tcp_timewait.c revision 157431
1/*-
2 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 4. Neither the name of the University nor the names of its contributors
14 *    may be used to endorse or promote products derived from this software
15 *    without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 *
29 *	@(#)tcp_subr.c	8.2 (Berkeley) 5/24/95
30 * $FreeBSD: head/sys/netinet/tcp_timewait.c 157431 2006-04-03 12:59:27Z rwatson $
31 */
32
33#include "opt_compat.h"
34#include "opt_inet.h"
35#include "opt_inet6.h"
36#include "opt_ipsec.h"
37#include "opt_mac.h"
38#include "opt_tcpdebug.h"
39#include "opt_tcp_sack.h"
40
41#include <sys/param.h>
42#include <sys/systm.h>
43#include <sys/callout.h>
44#include <sys/kernel.h>
45#include <sys/sysctl.h>
46#include <sys/mac.h>
47#include <sys/malloc.h>
48#include <sys/mbuf.h>
49#ifdef INET6
50#include <sys/domain.h>
51#endif
52#include <sys/proc.h>
53#include <sys/socket.h>
54#include <sys/socketvar.h>
55#include <sys/protosw.h>
56#include <sys/random.h>
57
58#include <vm/uma.h>
59
60#include <net/route.h>
61#include <net/if.h>
62
63#include <netinet/in.h>
64#include <netinet/in_systm.h>
65#include <netinet/ip.h>
66#ifdef INET6
67#include <netinet/ip6.h>
68#endif
69#include <netinet/in_pcb.h>
70#ifdef INET6
71#include <netinet6/in6_pcb.h>
72#endif
73#include <netinet/in_var.h>
74#include <netinet/ip_var.h>
75#ifdef INET6
76#include <netinet6/ip6_var.h>
77#include <netinet6/scope6_var.h>
78#include <netinet6/nd6.h>
79#endif
80#include <netinet/ip_icmp.h>
81#include <netinet/tcp.h>
82#include <netinet/tcp_fsm.h>
83#include <netinet/tcp_seq.h>
84#include <netinet/tcp_timer.h>
85#include <netinet/tcp_var.h>
86#ifdef INET6
87#include <netinet6/tcp6_var.h>
88#endif
89#include <netinet/tcpip.h>
90#ifdef TCPDEBUG
91#include <netinet/tcp_debug.h>
92#endif
93#include <netinet6/ip6protosw.h>
94
95#ifdef IPSEC
96#include <netinet6/ipsec.h>
97#ifdef INET6
98#include <netinet6/ipsec6.h>
99#endif
100#include <netkey/key.h>
101#endif /*IPSEC*/
102
103#ifdef FAST_IPSEC
104#include <netipsec/ipsec.h>
105#include <netipsec/xform.h>
106#ifdef INET6
107#include <netipsec/ipsec6.h>
108#endif
109#include <netipsec/key.h>
110#define	IPSEC
111#endif /*FAST_IPSEC*/
112
113#include <machine/in_cksum.h>
114#include <sys/md5.h>
115
116int	tcp_mssdflt = TCP_MSS;
117SYSCTL_INT(_net_inet_tcp, TCPCTL_MSSDFLT, mssdflt, CTLFLAG_RW,
118    &tcp_mssdflt , 0, "Default TCP Maximum Segment Size");
119
120#ifdef INET6
121int	tcp_v6mssdflt = TCP6_MSS;
122SYSCTL_INT(_net_inet_tcp, TCPCTL_V6MSSDFLT, v6mssdflt,
123	CTLFLAG_RW, &tcp_v6mssdflt , 0,
124	"Default TCP Maximum Segment Size for IPv6");
125#endif
126
127/*
128 * Minimum MSS we accept and use. This prevents DoS attacks where
129 * we are forced to a ridiculous low MSS like 20 and send hundreds
130 * of packets instead of one. The effect scales with the available
131 * bandwidth and quickly saturates the CPU and network interface
132 * with packet generation and sending. Set to zero to disable MINMSS
133 * checking. This setting prevents us from sending too small packets.
134 */
135int	tcp_minmss = TCP_MINMSS;
136SYSCTL_INT(_net_inet_tcp, OID_AUTO, minmss, CTLFLAG_RW,
137    &tcp_minmss , 0, "Minmum TCP Maximum Segment Size");
138/*
139 * Number of TCP segments per second we accept from remote host
140 * before we start to calculate average segment size. If average
141 * segment size drops below the minimum TCP MSS we assume a DoS
142 * attack and reset+drop the connection. Care has to be taken not to
143 * set this value too small to not kill interactive type connections
144 * (telnet, SSH) which send many small packets.
145 */
146int     tcp_minmssoverload = TCP_MINMSSOVERLOAD;
147SYSCTL_INT(_net_inet_tcp, OID_AUTO, minmssoverload, CTLFLAG_RW,
148    &tcp_minmssoverload , 0, "Number of TCP Segments per Second allowed to"
149    "be under the MINMSS Size");
150
151#if 0
152static int	tcp_rttdflt = TCPTV_SRTTDFLT / PR_SLOWHZ;
153SYSCTL_INT(_net_inet_tcp, TCPCTL_RTTDFLT, rttdflt, CTLFLAG_RW,
154    &tcp_rttdflt , 0, "Default maximum TCP Round Trip Time");
155#endif
156
157int	tcp_do_rfc1323 = 1;
158SYSCTL_INT(_net_inet_tcp, TCPCTL_DO_RFC1323, rfc1323, CTLFLAG_RW,
159    &tcp_do_rfc1323 , 0, "Enable rfc1323 (high performance TCP) extensions");
160
161static int	tcp_tcbhashsize = 0;
162SYSCTL_INT(_net_inet_tcp, OID_AUTO, tcbhashsize, CTLFLAG_RDTUN,
163     &tcp_tcbhashsize, 0, "Size of TCP control-block hashtable");
164
165static int	do_tcpdrain = 1;
166SYSCTL_INT(_net_inet_tcp, OID_AUTO, do_tcpdrain, CTLFLAG_RW, &do_tcpdrain, 0,
167     "Enable tcp_drain routine for extra help when low on mbufs");
168
169SYSCTL_INT(_net_inet_tcp, OID_AUTO, pcbcount, CTLFLAG_RD,
170    &tcbinfo.ipi_count, 0, "Number of active PCBs");
171
172static int	icmp_may_rst = 1;
173SYSCTL_INT(_net_inet_tcp, OID_AUTO, icmp_may_rst, CTLFLAG_RW, &icmp_may_rst, 0,
174    "Certain ICMP unreachable messages may abort connections in SYN_SENT");
175
176static int	tcp_isn_reseed_interval = 0;
177SYSCTL_INT(_net_inet_tcp, OID_AUTO, isn_reseed_interval, CTLFLAG_RW,
178    &tcp_isn_reseed_interval, 0, "Seconds between reseeding of ISN secret");
179
180/*
181 * TCP bandwidth limiting sysctls.  Note that the default lower bound of
182 * 1024 exists only for debugging.  A good production default would be
183 * something like 6100.
