.rmx_mtu, ifp->if_mtu);
1601		RTFREE(sro.ro_rt);
1602	}
1603	return (maxmtu);
1604}
1605
1606#ifdef INET6
1607u_long
1608tcp_maxmtu6(struct in_conninfo *inc)
1609{
1610	struct route_in6 sro6;
1611	struct ifnet *ifp;
1612	u_long maxmtu = 0;
1613
1614	KASSERT(inc != NULL, ("tcp_maxmtu6 with NULL in_conninfo pointer"));
1615
1616	bzero(&sro6, sizeof(sro6));
1617	if (!IN6_IS_ADDR_UNSPECIFIED(&inc->inc6_faddr)) {
1618		sro6.ro_dst.sin6_family = AF_INET6;
1619		sro6.ro_dst.sin6_len = sizeof(struct sockaddr_in6);
1620		sro6.ro_dst.sin6_addr = inc->inc6_faddr;
1621		rtalloc_ign((struct route *)&sro6, RTF_CLONING);
1622	}
1623	if (sro6.ro_rt != NULL) {
1624		ifp = sro6.ro_rt->rt_ifp;
1625		if (sro6.ro_rt->rt_rmx.rmx_mtu == 0)
1626			maxmtu = IN6_LINKMTU(sro6.ro_rt->rt_ifp);
1627		else
1628			maxmtu = min(sro6.ro_rt->rt_rmx.rmx_mtu,
1629				     IN6_LINKMTU(sro6.ro_rt->rt_ifp));
1630		RTFREE(sro6.ro_rt);
1631	}
1632
1633	return (maxmtu);
1634}
1635#endif /* INET6 */
1636
1637#ifdef IPSEC
1638/* compute ESP/AH header size for TCP, including outer IP header. */
1639size_t
1640ipsec_hdrsiz_tcp(struct tcpcb *tp)
1641{
1642	struct inpcb *inp;
1643	struct mbuf *m;
1644	size_t hdrsiz;
1645	struct ip *ip;
1646#ifdef INET6
1647	struct ip6_hdr *ip6;
1648#endif
1649	struct tcphdr *th;
1650
1651	if ((tp == NULL) || ((inp = tp->t_inpcb) == NULL))
1652		return (0);
1653	MGETHDR(m, M_DONTWAIT, MT_DATA);
1654	if (!m)
1655		return (0);
1656
1657#ifdef INET6
1658	if ((inp->inp_vflag & INP_IPV6) != 0) {
1659		ip6 = mtod(m, struct ip6_hdr *);
1660		th = (struct tcphdr *)(ip6 + 1);
1661		m->m_pkthdr.len = m->m_len =
1662			sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
1663		tcpip_fillheaders(inp, ip6, th);
1664		hdrsiz = ipsec6_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
1665	} else
1666#endif /* INET6 */
1667	{
1668		ip = mtod(m, struct ip *);
1669		th = (struct tcphdr *)(ip + 1);
1670		m->m_pkthdr.len = m->m_len = sizeof(struct tcpiphdr);
1671		tcpip_fillheaders(inp, ip, th);
1672		hdrsiz = ipsec4_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
1673	}
1674
1675	m_free(m);
1676	return (hdrsiz);
1677}
1678#endif /*IPSEC*/
1679
1680/*
1681 * Move a TCP connection into TIME_WAIT state.
1682 *    tcbinfo is locked.
1683 *    inp is locked, and is unlocked before returning.
1684 */
1685void
1686tcp_twstart(struct tcpcb *tp)
1687{
1688	struct tcptw *tw;
1689	struct inpcb *inp;
1690	int tw_time, acknow;
1691	struct socket *so;
1692
1693	INP_INFO_WLOCK_ASSERT(&tcbinfo);	/* tcp_timer_2msl_reset(). */
1694	INP_LOCK_ASSERT(tp->t_inpcb);
1695
1696	tw = uma_zalloc(tcptw_zone, M_NOWAIT);
1697	if (tw == NULL) {
1698		tw = tcp_timer_2msl_tw(1);
1699		if (tw == NULL) {
1700			tp = tcp_close(tp);
1701			if (tp != NULL)
1702				INP_UNLOCK(tp->t_inpcb);
1703			return;
1704		}
1705	}
1706	inp = tp->t_inpcb;
1707	tw->tw_inpcb = inp;
1708
1709	/*
1710	 * Recover last window size sent.
