tcp_timewait.c revision 157432
1/*-
2 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 4. Neither the name of the University nor the names of its contributors
14 *    may be used to endorse or promote products derived from this software
15 *    without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 *
29 *	@(#)tcp_subr.c	8.2 (Berkeley) 5/24/95
30 * $FreeBSD: head/sys/netinet/tcp_timewait.c 157432 2006-04-03 13:33:55Z rwatson $
31 */
32
33#include "opt_compat.h"
34#include "opt_inet.h"
35#include "opt_inet6.h"
36#include "opt_ipsec.h"
37#include "opt_mac.h"
38#include "opt_tcpdebug.h"
39#include "opt_tcp_sack.h"
40
41#include <sys/param.h>
42#include <sys/systm.h>
43#include <sys/callout.h>
44#include <sys/kernel.h>
45#include <sys/sysctl.h>
46#include <sys/mac.h>
47#include <sys/malloc.h>
48#include <sys/mbuf.h>
49#ifdef INET6
50#include <sys/domain.h>
51#endif
52#include <sys/proc.h>
53#include <sys/socket.h>
54#include <sys/socketvar.h>
55#include <sys/protosw.h>
56#include <sys/random.h>
57
58#include <vm/uma.h>
59
60#include <net/route.h>
61#include <net/if.h>
62
63#include <netinet/in.h>
64#include <netinet/in_systm.h>
65#include <netinet/ip.h>
66#ifdef INET6
67#include <netinet/ip6.h>
68#endif
69#include <netinet/in_pcb.h>
70#ifdef INET6
71#include <netinet6/in6_pcb.h>
72#endif
73#include <netinet/in_var.h>
74#include <netinet/ip_var.h>
75#ifdef INET6
76#include <netinet6/ip6_var.h>
77#include <netinet6/scope6_var.h>
78#include <netinet6/nd6.h>
79#endif
80#include <netinet/ip_icmp.h>
81#include <netinet/tcp.h>
82#include <netinet/tcp_fsm.h>
83#include <netinet/tcp_seq.h>
84#include <netinet/tcp_timer.h>
85#include <netinet/tcp_var.h>
86#ifdef INET6
87#include <netinet6/tcp6_var.h>
88#endif
89#include <netinet/tcpip.h>
90#ifdef TCPDEBUG
91#include <netinet/tcp_debug.h>
92#endif
93#include <netinet6/ip6protosw.h>
94
95#ifdef IPSEC
96#include <netinet6/ipsec.h>
97#ifdef INET6
98#include <netinet6/ipsec6.h>
99#endif
100#include <netkey/key.h>
101#endif /*IPSEC*/
102
103#ifdef FAST_IPSEC
104#include <netipsec/ipsec.h>
105#include <netipsec/xform.h>
106#ifdef INET6
107#include <netipsec/ipsec6.h>
108#endif
109#include <netipsec/key.h>
110#define	IPSEC
111#endif /*FAST_IPSEC*/
112
113#include <machine/in_cksum.h>
114#include <sys/md5.h>
115
116int	tcp_mssdflt = TCP_MSS;
117SYSCTL_INT(_net_inet_tcp, TCPCTL_MSSDFLT, mssdflt, CTLFLAG_RW,
118    &tcp_mssdflt , 0, "Default TCP Maximum Segment Size");
119
120#ifdef INET6
121int	tcp_v6mssdflt = TCP6_MSS;
122SYSCTL_INT(_net_inet_tcp, TCPCTL_V6MSSDFLT, v6mssdflt,
123	CTLFLAG_RW, &tcp_v6mssdflt , 0,
124	"Default TCP Maximum Segment Size for IPv6");
125#endif
126
127/*
128 * Minimum MSS we accept and use. This prevents DoS attacks where
129 * we are forced to a ridiculous low MSS like 20 and send hundreds
130 * of packets instead of one. The effect scales with the available
131 * bandwidth and quickly saturates the CPU and network interface
132 * with packet generation and sending. Set to zero to disable MINMSS
133 * checking. This setting prevents us from sending too small packets.
134 */
135int	tcp_minmss = TCP_MINMSS;
136SYSCTL_INT(_net_inet_tcp, OID_AUTO, minmss, CTLFLAG_RW,
137    &tcp_minmss , 0, "Minmum TCP Maximum Segment Size");
138/*
139 * Number of TCP segments per second we accept from remote host
140 * before we start to calculate average segment size. If average
141 * segment size drops below the minimum TCP MSS we assume a DoS
142 * attack and reset+drop the connection. Care has to be taken not to
143 * set this value too small to not kill interactive type connections
144 * (telnet, SSH) which send many small packets.
145 */
146int     tcp_minmssoverload = TCP_MINMSSOVERLOAD;
147SYSCTL_INT(_net_inet_tcp, OID_AUTO, minmssoverload, CTLFLAG_RW,
148    &tcp_minmssoverload , 0, "Number of TCP Segments per Second allowed to"
149    "be under the MINMSS Size");
150
151#if 0
152static int	tcp_rttdflt = TCPTV_SRTTDFLT / PR_SLOWHZ;
153SYSCTL_INT(_net_inet_tcp, TCPCTL_RTTDFLT, rttdflt, CTLFLAG_RW,
154    &tcp_rttdflt , 0, "Default maximum TCP Round Trip Time");
155#endif
156
157int	tcp_do_rfc1323 = 1;
158SYSCTL_INT(_net_inet_tcp, TCPCTL_DO_RFC1323, rfc1323, CTLFLAG_RW,
159    &tcp_do_rfc1323 , 0, "Enable rfc1323 (high performance TCP) extensions");
160
161static int	tcp_tcbhashsize = 0;
162SYSCTL_INT(_net_inet_tcp, OID_AUTO, tcbhashsize, CTLFLAG_RDTUN,
163     &tcp_tcbhashsize, 0, "Size of TCP control-block hashtable");
164
165static int	do_tcpdrain = 1;
166SYSCTL_INT(_net_inet_tcp, OID_AUTO, do_tcpdrain, CTLFLAG_RW, &do_tcpdrain, 0,
167     "Enable tcp_drain routine for extra help when low on mbufs");
168
169SYSCTL_INT(_net_inet_tcp, OID_AUTO, pcbcount, CTLFLAG_RD,
170    &tcbinfo.ipi_count, 0, "Number of active PCBs");
171
172static int	icmp_may_rst = 1;
173SYSCTL_INT(_net_inet_tcp, OID_AUTO, icmp_may_rst, CTLFLAG_RW, &icmp_may_rst, 0,
174    "Certain ICMP unreachable messages may abort connections in SYN_SENT");
175
176static int	tcp_isn_reseed_interval = 0;
177SYSCTL_INT(_net_inet_tcp, OID_AUTO, isn_reseed_interval, CTLFLAG_RW,
178    &tcp_isn_reseed_interval, 0, "Seconds between reseeding of ISN secret");
179
180/*
181 * TCP bandwidth limiting sysctls.  Note that the default lower bound of
182 * 1024 exists only for debugging.  A good production default would be
183 * something like 6100.
184 */
185SYSCTL_NODE(_net_inet_tcp, OID_AUTO, inflight, CTLFLAG_RW, 0,
186    "TCP inflight data limiting");
187
188static int	tcp_inflight_enable = 1;
189SYSCTL_INT(_net_inet_tcp_inflight, OID_AUTO, enable, CTLFLAG_RW,
190    &tcp_inflight_enable, 0, "Enable automatic TCP inflight data limiting");
191
192static int	tcp_inflight_debug = 0;
193SYSCTL_INT(_net_inet_tcp_inflight, OID_AUTO, debug, CTLFLAG_RW,
194    &tcp_inflight_debug, 0, "Debug TCP inflight calculations");
195
196static int	tcp_inflight_rttthresh;
197SYSCTL_PROC(_net_inet_tcp_inflight, OID_AUTO, rttthresh, CTLTYPE_INT|CTLFLAG_RW,
198    &tcp_inflight_rttthresh, 0, sysctl_msec_to_ticks, "I",
199    "RTT threshold below which inflight will deactivate itself");
200
201static int	tcp_inflight_min = 6144;
202SYSCTL_INT(_net_inet_tcp_inflight, OID_AUTO, min, CTLFLAG_RW,
203    &tcp_inflight_min, 0, "Lower-bound for TCP inflight window");
204
205static int	tcp_inflight_max = TCP_MAXWIN << TCP_MAX_WINSHIFT;
206SYSCTL_INT(_net_inet_tcp_inflight, OID_AUTO, max, CTLFLAG_RW,
207    &tcp_inflight_max, 0, "Upper-bound for TCP inflight window");
208
209static int	tcp_inflight_stab = 20;
210SYSCTL_INT(_net_inet_tcp_inflight, OID_AUTO, stab, CTLFLAG_RW,
211    &tcp_inflight_stab, 0, "Inflight Algorithm Stabilization 20 = 2 packets");
212
213uma_zone_t sack_hole_zone;
214
215static struct inpcb *tcp_notify(struct inpcb *, int);
216static void	tcp_isn_tick(void *);
217
218/*
219 * Target size of TCP PCB hash tables. Must be a power of two.
220 *
221 * Note that this can be overridden by the kernel environment
222 * variable net.inet.tcp.tcbhashsize
223 */
224#ifndef TCBHASHSIZE
225#define TCBHASHSIZE	512
226#endif
227
228/*
229 * XXX
230 * Callouts should be moved into struct tcp directly.  They are currently
231 * separate because the tcpcb structure is exported to userland for sysctl
232 * parsing purposes, which do not know about callouts.
233 */
234struct	tcpcb_mem {
235	struct	tcpcb tcb;
236	struct	callout tcpcb_mem_rexmt, tcpcb_mem_persist, tcpcb_mem_keep;
237	struct	callout tcpcb_mem_2msl, tcpcb_mem_delack;
238};
239
240static uma_zone_t tcpcb_zone;
241static uma_zone_t tcptw_zone;
242struct callout isn_callout;
243
244/*
245 * TCP initialization.
246 */
247void
248tcp_init(void)
249{
250	int hashsize = TCBHASHSIZE;
251
252	tcp_delacktime = TCPTV_DELACK;
253	tcp_keepinit = TCPTV_KEEP_INIT;
254	tcp_keepidle = TCPTV_KEEP_IDLE;
255	tcp_keepintvl = TCPTV_KEEPINTVL;
256	tcp_maxpersistidle = TCPTV_KEEP_IDLE;
257	tcp_msl = TCPTV_MSL;
258	tcp_rexmit_min = TCPTV_MIN;
259	tcp_rexmit_slop = TCPTV_CPU_VAR;
260	tcp_inflight_rttthresh = TCPTV_INFLIGHT_RTTTHRESH;
261
262	INP_INFO_LOCK_INIT(&tcbinfo, "tcp");
263	LIST_INIT(&tcb);
264	tcbinfo.listhead = &tcb;
265	TUNABLE_INT_FETCH("net.inet.tcp.tcbhashsize", &hashsize);
266	if (!powerof2(hashsize)) {
267		printf("WARNING: TCB hash size not a power of 2\n");
268		hashsize = 512; /* safe default */
269	}
270	tcp_tcbhashsize = hashsize;
271	tcbinfo.hashbase = hashinit(hashsize, M_PCB, &tcbinfo.hashmask);
272	tcbinfo.porthashbase = hashinit(hashsize, M_PCB,
273					&tcbinfo.porthashmask);
274	tcbinfo.ipi_zone = uma_zcreate("inpcb", sizeof(struct inpcb),
275	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
276	uma_zone_set_max(tcbinfo.ipi_zone, maxsockets);
277#ifdef INET6
278#define TCP_MINPROTOHDR (sizeof(struct ip6_hdr) + sizeof(struct tcphdr))
279#else /* INET6 */
280#define TCP_MINPROTOHDR (sizeof(struct tcpiphdr))
281#endif /* INET6 */
282	if (max_protohdr < TCP_MINPROTOHDR)
283		max_protohdr = TCP_MINPROTOHDR;
284	if (max_linkhdr + TCP_MINPROTOHDR > MHLEN)
285		panic("tcp_init");
286#undef TCP_MINPROTOHDR
287	/*
288	 * These have to be type stable for the benefit of the timers.