184 */
185SYSCTL_NODE(_net_inet_tcp, OID_AUTO, inflight, CTLFLAG_RW, 0,
186    "TCP inflight data limiting");
187
188static int	tcp_inflight_enable = 1;
189SYSCTL_INT(_net_inet_tcp_inflight, OID_AUTO, enable, CTLFLAG_RW,
190    &tcp_inflight_enable, 0, "Enable automatic TCP inflight data limiting");
191
192static int	tcp_inflight_debug = 0;
193SYSCTL_INT(_net_inet_tcp_inflight, OID_AUTO, debug, CTLFLAG_RW,
194    &tcp_inflight_debug, 0, "Debug TCP inflight calculations");
195
196static int	tcp_inflight_rttthresh;
197SYSCTL_PROC(_net_inet_tcp_inflight, OID_AUTO, rttthresh, CTLTYPE_INT|CTLFLAG_RW,
198    &tcp_inflight_rttthresh, 0, sysctl_msec_to_ticks, "I",
199    "RTT threshold below which inflight will deactivate itself");
200
201static int	tcp_inflight_min = 6144;
202SYSCTL_INT(_net_inet_tcp_inflight, OID_AUTO, min, CTLFLAG_RW,
203    &tcp_inflight_min, 0, "Lower-bound for TCP inflight window");
204
205static int	tcp_inflight_max = TCP_MAXWIN << TCP_MAX_WINSHIFT;
206SYSCTL_INT(_net_inet_tcp_inflight, OID_AUTO, max, CTLFLAG_RW,
207    &tcp_inflight_max, 0, "Upper-bound for TCP inflight window");
208
209static int	tcp_inflight_stab = 20;
210SYSCTL_INT(_net_inet_tcp_inflight, OID_AUTO, stab, CTLFLAG_RW,
211    &tcp_inflight_stab, 0, "Inflight Algorithm Stabilization 20 = 2 packets");
212
213uma_zone_t sack_hole_zone;
214
215static struct inpcb *tcp_notify(struct inpcb *, int);
216static void	tcp_isn_tick(void *);
217
218/*
219 * Target size of TCP PCB hash tables. Must be a power of two.
220 *
221 * Note that this can be overridden by the kernel environment
222 * variable net.inet.tcp.tcbhashsize
223 */
224#ifndef TCBHASHSIZE
225#define TCBHASHSIZE	512
226#endif
227
228/*
229 * XXX
230 * Callouts should be moved into struct tcp directly.  They are currently
231 * separate because the tcpcb structure is exported to userland for sysctl
232 * parsing purposes, which do not know about callouts.
233 */
234struct	tcpcb_mem {
235	struct	tcpcb tcb;
236	struct	callout tcpcb_mem_rexmt, tcpcb_mem_persist, tcpcb_mem_keep;
237	struct	callout tcpcb_mem_2msl, tcpcb_mem_delack;
238};
239
240static uma_zone_t tcpcb_zone;
241static uma_zone_t tcptw_zone;
242struct callout isn_callout;
243
244/*
245 * TCP initialization.
246 */
247void
248tcp_init(void)
249{
250	int hashsize = TCBHASHSIZE;
251
252	tcp_delacktime = TCPTV_DELACK;
253	tcp_keepinit = TCPTV_KEEP_INIT;
254	tcp_keepidle = TCPTV_KEEP_IDLE;
255	tcp_keepintvl = TCPTV_KEEPINTVL;
256	tcp_maxpersistidle = TCPTV_KEEP_IDLE;
257	tcp_msl = TCPTV_MSL;
258	tcp_rexmit_min = TCPTV_MIN;
259	tcp_rexmit_slop = TCPTV_CPU_VAR;
260	tcp_inflight_rttthresh = TCPTV_INFLIGHT_RTTTHRESH;
261
262	INP_INFO_LOCK_INIT(&tcbinfo, "tcp");
263	LIST_INIT(&tcb);
264	tcbinfo.listhead = &tcb;
265	TUNABLE_INT_FETCH("net.inet.tcp.tcbhashsize", &hashsize);
266	if (!powerof2(hashsize)) {
267		printf("WARNING: TCB hash size not a power of 2\n");
268		hashsize = 512; /* safe default */
269	}
270	tcp_tcbhashsize = hashsize;
271	tcbinfo.hashbase = hashinit(hashsize, M_PCB, &tcbinfo.hashmask);
272	tcbinfo.porthashbase = hashinit(hashsize, M_PCB,
273					&tcbinfo.porthashmask);
274	tcbinfo.ipi_zone = uma_zcreate("inpcb", sizeof(struct inpcb),
275	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
276	uma_zone_set_max(tcbinfo.ipi_zone, maxsockets);
277#ifdef INET6
278#define TCP_MINPROTOHDR (sizeof(struct ip6_hdr) + sizeof(struct tcphdr))
279#else /* INET6 */
280#define TCP_MINPROTOHDR (sizeof(struct tcpiphdr))
281#endif /* INET6 */
282	if (max_protohdr < TCP_MINPROTOHDR)
283		max_protohdr = TCP_MINPROTOHDR;
284	if (max_linkhdr + TCP_MINPROTOHDR > MHLEN)
285		panic("tcp_init");
286#undef TCP_MINPROTOHDR
287	/*
288	 * These have to be type stable for the benefit of the timers.
289	 */
290	tcpcb_zone = uma_zcreate("tcpcb", sizeof(struct tcpcb_mem),
291	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
292	uma_zone_set_max(tcpcb_zone, maxsockets);
293	tcptw_zone = uma_zcreate("tcptw", sizeof(struct tcptw),
294	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
295	uma_zone_set_max(tcptw_zone, maxsockets / 5);
296	tcp_timer_init();
297	syncache_init();
298	tcp_hc_init();
299	tcp_reass_init();
300	callout_init(&isn_callout, CALLOUT_MPSAFE);
301	tcp_isn_tick(NULL);
302	EVENTHANDLER_REGISTER(shutdown_pre_sync, tcp_fini, NULL,
303		SHUTDOWN_PRI_DEFAULT);
304	sack_hole_zone = uma_zcreate("sackhole", sizeof(struct sackhole),
305	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
306}
307
308void
309tcp_fini(void *xtp)
310{
311
312	callout_stop(&isn_callout);
313}
314
315/*
316 * Fill in the IP and TCP headers for an outgoing packet, given the tcpcb.
317 * tcp_template used to store this data in mbufs, but we now recopy it out
318 * of the tcpcb each time to conserve mbufs.
319 */
320void
321tcpip_fillheaders(struct inpcb *inp, void *ip_ptr, void *tcp_ptr)
322{
323	struct tcphdr *th = (struct tcphdr *)tcp_ptr;
324
325	INP_LOCK_ASSERT(inp);
326
327#ifdef INET6
328	if ((inp->inp_vflag & INP_IPV6) != 0) {
329		struct ip6_hdr *ip6;
330
331		ip6 = (struct ip6_hdr *)ip_ptr;
332		ip6->ip6_flow = (ip6->ip6_flow & ~IPV6_FLOWINFO_MASK) |
333			(inp->in6p_flowinfo & IPV6_FLOWINFO_MASK);
334		ip6->ip6_vfc = (ip6->ip6_vfc & ~IPV6_VERSION_MASK) |
335			(IPV6_VERSION & IPV6_VERSION_MASK);
336		ip6->ip6_nxt = IPPROTO_TCP;
337		ip6->ip6_plen = sizeof(struct tcphdr);
338		ip6->ip6_src = inp->in6p_laddr;
339		ip6->ip6_dst = inp->in6p_faddr;
340	} else
341#endif
342	{
343		struct ip *ip;
344
345		ip = (struct ip *)ip_ptr;
346		ip->ip_v = IPVERSION;
347		ip->ip_hl = 5;
348		ip->ip_tos = inp->inp_ip_tos;
349		ip->ip_len = 0;
350		ip->ip_id = 0;
351		ip->ip_off = 0;
352		ip->ip_ttl = inp->inp_ip_ttl;
353		ip->ip_sum = 0;
354		ip->ip_p = IPPROTO_TCP;
355		ip->ip_src = inp->inp_laddr;
356		ip->ip_dst = inp->inp_faddr;
357	}
358	th->th_sport = inp->inp_lport;
359	th->th_dport = inp->inp_fport;
360	th->th_seq = 0;
361	th->th_ack = 0;
362	th->th_x2 = 0;
363	th->th_off = 5;
364	th->th_flags = 0;
365	th->th_win = 0;
366	th->th_urp = 0;
367	th->th_sum = 0;		/* in_pseudo() is called later for ipv4 */
368}
369
370/*
371 * Create template to be used to send tcp packets on a connection.