1711	 */
1712	tw->last_win = (tp->rcv_adv - tp->rcv_nxt) >> tp->rcv_scale;
1713
1714	/*
1715	 * Set t_recent if timestamps are used on the connection.
1716	 */
1717	if ((tp->t_flags & (TF_REQ_TSTMP|TF_RCVD_TSTMP|TF_NOOPT)) ==
1718	    (TF_REQ_TSTMP|TF_RCVD_TSTMP))
1719		tw->t_recent = tp->ts_recent;
1720	else
1721		tw->t_recent = 0;
1722
1723	tw->snd_nxt = tp->snd_nxt;
1724	tw->rcv_nxt = tp->rcv_nxt;
1725	tw->iss     = tp->iss;
1726	tw->irs     = tp->irs;
1727	tw->t_starttime = tp->t_starttime;
1728	tw->tw_time = 0;
1729
1730/* XXX
1731 * If this code will
1732 * be used for fin-wait-2 state also, then we may need
1733 * a ts_recent from the last segment.
1734 */
1735	tw_time = 2 * tcp_msl;
1736	acknow = tp->t_flags & TF_ACKNOW;
1737
1738	/*
1739	 * First, discard tcpcb state, which includes stopping its timers and
1740	 * freeing it.  tcp_discardcb() used to also release the inpcb, but
1741	 * that work is now done in the caller.
1742	 */
1743	tcp_discardcb(tp);
1744	so = inp->inp_socket;
1745	SOCK_LOCK(so);
1746	tw->tw_cred = crhold(so->so_cred);
1747	tw->tw_so_options = so->so_options;
1748	SOCK_UNLOCK(so);
1749	if (acknow)
1750		tcp_twrespond(tw, TH_ACK);
1751	inp->inp_ppcb = tw;
1752	inp->inp_vflag |= INP_TIMEWAIT;
1753	tcp_timer_2msl_reset(tw, tw_time);
1754
1755	/*
1756	 * If the inpcb owns the sole reference to the socket, then we can
1757	 * detach and free the socket as it is not needed in time wait.
1758	 */
1759	if (inp->inp_vflag & INP_SOCKREF) {
1760		KASSERT(so->so_state & SS_PROTOREF,
1761		    ("tcp_twstart: !SS_PROTOREF"));
1762		inp->inp_vflag &= ~INP_SOCKREF;
1763#ifdef INET6
1764		if (inp->inp_vflag & INP_IPV6PROTO)
1765			in6_pcbdetach(inp);
1766		else
1767#endif
1768			in_pcbdetach(inp);
1769		INP_UNLOCK(inp);
1770		ACCEPT_LOCK();
1771		SOCK_LOCK(so);
1772		so->so_state &= ~SS_PROTOREF;
1773		sofree(so);
1774	} else
1775		INP_UNLOCK(inp);
1776}
1777
1778/*
1779 * The appromixate rate of ISN increase of Microsoft TCP stacks;
1780 * the actual rate is slightly higher due to the addition of
1781 * random positive increments.
1782 *
1783 * Most other new OSes use semi-randomized ISN values, so we
1784 * do not need to worry about them.
1785 */
1786#define MS_ISN_BYTES_PER_SECOND		250000
1787
1788/*
1789 * Determine if the ISN we will generate has advanced beyond the last
1790 * sequence number used by the previous connection.  If so, indicate
1791 * that it is safe to recycle this tw socket by returning 1.
1792 *
1793 * XXXRW: This function should assert the inpcb lock as it does multiple
1794 * non-atomic reads from the tcptw, but is currently called without it from
1795 * in_pcb.c:in_pcblookup_local().