289	 */
290	tcpcb_zone = uma_zcreate("tcpcb", sizeof(struct tcpcb_mem),
291	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
292	uma_zone_set_max(tcpcb_zone, maxsockets);
293	tcptw_zone = uma_zcreate("tcptw", sizeof(struct tcptw),
294	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
295	uma_zone_set_max(tcptw_zone, maxsockets / 5);
296	tcp_timer_init();
297	syncache_init();
298	tcp_hc_init();
299	tcp_reass_init();
300	callout_init(&isn_callout, CALLOUT_MPSAFE);
301	tcp_isn_tick(NULL);
302	EVENTHANDLER_REGISTER(shutdown_pre_sync, tcp_fini, NULL,
303		SHUTDOWN_PRI_DEFAULT);
304	sack_hole_zone = uma_zcreate("sackhole", sizeof(struct sackhole),
305	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
306}
307
308void
309tcp_fini(void *xtp)
310{
311
312	callout_stop(&isn_callout);
313}
314
315/*
316 * Fill in the IP and TCP headers for an outgoing packet, given the tcpcb.
317 * tcp_template used to store this data in mbufs, but we now recopy it out
318 * of the tcpcb each time to conserve mbufs.
319 */
320void
321tcpip_fillheaders(struct inpcb *inp, void *ip_ptr, void *tcp_ptr)
322{
323	struct tcphdr *th = (struct tcphdr *)tcp_ptr;
324
325	INP_LOCK_ASSERT(inp);
326
327#ifdef INET6
328	if ((inp->inp_vflag & INP_IPV6) != 0) {
329		struct ip6_hdr *ip6;
330
331		ip6 = (struct ip6_hdr *)ip_ptr;
332		ip6->ip6_flow = (ip6->ip6_flow & ~IPV6_FLOWINFO_MASK) |
333			(inp->in6p_flowinfo & IPV6_FLOWINFO_MASK);
334		ip6->ip6_vfc = (ip6->ip6_vfc & ~IPV6_VERSION_MASK) |
335			(IPV6_VERSION & IPV6_VERSION_MASK);
336		ip6->ip6_nxt = IPPROTO_TCP;
337		ip6->ip6_plen = sizeof(struct tcphdr);
338		ip6->ip6_src = inp->in6p_laddr;
339		ip6->ip6_dst = inp->in6p_faddr;
340	} else
341#endif
342	{
343		struct ip *ip;
344
345		ip = (struct ip *)ip_ptr;
346		ip->ip_v = IPVERSION;
347		ip->ip_hl = 5;
348		ip->ip_tos = inp->inp_ip_tos;
349		ip->ip_len = 0;
350		ip->ip_id = 0;
351		ip->ip_off = 0;
352		ip->ip_ttl = inp->inp_ip_ttl;
353		ip->ip_sum = 0;
354		ip->ip_p = IPPROTO_TCP;
355		ip->ip_src = inp->inp_laddr;
356		ip->ip_dst = inp->inp_faddr;
357	}
358	th->th_sport = inp->inp_lport;
359	th->th_dport = inp->inp_fport;
360	th->th_seq = 0;
361	th->th_ack = 0;
362	th->th_x2 = 0;
363	th->th_off = 5;
364	th->th_flags = 0;
365	th->th_win = 0;
366	th->th_urp = 0;
367	th->th_sum = 0;		/* in_pseudo() is called later for ipv4 */
368}
369
370/*
371 * Create template to be used to send tcp packets on a connection.
372 * Allocates an mbuf and fills in a skeletal tcp/ip header.  The only
373 * use for this function is in keepalives, which use tcp_respond.
374 */
375struct tcptemp *
376tcpip_maketemplate(struct inpcb *inp)
377{
378	struct mbuf *m;
379	struct tcptemp *n;
380
381	m = m_get(M_DONTWAIT, MT_DATA);
382	if (m == NULL)
383		return (0);
384	m->m_len = sizeof(struct tcptemp);
385	n = mtod(m, struct tcptemp *);
386
387	tcpip_fillheaders(inp, (void *)&n->tt_ipgen, (void *)&n->tt_t);
388	return (n);
389}
390
391/*
392 * Send a single message to the TCP at address specified by
393 * the given TCP/IP header.  If m == NULL, then we make a copy
394 * of the tcpiphdr at ti and send directly to the addressed host.
395 * This is used to force keep alive messages out using the TCP
396 * template for a connection.  If flags are given then we send
397 * a message back to the TCP which originated the * segment ti,
398 * and discard the mbuf containing it and any other attached mbufs.
399 *
400 * In any case the ack and sequence number of the transmitted
401 * segment are as specified by the parameters.
402 *
403 * NOTE: If m != NULL, then ti must point to *inside* the mbuf.
404 */
405void
406tcp_respond(struct tcpcb *tp, void *ipgen, register struct tcphdr *th,
407    register struct mbuf *m, tcp_seq ack, tcp_seq seq, int flags)
408{
409	register int tlen;
410	int win = 0;
411	struct ip *ip;
412	struct tcphdr *nth;
413#ifdef INET6
414	struct ip6_hdr *ip6;
415	int isipv6;
416#endif /* INET6 */
417	int ipflags = 0;
418	struct inpcb *inp;
419
420	KASSERT(tp != NULL || m != NULL, ("tcp_respond: tp and m both NULL"));
421
422#ifdef INET6
423	isipv6 = ((struct ip *)ipgen)->ip_v == 6;
424	ip6 = ipgen;
425#endif /* INET6 */
426	ip = ipgen;
427
428	if (tp != NULL) {
429		inp = tp->t_inpcb;
430		KASSERT(inp != NULL, ("tcp control block w/o inpcb"));
431		INP_INFO_WLOCK_ASSERT(&tcbinfo);
432		INP_LOCK_ASSERT(inp);
433	} else
434		inp = NULL;
435
436	if (tp != NULL) {
437		if (!(flags & TH_RST)) {
438			win = sbspace(&inp->inp_socket->so_rcv);
439			if (win > (long)TCP_MAXWIN << tp->rcv_scale)
440				win = (long)TCP_MAXWIN << tp->rcv_scale;
441		}
442	}
443	if (m == NULL) {
444		m = m_gethdr(M_DONTWAIT, MT_DATA);
445		if (m == NULL)
446			return;
447		tlen = 0;
448		m->m_data += max_linkhdr;
449#ifdef INET6
450		if (isipv6) {
451			bcopy((caddr_t)ip6, mtod(m, caddr_t),
452			      sizeof(struct ip6_hdr));
453			ip6 = mtod(m, struct ip6_hdr *);
454			nth = (struct tcphdr *)(ip6 + 1);
455		} else
456#endif /* INET6 */
457	      {
458		bcopy((caddr_t)ip, mtod(m, caddr_t), sizeof(struct ip));
459		ip = mtod(m, struct ip *);
460		nth = (struct tcphdr *)(ip + 1);
461	      }
462		bcopy((caddr_t)th, (caddr_t)nth, sizeof(struct tcphdr));
463		flags = TH_ACK;
464	} else {
465		m_freem(m->m_next);
466		m->m_next = NULL;
467		m->m_data = (caddr_t)ipgen;
468		/* m_len is set later */
469		tlen = 0;
470#define xchg(a,b,type) { type t; t=a; a=b; b=t; }
471#ifdef INET6
472		if (isipv6) {
473			xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr);
474			nth = (struct tcphdr *)(ip6 + 1);
475		} else
476#endif /* INET6 */
477	      {
478		xchg(ip->ip_dst.s_addr, ip->ip_src.s_addr, n_long);
479		nth = (struct tcphdr *)(ip + 1);
480	      }
481		if (th != nth) {
482			/*
483			 * this is usually a case when an extension header
484			 * exists between the IPv6 header and the
485			 * TCP header.
486			 */
487			nth->th_sport = th->th_sport;
488			nth->th_dport = th->th_dport;
489		}
490		xchg(nth->th_dport, nth->th_sport, n_short);
491#undef xchg
492	}
493#ifdef INET6
494	if (isipv6) {
495		ip6->ip6_flow = 0;
496		ip6->ip6_vfc = IPV6_VERSION;
497		ip6->ip6_nxt = IPPROTO_TCP;
498		ip6->ip6_plen = htons((u_short)(sizeof (struct tcphdr) +
499						tlen));
500		tlen += sizeof (struct ip6_hdr) + sizeof (struct tcphdr);
501	} else
502#endif
503	{
504		tlen += sizeof (struct tcpiphdr);
505		ip->ip_len = tlen;
506		ip->ip_ttl = ip_defttl;
507		if (path_mtu_discovery)
508			ip->ip_off |= IP_DF;
509	}
510	m->m_len = tlen;
511	m->m_pkthdr.len = tlen;
512	m->m_pkthdr.rcvif = NULL;
513#ifdef MAC
514	if (inp != NULL) {
515		/*
516		 * Packet is associated with a socket, so allow the
517		 * label of the response to reflect the socket label.
518		 */
519		INP_LOCK_ASSERT(inp);
520		mac_create_mbuf_from_inpcb(inp, m);
521	} else {
522		/*
523		 * Packet is not associated with a socket, so possibly
524		 * update the label in place.
525		 */
526		mac_reflect_mbuf_tcp(m);
527	}
528#endif
529	nth->th_seq = htonl(seq);
530	nth->th_ack = htonl(ack);
531	nth->th_x2 = 0;
532	nth->th_off = sizeof (struct tcphdr) >> 2;
533	nth->th_flags = flags;
534	if (tp != NULL)
535		nth->th_win = htons((u_short) (win >> tp->rcv_scale));
536	else
537		nth->th_win = htons((u_short)win);
538	nth->th_urp = 0;
539#ifdef INET6
540	if (isipv6) {
541		nth->th_sum = 0;
542		nth->th_sum = in6_cksum(m, IPPROTO_TCP,
543					sizeof(struct ip6_hdr),
544					tlen - sizeof(struct ip6_hdr));
545		ip6->ip6_hlim = in6_selecthlim(tp != NULL ? tp->t_inpcb :
546		    NULL, NULL);
547	} else
548#endif /* INET6 */
549	{
550		nth->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
551		    htons((u_short)(tlen - sizeof(struct ip) + ip->ip_p)));
552		m->m_pkthdr.csum_flags = CSUM_TCP;
553		m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
554	}
555#ifdef TCPDEBUG
556	if (tp == NULL || (inp->inp_socket->so_options & SO_DEBUG))
557		tcp_trace(TA_OUTPUT, 0, tp, mtod(m, void *), th, 0);
558#endif
559#ifdef INET6
560	if (isipv6)
561		(void) ip6_output(m, NULL, NULL, ipflags, NULL, NULL, inp);
562	else
563#endif /* INET6 */
564	(void) ip_output(m, NULL, NULL, ipflags, NULL, inp);
565}
566
567/*
568 * Create a new TCP control block, making an
569 * empty reassembly queue and hooking it to the argument
570 * protocol control block.  The `inp' parameter must have
571 * come from the zone allocator set up in tcp_init().