372 * Allocates an mbuf and fills in a skeletal tcp/ip header.  The only
373 * use for this function is in keepalives, which use tcp_respond.
374 */
375struct tcptemp *
376tcpip_maketemplate(struct inpcb *inp)
377{
378	struct mbuf *m;
379	struct tcptemp *n;
380
381	m = m_get(M_DONTWAIT, MT_DATA);
382	if (m == NULL)
383		return (0);
384	m->m_len = sizeof(struct tcptemp);
385	n = mtod(m, struct tcptemp *);
386
387	tcpip_fillheaders(inp, (void *)&n->tt_ipgen, (void *)&n->tt_t);
388	return (n);
389}
390
391/*
392 * Send a single message to the TCP at address specified by
393 * the given TCP/IP header.  If m == NULL, then we make a copy
394 * of the tcpiphdr at ti and send directly to the addressed host.
395 * This is used to force keep alive messages out using the TCP
396 * template for a connection.  If flags are given then we send
397 * a message back to the TCP which originated the * segment ti,
398 * and discard the mbuf containing it and any other attached mbufs.
399 *
400 * In any case the ack and sequence number of the transmitted
401 * segment are as specified by the parameters.
402 *
403 * NOTE: If m != NULL, then ti must point to *inside* the mbuf.
404 */
405void
406tcp_respond(struct tcpcb *tp, void *ipgen, register struct tcphdr *th,
407    register struct mbuf *m, tcp_seq ack, tcp_seq seq, int flags)
408{
409	register int tlen;
410	int win = 0;
411	struct ip *ip;
412	struct tcphdr *nth;
413#ifdef INET6
414	struct ip6_hdr *ip6;
415	int isipv6;
416#endif /* INET6 */
417	int ipflags = 0;
418	struct inpcb *inp;
419
420	KASSERT(tp != NULL || m != NULL, ("tcp_respond: tp and m both NULL"));
421
422#ifdef INET6
423	isipv6 = ((struct ip *)ipgen)->ip_v == 6;
424	ip6 = ipgen;
425#endif /* INET6 */
426	ip = ipgen;
427
428	if (tp != NULL) {
429		inp = tp->t_inpcb;
430		KASSERT(inp != NULL, ("tcp control block w/o inpcb"));
431		INP_INFO_WLOCK_ASSERT(&tcbinfo);
432		INP_LOCK_ASSERT(inp);
433	} else
434		inp = NULL;
435
436	if (tp != NULL) {
437		if (!(flags & TH_RST)) {
438			win = sbspace(&inp->inp_socket->so_rcv);
439			if (win > (long)TCP_MAXWIN << tp->rcv_scale)
440				win = (long)TCP_MAXWIN << tp->rcv_scale;
441		}
442	}
443	if (m == NULL) {
444		m = m_gethdr(M_DONTWAIT, MT_DATA);
445		if (m == NULL)
446			return;
447		tlen = 0;
448		m->m_data += max_linkhdr;
449#ifdef INET6
450		if (isipv6) {
451			bcopy((caddr_t)ip6, mtod(m, caddr_t),
452			      sizeof(struct ip6_hdr));
453			ip6 = mtod(m, struct ip6_hdr *);
454			nth = (struct tcphdr *)(ip6 + 1);
455		} else
456#endif /* INET6 */
457	      {
458		bcopy((caddr_t)ip, mtod(m, caddr_t), sizeof(struct ip));
459		ip = mtod(m, struct ip *);
460		nth = (struct tcphdr *)(ip + 1);
461	      }
462		bcopy((caddr_t)th, (caddr_t)nth, sizeof(struct tcphdr));
463		flags = TH_ACK;
464	} else {
465		m_freem(m->m_next);
466		m->m_next = NULL;
467		m->m_data = (caddr_t)ipgen;
468		/* m_len is set later */
469		tlen = 0;
470#define xchg(a,b,type) { type t; t=a; a=b; b=t; }
471#ifdef INET6
472		if (isipv6) {
473			xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr);
474			nth = (struct tcphdr *)(ip6 + 1);
475		} else
476#endif /* INET6 */
477	      {
478		xchg(ip->ip_dst.s_addr, ip->ip_src.s_addr, n_long);
479		nth = (struct tcphdr *)(ip + 1);
480	      }
481		if (th != nth) {
482			/*
483			 * this is usually a case when an extension header
484			 * exists between the IPv6 header and the
485			 * TCP header.
486			 */
487			nth->th_sport = th->th_sport;
488			nth->th_dport = th->th_dport;
489		}
490		xchg(nth->th_dport, nth->th_sport, n_short);
491#undef xchg
492	}
493#ifdef INET6
494	if (isipv6) {
495		ip6->ip6_flow = 0;
496		ip6->ip6_vfc = IPV6_VERSION;
497		ip6->ip6_nxt = IPPROTO_TCP;
498		ip6->ip6_plen = htons((u_short)(sizeof (struct tcphdr) +
499						tlen));
500		tlen += sizeof (struct ip6_hdr) + sizeof (struct tcphdr);
501	} else
502#endif
503	{
504		tlen += sizeof (struct tcpiphdr);
505		ip->ip_len = tlen;
506		ip->ip_ttl = ip_defttl;
507		if (path_mtu_discovery)
508			ip->ip_off |= IP_DF;
509	}
510	m->m_len = tlen;
511	m->m_pkthdr.len = tlen;
512	m->m_pkthdr.rcvif = NULL;
513#ifdef MAC
514	if (inp != NULL) {
515		/*
516		 * Packet is associated with a socket, so allow the
517		 * label of the response to reflect the socket label.
518		 */
519		INP_LOCK_ASSERT(inp);
520		mac_create_mbuf_from_inpcb(inp, m);
521	} else {
522		/*
523		 * Packet is not associated with a socket, so possibly
524		 * update the label in place.
525		 */
526		mac_reflect_mbuf_tcp(m);
527	}
528#endif
529	nth->th_seq = htonl(seq);
530	nth->th_ack = htonl(ack);
531	nth->th_x2 = 0;
532	nth->th_off = sizeof (struct tcphdr) >> 2;
533	nth->th_flags = flags;
534	if (tp != NULL)
535		nth->th_win = htons((u_short) (win >> tp->rcv_scale));
536	else
537		nth->th_win = htons((u_short)win);
538	nth->th_urp = 0;
539#ifdef INET6
540	if (isipv6) {
541		nth->th_sum = 0;
542		nth->th_sum = in6_cksum(m, IPPROTO_TCP,
543					sizeof(struct ip6_hdr),
544					tlen - sizeof(struct ip6_hdr));
545		ip6->ip6_hlim = in6_selecthlim(tp != NULL ? tp->t_inpcb :
546		    NULL, NULL);
547	} else
548#endif /* INET6 */
549	{
550		nth->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
551		    htons((u_short)(tlen - sizeof(struct ip) + ip->ip_p)));
552		m->m_pkthdr.csum_flags = CSUM_TCP;
553		m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
554	}
555#ifdef TCPDEBUG
556	if (tp == NULL || (inp->inp_socket->so_options & SO_DEBUG))
557		tcp_trace(TA_OUTPUT, 0, tp, mtod(m, void *), th, 0);
558#endif
559#ifdef INET6
560	if (isipv6)
561		(void) ip6_output(m, NULL, NULL, ipflags, NULL, NULL, inp);
562	else
563#endif /* INET6 */
564	(void) ip_output(m, NULL, NULL, ipflags, NULL, inp);
565}
566
567/*
568 * Create a new TCP control block, making an
569 * empty reassembly queue and hooking it to the argument
570 * protocol control block.  The `inp' parameter must have
571 * come from the zone allocator set up in tcp_init().