1796 */
1797int
1798tcp_twrecycleable(struct tcptw *tw)
1799{
1800	tcp_seq new_iss = tw->iss;
1801	tcp_seq new_irs = tw->irs;
1802
1803	new_iss += (ticks - tw->t_starttime) * (ISN_BYTES_PER_SECOND / hz);
1804	new_irs += (ticks - tw->t_starttime) * (MS_ISN_BYTES_PER_SECOND / hz);
1805
1806	if (SEQ_GT(new_iss, tw->snd_nxt) && SEQ_GT(new_irs, tw->rcv_nxt))
1807		return (1);
1808	else
1809		return (0);
1810}
1811
1812void
1813tcp_twclose(struct tcptw *tw, int reuse)
1814{
1815	struct socket *so;
1816	struct inpcb *inp;
1817
1818	/*
1819	 * At this point, we are in one of two situations:
1820	 *
1821	 * (1) We have no socket, just an inpcb<->twtcp pair.  Release it all
1822	 * after validating.
1823	 *
1824	 * (2) We have a socket, which we may or may now own the reference
1825	 * for.  If we own the reference, release all the state after
1826	 * validating.  If not, leave it for the socket close to clean up.
1827	 */
1828	inp = tw->tw_inpcb;
1829	KASSERT((inp->inp_vflag & INP_TIMEWAIT), ("tcp_twclose: !timewait"));
1830	KASSERT(intotw(inp) == tw, ("tcp_twclose: inp_ppcb != tw"));
1831	INP_INFO_WLOCK_ASSERT(&tcbinfo);	/* tcp_timer_2msl_stop(). */
1832	INP_LOCK_ASSERT(inp);
1833
1834	tw->tw_inpcb = NULL;
1835	tcp_timer_2msl_stop(tw);
1836	inp->inp_ppcb = NULL;
1837	inp->inp_vflag |= INP_DROPPED;
1838
1839	so = inp->inp_socket;
1840	if (so != NULL) {
1841		if (inp->inp_vflag & INP_SOCKREF) {
1842			/*
1843			 * If a socket is present, and we own the only
1844			 * reference, we need to tear down the socket and the
1845			 * inpcb.
1846			 */
1847			inp->inp_vflag &= ~INP_SOCKREF;
1848#ifdef INET6
1849			if (inp->inp_vflag & INP_IPV6PROTO) {
1850				in6_pcbdetach(inp);
1851				in6_pcbfree(inp);
1852			} else {
1853				in_pcbdetach(inp);
1854				in_pcbfree(inp);
1855			}
1856#endif
1857			ACCEPT_LOCK();
1858			SOCK_LOCK(so);
1859			KASSERT(so->so_state & SS_PROTOREF,
1860			    ("tcp_twclose: INP_SOCKREF && !SS_PROTOREF"));
1861			so->so_state &= ~SS_PROTOREF;
1862			sofree(so);
1863		} else {
1864			/*
1865			 * If we don't own the only reference, the socket and
1866			 * inpcb need to be left around to be handled by
1867			 * tcp_usr_detach() later.
1868			 */
1869			INP_UNLOCK(inp);
1870		}
1871	} else {
1872#ifdef INET6
1873		if (inp->inp_vflag & INP_IPV6PROTO)
1874			in6_pcbfree(inp);
1875		else
1876#endif
1877			in_pcbfree(inp);
1878	}
1879	tcpstat.tcps_closed++;
1880	crfree(tw->tw_cred);
1881	tw->tw_cred = NULL;
1882	if (reuse)
1883		return;
1884	uma_zfree(tcptw_zone, tw);
1885}
1886
1887int
1888tcp_twrespond(struct tcptw *tw, int flags)
1889{
1890	struct inpcb *inp = tw->tw_inpcb;
1891	struct tcphdr *th;
1892	struct mbuf *m;
1893	struct ip *ip = NULL;
1894	u_int8_t *optp;
1895	u_int hdrlen, optlen;
1896	int error;
1897#ifdef INET6
1898	struct ip6_hdr *ip6 = NULL;
1899	int isipv6 = inp->inp_inc.inc_isipv6;
1900#endif
1901
1902	INP_LOCK_ASSERT(inp);
1903
1904	m = m_gethdr(M_DONTWAIT, MT_DATA);
1905	if (m == NULL)
1906		return (ENOBUFS);
1907	m->m_data += max_linkhdr;
1908
1909#ifdef MAC
1910	mac_create_mbuf_from_inpcb(inp, m);
1911#endif
1912
1913#ifdef INET6
1914	if (isipv6) {
1915		hdrlen = sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
1916		ip6 = mtod(m, struct ip6_hdr *);
1917		th = (struct tcphdr *)(ip6 + 1);
1918		tcpip_fillheaders(inp, ip6, th);
1919	} else
1920#endif
1921	{
1922		hdrlen = sizeof(struct tcpiphdr);
1923		ip = mtod(m, struct ip *);
1924		th = (struct tcphdr *)(ip + 1);
1925		tcpip_fillheaders(inp, ip, th);
1926	}
1927	optp = (u_int8_t *)(th + 1);
1928
1929	/*
1930	 * Send a timestamp and echo-reply if both our side and our peer
1931	 * have sent timestamps in our SYN's and this is not a RST.