572 */
573struct tcpcb *
574tcp_newtcpcb(struct inpcb *inp)
575{
576	struct tcpcb_mem *tm;
577	struct tcpcb *tp;
578#ifdef INET6
579	int isipv6 = (inp->inp_vflag & INP_IPV6) != 0;
580#endif /* INET6 */
581
582	tm = uma_zalloc(tcpcb_zone, M_NOWAIT | M_ZERO);
583	if (tm == NULL)
584		return (NULL);
585	tp = &tm->tcb;
586	/*	LIST_INIT(&tp->t_segq); */	/* XXX covered by M_ZERO */
587	tp->t_maxseg = tp->t_maxopd =
588#ifdef INET6
589		isipv6 ? tcp_v6mssdflt :
590#endif /* INET6 */
591		tcp_mssdflt;
592
593	/* Set up our timeouts. */
594	callout_init(tp->tt_rexmt = &tm->tcpcb_mem_rexmt, NET_CALLOUT_MPSAFE);
595	callout_init(tp->tt_persist = &tm->tcpcb_mem_persist, NET_CALLOUT_MPSAFE);
596	callout_init(tp->tt_keep = &tm->tcpcb_mem_keep, NET_CALLOUT_MPSAFE);
597	callout_init(tp->tt_2msl = &tm->tcpcb_mem_2msl, NET_CALLOUT_MPSAFE);
598	callout_init(tp->tt_delack = &tm->tcpcb_mem_delack, NET_CALLOUT_MPSAFE);
599
600	if (tcp_do_rfc1323)
601		tp->t_flags = (TF_REQ_SCALE|TF_REQ_TSTMP);
602	tp->sack_enable = tcp_do_sack;
603	TAILQ_INIT(&tp->snd_holes);
604	tp->t_inpcb = inp;	/* XXX */
605	/*
606	 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
607	 * rtt estimate.  Set rttvar so that srtt + 4 * rttvar gives
608	 * reasonable initial retransmit time.
609	 */
610	tp->t_srtt = TCPTV_SRTTBASE;
611	tp->t_rttvar = ((TCPTV_RTOBASE - TCPTV_SRTTBASE) << TCP_RTTVAR_SHIFT) / 4;
612	tp->t_rttmin = tcp_rexmit_min;
613	tp->t_rxtcur = TCPTV_RTOBASE;
614	tp->snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
615	tp->snd_bwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
616	tp->snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT;
617	tp->t_rcvtime = ticks;
618	tp->t_bw_rtttime = ticks;
619	/*
620	 * IPv4 TTL initialization is necessary for an IPv6 socket as well,
621	 * because the socket may be bound to an IPv6 wildcard address,
622	 * which may match an IPv4-mapped IPv6 address.
623	 */
624	inp->inp_ip_ttl = ip_defttl;
625	inp->inp_ppcb = tp;
626	return (tp);		/* XXX */
627}
628
629/*
630 * Drop a TCP connection, reporting
631 * the specified error.  If connection is synchronized,
632 * then send a RST to peer.
633 */
634struct tcpcb *
635tcp_drop(struct tcpcb *tp, int errno)
636{
637	struct socket *so = tp->t_inpcb->inp_socket;
638
639	INP_INFO_WLOCK_ASSERT(&tcbinfo);
640	INP_LOCK_ASSERT(tp->t_inpcb);
641
642	if (TCPS_HAVERCVDSYN(tp->t_state)) {
643		tp->t_state = TCPS_CLOSED;
644		(void) tcp_output(tp);
645		tcpstat.tcps_drops++;
646	} else
647		tcpstat.tcps_conndrops++;
648	if (errno == ETIMEDOUT && tp->t_softerror)
649		errno = tp->t_softerror;
650	so->so_error = errno;
651	return (tcp_close(tp));
652}
653
654void
655tcp_discardcb(struct tcpcb *tp)
656{
657	struct tseg_qent *q;
658	struct inpcb *inp = tp->t_inpcb;
659	struct socket *so = inp->inp_socket;
660#ifdef INET6
661	int isipv6 = (inp->inp_vflag & INP_IPV6) != 0;
662#endif /* INET6 */
663
664	/*
665	 * XXXRW: This is all very well and good, but actually, we might be
666	 * discarding the tcpcb after the socket is gone, so we can't do
667	 * this:
668	KASSERT(so != NULL, ("tcp_discardcb: so == NULL"));
669	 */
670	INP_LOCK_ASSERT(inp);
671
672	/*
673	 * Make sure that all of our timers are stopped before we
674	 * delete the PCB.
675	 */
676	callout_stop(tp->tt_rexmt);
677	callout_stop(tp->tt_persist);
678	callout_stop(tp->tt_keep);
679	callout_stop(tp->tt_2msl);
680	callout_stop(tp->tt_delack);
681
682	/*
683	 * If we got enough samples through the srtt filter,
684	 * save the rtt and rttvar in the routing entry.
685	 * 'Enough' is arbitrarily defined as 4 rtt samples.
686	 * 4 samples is enough for the srtt filter to converge
687	 * to within enough % of the correct value; fewer samples
688	 * and we could save a bogus rtt. The danger is not high
689	 * as tcp quickly recovers from everything.
690	 * XXX: Works very well but needs some more statistics!
691	 */
692	if (tp->t_rttupdated >= 4) {
693		struct hc_metrics_lite metrics;
694		u_long ssthresh;
695
696		bzero(&metrics, sizeof(metrics));
697		/*
698		 * Update the ssthresh always when the conditions below
699		 * are satisfied. This gives us better new start value
700		 * for the congestion avoidance for new connections.
701		 * ssthresh is only set if packet loss occured on a session.
702		 */
703		ssthresh = tp->snd_ssthresh;
704		if (ssthresh != 0 && ssthresh < so->so_snd.sb_hiwat / 2) {
705			/*
706			 * convert the limit from user data bytes to
707			 * packets then to packet data bytes.
708			 */
709			ssthresh = (ssthresh + tp->t_maxseg / 2) / tp->t_maxseg;
710			if (ssthresh < 2)
711				ssthresh = 2;
712			ssthresh *= (u_long)(tp->t_maxseg +
713#ifdef INET6
714				      (isipv6 ? sizeof (struct ip6_hdr) +
715					       sizeof (struct tcphdr) :
716#endif
717				       sizeof (struct tcpiphdr)
718#ifdef INET6
719				       )
720#endif
721				      );
722		} else
723			ssthresh = 0;
724		metrics.rmx_ssthresh = ssthresh;
725
726		metrics.rmx_rtt = tp->t_srtt;
727		metrics.rmx_rttvar = tp->t_rttvar;
728		/* XXX: This wraps if the pipe is more than 4 Gbit per second */
729		metrics.rmx_bandwidth = tp->snd_bandwidth;
730		metrics.rmx_cwnd = tp->snd_cwnd;
731		metrics.rmx_sendpipe = 0;
732		metrics.rmx_recvpipe = 0;
733
734		tcp_hc_update(&inp->inp_inc, &metrics);
735	}
736
737	/* free the reassembly queue, if any */
738	while ((q = LIST_FIRST(&tp->t_segq)) != NULL) {
739		LIST_REMOVE(q, tqe_q);
740		m_freem(q->tqe_m);
741		uma_zfree(tcp_reass_zone, q);
742		tp->t_segqlen--;
743		tcp_reass_qsize--;
744	}
745	tcp_free_sackholes(tp);
746	inp->inp_ppcb = NULL;
747	tp->t_inpcb = NULL;
748	uma_zfree(tcpcb_zone, tp);
749
750	/*
751	 * XXXRW: This seems a bit unclean.
752	 */
753	if (so != NULL)
754		soisdisconnected(so);
755}
756
757/*
758 * Attempt to close a TCP control block, marking it as dropped, and freeing
759 * the socket if we hold the only reference.
760 */
761struct tcpcb *
762tcp_close(struct tcpcb *tp)
763{
764	struct inpcb *inp = tp->t_inpcb;
765	struct socket *so;
766
767	INP_INFO_WLOCK_ASSERT(&tcbinfo);
768	INP_LOCK_ASSERT(inp);
769
770	inp->inp_vflag |= INP_DROPPED;
771
772	tcpstat.tcps_closed++;
773	KASSERT(inp->inp_socket != NULL, ("tcp_close: inp_socket NULL"));
774	so = inp->inp_socket;
775	soisdisconnected(so);
776	if (inp->inp_vflag & INP_SOCKREF) {
777		KASSERT(so->so_state & SS_PROTOREF,
778		    ("tcp_close: !SS_PROTOREF"));
779		inp->inp_vflag &= ~INP_SOCKREF;
780		tcp_discardcb(tp);
781#ifdef INET6
782		if (inp->inp_vflag & INP_IPV6PROTO) {
783			in6_pcbdetach(inp);
784			in6_pcbfree(inp);
785		} else {
786#endif
787			in_pcbdetach(inp);
788			in_pcbfree(inp);
789#ifdef INET6
790		}
791#endif
792		ACCEPT_LOCK();
793		SOCK_LOCK(so);
794		so->so_state &= ~SS_PROTOREF;
795		sofree(so);
796		return (NULL);
797	}
798	return (tp);
799}
800
801void
802tcp_drain(void)
803{
804
805	if (do_tcpdrain) {
806		struct inpcb *inpb;
807		struct tcpcb *tcpb;
808		struct tseg_qent *te;
809
810	/*
811	 * Walk the tcpbs, if existing, and flush the reassembly queue,
812	 * if there is one...
813	 * XXX: The "Net/3" implementation doesn't imply that the TCP
814	 *      reassembly queue should be flushed, but in a situation
815	 *	where we're really low on mbufs, this is potentially
816	 *	usefull.
817	 */
818		INP_INFO_RLOCK(&tcbinfo);
819		LIST_FOREACH(inpb, tcbinfo.listhead, inp_list) {
820			if (inpb->inp_vflag & INP_TIMEWAIT)
821				continue;
822			INP_LOCK(inpb);
823			if ((tcpb = intotcpcb(inpb)) != NULL) {
824				while ((te = LIST_FIRST(&tcpb->t_segq))
825			            != NULL) {
826					LIST_REMOVE(te, tqe_q);
827					m_freem(te->tqe_m);
828					uma_zfree(tcp_reass_zone, te);
829					tcpb->t_segqlen--;
830					tcp_reass_qsize--;
831				}
832				tcp_clean_sackreport(tcpb);
833			}
834			INP_UNLOCK(inpb);
835		}
836		INP_INFO_RUNLOCK(&tcbinfo);
837	}
838}
839
840/*
841 * Notify a tcp user of an asynchronous error;
842 * store error as soft error, but wake up user
843 * (for now, won't do anything until can select for soft error).
844 *
845 * Do not wake up user since there currently is no mechanism for
846 * reporting soft errors (yet - a kqueue filter may be added).
847 */
848static struct inpcb *
849tcp_notify(struct inpcb *inp, int error)
850{
851	struct tcpcb *tp;
852
853	INP_INFO_WLOCK_ASSERT(&tcbinfo);
854	INP_LOCK_ASSERT(inp);
855	tp = intotcpcb(inp);
856
857	/*
858	 * Ignore some errors if we are hooked up.
859	 * If connection hasn't completed, has retransmitted several times,
860	 * and receives a second error, give up now.  This is better
861	 * than waiting a long time to establish a connection that
862	 * can never complete.
863	 */
864	if (tp->t_state == TCPS_ESTABLISHED &&
865	    (error == EHOSTUNREACH || error == ENETUNREACH ||
866	     error == EHOSTDOWN)) {
867		return (inp);
868	} else if (tp->t_state < TCPS_ESTABLISHED && tp->t_rxtshift > 3 &&
869	    tp->t_softerror) {
870		tp = tcp_drop(tp, error);
871		if (tp != NULL)
872			return (inp);
873		else
874			return (NULL);
875	} else {
876		tp->t_softerror = error;
877		return (inp);
878	}
879#if 0
880	wakeup( &so->so_timeo);
881	sorwakeup(so);
882	sowwakeup(so);
883#endif
884}
885
886static int
887tcp_pcblist(SYSCTL_HANDLER_ARGS)
888{
889	int error, i, n;
890	struct inpcb *inp, **inp_list;
891	inp_gen_t gencnt;
892	struct xinpgen xig;
893
894	/*
895	 * The process of preparing the TCB list is too time-consuming and
896	 * resource-intensive to repeat twice on every request.
897	 */
898	if (req->oldptr == NULL) {
899		n = tcbinfo.ipi_count;
900		req->oldidx = 2 * (sizeof xig)
901			+ (n + n/8) * sizeof(struct xtcpcb);
902		return (0);
903	}
904
905	if (req->newptr != NULL)
906		return (EPERM);
907
908	/*
909	 * OK, now we're committed to doing something.