572 */
573struct tcpcb *
574tcp_newtcpcb(struct inpcb *inp)
575{
576	struct tcpcb_mem *tm;
577	struct tcpcb *tp;
578#ifdef INET6
579	int isipv6 = (inp->inp_vflag & INP_IPV6) != 0;
580#endif /* INET6 */
581
582	tm = uma_zalloc(tcpcb_zone, M_NOWAIT | M_ZERO);
583	if (tm == NULL)
584		return (NULL);
585	tp = &tm->tcb;
586	/*	LIST_INIT(&tp->t_segq); */	/* XXX covered by M_ZERO */
587	tp->t_maxseg = tp->t_maxopd =
588#ifdef INET6
589		isipv6 ? tcp_v6mssdflt :
590#endif /* INET6 */
591		tcp_mssdflt;
592
593	/* Set up our timeouts. */
594	callout_init(tp->tt_rexmt = &tm->tcpcb_mem_rexmt, NET_CALLOUT_MPSAFE);
595	callout_init(tp->tt_persist = &tm->tcpcb_mem_persist, NET_CALLOUT_MPSAFE);
596	callout_init(tp->tt_keep = &tm->tcpcb_mem_keep, NET_CALLOUT_MPSAFE);
597	callout_init(tp->tt_2msl = &tm->tcpcb_mem_2msl, NET_CALLOUT_MPSAFE);
598	callout_init(tp->tt_delack = &tm->tcpcb_mem_delack, NET_CALLOUT_MPSAFE);
599
600	if (tcp_do_rfc1323)
601		tp->t_flags = (TF_REQ_SCALE|TF_REQ_TSTMP);
602	tp->sack_enable = tcp_do_sack;
603	TAILQ_INIT(&tp->snd_holes);
604	tp->t_inpcb = inp;	/* XXX */
605	/*
606	 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
607	 * rtt estimate.  Set rttvar so that srtt + 4 * rttvar gives
608	 * reasonable initial retransmit time.
609	 */
610	tp->t_srtt = TCPTV_SRTTBASE;
611	tp->t_rttvar = ((TCPTV_RTOBASE - TCPTV_SRTTBASE) << TCP_RTTVAR_SHIFT) / 4;
612	tp->t_rttmin = tcp_rexmit_min;
613	tp->t_rxtcur = TCPTV_RTOBASE;
614	tp->snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
615	tp->snd_bwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
616	tp->snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT;
617	tp->t_rcvtime = ticks;
618	tp->t_bw_rtttime = ticks;
619	/*
620	 * IPv4 TTL initialization is necessary for an IPv6 socket as well,
621	 * because the socket may be bound to an IPv6 wildcard address,
622	 * which may match an IPv4-mapped IPv6 address.
623	 */
624	inp->inp_ip_ttl = ip_defttl;
625	inp->inp_ppcb = (caddr_t)tp;
626	return (tp);		/* XXX */
627}
628
629/*
630 * Drop a TCP connection, reporting
631 * the specified error.  If connection is synchronized,
632 * then send a RST to peer.
633 */
634struct tcpcb *
635tcp_drop(struct tcpcb *tp, int errno)
636{
637	struct socket *so = tp->t_inpcb->inp_socket;
638
639	INP_INFO_WLOCK_ASSERT(&tcbinfo);
640	INP_LOCK_ASSERT(tp->t_inpcb);
641
642	if (TCPS_HAVERCVDSYN(tp->t_state)) {
643		tp->t_state = TCPS_CLOSED;
644		(void) tcp_output(tp);
645		tcpstat.tcps_drops++;
646	} else
647		tcpstat.tcps_conndrops++;
648	if (errno == ETIMEDOUT && tp->t_softerror)
649		errno = tp->t_softerror;
650	so->so_error = errno;
651	return (tcp_close(tp));
652}
653
654void
655tcp_discardcb(struct tcpcb *tp)
656{
657	struct tseg_qent *q;
658	struct inpcb *inp = tp->t_inpcb;
659	struct socket *so = inp->inp_socket;
660#ifdef INET6
661	int isipv6 = (inp->inp_vflag & INP_IPV6) != 0;
662#endif /* INET6 */
663
664	/*
665	 * XXXRW: This is all very well and good, but actually, we might be
666	 * discarding the tcpcb after the socket is gone, so we can't do
667	 * this:
668	KASSERT(so != NULL, ("tcp_discardcb: so == NULL"));
669	 */
670	INP_LOCK_ASSERT(inp);
671
672	/*
673	 * Make sure that all of our timers are stopped before we
674	 * delete the PCB.
675	 */
676	callout_stop(tp->tt_rexmt);
677	callout_stop(tp->tt_persist);
678	callout_stop(tp->tt_keep);
679	callout_stop(tp->tt_2msl);
680	callout_stop(tp->tt_delack);
681
682	/*
683	 * If we got enough samples through the srtt filter,
684	 * save the rtt and rttvar in the routing entry.
685	 * 'Enough' is arbitrarily defined as 4 rtt samples.
686	 * 4 samples is enough for the srtt filter to converge
687	 * to within enough % of the correct value; fewer samples
688	 * and we could save a bogus rtt. The danger is not high
689	 * as tcp quickly recovers from everything.
690	 * XXX: Works very well but needs some more statistics!
691	 */
692	if (tp->t_rttupdated >= 4) {
693		struct hc_metrics_lite metrics;
694		u_long ssthresh;
695
696		bzero(&metrics, sizeof(metrics));
697		/*
698		 * Update the ssthresh always when the conditions below
699		 * are satisfied. This gives us better new start value
700		 * for the congestion avoidance for new connections.
701		 * ssthresh is only set if packet loss occured on a session.
702		 */
703		ssthresh = tp->snd_ssthresh;
704		if (ssthresh != 0 && ssthresh < so->so_snd.sb_hiwat / 2) {
705			/*
706			 * convert the limit from user data bytes to
707			 * packets then to packet data bytes.
708			 */
709			ssthresh = (ssthresh + tp->t_maxseg / 2) / tp->t_maxseg;
710			if (ssthresh < 2)
711				ssthresh = 2;
712			ssthresh *= (u_long)(tp->t_maxseg +
713#ifdef INET6
714				      (isipv6 ? sizeof (struct ip6_hdr) +
715					       sizeof (struct tcphdr) :
716#endif
717				       sizeof (struct tcpiphdr)
718#ifdef INET6
719				       )
720#endif
721				      );
722		} else
723			ssthresh = 0;
724		metrics.rmx_ssthresh = ssthresh;
725
726		metrics.rmx_rtt = tp->t_srtt;
727		metrics.rmx_rttvar = tp->t_rttvar;
728		/* XXX: This wraps if the pipe is more than 4 Gbit per second */
729		metrics.rmx_bandwidth = tp->snd_bandwidth;
730		metrics.rmx_cwnd = tp->snd_cwnd;
731		metrics.rmx_sendpipe = 0;
732		metrics.rmx_recvpipe = 0;
733
734		tcp_hc_update(&inp->inp_inc, &metrics);
735	}
736
737	/* free the reassembly queue, if any */
738	while ((q = LIST_FIRST(&tp->t_segq)) != NULL) {
739		LIST_REMOVE(q, tqe_q);
740		m_freem(q->tqe_m);
741		uma_zfree(tcp_reass_zone, q);
742		tp->t_segqlen--;
743		tcp_reass_qsize--;
744	}
745	tcp_free_sackholes(tp);
746	inp->inp_ppcb = NULL;
747	tp->t_inpcb = NULL;
748	uma_zfree(tcpcb_zone, tp);
749
750	/*
751	 * XXXRW: This seems a bit unclean.