1932	 */
1933	if (tw->t_recent && flags == TH_ACK) {
1934		u_int32_t *lp = (u_int32_t *)optp;
1935
1936		/* Form timestamp option as shown in appendix A of RFC 1323. */
1937		*lp++ = htonl(TCPOPT_TSTAMP_HDR);
1938		*lp++ = htonl(ticks);
1939		*lp   = htonl(tw->t_recent);
1940		optp += TCPOLEN_TSTAMP_APPA;
1941	}
1942
1943	optlen = optp - (u_int8_t *)(th + 1);
1944
1945	m->m_len = hdrlen + optlen;
1946	m->m_pkthdr.len = m->m_len;
1947
1948	KASSERT(max_linkhdr + m->m_len <= MHLEN, ("tcptw: mbuf too small"));
1949
1950	th->th_seq = htonl(tw->snd_nxt);
1951	th->th_ack = htonl(tw->rcv_nxt);
1952	th->th_off = (sizeof(struct tcphdr) + optlen) >> 2;
1953	th->th_flags = flags;
1954	th->th_win = htons(tw->last_win);
1955
1956#ifdef INET6
1957	if (isipv6) {
1958		th->th_sum = in6_cksum(m, IPPROTO_TCP, sizeof(struct ip6_hdr),
1959		    sizeof(struct tcphdr) + optlen);
1960		ip6->ip6_hlim = in6_selecthlim(inp, NULL);
1961		error = ip6_output(m, inp->in6p_outputopts, NULL,
1962		    (tw->tw_so_options & SO_DONTROUTE), NULL, NULL, inp);
1963	} else
1964#endif
1965	{
1966		th->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
1967		    htons(sizeof(struct tcphdr) + optlen + IPPROTO_TCP));
1968		m->m_pkthdr.csum_flags = CSUM_TCP;
1969		m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
1970		ip->ip_len = m->m_pkthdr.len;
1971		if (path_mtu_discovery)
1972			ip->ip_off |= IP_DF;
1973		error = ip_output(m, inp->inp_options, NULL,
1974		    ((tw->tw_so_options & SO_DONTROUTE) ? IP_ROUTETOIF : 0),
1975		    NULL, inp);
1976	}
1977	if (flags & TH_ACK)
1978		tcpstat.tcps_sndacks++;
1979	else
1980		tcpstat.tcps_sndctrl++;
1981	tcpstat.tcps_sndtotal++;
1982	return (error);
1983}
1984
1985/*
1986 * TCP BANDWIDTH DELAY PRODUCT WINDOW LIMITING
1987 *
1988 * This code attempts to calculate the bandwidth-delay product as a
1989 * means of determining the optimal window size to maximize bandwidth,
1990 * minimize RTT, and avoid the over-allocation of buffers on interfaces and
1991 * routers.  This code also does a fairly good job keeping RTTs in check
1992 * across slow links like modems.  We implement an algorithm which is very
1993 * similar (but not meant to be) TCP/Vegas.  The code operates on the
1994 * transmitter side of a TCP connection and so only effects the transmit
1995 * side of the connection.