910	 */
911	INP_INFO_RLOCK(&tcbinfo);
912	gencnt = tcbinfo.ipi_gencnt;
913	n = tcbinfo.ipi_count;
914	INP_INFO_RUNLOCK(&tcbinfo);
915
916	error = sysctl_wire_old_buffer(req, 2 * (sizeof xig)
917		+ n * sizeof(struct xtcpcb));
918	if (error != 0)
919		return (error);
920
921	xig.xig_len = sizeof xig;
922	xig.xig_count = n;
923	xig.xig_gen = gencnt;
924	xig.xig_sogen = so_gencnt;
925	error = SYSCTL_OUT(req, &xig, sizeof xig);
926	if (error)
927		return (error);
928
929	inp_list = malloc(n * sizeof *inp_list, M_TEMP, M_WAITOK);
930	if (inp_list == NULL)
931		return (ENOMEM);
932
933	INP_INFO_RLOCK(&tcbinfo);
934	for (inp = LIST_FIRST(tcbinfo.listhead), i = 0; inp != NULL && i < n;
935	     inp = LIST_NEXT(inp, inp_list)) {
936		INP_LOCK(inp);
937		if (inp->inp_gencnt <= gencnt) {
938			/*
939			 * XXX: This use of cr_cansee(), introduced with
940			 * TCP state changes, is not quite right, but for
941			 * now, better than nothing.
942			 */
943			if (inp->inp_vflag & INP_TIMEWAIT)
944				error = cr_cansee(req->td->td_ucred,
945				    intotw(inp)->tw_cred);
946			else
947				error = cr_canseesocket(req->td->td_ucred,
948				    inp->inp_socket);
949			if (error == 0)
950				inp_list[i++] = inp;
951		}
952		INP_UNLOCK(inp);
953	}
954	INP_INFO_RUNLOCK(&tcbinfo);
955	n = i;
956
957	error = 0;
958	for (i = 0; i < n; i++) {
959		inp = inp_list[i];
960		if (inp->inp_gencnt <= gencnt) {
961			struct xtcpcb xt;
962			void *inp_ppcb;
963
964			bzero(&xt, sizeof(xt));
965			xt.xt_len = sizeof xt;
966			/* XXX should avoid extra copy */
967			bcopy(inp, &xt.xt_inp, sizeof *inp);
968			inp_ppcb = inp->inp_ppcb;
969			if (inp_ppcb == NULL)
970				bzero((char *) &xt.xt_tp, sizeof xt.xt_tp);
971			else if (inp->inp_vflag & INP_TIMEWAIT) {
972				bzero((char *) &xt.xt_tp, sizeof xt.xt_tp);
973				xt.xt_tp.t_state = TCPS_TIME_WAIT;
974			} else
975				bcopy(inp_ppcb, &xt.xt_tp, sizeof xt.xt_tp);
976			if (inp->inp_socket != NULL)
977				sotoxsocket(inp->inp_socket, &xt.xt_socket);
978			else {
979				bzero(&xt.xt_socket, sizeof xt.xt_socket);
980				xt.xt_socket.xso_protocol = IPPROTO_TCP;
981			}
982			xt.xt_inp.inp_gencnt = inp->inp_gencnt;
983			error = SYSCTL_OUT(req, &xt, sizeof xt);
984		}
985	}
986	if (!error) {
987		/*
988		 * Give the user an updated idea of our state.
989		 * If the generation differs from what we told
990		 * her before, she knows that something happened
991		 * while we were processing this request, and it
992		 * might be necessary to retry.
993		 */
994		INP_INFO_RLOCK(&tcbinfo);
995		xig.xig_gen = tcbinfo.ipi_gencnt;
996		xig.xig_sogen = so_gencnt;
997		xig.xig_count = tcbinfo.ipi_count;
998		INP_INFO_RUNLOCK(&tcbinfo);
999		error = SYSCTL_OUT(req, &xig, sizeof xig);
1000	}
1001	free(inp_list, M_TEMP);
1002	return (error);
1003}
1004
1005SYSCTL_PROC(_net_inet_tcp, TCPCTL_PCBLIST, pcblist, CTLFLAG_RD, 0, 0,
1006	    tcp_pcblist, "S,xtcpcb", "List of active TCP connections");
1007
1008static int
1009tcp_getcred(SYSCTL_HANDLER_ARGS)
1010{
1011	struct xucred xuc;
1012	struct sockaddr_in addrs[2];
1013	struct inpcb *inp;
1014	int error;
1015
1016	error = suser_cred(req->td->td_ucred, SUSER_ALLOWJAIL);
1017	if (error)
1018		return (error);
1019	error = SYSCTL_IN(req, addrs, sizeof(addrs));
1020	if (error)
1021		return (error);
1022	INP_INFO_RLOCK(&tcbinfo);
1023	inp = in_pcblookup_hash(&tcbinfo, addrs[1].sin_addr, addrs[1].sin_port,
1024	    addrs[0].sin_addr, addrs[0].sin_port, 0, NULL);
1025	if (inp == NULL) {
1026		error = ENOENT;
1027		goto outunlocked;
1028	}
1029	INP_LOCK(inp);
1030	if (inp->inp_socket == NULL) {
1031		error = ENOENT;
1032		goto out;
1033	}
1034	error = cr_canseesocket(req->td->td_ucred, inp->inp_socket);
1035	if (error)
1036		goto out;
1037	cru2x(inp->inp_socket->so_cred, &xuc);
1038out:
1039	INP_UNLOCK(inp);
1040outunlocked:
1041	INP_INFO_RUNLOCK(&tcbinfo);
1042	if (error == 0)
1043		error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred));
1044	return (error);
1045}
1046
1047SYSCTL_PROC(_net_inet_tcp, OID_AUTO, getcred,
1048    CTLTYPE_OPAQUE|CTLFLAG_RW|CTLFLAG_PRISON, 0, 0,
1049    tcp_getcred, "S,xucred", "Get the xucred of a TCP connection");
1050
1051#ifdef INET6
1052static int
1053tcp6_getcred(SYSCTL_HANDLER_ARGS)
1054{
1055	struct xucred xuc;
1056	struct sockaddr_in6 addrs[2];
1057	struct inpcb *inp;
1058	int error, mapped = 0;
1059
1060	error = suser_cred(req->td->td_ucred, SUSER_ALLOWJAIL);
1061	if (error)
1062		return (error);
1063	error = SYSCTL_IN(req, addrs, sizeof(addrs));
1064	if (error)
1065		return (error);
1066	if ((error = sa6_embedscope(&addrs[0], ip6_use_defzone)) != 0 ||
1067	    (error = sa6_embedscope(&addrs[1], ip6_use_defzone)) != 0) {
1068		return (error);
1069	}
1070	if (IN6_IS_ADDR_V4MAPPED(&addrs[0].sin6_addr)) {
1071		if (IN6_IS_ADDR_V4MAPPED(&addrs[1].sin6_addr))
1072			mapped = 1;
1073		else
1074			return (EINVAL);
1075	}
1076
1077	INP_INFO_RLOCK(&tcbinfo);
1078	if (mapped == 1)
1079		inp = in_pcblookup_hash(&tcbinfo,
1080			*(struct in_addr *)&addrs[1].sin6_addr.s6_addr[12],
1081			addrs[1].sin6_port,
1082			*(struct in_addr *)&addrs[0].sin6_addr.s6_addr[12],
1083			addrs[0].sin6_port,
1084			0, NULL);
1085	else
1086		inp = in6_pcblookup_hash(&tcbinfo,
1087			&addrs[1].sin6_addr, addrs[1].sin6_port,
1088			&addrs[0].sin6_addr, addrs[0].sin6_port, 0, NULL);
1089	if (inp == NULL) {
1090		error = ENOENT;
1091		goto outunlocked;
1092	}
1093	INP_LOCK(inp);
1094	if (inp->inp_socket == NULL) {
1095		error = ENOENT;
1096		goto out;
1097	}
1098	error = cr_canseesocket(req->td->td_ucred, inp->inp_socket);
1099	if (error)
1100		goto out;
1101	cru2x(inp->inp_socket->so_cred, &xuc);
1102out:
1103	INP_UNLOCK(inp);
1104outunlocked:
1105	INP_INFO_RUNLOCK(&tcbinfo);
1106	if (error == 0)
1107		error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred));
1108	return (error);
1109}
1110
1111SYSCTL_PROC(_net_inet6_tcp6, OID_AUTO, getcred,
1112    CTLTYPE_OPAQUE|CTLFLAG_RW|CTLFLAG_PRISON, 0, 0,
1113    tcp6_getcred, "S,xucred", "Get the xucred of a TCP6 connection");
1114#endif
1115
1116
1117void
1118tcp_ctlinput(int cmd, struct sockaddr *sa, void *vip)
1119{
1120	struct ip *ip = vip;
1121	struct tcphdr *th;
1122	struct in_addr faddr;
1123	struct inpcb *inp;
1124	struct tcpcb *tp;
1125	struct inpcb *(*notify)(struct inpcb *, int) = tcp_notify;
1126	struct icmp *icp;
1127	struct in_conninfo inc;
1128	tcp_seq icmp_tcp_seq;
1129	int mtu;
1130
1131	faddr = ((struct sockaddr_in *)sa)->sin_addr;
1132	if (sa->sa_family != AF_INET || faddr.s_addr == INADDR_ANY)
1133		return;
1134
1135	if (cmd == PRC_MSGSIZE)
1136		notify = tcp_mtudisc;
1137	else if (icmp_may_rst && (cmd == PRC_UNREACH_ADMIN_PROHIB ||
1138		cmd == PRC_UNREACH_PORT || cmd == PRC_TIMXCEED_INTRANS) && ip)
1139		notify = tcp_drop_syn_sent;
1140	/*
1141	 * Redirects don't need to be handled up here.
1142	 */
1143	else if (PRC_IS_REDIRECT(cmd))
1144		return;
1145	/*
1146	 * Source quench is depreciated.
1147	 */
1148	else if (cmd == PRC_QUENCH)
1149		return;
1150	/*
1151	 * Hostdead is ugly because it goes linearly through all PCBs.
1152	 * XXX: We never get this from ICMP, otherwise it makes an
1153	 * excellent DoS attack on machines with many connections.
1154	 */
1155	else if (cmd == PRC_HOSTDEAD)
1156		ip = NULL;
1157	else if ((unsigned)cmd >= PRC_NCMDS || inetctlerrmap[cmd] == 0)
1158		return;
1159	if (ip != NULL) {
1160		icp = (struct icmp *)((caddr_t)ip
1161				      - offsetof(struct icmp, icmp_ip));
1162		th = (struct tcphdr *)((caddr_t)ip
1163				       + (ip->ip_hl << 2));
1164		INP_INFO_WLOCK(&tcbinfo);
1165		inp = in_pcblookup_hash(&tcbinfo, faddr, th->th_dport,
1166		    ip->ip_src, th->th_sport, 0, NULL);
1167		if (inp != NULL)  {
1168			INP_LOCK(inp);
1169			if (inp->inp_socket != NULL) {
1170				icmp_tcp_seq = htonl(th->th_seq);
1171				tp = intotcpcb(inp);
1172				if (SEQ_GEQ(icmp_tcp_seq, tp->snd_una) &&
1173				    SEQ_LT(icmp_tcp_seq, tp->snd_max)) {
1174					if (cmd == PRC_MSGSIZE) {
1175					    /*
1176					     * MTU discovery:
1177					     * If we got a needfrag set the MTU
1178					     * in the route to the suggested new
1179					     * value (if given) and then notify.
1180					     */
1181					    bzero(&inc, sizeof(inc));
1182					    inc.inc_flags = 0;	/* IPv4 */
1183					    inc.inc_faddr = faddr;
1184
1185					    mtu = ntohs(icp->icmp_nextmtu);
1186					    /*
1187					     * If no alternative MTU was
1188					     * proposed, try the next smaller
1189					     * one.  ip->ip_len has already
1190					     * been swapped in icmp_input().