752	 */
753	if (so != NULL)
754		soisdisconnected(so);
755}
756
757/*
758 * Attempt to close a TCP control block, marking it as dropped, and freeing
759 * the socket if we hold the only reference.
760 */
761struct tcpcb *
762tcp_close(struct tcpcb *tp)
763{
764	struct inpcb *inp = tp->t_inpcb;
765	struct socket *so;
766
767	INP_INFO_WLOCK_ASSERT(&tcbinfo);
768	INP_LOCK_ASSERT(inp);
769
770	inp->inp_vflag |= INP_DROPPED;
771
772	tcpstat.tcps_closed++;
773	KASSERT(inp->inp_socket != NULL, ("tcp_close: inp_socket NULL"));
774	so = inp->inp_socket;
775	soisdisconnected(so);
776	if (inp->inp_vflag & INP_SOCKREF) {
777		KASSERT(so->so_state & SS_PROTOREF,
778		    ("tcp_close: !SS_PROTOREF"));
779		inp->inp_vflag &= ~INP_SOCKREF;
780		tcp_discardcb(tp);
781#ifdef INET6
782		if (inp->inp_vflag & INP_IPV6PROTO) {
783			in6_pcbdetach(inp);
784			in6_pcbfree(inp);
785		} else {
786#endif
787			in_pcbdetach(inp);
788			in_pcbfree(inp);
789#ifdef INET6
790		}
791#endif
792		ACCEPT_LOCK();
793		SOCK_LOCK(so);
794		so->so_state &= ~SS_PROTOREF;
795		sofree(so);
796		return (NULL);
797	}
798	return (tp);
799}
800
801void
802tcp_drain(void)
803{
804
805	if (do_tcpdrain) {
806		struct inpcb *inpb;
807		struct tcpcb *tcpb;
808		struct tseg_qent *te;
809
810	/*
811	 * Walk the tcpbs, if existing, and flush the reassembly queue,
812	 * if there is one...
813	 * XXX: The "Net/3" implementation doesn't imply that the TCP
814	 *      reassembly queue should be flushed, but in a situation
815	 *	where we're really low on mbufs, this is potentially
816	 *	usefull.
817	 */
818		INP_INFO_RLOCK(&tcbinfo);
819		LIST_FOREACH(inpb, tcbinfo.listhead, inp_list) {
820			if (inpb->inp_vflag & INP_TIMEWAIT)
821				continue;
822			INP_LOCK(inpb);
823			if ((tcpb = intotcpcb(inpb)) != NULL) {
824				while ((te = LIST_FIRST(&tcpb->t_segq))
825			            != NULL) {
826					LIST_REMOVE(te, tqe_q);
827					m_freem(te->tqe_m);
828					uma_zfree(tcp_reass_zone, te);
829					tcpb->t_segqlen--;
830					tcp_reass_qsize--;
831				}
832				tcp_clean_sackreport(tcpb);
833			}
834			INP_UNLOCK(inpb);
835		}
836		INP_INFO_RUNLOCK(&tcbinfo);
837	}
838}
839
840/*
841 * Notify a tcp user of an asynchronous error;
842 * store error as soft error, but wake up user
843 * (for now, won't do anything until can select for soft error).
844 *
845 * Do not wake up user since there currently is no mechanism for
846 * reporting soft errors (yet - a kqueue filter may be added).
847 */
848static struct inpcb *
849tcp_notify(struct inpcb *inp, int error)
850{
851	struct tcpcb *tp = (struct tcpcb *)inp->inp_ppcb;
852
853	INP_INFO_WLOCK_ASSERT(&tcbinfo);
854	INP_LOCK_ASSERT(inp);
855
856	/*
857	 * Ignore some errors if we are hooked up.
858	 * If connection hasn't completed, has retransmitted several times,
859	 * and receives a second error, give up now.  This is better
860	 * than waiting a long time to establish a connection that
861	 * can never complete.
862	 */
863	if (tp->t_state == TCPS_ESTABLISHED &&
864	    (error == EHOSTUNREACH || error == ENETUNREACH ||
865	     error == EHOSTDOWN)) {
866		return (inp);
867	} else if (tp->t_state < TCPS_ESTABLISHED && tp->t_rxtshift > 3 &&
868	    tp->t_softerror) {
869		tp = tcp_drop(tp, error);
870		if (tp != NULL)
871			return (inp);
872		else
873			return (NULL);
874	} else {
875		tp->t_softerror = error;
876		return (inp);
877	}
878#if 0
879	wakeup( &so->so_timeo);
880	sorwakeup(so);
881	sowwakeup(so);
882#endif
883}
884
885static int
886tcp_pcblist(SYSCTL_HANDLER_ARGS)
887{
888	int error, i, n;
889	struct inpcb *inp, **inp_list;
890	inp_gen_t gencnt;
891	struct xinpgen xig;
892
893	/*
894	 * The process of preparing the TCB list is too time-consuming and
895	 * resource-intensive to repeat twice on every request.
896	 */
897	if (req->oldptr == NULL) {
898		n = tcbinfo.ipi_count;
899		req->oldidx = 2 * (sizeof xig)
900			+ (n + n/8) * sizeof(struct xtcpcb);
901		return (0);
902	}
903
904	if (req->newptr != NULL)
905		return (EPERM);
906
907	/*
908	 * OK, now we're committed to doing something.
909	 */
910	INP_INFO_RLOCK(&tcbinfo);
911	gencnt = tcbinfo.ipi_gencnt;
912	n = tcbinfo.ipi_count;
913	INP_INFO_RUNLOCK(&tcbinfo);
914
915	error = sysctl_wire_old_buffer(req, 2 * (sizeof xig)
916		+ n * sizeof(struct xtcpcb));
917	if (error != 0)
918		return (error);
919
920	xig.xig_len = sizeof xig;
921	xig.xig_count = n;
922	xig.xig_gen = gencnt;
923	xig.xig_sogen = so_gencnt;
924	error = SYSCTL_OUT(req, &xig, sizeof xig);
925	if (error)
926		return (error);
927
928	inp_list = malloc(n * sizeof *inp_list, M_TEMP, M_WAITOK);
929	if (inp_list == NULL)
930		return (ENOMEM);
931
932	INP_INFO_RLOCK(&tcbinfo);
933	for (inp = LIST_FIRST(tcbinfo.listhead), i = 0; inp != NULL && i < n;
934	     inp = LIST_NEXT(inp, inp_list)) {
935		INP_LOCK(inp);
936		if (inp->inp_gencnt <= gencnt) {
937			/*
938			 * XXX: This use of cr_cansee(), introduced with
939			 * TCP state changes, is not quite right, but for
940			 * now, better than nothing.