1996 *
1997 * BACKGROUND:  TCP makes no provision for the management of buffer space
1998 * at the end points or at the intermediate routers and switches.  A TCP
1999 * stream, whether using NewReno or not, will eventually buffer as
2000 * many packets as it is able and the only reason this typically works is
2001 * due to the fairly small default buffers made available for a connection
2002 * (typicaly 16K or 32K).  As machines use larger windows and/or window
2003 * scaling it is now fairly easy for even a single TCP connection to blow-out
2004 * all available buffer space not only on the local interface, but on
2005 * intermediate routers and switches as well.  NewReno makes a misguided
2006 * attempt to 'solve' this problem by waiting for an actual failure to occur,
2007 * then backing off, then steadily increasing the window again until another
2008 * failure occurs, ad-infinitum.  This results in terrible oscillation that
2009 * is only made worse as network loads increase and the idea of intentionally
2010 * blowing out network buffers is, frankly, a terrible way to manage network
2011 * resources.
2012 *
2013 * It is far better to limit the transmit window prior to the failure
2014 * condition being achieved.  There are two general ways to do this:  First
2015 * you can 'scan' through different transmit window sizes and locate the
2016 * point where the RTT stops increasing, indicating that you have filled the
2017 * pipe, then scan backwards until you note that RTT stops decreasing, then
2018 * repeat ad-infinitum.  This method works in principle but has severe
2019 * implementation issues due to RTT variances, timer granularity, and
2020 * instability in the algorithm which can lead to many false positives and
2021 * create oscillations as well as interact badly with other TCP streams
2022 * implementing the same algorithm.
2023 *
2024 * The second method is to limit the window to the bandwidth delay product
2025 * of the link.  This is the method we implement.  RTT variances and our
2026 * own manipulation of the congestion window, bwnd, can potentially
2027 * destabilize the algorithm.  For this reason we have to stabilize the
2028 * elements used to calculate the window.  We do this by using the minimum
2029 * observed RTT, the long term average of the observed bandwidth, and
2030 * by adding two segments worth of slop.  It isn't perfect but it is able
2031 * to react to changing conditions and gives us a very stable basis on
2032 * which to extend the algorithm.
2033 */
2034void
2035tcp_xmit_bandwidth_limit(struct tcpcb *tp, tcp_seq ack_seq)
2036{
2037	u_long bw;
2038	u_long bwnd;
2039	int save_ticks;
2040
2041	INP_LOCK_ASSERT(tp->t_inpcb);
2042
2043	/*
2044	 * If inflight_enable is disabled in the middle of a tcp connection,
2045	 * make sure snd_bwnd is effectively disabled.
2046	 */
2047	if (tcp_inflight_enable == 0 || tp->t_rttlow < tcp_inflight_rttthresh) {
2048		tp->snd_bwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
2049		tp->snd_bandwidth = 0;
2050		return;
2051	}
2052
2053	/*
2054	 * Figure out the bandwidth.  Due to the tick granularity this
2055	 * is a very rough number and it MUST be averaged over a fairly
2056	 * long period of time.  XXX we need to take into account a link
2057	 * that is not using all available bandwidth, but for now our
2058	 * slop will ramp us up if this case occurs and the bandwidth later
2059	 * increases.
2060	 *
2061	 * Note: if ticks rollover 'bw' may wind up negative.  We must
2062	 * effectively reset t_bw_rtttime for this case.
2063	 */
2064	save_ticks = ticks;
2065	if ((u_int)(save_ticks - tp->t_bw_rtttime) < 1)
2066		return;
2067
2068	bw = (int64_t)(ack_seq - tp->t_bw_rtseq) * hz /
2069	    (save_ticks - tp->t_bw_rtttime);
2070	tp->t_bw_rtttime = save_ticks;
2071	tp->t_bw_rtseq = ack_seq;
2072	if (tp->t_bw_rtttime == 0 || (int)bw < 0)
2073		return;
2074	bw = ((int64_t)tp->snd_bandwidth * 15 + bw) >> 4;
2075
2076	tp->snd_bandwidth = bw;
2077
2078	/*
2079	 * Calculate the semi-static bandwidth delay product, plus two maximal
2080	 * segments.  The additional slop puts us squarely in the sweet
2081	 * spot and also handles the bandwidth run-up case and stabilization.