1191					     */
1192					    if (!mtu)
1193						mtu = ip_next_mtu(ip->ip_len,
1194						 1);
1195					    if (mtu < max(296, (tcp_minmss)
1196						 + sizeof(struct tcpiphdr)))
1197						mtu = 0;
1198					    if (!mtu)
1199						mtu = tcp_mssdflt
1200						 + sizeof(struct tcpiphdr);
1201					    /*
1202					     * Only cache the the MTU if it
1203					     * is smaller than the interface
1204					     * or route MTU.  tcp_mtudisc()
1205					     * will do right thing by itself.
1206					     */
1207					    if (mtu <= tcp_maxmtu(&inc))
1208						tcp_hc_updatemtu(&inc, mtu);
1209					}
1210
1211					inp = (*notify)(inp, inetctlerrmap[cmd]);
1212				}
1213			}
1214			if (inp != NULL)
1215				INP_UNLOCK(inp);
1216		} else {
1217			inc.inc_fport = th->th_dport;
1218			inc.inc_lport = th->th_sport;
1219			inc.inc_faddr = faddr;
1220			inc.inc_laddr = ip->ip_src;
1221#ifdef INET6
1222			inc.inc_isipv6 = 0;
1223#endif
1224			syncache_unreach(&inc, th);
1225		}
1226		INP_INFO_WUNLOCK(&tcbinfo);
1227	} else
1228		in_pcbnotifyall(&tcbinfo, faddr, inetctlerrmap[cmd], notify);
1229}
1230
1231#ifdef INET6
1232void
1233tcp6_ctlinput(int cmd, struct sockaddr *sa, void *d)
1234{
1235	struct tcphdr th;
1236	struct inpcb *(*notify)(struct inpcb *, int) = tcp_notify;
1237	struct ip6_hdr *ip6;
1238	struct mbuf *m;
1239	struct ip6ctlparam *ip6cp = NULL;
1240	const struct sockaddr_in6 *sa6_src = NULL;
1241	int off;
1242	struct tcp_portonly {
1243		u_int16_t th_sport;
1244		u_int16_t th_dport;
1245	} *thp;
1246
1247	if (sa->sa_family != AF_INET6 ||
1248	    sa->sa_len != sizeof(struct sockaddr_in6))
1249		return;
1250
1251	if (cmd == PRC_MSGSIZE)
1252		notify = tcp_mtudisc;
1253	else if (!PRC_IS_REDIRECT(cmd) &&
1254		 ((unsigned)cmd >= PRC_NCMDS || inet6ctlerrmap[cmd] == 0))
1255		return;
1256	/* Source quench is depreciated. */
1257	else if (cmd == PRC_QUENCH)
1258		return;
1259
1260	/* if the parameter is from icmp6, decode it. */
1261	if (d != NULL) {
1262		ip6cp = (struct ip6ctlparam *)d;
1263		m = ip6cp->ip6c_m;
1264		ip6 = ip6cp->ip6c_ip6;
1265		off = ip6cp->ip6c_off;
1266		sa6_src = ip6cp->ip6c_src;
1267	} else {
1268		m = NULL;
1269		ip6 = NULL;
1270		off = 0;	/* fool gcc */
1271		sa6_src = &sa6_any;
1272	}
1273
1274	if (ip6 != NULL) {
1275		struct in_conninfo inc;
1276		/*
1277		 * XXX: We assume that when IPV6 is non NULL,
1278		 * M and OFF are valid.
1279		 */
1280
1281		/* check if we can safely examine src and dst ports */
1282		if (m->m_pkthdr.len < off + sizeof(*thp))
1283			return;
1284
1285		bzero(&th, sizeof(th));
1286		m_copydata(m, off, sizeof(*thp), (caddr_t)&th);
1287
1288		in6_pcbnotify(&tcbinfo, sa, th.th_dport,
1289		    (struct sockaddr *)ip6cp->ip6c_src,
1290		    th.th_sport, cmd, NULL, notify);
1291
1292		inc.inc_fport = th.th_dport;
1293		inc.inc_lport = th.th_sport;
1294		inc.inc6_faddr = ((struct sockaddr_in6 *)sa)->sin6_addr;
1295		inc.inc6_laddr = ip6cp->ip6c_src->sin6_addr;
1296		inc.inc_isipv6 = 1;
1297		INP_INFO_WLOCK(&tcbinfo);
1298		syncache_unreach(&inc, &th);
1299		INP_INFO_WUNLOCK(&tcbinfo);
1300	} else
1301		in6_pcbnotify(&tcbinfo, sa, 0, (const struct sockaddr *)sa6_src,
1302			      0, cmd, NULL, notify);
1303}
1304#endif /* INET6 */
1305
1306
1307/*
1308 * Following is where TCP initial sequence number generation occurs.
1309 *
1310 * There are two places where we must use initial sequence numbers:
1311 * 1.  In SYN-ACK packets.
1312 * 2.  In SYN packets.
1313 *
1314 * All ISNs for SYN-ACK packets are generated by the syncache.  See
1315 * tcp_syncache.c for details.
1316 *
1317 * The ISNs in SYN packets must be monotonic; TIME_WAIT recycling
1318 * depends on this property.  In addition, these ISNs should be
1319 * unguessable so as to prevent connection hijacking.  To satisfy
1320 * the requirements of this situation, the algorithm outlined in
1321 * RFC 1948 is used, with only small modifications.
1322 *
1323 * Implementation details:
1324 *
1325 * Time is based off the system timer, and is corrected so that it
1326 * increases by one megabyte per second.  This allows for proper
1327 * recycling on high speed LANs while still leaving over an hour
1328 * before rollover.
1329 *
1330 * As reading the *exact* system time is too expensive to be done
1331 * whenever setting up a TCP connection, we increment the time
1332 * offset in two ways.  First, a small random positive increment
1333 * is added to isn_offset for each connection that is set up.
1334 * Second, the function tcp_isn_tick fires once per clock tick
1335 * and increments isn_offset as necessary so that sequence numbers
1336 * are incremented at approximately ISN_BYTES_PER_SECOND.  The
1337 * random positive increments serve only to ensure that the same
1338 * exact sequence number is never sent out twice (as could otherwise
1339 * happen when a port is recycled in less than the system tick
1340 * interval.)
1341 *
1342 * net.inet.tcp.isn_reseed_interval controls the number of seconds
1343 * between seeding of isn_secret.  This is normally set to zero,
1344 * as reseeding should not be necessary.
1345 *
1346 * Locking of the global variables isn_secret, isn_last_reseed, isn_offset,
1347 * isn_offset_old, and isn_ctx is performed using the TCP pcbinfo lock.  In
1348 * general, this means holding an exclusive (write) lock.
1349 */
1350
1351#define ISN_BYTES_PER_SECOND 1048576
1352#define ISN_STATIC_INCREMENT 4096
1353#define ISN_RANDOM_INCREMENT (4096 - 1)
1354
1355static u_char isn_secret[32];
1356static int isn_last_reseed;
1357static u_int32_t isn_offset, isn_offset_old;
1358static MD5_CTX isn_ctx;
1359
1360tcp_seq
1361tcp_new_isn(struct tcpcb *tp)
1362{
1363	u_int32_t md5_buffer[4];
1364	tcp_seq new_isn;
1365
1366	INP_INFO_WLOCK_ASSERT(&tcbinfo);
1367	INP_LOCK_ASSERT(tp->t_inpcb);
1368
1369	/* Seed if this is the first use, reseed if requested. */
1370	if ((isn_last_reseed == 0) || ((tcp_isn_reseed_interval > 0) &&
1371	     (((u_int)isn_last_reseed + (u_int)tcp_isn_reseed_interval*hz)
1372		< (u_int)ticks))) {
1373		read_random(&isn_secret, sizeof(isn_secret));
1374		isn_last_reseed = ticks;
1375	}
1376
1377	/* Compute the md5 hash and return the ISN. */
1378	MD5Init(&isn_ctx);
1379	MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_fport, sizeof(u_short));
1380	MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_lport, sizeof(u_short));
1381#ifdef INET6
1382	if ((tp->t_inpcb->inp_vflag & INP_IPV6) != 0) {
1383		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_faddr,
1384			  sizeof(struct in6_addr));
1385		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_laddr,
1386			  sizeof(struct in6_addr));
1387	} else
1388#endif
1389	{
1390		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_faddr,
1391			  sizeof(struct in_addr));
1392		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_laddr,
1393			  sizeof(struct in_addr));
1394	}
1395	MD5Update(&isn_ctx, (u_char *) &isn_secret, sizeof(isn_secret));
1396	MD5Final((u_char *) &md5_buffer, &isn_ctx);
1397	new_isn = (tcp_seq) md5_buffer[0];
1398	isn_offset += ISN_STATIC_INCREMENT +
1399		(arc4random() & ISN_RANDOM_INCREMENT);
1400	new_isn += isn_offset;
1401	return (new_isn);
1402}
1403
1404/*
1405 * Increment the offset to the next ISN_BYTES_PER_SECOND / hz boundary
1406 * to keep time flowing at a relatively constant rate.  If the random
1407 * increments have already pushed us past the projected offset, do nothing.
1408 */
1409static void
1410tcp_isn_tick(void *xtp)
1411{
1412	u_int32_t projected_offset;
1413
1414	INP_INFO_WLOCK(&tcbinfo);
1415	projected_offset = isn_offset_old + ISN_BYTES_PER_SECOND / 100;
1416
1417	if (projected_offset > isn_offset)
1418		isn_offset = projected_offset;
1419
1420	isn_offset_old = isn_offset;
1421	callout_reset(&isn_callout, hz/100, tcp_isn_tick, NULL);
1422	INP_INFO_WUNLOCK(&tcbinfo);
1423}
1424
1425/*
1426 * When a specific ICMP unreachable message is received and the
1427 * connection state is SYN-SENT, drop the connection.  This behavior
1428 * is controlled by the icmp_may_rst sysctl.
1429 */
1430struct inpcb *
1431tcp_drop_syn_sent(struct inpcb *inp, int errno)
1432{
1433	struct tcpcb *tp;
1434
1435	INP_INFO_WLOCK_ASSERT(&tcbinfo);
1436	INP_LOCK_ASSERT(inp);
1437	tp = intotcpcb(inp);
1438
1439	if (tp != NULL && tp->t_state == TCPS_SYN_SENT) {
1440		tp = tcp_drop(tp, errno);
1441		if (tp != NULL)
1442			return (inp);
1443		else
1444			return (NULL);
1445	}
1446	return (inp);
1447}
1448
1449/*
1450 * When `need fragmentation' ICMP is received, update our idea of the MSS
1451 * based on the new value in the route.  Also nudge TCP to send something,
1452 * since we know the packet we just sent was dropped.
1453 * This duplicates some code in the tcp_mss() function in tcp_input.c.
1454 */
1455struct inpcb *
1456tcp_mtudisc(struct inpcb *inp, int errno)
1457{
1458	struct tcpcb *tp;
1459	struct socket *so = inp->inp_socket;
1460	u_int maxmtu;
1461	u_int romtu;
1462	int mss;
1463#ifdef INET6
1464	int isipv6;
1465#endif /* INET6 */
1466
1467	INP_LOCK_ASSERT(inp);
1468	tp = intotcpcb(inp);
1469	if (tp != NULL) {
1470#ifdef INET6
1471		isipv6 = (tp->t_inpcb->inp_vflag & INP_IPV6) != 0;
1472#endif
1473		maxmtu = tcp_hc_getmtu(&inp->inp_inc); /* IPv4 and IPv6 */
1474		romtu =
1475#ifdef INET6
1476		    isipv6 ? tcp_maxmtu6(&inp->inp_inc) :
1477#endif /* INET6 */
1478		    tcp_maxmtu(&inp->inp_inc);
1479		if (!maxmtu)
1480			maxmtu = romtu;
1481		else
1482			maxmtu = min(maxmtu, romtu);
1483		if (!maxmtu) {
1484			tp->t_maxopd = tp->t_maxseg =
1485#ifdef INET6
1486				isipv6 ? tcp_v6mssdflt :
1487#endif /* INET6 */
1488				tcp_mssdflt;
1489			return (inp);
1490		}
1491		mss = maxmtu -
1492#ifdef INET6
1493			(isipv6 ?