941			 */
942			if (inp->inp_vflag & INP_TIMEWAIT)
943				error = cr_cansee(req->td->td_ucred,
944				    intotw(inp)->tw_cred);
945			else
946				error = cr_canseesocket(req->td->td_ucred,
947				    inp->inp_socket);
948			if (error == 0)
949				inp_list[i++] = inp;
950		}
951		INP_UNLOCK(inp);
952	}
953	INP_INFO_RUNLOCK(&tcbinfo);
954	n = i;
955
956	error = 0;
957	for (i = 0; i < n; i++) {
958		inp = inp_list[i];
959		if (inp->inp_gencnt <= gencnt) {
960			struct xtcpcb xt;
961			caddr_t inp_ppcb;
962
963			bzero(&xt, sizeof(xt));
964			xt.xt_len = sizeof xt;
965			/* XXX should avoid extra copy */
966			bcopy(inp, &xt.xt_inp, sizeof *inp);
967			inp_ppcb = inp->inp_ppcb;
968			if (inp_ppcb == NULL)
969				bzero((char *) &xt.xt_tp, sizeof xt.xt_tp);
970			else if (inp->inp_vflag & INP_TIMEWAIT) {
971				bzero((char *) &xt.xt_tp, sizeof xt.xt_tp);
972				xt.xt_tp.t_state = TCPS_TIME_WAIT;
973			} else
974				bcopy(inp_ppcb, &xt.xt_tp, sizeof xt.xt_tp);
975			if (inp->inp_socket != NULL)
976				sotoxsocket(inp->inp_socket, &xt.xt_socket);
977			else {
978				bzero(&xt.xt_socket, sizeof xt.xt_socket);
979				xt.xt_socket.xso_protocol = IPPROTO_TCP;
980			}
981			xt.xt_inp.inp_gencnt = inp->inp_gencnt;
982			error = SYSCTL_OUT(req, &xt, sizeof xt);
983		}
984	}
985	if (!error) {
986		/*
987		 * Give the user an updated idea of our state.
988		 * If the generation differs from what we told
989		 * her before, she knows that something happened
990		 * while we were processing this request, and it
991		 * might be necessary to retry.
992		 */
993		INP_INFO_RLOCK(&tcbinfo);
994		xig.xig_gen = tcbinfo.ipi_gencnt;
995		xig.xig_sogen = so_gencnt;
996		xig.xig_count = tcbinfo.ipi_count;
997		INP_INFO_RUNLOCK(&tcbinfo);
998		error = SYSCTL_OUT(req, &xig, sizeof xig);
999	}
1000	free(inp_list, M_TEMP);
1001	return (error);
1002}
1003
1004SYSCTL_PROC(_net_inet_tcp, TCPCTL_PCBLIST, pcblist, CTLFLAG_RD, 0, 0,
1005	    tcp_pcblist, "S,xtcpcb", "List of active TCP connections");
1006
1007static int
1008tcp_getcred(SYSCTL_HANDLER_ARGS)
1009{
1010	struct xucred xuc;
1011	struct sockaddr_in addrs[2];
1012	struct inpcb *inp;
1013	int error;
1014
1015	error = suser_cred(req->td->td_ucred, SUSER_ALLOWJAIL);
1016	if (error)
1017		return (error);
1018	error = SYSCTL_IN(req, addrs, sizeof(addrs));
1019	if (error)
1020		return (error);
1021	INP_INFO_RLOCK(&tcbinfo);
1022	inp = in_pcblookup_hash(&tcbinfo, addrs[1].sin_addr, addrs[1].sin_port,
1023	    addrs[0].sin_addr, addrs[0].sin_port, 0, NULL);
1024	if (inp == NULL) {
1025		error = ENOENT;
1026		goto outunlocked;
1027	}
1028	INP_LOCK(inp);
1029	if (inp->inp_socket == NULL) {
1030		error = ENOENT;
1031		goto out;
1032	}
1033	error = cr_canseesocket(req->td->td_ucred, inp->inp_socket);
1034	if (error)
1035		goto out;
1036	cru2x(inp->inp_socket->so_cred, &xuc);
1037out:
1038	INP_UNLOCK(inp);
1039outunlocked:
1040	INP_INFO_RUNLOCK(&tcbinfo);
1041	if (error == 0)
1042		error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred));
1043	return (error);
1044}
1045
1046SYSCTL_PROC(_net_inet_tcp, OID_AUTO, getcred,
1047    CTLTYPE_OPAQUE|CTLFLAG_RW|CTLFLAG_PRISON, 0, 0,
1048    tcp_getcred, "S,xucred", "Get the xucred of a TCP connection");
1049
1050#ifdef INET6
1051static int
1052tcp6_getcred(SYSCTL_HANDLER_ARGS)
1053{
1054	struct xucred xuc;
1055	struct sockaddr_in6 addrs[2];
1056	struct inpcb *inp;
1057	int error, mapped = 0;
1058
1059	error = suser_cred(req->td->td_ucred, SUSER_ALLOWJAIL);
1060	if (error)
1061		return (error);
1062	error = SYSCTL_IN(req, addrs, sizeof(addrs));
1063	if (error)
1064		return (error);
1065	if ((error = sa6_embedscope(&addrs[0], ip6_use_defzone)) != 0 ||
1066	    (error = sa6_embedscope(&addrs[1], ip6_use_defzone)) != 0) {
1067		return (error);
1068	}
1069	if (IN6_IS_ADDR_V4MAPPED(&addrs[0].sin6_addr)) {
1070		if (IN6_IS_ADDR_V4MAPPED(&addrs[1].sin6_addr))
1071			mapped = 1;
1072		else
1073			return (EINVAL);
1074	}
1075
1076	INP_INFO_RLOCK(&tcbinfo);
1077	if (mapped == 1)
1078		inp = in_pcblookup_hash(&tcbinfo,
1079			*(struct in_addr *)&addrs[1].sin6_addr.s6_addr[12],
1080			addrs[1].sin6_port,
1081			*(struct in_addr *)&addrs[0].sin6_addr.s6_addr[12],
1082			addrs[0].sin6_port,
1083			0, NULL);
1084	else
1085		inp = in6_pcblookup_hash(&tcbinfo,
1086			&addrs[1].sin6_addr, addrs[1].sin6_port,
1087			&addrs[0].sin6_addr, addrs[0].sin6_port, 0, NULL);
1088	if (inp == NULL) {
1089		error = ENOENT;
1090		goto outunlocked;
1091	}
1092	INP_LOCK(inp);
1093	if (inp->inp_socket == NULL) {
1094		error = ENOENT;
1095		goto out;
1096	}
1097	error = cr_canseesocket(req->td->td_ucred, inp->inp_socket);
1098	if (error)
1099		goto out;
1100	cru2x(inp->inp_socket->so_cred, &xuc);
1101out:
1102	INP_UNLOCK(inp);
1103outunlocked:
1104	INP_INFO_RUNLOCK(&tcbinfo);
1105	if (error == 0)
1106		error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred));
1107	return (error);
1108}
1109
1110SYSCTL_PROC(_net_inet6_tcp6, OID_AUTO, getcred,
1111    CTLTYPE_OPAQUE|CTLFLAG_RW|CTLFLAG_PRISON, 0, 0,
1112    tcp6_getcred, "S,xucred", "Get the xucred of a TCP6 connection");
1113#endif
1114
1115
1116void
1117tcp_ctlinput(int cmd, struct sockaddr *sa, void *vip)
1118{
1119	struct ip *ip = vip;
1120	struct tcphdr *th;
1121	struct in_addr faddr;
1122	struct inpcb *inp;
1123	struct tcpcb *tp;
1124	struct inpcb *(*notify)(struct inpcb *, int) = tcp_notify;
1125	struct icmp *icp;
1126	struct in_conninfo inc;
1127	tcp_seq icmp_tcp_seq;
1128	int mtu;
1129
1130	faddr = ((struct sockaddr_in *)sa)->sin_addr;
1131	if (sa->sa_family != AF_INET || faddr.s_addr == INADDR_ANY)
1132		return;
1133
1134	if (cmd == PRC_MSGSIZE)
1135		notify = tcp_mtudisc;
1136	else if (icmp_may_rst && (cmd == PRC_UNREACH_ADMIN_PROHIB ||
1137		cmd == PRC_UNREACH_PORT || cmd == PRC_TIMXCEED_INTRANS) && ip)
1138		notify = tcp_drop_syn_sent;
1139	/*
1140	 * Redirects don't need to be handled up here.