2082	 * Without the slop we could be locking ourselves into a lower
2083	 * bandwidth.
2084	 *
2085	 * Situations Handled:
2086	 *	(1) Prevents over-queueing of packets on LANs, especially on
2087	 *	    high speed LANs, allowing larger TCP buffers to be
2088	 *	    specified, and also does a good job preventing
2089	 *	    over-queueing of packets over choke points like modems
2090	 *	    (at least for the transmit side).
2091	 *
2092	 *	(2) Is able to handle changing network loads (bandwidth
2093	 *	    drops so bwnd drops, bandwidth increases so bwnd
2094	 *	    increases).
2095	 *
2096	 *	(3) Theoretically should stabilize in the face of multiple
2097	 *	    connections implementing the same algorithm (this may need
2098	 *	    a little work).
2099	 *
2100	 *	(4) Stability value (defaults to 20 = 2 maximal packets) can
2101	 *	    be adjusted with a sysctl but typically only needs to be
2102	 *	    on very slow connections.  A value no smaller then 5
2103	 *	    should be used, but only reduce this default if you have
2104	 *	    no other choice.
2105	 */
2106#define USERTT	((tp->t_srtt + tp->t_rttbest) / 2)
2107	bwnd = (int64_t)bw * USERTT / (hz << TCP_RTT_SHIFT) + tcp_inflight_stab * tp->t_maxseg / 10;
2108#undef USERTT
2109
2110	if (tcp_inflight_debug > 0) {
2111		static int ltime;
2112		if ((u_int)(ticks - ltime) >= hz / tcp_inflight_debug) {
2113			ltime = ticks;
2114			printf("%p bw %ld rttbest %d srtt %d bwnd %ld\n",
2115			    tp,
2116			    bw,
2117			    tp->t_rttbest,
2118			    tp->t_srtt,
2119			    bwnd
2120			);
2121		}
2122	}
2123	if ((long)bwnd < tcp_inflight_min)
2124		bwnd = tcp_inflight_min;
2125	if (bwnd > tcp_inflight_max)
2126		bwnd = tcp_inflight_max;
2127	if ((long)bwnd < tp->t_maxseg * 2)
2128		bwnd = tp->t_maxseg * 2;
2129	tp->snd_bwnd = bwnd;
2130}
2131
2132#ifdef TCP_SIGNATURE
2133/*
2134 * Callback function invoked by m_apply() to digest TCP segment data
2135 * contained within an mbuf chain.
2136 */
2137static int
2138tcp_signature_apply(void *fstate, void *data, u_int len)
2139{
2140
2141	MD5Update(fstate, (u_char *)data, len);
2142	return (0);
2143}
2144
2145/*
2146 * Compute TCP-MD5 hash of a TCPv4 segment. (RFC2385)
2147 *
2148 * Parameters:
2149 * m		pointer to head of mbuf chain
2150 * off0		offset to TCP header within the mbuf chain
2151 * len		length of TCP segment data, excluding options
2152 * optlen	length of TCP segment options
2153 * buf		pointer to storage for computed MD5 digest
2154 * direction	direction of flow (IPSEC_DIR_INBOUND or OUTBOUND)
2155 *
2156 * We do this over ip, tcphdr, segment data, and the key in the SADB.
2157 * When called from tcp_input(), we can be sure that th_sum has been
2158 * zeroed out and verified already.
2159 *
2160 * This function is for IPv4 use only. Calling this function with an
2161 * IPv6 packet in the mbuf chain will yield undefined results.
2162 *
2163 * Return 0 if successful, otherwise return -1.
2164 *
2165 * XXX The key is retrieved from the system's PF_KEY SADB, by keying a
2166 * search with the destination IP address, and a 'magic SPI' to be
2167 * determined by the application. This is hardcoded elsewhere to 1179
2168 * right now. Another branch of this code exists which uses the SPD to
2169 * specify per-application flows but it is unstable.