1494			 sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
1495#endif /* INET6 */
1496			 sizeof(struct tcpiphdr)
1497#ifdef INET6
1498			 )
1499#endif /* INET6 */
1500			;
1501
1502		/*
1503		 * XXX - The above conditional probably violates the TCP
1504		 * spec.  The problem is that, since we don't know the
1505		 * other end's MSS, we are supposed to use a conservative
1506		 * default.  But, if we do that, then MTU discovery will
1507		 * never actually take place, because the conservative
1508		 * default is much less than the MTUs typically seen
1509		 * on the Internet today.  For the moment, we'll sweep
1510		 * this under the carpet.
1511		 *
1512		 * The conservative default might not actually be a problem
1513		 * if the only case this occurs is when sending an initial
1514		 * SYN with options and data to a host we've never talked
1515		 * to before.  Then, they will reply with an MSS value which
1516		 * will get recorded and the new parameters should get
1517		 * recomputed.  For Further Study.
1518		 */
1519		if (tp->t_maxopd <= mss)
1520			return (inp);
1521		tp->t_maxopd = mss;
1522
1523		if ((tp->t_flags & (TF_REQ_TSTMP|TF_NOOPT)) == TF_REQ_TSTMP &&
1524		    (tp->t_flags & TF_RCVD_TSTMP) == TF_RCVD_TSTMP)
1525			mss -= TCPOLEN_TSTAMP_APPA;
1526#if	(MCLBYTES & (MCLBYTES - 1)) == 0
1527		if (mss > MCLBYTES)
1528			mss &= ~(MCLBYTES-1);
1529#else
1530		if (mss > MCLBYTES)
1531			mss = mss / MCLBYTES * MCLBYTES;
1532#endif
1533		if (so->so_snd.sb_hiwat < mss)
1534			mss = so->so_snd.sb_hiwat;
1535
1536		tp->t_maxseg = mss;
1537
1538		tcpstat.tcps_mturesent++;
1539		tp->t_rtttime = 0;
1540		tp->snd_nxt = tp->snd_una;
1541		tcp_output(tp);
1542	}
1543	return (inp);
1544}
1545
1546/*
1547 * Look-up the routing entry to the peer of this inpcb.  If no route
1548 * is found and it cannot be allocated, then return NULL.  This routine
1549 * is called by TCP routines that access the rmx structure and by tcp_mss
1550 * to get the interface MTU.
1551 */
1552u_long
1553tcp_maxmtu(struct in_conninfo *inc)
1554{
1555	struct route sro;
1556	struct sockaddr_in *dst;
1557	struct ifnet *ifp;
1558	u_long maxmtu = 0;
1559
1560	KASSERT(inc != NULL, ("tcp_maxmtu with NULL in_conninfo pointer"));
1561
1562	bzero(&sro, sizeof(sro));
1563	if (inc->inc_faddr.s_addr != INADDR_ANY) {
1564	        dst = (struct sockaddr_in *)&sro.ro_dst;
1565		dst->sin_family = AF_INET;
1566		dst->sin_len = sizeof(*dst);
1567		dst->sin_addr = inc->inc_faddr;
1568		rtalloc_ign(&sro, RTF_CLONING);
1569	}
1570	if (sro.ro_rt != NULL) {
1571		ifp = sro.ro_rt->rt_ifp;
1572		if (sro.ro_rt->rt_rmx.rmx_mtu == 0)
1573			maxmtu = ifp->if_mtu;
1574		else
1575			maxmtu = min(sro.ro_rt->rt_rmx.rmx_mtu, ifp->if_mtu);
1576		RTFREE(sro.ro_rt);
1577	}
1578	return (maxmtu);
1579}
1580
1581#ifdef INET6
1582u_long
1583tcp_maxmtu6(struct in_conninfo *inc)
1584{
1585	struct route_in6 sro6;
1586	struct ifnet *ifp;
1587	u_long maxmtu = 0;
1588
1589	KASSERT(inc != NULL, ("tcp_maxmtu6 with NULL in_conninfo pointer"));
1590
1591	bzero(&sro6, sizeof(sro6));
1592	if (!IN6_IS_ADDR_UNSPECIFIED(&inc->inc6_faddr)) {
1593		sro6.ro_dst.sin6_family = AF_INET6;
1594		sro6.ro_dst.sin6_len = sizeof(struct sockaddr_in6);
1595		sro6.ro_dst.sin6_addr = inc->inc6_faddr;
1596		rtalloc_ign((struct route *)&sro6, RTF_CLONING);
1597	}
1598	if (sro6.ro_rt != NULL) {
1599		ifp = sro6.ro_rt->rt_ifp;
1600		if (sro6.ro_rt->rt_rmx.rmx_mtu == 0)
1601			maxmtu = IN6_LINKMTU(sro6.ro_rt->rt_ifp);
1602		else
1603			maxmtu = min(sro6.ro_rt->rt_rmx.rmx_mtu,
1604				     IN6_LINKMTU(sro6.ro_rt->rt_ifp));
1605		RTFREE(sro6.ro_rt);
1606	}
1607
1608	return (maxmtu);
1609}
1610#endif /* INET6 */
1611
1612#ifdef IPSEC
1613/* compute ESP/AH header size for TCP, including outer IP header. */
1614size_t
1615ipsec_hdrsiz_tcp(struct tcpcb *tp)
1616{
1617	struct inpcb *inp;
1618	struct mbuf *m;
1619	size_t hdrsiz;
1620	struct ip *ip;
1621#ifdef INET6
1622	struct ip6_hdr *ip6;
1623#endif
1624	struct tcphdr *th;
1625
1626	if ((tp == NULL) || ((inp = tp->t_inpcb) == NULL))
1627		return (0);
1628	MGETHDR(m, M_DONTWAIT, MT_DATA);
1629	if (!m)
1630		return (0);
1631
1632#ifdef INET6
1633	if ((inp->inp_vflag & INP_IPV6) != 0) {
1634		ip6 = mtod(m, struct ip6_hdr *);
1635		th = (struct tcphdr *)(ip6 + 1);
1636		m->m_pkthdr.len = m->m_len =
1637			sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
1638		tcpip_fillheaders(inp, ip6, th);
1639		hdrsiz = ipsec6_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
1640	} else
1641#endif /* INET6 */
1642	{
1643		ip = mtod(m, struct ip *);
1644		th = (struct tcphdr *)(ip + 1);
1645		m->m_pkthdr.len = m->m_len = sizeof(struct tcpiphdr);
1646		tcpip_fillheaders(inp, ip, th);
1647		hdrsiz = ipsec4_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
1648	}
1649
1650	m_free(m);
1651	return (hdrsiz);
1652}
1653#endif /*IPSEC*/
1654
1655/*
1656 * Move a TCP connection into TIME_WAIT state.
1657 *    tcbinfo is locked.
1658 *    inp is locked, and is unlocked before returning.
1659 */
1660void
1661tcp_twstart(struct tcpcb *tp)
1662{
1663	struct tcptw *tw;
1664	struct inpcb *inp;
1665	int tw_time, acknow;
1666	struct socket *so;
1667
1668	INP_INFO_WLOCK_ASSERT(&tcbinfo);	/* tcp_timer_2msl_reset(). */
1669	INP_LOCK_ASSERT(tp->t_inpcb);
1670
1671	tw = uma_zalloc(tcptw_zone, M_NOWAIT);
1672	if (tw == NULL) {
1673		tw = tcp_timer_2msl_tw(1);
1674		if (tw == NULL) {
1675			tp = tcp_close(tp);
1676			if (tp != NULL)
1677				INP_UNLOCK(tp->t_inpcb);
1678			return;
1679		}
1680	}
1681	inp = tp->t_inpcb;
1682	tw->tw_inpcb = inp;
1683
1684	/*
1685	 * Recover last window size sent.
1686	 */
1687	tw->last_win = (tp->rcv_adv - tp->rcv_nxt) >> tp->rcv_scale;
1688
1689	/*
1690	 * Set t_recent if timestamps are used on the connection.
1691	 */
1692	if ((tp->t_flags & (TF_REQ_TSTMP|TF_RCVD_TSTMP|TF_NOOPT)) ==
1693	    (TF_REQ_TSTMP|TF_RCVD_TSTMP))
1694		tw->t_recent = tp->ts_recent;
1695	else
1696		tw->t_recent = 0;
1697
1698	tw->snd_nxt = tp->snd_nxt;
1699	tw->rcv_nxt = tp->rcv_nxt;
1700	tw->iss     = tp->iss;
1701	tw->irs     = tp->irs;
1702	tw->t_starttime = tp->t_starttime;
1703	tw->tw_time = 0;
1704
1705/* XXX
1706 * If this code will
1707 * be used for fin-wait-2 state also, then we may need
1708 * a ts_recent from the last segment.
1709 */
1710	tw_time = 2 * tcp_msl;
1711	acknow = tp->t_flags & TF_ACKNOW;
1712
1713	/*
1714	 * First, discard tcpcb state, which includes stopping its timers and
1715	 * freeing it.  tcp_discardcb() used to also release the inpcb, but
1716	 * that work is now done in the caller.
1717	 */
1718	tcp_discardcb(tp);
1719	so = inp->inp_socket;
1720	SOCK_LOCK(so);
1721	tw->tw_cred = crhold(so->so_cred);
1722	tw->tw_so_options = so->so_options;
1723	SOCK_UNLOCK(so);
1724	if (acknow)
1725		tcp_twrespond(tw, TH_ACK);
1726	inp->inp_ppcb = tw;
1727	inp->inp_vflag |= INP_TIMEWAIT;
1728	tcp_timer_2msl_reset(tw, tw_time);
1729
1730	/*
1731	 * If the inpcb owns the sole reference to the socket, then we can
1732	 * detach and free the socket as it is not needed in time wait.
1733	 */
1734	if (inp->inp_vflag & INP_SOCKREF) {
1735		KASSERT(so->so_state & SS_PROTOREF,
1736		    ("tcp_twstart: !SS_PROTOREF"));
1737		inp->inp_vflag &= ~INP_SOCKREF;
1738#ifdef INET6
1739		if (inp->inp_vflag & INP_IPV6PROTO)
1740			in6_pcbdetach(inp);
1741		else
1742#endif
1743			in_pcbdetach(inp);
1744		INP_UNLOCK(inp);
1745		ACCEPT_LOCK();
1746		SOCK_LOCK(so);
1747		so->so_state &= ~SS_PROTOREF;
1748		sofree(so);
1749	} else
1750		INP_UNLOCK(inp);
1751}
1752
1753/*
1754 * The appromixate rate of ISN increase of Microsoft TCP stacks;
1755 * the actual rate is slightly higher due to the addition of
1756 * random positive increments.
1757 *
1758 * Most other new OSes use semi-randomized ISN values, so we
1759 * do not need to worry about them.
1760 */
1761#define MS_ISN_BYTES_PER_SECOND		250000
1762
1763/*
1764 * Determine if the ISN we will generate has advanced beyond the last
1765 * sequence number used by the previous connection.  If so, indicate
1766 * that it is safe to recycle this tw socket by returning 1.
1767 *
1768 * XXXRW: This function should assert the inpcb lock as it does multiple
1769 * non-atomic reads from the tcptw, but is currently called without it from
1770 * in_pcb.c:in_pcblookup_local().