1141	 */
1142	else if (PRC_IS_REDIRECT(cmd))
1143		return;
1144	/*
1145	 * Source quench is depreciated.
1146	 */
1147	else if (cmd == PRC_QUENCH)
1148		return;
1149	/*
1150	 * Hostdead is ugly because it goes linearly through all PCBs.
1151	 * XXX: We never get this from ICMP, otherwise it makes an
1152	 * excellent DoS attack on machines with many connections.
1153	 */
1154	else if (cmd == PRC_HOSTDEAD)
1155		ip = NULL;
1156	else if ((unsigned)cmd >= PRC_NCMDS || inetctlerrmap[cmd] == 0)
1157		return;
1158	if (ip != NULL) {
1159		icp = (struct icmp *)((caddr_t)ip
1160				      - offsetof(struct icmp, icmp_ip));
1161		th = (struct tcphdr *)((caddr_t)ip
1162				       + (ip->ip_hl << 2));
1163		INP_INFO_WLOCK(&tcbinfo);
1164		inp = in_pcblookup_hash(&tcbinfo, faddr, th->th_dport,
1165		    ip->ip_src, th->th_sport, 0, NULL);
1166		if (inp != NULL)  {
1167			INP_LOCK(inp);
1168			if (inp->inp_socket != NULL) {
1169				icmp_tcp_seq = htonl(th->th_seq);
1170				tp = intotcpcb(inp);
1171				if (SEQ_GEQ(icmp_tcp_seq, tp->snd_una) &&
1172				    SEQ_LT(icmp_tcp_seq, tp->snd_max)) {
1173					if (cmd == PRC_MSGSIZE) {
1174					    /*
1175					     * MTU discovery:
1176					     * If we got a needfrag set the MTU
1177					     * in the route to the suggested new
1178					     * value (if given) and then notify.
1179					     */
1180					    bzero(&inc, sizeof(inc));
1181					    inc.inc_flags = 0;	/* IPv4 */
1182					    inc.inc_faddr = faddr;
1183
1184					    mtu = ntohs(icp->icmp_nextmtu);
1185					    /*
1186					     * If no alternative MTU was
1187					     * proposed, try the next smaller
1188					     * one.  ip->ip_len has already
1189					     * been swapped in icmp_input().
1190					     */
1191					    if (!mtu)
1192						mtu = ip_next_mtu(ip->ip_len,
1193						 1);
1194					    if (mtu < max(296, (tcp_minmss)
1195						 + sizeof(struct tcpiphdr)))
1196						mtu = 0;
1197					    if (!mtu)
1198						mtu = tcp_mssdflt
1199						 + sizeof(struct tcpiphdr);
1200					    /*
1201					     * Only cache the the MTU if it
1202					     * is smaller than the interface
1203					     * or route MTU.  tcp_mtudisc()
1204					     * will do right thing by itself.
1205					     */
1206					    if (mtu <= tcp_maxmtu(&inc))
1207						tcp_hc_updatemtu(&inc, mtu);
1208					}
1209
1210					inp = (*notify)(inp, inetctlerrmap[cmd]);
1211				}
1212			}
1213			if (inp != NULL)
1214				INP_UNLOCK(inp);
1215		} else {
1216			inc.inc_fport = th->th_dport;
1217			inc.inc_lport = th->th_sport;
1218			inc.inc_faddr = faddr;
1219			inc.inc_laddr = ip->ip_src;
1220#ifdef INET6
1221			inc.inc_isipv6 = 0;
1222#endif
1223			syncache_unreach(&inc, th);
1224		}
1225		INP_INFO_WUNLOCK(&tcbinfo);
1226	} else
1227		in_pcbnotifyall(&tcbinfo, faddr, inetctlerrmap[cmd], notify);
1228}
1229
1230#ifdef INET6
1231void
1232tcp6_ctlinput(int cmd, struct sockaddr *sa, void *d)
1233{
1234	struct tcphdr th;
1235	struct inpcb *(*notify)(struct inpcb *, int) = tcp_notify;
1236	struct ip6_hdr *ip6;
1237	struct mbuf *m;
1238	struct ip6ctlparam *ip6cp = NULL;
1239	const struct sockaddr_in6 *sa6_src = NULL;
1240	int off;
1241	struct tcp_portonly {
1242		u_int16_t th_sport;
1243		u_int16_t th_dport;
1244	} *thp;
1245
1246	if (sa->sa_family != AF_INET6 ||
1247	    sa->sa_len != sizeof(struct sockaddr_in6))
1248		return;
1249
1250	if (cmd == PRC_MSGSIZE)
1251		notify = tcp_mtudisc;
1252	else if (!PRC_IS_REDIRECT(cmd) &&
1253		 ((unsigned)cmd >= PRC_NCMDS || inet6ctlerrmap[cmd] == 0))
1254		return;
1255	/* Source quench is depreciated. */
1256	else if (cmd == PRC_QUENCH)
1257		return;
1258
1259	/* if the parameter is from icmp6, decode it. */
1260	if (d != NULL) {
1261		ip6cp = (struct ip6ctlparam *)d;
1262		m = ip6cp->ip6c_m;
1263		ip6 = ip6cp->ip6c_ip6;
1264		off = ip6cp->ip6c_off;
1265		sa6_src = ip6cp->ip6c_src;
1266	} else {
1267		m = NULL;
1268		ip6 = NULL;
1269		off = 0;	/* fool gcc */
1270		sa6_src = &sa6_any;
1271	}
1272
1273	if (ip6 != NULL) {
1274		struct in_conninfo inc;
1275		/*
1276		 * XXX: We assume that when IPV6 is non NULL,
1277		 * M and OFF are valid.
1278		 */
1279
1280		/* check if we can safely examine src and dst ports */
1281		if (m->m_pkthdr.len < off + sizeof(*thp))
1282			return;
1283
1284		bzero(&th, sizeof(th));
1285		m_copydata(m, off, sizeof(*thp), (caddr_t)&th);
1286
1287		in6_pcbnotify(&tcbinfo, sa, th.th_dport,
1288		    (struct sockaddr *)ip6cp->ip6c_src,
1289		    th.th_sport, cmd, NULL, notify);
1290
1291		inc.inc_fport = th.th_dport;
1292		inc.inc_lport = th.th_sport;
1293		inc.inc6_faddr = ((struct sockaddr_in6 *)sa)->sin6_addr;
1294		inc.inc6_laddr = ip6cp->ip6c_src->sin6_addr;
1295		inc.inc_isipv6 = 1;
1296		INP_INFO_WLOCK(&tcbinfo);
1297		syncache_unreach(&inc, &th);
1298		INP_INFO_WUNLOCK(&tcbinfo);
1299	} else
1300		in6_pcbnotify(&tcbinfo, sa, 0, (const struct sockaddr *)sa6_src,
1301			      0, cmd, NULL, notify);
1302}
1303#endif /* INET6 */
1304
1305
1306/*
1307 * Following is where TCP initial sequence number generation occurs.
1308 *
1309 * There are two places where we must use initial sequence numbers:
1310 * 1.  In SYN-ACK packets.
1311 * 2.  In SYN packets.