2170 */
2171int
2172tcp_signature_compute(struct mbuf *m, int off0, int len, int optlen,
2173    u_char *buf, u_int direction)
2174{
2175	union sockaddr_union dst;
2176	struct ippseudo ippseudo;
2177	MD5_CTX ctx;
2178	int doff;
2179	struct ip *ip;
2180	struct ipovly *ipovly;
2181	struct secasvar *sav;
2182	struct tcphdr *th;
2183	u_short savecsum;
2184
2185	KASSERT(m != NULL, ("NULL mbuf chain"));
2186	KASSERT(buf != NULL, ("NULL signature pointer"));
2187
2188	/* Extract the destination from the IP header in the mbuf. */
2189	ip = mtod(m, struct ip *);
2190	bzero(&dst, sizeof(union sockaddr_union));
2191	dst.sa.sa_len = sizeof(struct sockaddr_in);
2192	dst.sa.sa_family = AF_INET;
2193	dst.sin.sin_addr = (direction == IPSEC_DIR_INBOUND) ?
2194	    ip->ip_src : ip->ip_dst;
2195
2196	/* Look up an SADB entry which matches the address of the peer. */
2197	sav = KEY_ALLOCSA(&dst, IPPROTO_TCP, htonl(TCP_SIG_SPI));
2198	if (sav == NULL) {
2199		printf("%s: SADB lookup failed for %s\n", __func__,
2200		    inet_ntoa(dst.sin.sin_addr));
2201		return (EINVAL);
2202	}
2203
2204	MD5Init(&ctx);
2205	ipovly = (struct ipovly *)ip;
2206	th = (struct tcphdr *)((u_char *)ip + off0);
2207	doff = off0 + sizeof(struct tcphdr) + optlen;
2208
2209	/*
2210	 * Step 1: Update MD5 hash with IP pseudo-header.
2211	 *
2212	 * XXX The ippseudo header MUST be digested in network byte order,
2213	 * or else we'll fail the regression test. Assume all fields we've
2214	 * been doing arithmetic on have been in host byte order.
2215	 * XXX One cannot depend on ipovly->ih_len here. When called from
2216	 * tcp_output(), the underlying ip_len member has not yet been set.
2217	 */
2218	ippseudo.ippseudo_src = ipovly->ih_src;
2219	ippseudo.ippseudo_dst = ipovly->ih_dst;
2220	ippseudo.ippseudo_pad = 0;
2221	ippseudo.ippseudo_p = IPPROTO_TCP;
2222	ippseudo.ippseudo_len = htons(len + sizeof(struct tcphdr) + optlen);
2223	MD5Update(&ctx, (char *)&ippseudo, sizeof(struct ippseudo));
2224
2225	/*
2226	 * Step 2: Update MD5 hash with TCP header, excluding options.
2227	 * The TCP checksum must be set to zero.
2228	 */
2229	savecsum = th->th_sum;
2230	th->th_sum = 0;
2231	MD5Update(&ctx, (char *)th, sizeof(struct tcphdr));
2232	th->th_sum = savecsum;
2233
2234	/*
2235	 * Step 3: Update MD5 hash with TCP segment data.
2236	 *         Use m_apply() to avoid an early m_pullup().
2237	 */
2238	if (len > 0)
2239		m_apply(m, doff, len, tcp_signature_apply, &ctx);
2240
2241	/*
2242	 * Step 4: Update MD5 hash with shared secret.