1771 */
1772int
1773tcp_twrecycleable(struct tcptw *tw)
1774{
1775	tcp_seq new_iss = tw->iss;
1776	tcp_seq new_irs = tw->irs;
1777
1778	new_iss += (ticks - tw->t_starttime) * (ISN_BYTES_PER_SECOND / hz);
1779	new_irs += (ticks - tw->t_starttime) * (MS_ISN_BYTES_PER_SECOND / hz);
1780
1781	if (SEQ_GT(new_iss, tw->snd_nxt) && SEQ_GT(new_irs, tw->rcv_nxt))
1782		return (1);
1783	else
1784		return (0);
1785}
1786
1787void
1788tcp_twclose(struct tcptw *tw, int reuse)
1789{
1790	struct socket *so;
1791	struct inpcb *inp;
1792
1793	/*
1794	 * At this point, we are in one of two situations:
1795	 *
1796	 * (1) We have no socket, just an inpcb<->twtcp pair.  Release it all
1797	 * after validating.
1798	 *
1799	 * (2) We have a socket, which we may or may now own the reference
1800	 * for.  If we own the reference, release all the state after
1801	 * validating.  If not, leave it for the socket close to clean up.
1802	 */
1803	inp = tw->tw_inpcb;
1804	KASSERT((inp->inp_vflag & INP_TIMEWAIT), ("tcp_twclose: !timewait"));
1805	KASSERT(intotw(inp) == tw, ("tcp_twclose: inp_ppcb != tw"));
1806	INP_INFO_WLOCK_ASSERT(&tcbinfo);	/* tcp_timer_2msl_stop(). */
1807	INP_LOCK_ASSERT(inp);
1808
1809	tw->tw_inpcb = NULL;
1810	tcp_timer_2msl_stop(tw);
1811	inp->inp_ppcb = NULL;
1812	inp->inp_vflag |= INP_DROPPED;
1813
1814	so = inp->inp_socket;
1815	if (so != NULL) {
1816		if (inp->inp_vflag & INP_SOCKREF) {
1817			/*
1818			 * If a socket is present, and we own the only
1819			 * reference, we need to tear down the socket and the
1820			 * inpcb.
1821			 */
1822			inp->inp_vflag &= ~INP_SOCKREF;
1823#ifdef INET6
1824			if (inp->inp_vflag & INP_IPV6PROTO) {
1825				in6_pcbdetach(inp);
1826				in6_pcbfree(inp);
1827			} else {
1828				in_pcbdetach(inp);
1829				in_pcbfree(inp);
1830			}
1831#endif
1832			ACCEPT_LOCK();
1833			SOCK_LOCK(so);
1834			KASSERT(so->so_state & SS_PROTOREF,
1835			    ("tcp_twclose: INP_SOCKREF && !SS_PROTOREF"));
1836			so->so_state &= ~SS_PROTOREF;
1837			sofree(so);
1838		} else {
1839			/*
1840			 * If we don't own the only reference, the socket and
1841			 * inpcb need to be left around to be handled by
1842			 * tcp_usr_detach() later.
1843			 */
1844			INP_UNLOCK(inp);
1845		}
1846	} else {
1847#ifdef INET6
1848		if (inp->inp_vflag & INP_IPV6PROTO)
1849			in6_pcbfree(inp);
1850		else
1851#endif
1852			in_pcbfree(inp);
1853	}
1854	tcpstat.tcps_closed++;
1855	crfree(tw->tw_cred);
1856	tw->tw_cred = NULL;
1857	if (reuse)
1858		return;
1859	uma_zfree(tcptw_zone, tw);
1860}
1861
1862int
1863tcp_twrespond(struct tcptw *tw, int flags)
1864{
1865	struct inpcb *inp = tw->tw_inpcb;
1866	struct tcphdr *th;
1867	struct mbuf *m;
1868	struct ip *ip = NULL;
1869	u_int8_t *optp;
1870	u_int hdrlen, optlen;
1871	int error;
1872#ifdef INET6
1873	struct ip6_hdr *ip6 = NULL;
1874	int isipv6 = inp->inp_inc.inc_isipv6;
1875#endif
1876
1877	INP_LOCK_ASSERT(inp);
1878
1879	m = m_gethdr(M_DONTWAIT, MT_DATA);
1880	if (m == NULL)
1881		return (ENOBUFS);
1882	m->m_data += max_linkhdr;
1883
1884#ifdef MAC
1885	mac_create_mbuf_from_inpcb(inp, m);
1886#endif
1887
1888#ifdef INET6
1889	if (isipv6) {
1890		hdrlen = sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
1891		ip6 = mtod(m, struct ip6_hdr *);
1892		th = (struct tcphdr *)(ip6 + 1);
1893		tcpip_fillheaders(inp, ip6, th);
1894	} else
1895#endif
1896	{
1897		hdrlen = sizeof(struct tcpiphdr);
1898		ip = mtod(m, struct ip *);
1899		th = (struct tcphdr *)(ip + 1);
1900		tcpip_fillheaders(inp, ip, th);
1901	}
1902	optp = (u_int8_t *)(th + 1);
1903
1904	/*
1905	 * Send a timestamp and echo-reply if both our side and our peer
1906	 * have sent timestamps in our SYN's and this is not a RST.
1907	 */
1908	if (tw->t_recent && flags == TH_ACK) {
1909		u_int32_t *lp = (u_int32_t *)optp;
1910
1911		/* Form timestamp option as shown in appendix A of RFC 1323. */
1912		*lp++ = htonl(TCPOPT_TSTAMP_HDR);
1913		*lp++ = htonl(ticks);
1914		*lp   = htonl(tw->t_recent);
1915		optp += TCPOLEN_TSTAMP_APPA;
1916	}
1917
1918	optlen = optp - (u_int8_t *)(th + 1);
1919
1920	m->m_len = hdrlen + optlen;
1921	m->m_pkthdr.len = m->m_len;
1922
1923	KASSERT(max_linkhdr + m->m_len <= MHLEN, ("tcptw: mbuf too small"));
1924
1925	th->th_seq = htonl(tw->snd_nxt);
1926	th->th_ack = htonl(tw->rcv_nxt);
1927	th->th_off = (sizeof(struct tcphdr) + optlen) >> 2;
1928	th->th_flags = flags;
1929	th->th_win = htons(tw->last_win);
1930
1931#ifdef INET6
1932	if (isipv6) {
1933		th->th_sum = in6_cksum(m, IPPROTO_TCP, sizeof(struct ip6_hdr),
1934		    sizeof(struct tcphdr) + optlen);
1935		ip6->ip6_hlim = in6_selecthlim(inp, NULL);
1936		error = ip6_output(m, inp->in6p_outputopts, NULL,
1937		    (tw->tw_so_options & SO_DONTROUTE), NULL, NULL, inp);
1938	} else
1939#endif
1940	{
1941		th->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
1942		    htons(sizeof(struct tcphdr) + optlen + IPPROTO_TCP));
1943		m->m_pkthdr.csum_flags = CSUM_TCP;
1944		m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
1945		ip->ip_len = m->m_pkthdr.len;
1946		if (path_mtu_discovery)
1947			ip->ip_off |= IP_DF;
1948		error = ip_output(m, inp->inp_options, NULL,
1949		    ((tw->tw_so_options & SO_DONTROUTE) ? IP_ROUTETOIF : 0),
1950		    NULL, inp);
1951	}
1952	if (flags & TH_ACK)
1953		tcpstat.tcps_sndacks++;
1954	else
1955		tcpstat.tcps_sndctrl++;
1956	tcpstat.tcps_sndtotal++;
1957	return (error);
1958}
1959
1960/*
1961 * TCP BANDWIDTH DELAY PRODUCT WINDOW LIMITING
1962 *
1963 * This code attempts to calculate the bandwidth-delay product as a
1964 * means of determining the optimal window size to maximize bandwidth,
1965 * minimize RTT, and avoid the over-allocation of buffers on interfaces and
1966 * routers.  This code also does a fairly good job keeping RTTs in check
1967 * across slow links like modems.  We implement an algorithm which is very
1968 * similar (but not meant to be) TCP/Vegas.  The code operates on the
1969 * transmitter side of a TCP connection and so only effects the transmit
1970 * side of the connection.
1971 *
1972 * BACKGROUND:  TCP makes no provision for the management of buffer space
1973 * at the end points or at the intermediate routers and switches.  A TCP
1974 * stream, whether using NewReno or not, will eventually buffer as
1975 * many packets as it is able and the only reason this typically works is
1976 * due to the fairly small default buffers made available for a connection
1977 * (typicaly 16K or 32K).  As machines use larger windows and/or window
1978 * scaling it is now fairly easy for even a single TCP connection to blow-out
1979 * all available buffer space not only on the local interface, but on
1980 * intermediate routers and switches as well.  NewReno makes a misguided
1981 * attempt to 'solve' this problem by waiting for an actual failure to occur,
1982 * then backing off, then steadily increasing the window again until another
1983 * failure occurs, ad-infinitum.  This results in terrible oscillation that
1984 * is only made worse as network loads increase and the idea of intentionally
1985 * blowing out network buffers is, frankly, a terrible way to manage network
1986 * resources.
1987 *
1988 * It is far better to limit the transmit window prior to the failure
1989 * condition being achieved.  There are two general ways to do this:  First
1990 * you can 'scan' through different transmit window sizes and locate the
1991 * point where the RTT stops increasing, indicating that you have filled the
1992 * pipe, then scan backwards until you note that RTT stops decreasing, then
1993 * repeat ad-infinitum.  This method works in principle but has severe
1994 * implementation issues due to RTT variances, timer granularity, and
1995 * instability in the algorithm which can lead to many false positives and
1996 * create oscillations as well as interact badly with other TCP streams
1997 * implementing the same algorithm.
1998 *
1999 * The second method is to limit the window to the bandwidth delay product
2000 * of the link.  This is the method we implement.  RTT variances and our
2001 * own manipulation of the congestion window, bwnd, can potentially
2002 * destabilize the algorithm.  For this reason we have to stabilize the
2003 * elements used to calculate the window.  We do this by using the minimum
2004 * observed RTT, the long term average of the observed bandwidth, and
2005 * by adding two segments worth of slop.  It isn't perfect but it is able
2006 * to react to changing conditions and gives us a very stable basis on
2007 * which to extend the algorithm.
2008 */
2009void
2010tcp_xmit_bandwidth_limit(struct tcpcb *tp, tcp_seq ack_seq)
2011{
2012	u_long bw;
2013	u_long bwnd;
2014	int save_ticks;
2015
2016	INP_LOCK_ASSERT(tp->t_inpcb);
2017
2018	/*
2019	 * If inflight_enable is disabled in the middle of a tcp connection,
2020	 * make sure snd_bwnd is effectively disabled.
2021	 */
2022	if (tcp_inflight_enable == 0 || tp->t_rttlow < tcp_inflight_rttthresh) {
2023		tp->snd_bwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
2024		tp->snd_bandwidth = 0;
2025		return;
2026	}
2027
2028	/*
2029	 * Figure out the bandwidth.  Due to the tick granularity this
2030	 * is a very rough number and it MUST be averaged over a fairly
2031	 * long period of time.  XXX we need to take into account a link
2032	 * that is not using all available bandwidth, but for now our
2033	 * slop will ramp us up if this case occurs and the bandwidth later
2034	 * increases.
2035	 *
2036	 * Note: if ticks rollover 'bw' may wind up negative.  We must
2037	 * effectively reset t_bw_rtttime for this case.
2038	 */
2039	save_ticks = ticks;
2040	if ((u_int)(save_ticks - tp->t_bw_rtttime) < 1)
2041		return;
2042
2043	bw = (int64_t)(ack_seq - tp->t_bw_rtseq) * hz /
2044	    (save_ticks - tp->t_bw_rtttime);
2045	tp->t_bw_rtttime = save_ticks;
2046	tp->t_bw_rtseq = ack_seq;
2047	if (tp->t_bw_rtttime == 0 || (int)bw < 0)
2048		return;
2049	bw = ((int64_t)tp->snd_bandwidth * 15 + bw) >> 4;
2050
2051	tp->snd_bandwidth = bw;
2052
2053	/*
2054	 * Calculate the semi-static bandwidth delay product, plus two maximal
2055	 * segments.  The additional slop puts us squarely in the sweet
2056	 * spot and also handles the bandwidth run-up case and stabilization.