2243	 */
2244	MD5Update(&ctx, _KEYBUF(sav->key_auth), _KEYLEN(sav->key_auth));
2245	MD5Final(buf, &ctx);
2246
2247	key_sa_recordxfer(sav, m);
2248	KEY_FREESAV(&sav);
2249	return (0);
2250}
2251#endif /* TCP_SIGNATURE */
2252
2253static int
2254sysctl_drop(SYSCTL_HANDLER_ARGS)
2255{
2256	/* addrs[0] is a foreign socket, addrs[1] is a local one. */
2257	struct sockaddr_storage addrs[2];
2258	struct inpcb *inp;
2259	struct tcpcb *tp;
2260	struct tcptw *tw;
2261	struct sockaddr_in *fin, *lin;
2262#ifdef INET6
2263	struct sockaddr_in6 *fin6, *lin6;
2264	struct in6_addr f6, l6;
2265#endif
2266	int error;
2267
2268	inp = NULL;
2269	fin = lin = NULL;
2270#ifdef INET6
2271	fin6 = lin6 = NULL;
2272#endif
2273	error = 0;
2274
2275	if (req->oldptr != NULL || req->oldlen != 0)
2276		return (EINVAL);
2277	if (req->newptr == NULL)
2278		return (EPERM);
2279	if (req->newlen < sizeof(addrs))
2280		return (ENOMEM);
2281	error = SYSCTL_IN(req, &addrs, sizeof(addrs));
2282	if (error)
2283		return (error);
2284
2285	switch (addrs[0].ss_family) {
2286#ifdef INET6
2287	case AF_INET6:
2288		fin6 = (struct sockaddr_in6 *)&addrs[0];
2289		lin6 = (struct sockaddr_in6 *)&addrs[1];
2290		if (fin6->sin6_len != sizeof(struct sockaddr_in6) ||
2291		    lin6->sin6_len != sizeof(struct sockaddr_in6))
2292			return (EINVAL);
2293		if (IN6_IS_ADDR_V4MAPPED(&fin6->sin6_addr)) {
2294			if (!IN6_IS_ADDR_V4MAPPED(&lin6->sin6_addr))
2295				return (EINVAL);
2296			in6_sin6_2_sin_in_sock((struct sockaddr *)&addrs[0]);
2297			in6_sin6_2_sin_in_sock((struct sockaddr *)&addrs[1]);
2298			fin = (struct sockaddr_in *)&addrs[0];
2299			lin = (struct sockaddr_in *)&addrs[1];
2300			break;
2301		}
2302		error = sa6_embedscope(fin6, ip6_use_defzone);
2303		if (error)
2304			return (error);
2305		error = sa6_embedscope(lin6, ip6_use_defzone);
2306		if (error)
2307			return (error);
2308		break;
2309#endif
2310	case AF_INET:
2311		fin = (struct sockaddr_in *)&addrs[0];
2312		lin = (struct sockaddr_in *)&addrs[1];
2313		if (fin->sin_len != sizeof(struct sockaddr_in) ||
2314		    lin->sin_len != sizeof(struct sockaddr_in))
2315			return (EINVAL);
2316		break;
2317	default:
2318		return (EINVAL);
2319	}
2320	INP_INFO_WLOCK(&tcbinfo);
2321	switch (addrs[0].ss_family) {
2322#ifdef INET6
2323	case AF_INET6:
2324		inp = in6_pcblookup_hash(&tcbinfo, &f6, fin6->sin6_port,
2325		    &l6, lin6->sin6_port, 0, NULL);
2326		break;
2327#endif
2328	case AF_INET:
2329		inp = in_pcblookup_hash(&tcbinfo, fin->sin_addr, fin->sin_port,
2330		    lin->sin_addr, lin->sin_port, 0, NULL);
2331		break;
2332	}
2333	if (inp != NULL) {
2334		INP_LOCK(inp);
2335		if (inp->inp_vflag & INP_TIMEWAIT) {
2336			/*
2337			 * XXXRW: There currently exists a state where an
2338			 * inpcb is present, but its timewait state has been
2339			 * discarded.  For now, don't allow dropping of this
2340			 * type of inpcb.
2341			 */
2342			tw = intotw(inp);
2343			if (tw != NULL)
2344				tcp_twclose(tw, 0);
2345		} else if (!(inp->inp_vflag & INP_DROPPED) &&
2346			   !(inp->inp_socket->so_options & SO_ACCEPTCONN)) {
2347			tp = intotcpcb(inp);
2348			tcp_drop(tp, ECONNABORTED);
2349		}
2350		INP_UNLOCK(inp);
2351	} else
2352		error = ESRCH;
2353	INP_INFO_WUNLOCK(&tcbinfo);
2354	return (error);
2355}
2356
2357SYSCTL_PROC(_net_inet_tcp, TCPCTL_DROP, drop,
2358    CTLTYPE_STRUCT|CTLFLAG_WR|CTLFLAG_SKIP, NULL,
2359    0, sysctl_drop, "", "Drop TCP connection");
2360