2057	 * Without the slop we could be locking ourselves into a lower
2058	 * bandwidth.
2059	 *
2060	 * Situations Handled:
2061	 *	(1) Prevents over-queueing of packets on LANs, especially on
2062	 *	    high speed LANs, allowing larger TCP buffers to be
2063	 *	    specified, and also does a good job preventing
2064	 *	    over-queueing of packets over choke points like modems
2065	 *	    (at least for the transmit side).
2066	 *
2067	 *	(2) Is able to handle changing network loads (bandwidth
2068	 *	    drops so bwnd drops, bandwidth increases so bwnd
2069	 *	    increases).
2070	 *
2071	 *	(3) Theoretically should stabilize in the face of multiple
2072	 *	    connections implementing the same algorithm (this may need
2073	 *	    a little work).
2074	 *
2075	 *	(4) Stability value (defaults to 20 = 2 maximal packets) can
2076	 *	    be adjusted with a sysctl but typically only needs to be
2077	 *	    on very slow connections.  A value no smaller then 5
2078	 *	    should be used, but only reduce this default if you have
2079	 *	    no other choice.
2080	 */
2081#define USERTT	((tp->t_srtt + tp->t_rttbest) / 2)
2082	bwnd = (int64_t)bw * USERTT / (hz << TCP_RTT_SHIFT) + tcp_inflight_stab * tp->t_maxseg / 10;
2083#undef USERTT
2084
2085	if (tcp_inflight_debug > 0) {
2086		static int ltime;
2087		if ((u_int)(ticks - ltime) >= hz / tcp_inflight_debug) {
2088			ltime = ticks;
2089			printf("%p bw %ld rttbest %d srtt %d bwnd %ld\n",
2090			    tp,
2091			    bw,
2092			    tp->t_rttbest,
2093			    tp->t_srtt,
2094			    bwnd
2095			);
2096		}
2097	}
2098	if ((long)bwnd < tcp_inflight_min)
2099		bwnd = tcp_inflight_min;
2100	if (bwnd > tcp_inflight_max)
2101		bwnd = tcp_inflight_max;
2102	if ((long)bwnd < tp->t_maxseg * 2)
2103		bwnd = tp->t_maxseg * 2;
2104	tp->snd_bwnd = bwnd;
2105}
2106
2107#ifdef TCP_SIGNATURE
2108/*
2109 * Callback function invoked by m_apply() to digest TCP segment data
2110 * contained within an mbuf chain.
2111 */
2112static int
2113tcp_signature_apply(void *fstate, void *data, u_int len)
2114{
2115
2116	MD5Update(fstate, (u_char *)data, len);
2117	return (0);
2118}
2119
2120/*
2121 * Compute TCP-MD5 hash of a TCPv4 segment. (RFC2385)
2122 *
2123 * Parameters:
2124 * m		pointer to head of mbuf chain
2125 * off0		offset to TCP header within the mbuf chain
2126 * len		length of TCP segment data, excluding options
2127 * optlen	length of TCP segment options
2128 * buf		pointer to storage for computed MD5 digest
2129 * direction	direction of flow (IPSEC_DIR_INBOUND or OUTBOUND)
2130 *
2131 * We do this over ip, tcphdr, segment data, and the key in the SADB.
2132 * When called from tcp_input(), we can be sure that th_sum has been
2133 * zeroed out and verified already.
2134 *
2135 * This function is for IPv4 use only. Calling this function with an
2136 * IPv6 packet in the mbuf chain will yield undefined results.
2137 *
2138 * Return 0 if successful, otherwise return -1.
2139 *
2140 * XXX The key is retrieved from the system's PF_KEY SADB, by keying a
2141 * search with the destination IP address, and a 'magic SPI' to be
2142 * determined by the application. This is hardcoded elsewhere to 1179
2143 * right now. Another branch of this code exists which uses the SPD to
2144 * specify per-application flows but it is unstable.
2145 */
2146int
2147tcp_signature_compute(struct mbuf *m, int off0, int len, int optlen,
2148    u_char *buf, u_int direction)
2149{
2150	union sockaddr_union dst;
2151	struct ippseudo ippseudo;
2152	MD5_CTX ctx;
2153	int doff;
2154	struct ip *ip;
2155	struct ipovly *ipovly;
2156	struct secasvar *sav;
2157	struct tcphdr *th;
2158	u_short savecsum;
2159
2160	KASSERT(m != NULL, ("NULL mbuf chain"));
2161	KASSERT(buf != NULL, ("NULL signature pointer"));
2162
2163	/* Extract the destination from the IP header in the mbuf. */
2164	ip = mtod(m, struct ip *);
2165	bzero(&dst, sizeof(union sockaddr_union));
2166	dst.sa.sa_len = sizeof(struct sockaddr_in);
2167	dst.sa.sa_family = AF_INET;
2168	dst.sin.sin_addr = (direction == IPSEC_DIR_INBOUND) ?
2169	    ip->ip_src : ip->ip_dst;
2170
2171	/* Look up an SADB entry which matches the address of the peer. */
2172	sav = KEY_ALLOCSA(&dst, IPPROTO_TCP, htonl(TCP_SIG_SPI));
2173	if (sav == NULL) {
2174		printf("%s: SADB lookup failed for %s\n", __func__,
2175		    inet_ntoa(dst.sin.sin_addr));
2176		return (EINVAL);
2177	}
2178
2179	MD5Init(&ctx);
2180	ipovly = (struct ipovly *)ip;
2181	th = (struct tcphdr *)((u_char *)ip + off0);
2182	doff = off0 + sizeof(struct tcphdr) + optlen;
2183
2184	/*
2185	 * Step 1: Update MD5 hash with IP pseudo-header.
2186	 *
2187	 * XXX The ippseudo header MUST be digested in network byte order,
2188	 * or else we'll fail the regression test. Assume all fields we've
2189	 * been doing arithmetic on have been in host byte order.
2190	 * XXX One cannot depend on ipovly->ih_len here. When called from
2191	 * tcp_output(), the underlying ip_len member has not yet been set.
2192	 */
2193	ippseudo.ippseudo_src = ipovly->ih_src;
2194	ippseudo.ippseudo_dst = ipovly->ih_dst;
2195	ippseudo.ippseudo_pad = 0;
2196	ippseudo.ippseudo_p = IPPROTO_TCP;
2197	ippseudo.ippseudo_len = htons(len + sizeof(struct tcphdr) + optlen);
2198	MD5Update(&ctx, (char *)&ippseudo, sizeof(struct ippseudo));
2199
2200	/*
2201	 * Step 2: Update MD5 hash with TCP header, excluding options.
2202	 * The TCP checksum must be set to zero.
2203	 */
2204	savecsum = th->th_sum;
2205	th->th_sum = 0;
2206	MD5Update(&ctx, (char *)th, sizeof(struct tcphdr));
2207	th->th_sum = savecsum;
2208
2209	/*
2210	 * Step 3: Update MD5 hash with TCP segment data.
2211	 *         Use m_apply() to avoid an early m_pullup().
2212	 */
2213	if (len > 0)
2214		m_apply(m, doff, len, tcp_signature_apply, &ctx);
2215
2216	/*
2217	 * Step 4: Update MD5 hash with shared secret.
2218	 */
2219	MD5Update(&ctx, _KEYBUF(sav->key_auth), _KEYLEN(sav->key_auth));
2220	MD5Final(buf, &ctx);
2221
2222	key_sa_recordxfer(sav, m);
2223	KEY_FREESAV(&sav);
2224	return (0);
2225}
2226#endif /* TCP_SIGNATURE */
2227
2228static int
2229sysctl_drop(SYSCTL_HANDLER_ARGS)
2230{
2231	/* addrs[0] is a foreign socket, addrs[1] is a local one. */
2232	struct sockaddr_storage addrs[2];
2233	struct inpcb *inp;
2234	struct tcpcb *tp;
2235	struct tcptw *tw;
2236	struct sockaddr_in *fin, *lin;
2237#ifdef INET6
2238	struct sockaddr_in6 *fin6, *lin6;
2239	struct in6_addr f6, l6;
2240#endif
2241	int error;
2242
2243	inp = NULL;
2244	fin = lin = NULL;
2245#ifdef INET6
2246	fin6 = lin6 = NULL;
2247#endif
2248	error = 0;
2249
2250	if (req->oldptr != NULL || req->oldlen != 0)
2251		return (EINVAL);
2252	if (req->newptr == NULL)
2253		return (EPERM);
2254	if (req->newlen < sizeof(addrs))
2255		return (ENOMEM);
2256	error = SYSCTL_IN(req, &addrs, sizeof(addrs));
2257	if (error)
2258		return (error);
2259
2260	switch (addrs[0].ss_family) {
2261#ifdef INET6
2262	case AF_INET6:
2263		fin6 = (struct sockaddr_in6 *)&addrs[0];
2264		lin6 = (struct sockaddr_in6 *)&addrs[1];
2265		if (fin6->sin6_len != sizeof(struct sockaddr_in6) ||
2266		    lin6->sin6_len != sizeof(struct sockaddr_in6))
2267			return (EINVAL);
2268		if (IN6_IS_ADDR_V4MAPPED(&fin6->sin6_addr)) {
2269			if (!IN6_IS_ADDR_V4MAPPED(&lin6->sin6_addr))
2270				return (EINVAL);
2271			in6_sin6_2_sin_in_sock((struct sockaddr *)&addrs[0]);
2272			in6_sin6_2_sin_in_sock((struct sockaddr *)&addrs[1]);
2273			fin = (struct sockaddr_in *)&addrs[0];
2274			lin = (struct sockaddr_in *)&addrs[1];
2275			break;
2276		}
2277		error = sa6_embedscope(fin6, ip6_use_defzone);
2278		if (error)
2279			return (error);
2280		error = sa6_embedscope(lin6, ip6_use_defzone);
2281		if (error)
2282			return (error);
2283		break;
2284#endif
2285	case AF_INET:
2286		fin = (struct sockaddr_in *)&addrs[0];
2287		lin = (struct sockaddr_in *)&addrs[1];
2288		if (fin->sin_len != sizeof(struct sockaddr_in) ||
2289		    lin->sin_len != sizeof(struct sockaddr_in))
2290			return (EINVAL);
2291		break;
2292	default:
2293		return (EINVAL);
2294	}
2295	INP_INFO_WLOCK(&tcbinfo);
2296	switch (addrs[0].ss_family) {
2297#ifdef INET6
2298	case AF_INET6:
2299		inp = in6_pcblookup_hash(&tcbinfo, &f6, fin6->sin6_port,
2300		    &l6, lin6->sin6_port, 0, NULL);
2301		break;
2302#endif
2303	case AF_INET:
2304		inp = in_pcblookup_hash(&tcbinfo, fin->sin_addr, fin->sin_port,
2305		    lin->sin_addr, lin->sin_port, 0, NULL);
2306		break;
2307	}
2308	if (inp != NULL) {
2309		INP_LOCK(inp);
2310		if (inp->inp_vflag & INP_TIMEWAIT) {
2311			tw = intotw(inp);
2312			tcp_twclose(tw, 0);
2313		} else if (!(inp->inp_vflag & INP_DROPPED) &&
2314			   !(inp->inp_socket->so_options & SO_ACCEPTCONN)) {
2315			tp = intotcpcb(inp);
2316			tcp_drop(tp, ECONNABORTED);
2317		}
2318		INP_UNLOCK(inp);
2319	} else
2320		error = ESRCH;
2321	INP_INFO_WUNLOCK(&tcbinfo);
2322	return (error);
2323}
2324
2325SYSCTL_PROC(_net_inet_tcp, TCPCTL_DROP, drop,
2326    CTLTYPE_STRUCT|CTLFLAG_WR|CTLFLAG_SKIP, NULL,
2327    0, sysctl_drop, "", "Drop TCP connection");
2328