1312 *
1313 * All ISNs for SYN-ACK packets are generated by the syncache.  See
1314 * tcp_syncache.c for details.
1315 *
1316 * The ISNs in SYN packets must be monotonic; TIME_WAIT recycling
1317 * depends on this property.  In addition, these ISNs should be
1318 * unguessable so as to prevent connection hijacking.  To satisfy
1319 * the requirements of this situation, the algorithm outlined in
1320 * RFC 1948 is used, with only small modifications.
1321 *
1322 * Implementation details:
1323 *
1324 * Time is based off the system timer, and is corrected so that it
1325 * increases by one megabyte per second.  This allows for proper
1326 * recycling on high speed LANs while still leaving over an hour
1327 * before rollover.
1328 *
1329 * As reading the *exact* system time is too expensive to be done
1330 * whenever setting up a TCP connection, we increment the time
1331 * offset in two ways.  First, a small random positive increment
1332 * is added to isn_offset for each connection that is set up.
1333 * Second, the function tcp_isn_tick fires once per clock tick
1334 * and increments isn_offset as necessary so that sequence numbers
1335 * are incremented at approximately ISN_BYTES_PER_SECOND.  The
1336 * random positive increments serve only to ensure that the same
1337 * exact sequence number is never sent out twice (as could otherwise
1338 * happen when a port is recycled in less than the system tick
1339 * interval.)
1340 *
1341 * net.inet.tcp.isn_reseed_interval controls the number of seconds
1342 * between seeding of isn_secret.  This is normally set to zero,
1343 * as reseeding should not be necessary.
1344 *
1345 * Locking of the global variables isn_secret, isn_last_reseed, isn_offset,
1346 * isn_offset_old, and isn_ctx is performed using the TCP pcbinfo lock.  In
1347 * general, this means holding an exclusive (write) lock.
1348 */
1349
1350#define ISN_BYTES_PER_SECOND 1048576
1351#define ISN_STATIC_INCREMENT 4096
1352#define ISN_RANDOM_INCREMENT (4096 - 1)
1353
1354static u_char isn_secret[32];
1355static int isn_last_reseed;
1356static u_int32_t isn_offset, isn_offset_old;
1357static MD5_CTX isn_ctx;
1358
1359tcp_seq
1360tcp_new_isn(struct tcpcb *tp)
1361{
1362	u_int32_t md5_buffer[4];
1363	tcp_seq new_isn;
1364
1365	INP_INFO_WLOCK_ASSERT(&tcbinfo);
1366	INP_LOCK_ASSERT(tp->t_inpcb);
1367
1368	/* Seed if this is the first use, reseed if requested. */
1369	if ((isn_last_reseed == 0) || ((tcp_isn_reseed_interval > 0) &&
1370	     (((u_int)isn_last_reseed + (u_int)tcp_isn_reseed_interval*hz)
1371		< (u_int)ticks))) {
1372		read_random(&isn_secret, sizeof(isn_secret));
1373		isn_last_reseed = ticks;
1374	}
1375
1376	/* Compute the md5 hash and return the ISN. */
1377	MD5Init(&isn_ctx);
1378	MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_fport, sizeof(u_short));
1379	MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_lport, sizeof(u_short));
1380#ifdef INET6
1381	if ((tp->t_inpcb->inp_vflag & INP_IPV6) != 0) {
1382		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_faddr,
1383			  sizeof(struct in6_addr));
1384		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_laddr,
1385			  sizeof(struct in6_addr));
1386	} else
1387#endif
1388	{
1389		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_faddr,
1390			  sizeof(struct in_addr));
1391		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_laddr,
1392			  sizeof(struct in_addr));
1393	}
1394	MD5Update(&isn_ctx, (u_char *) &isn_secret, sizeof(isn_secret));
1395	MD5Final((u_char *) &md5_buffer, &isn_ctx);
1396	new_isn = (tcp_seq) md5_buffer[0];
1397	isn_offset += ISN_STATIC_INCREMENT +
1398		(arc4random() & ISN_RANDOM_INCREMENT);
1399	new_isn += isn_offset;
1400	return (new_isn);
1401}
1402
1403/*
1404 * Increment the offset to the next ISN_BYTES_PER_SECOND / hz boundary
1405 * to keep time flowing at a relatively constant rate.  If the random
1406 * increments have already pushed us past the projected offset, do nothing.
1407 */
1408static void
1409tcp_isn_tick(void *xtp)
1410{
1411	u_int32_t projected_offset;
1412
1413	INP_INFO_WLOCK(&tcbinfo);
1414	projected_offset = isn_offset_old + ISN_BYTES_PER_SECOND / 100;
1415
1416	if (projected_offset > isn_offset)
1417		isn_offset = projected_offset;
1418
1419	isn_offset_old = isn_offset;
1420	callout_reset(&isn_callout, hz/100, tcp_isn_tick, NULL);
1421	INP_INFO_WUNLOCK(&tcbinfo);
1422}
1423
1424/*
1425 * When a specific ICMP unreachable message is received and the
1426 * connection state is SYN-SENT, drop the connection.  This behavior
1427 * is controlled by the icmp_may_rst sysctl.
1428 */
1429struct inpcb *
1430tcp_drop_syn_sent(struct inpcb *inp, int errno)
1431{
1432	struct tcpcb *tp = intotcpcb(inp);
1433
1434	INP_INFO_WLOCK_ASSERT(&tcbinfo);
1435	INP_LOCK_ASSERT(inp);
1436
1437	if (tp != NULL && tp->t_state == TCPS_SYN_SENT) {
1438		tp = tcp_drop(tp, errno);
1439		if (tp != NULL)
1440			return (inp);
1441		else
1442			return (NULL);
1443	}
1444	return (inp);
1445}
1446
1447/*
1448 * When `need fragmentation' ICMP is received, update our idea of the MSS
1449 * based on the new value in the route.  Also nudge TCP to send something,
1450 * since we know the packet we just sent was dropped.
1451 * This duplicates some code in the tcp_mss() function in tcp_input.c.
1452 */
1453struct inpcb *
1454tcp_mtudisc(struct inpcb *inp, int errno)
1455{
1456	struct tcpcb *tp = intotcpcb(inp);
1457	struct socket *so = inp->inp_socket;
1458	u_int maxmtu;
1459	u_int romtu;
1460	int mss;
1461#ifdef INET6
1462	int isipv6;
1463#endif /* INET6 */
1464
1465	INP_LOCK_ASSERT(inp);
1466	if (tp != NULL) {
1467#ifdef INET6
1468		isipv6 = (tp->t_inpcb->inp_vflag & INP_IPV6) != 0;
1469#endif
1470		maxmtu = tcp_hc_getmtu(&inp->inp_inc); /* IPv4 and IPv6 */
1471		romtu =
1472#ifdef INET6
1473		    isipv6 ? tcp_maxmtu6(&inp->inp_inc) :
1474#endif /* INET6 */
1475		    tcp_maxmtu(&inp->inp_inc);
1476		if (!maxmtu)
1477			maxmtu = romtu;
1478		else
1479			maxmtu = min(maxmtu, romtu);
1480		if (!maxmtu) {
1481			tp->t_maxopd = tp->t_maxseg =
1482#ifdef INET6
1483				isipv6 ? tcp_v6mssdflt :
1484#endif /* INET6 */
1485				tcp_mssdflt;
1486			return (inp);
1487		}
1488		mss = maxmtu -
1489#ifdef INET6
1490			(isipv6 ?
1491			 sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
1492#endif /* INET6 */
1493			 sizeof(struct tcpiphdr)
1494#ifdef INET6
1495			 )
1496#endif /* INET6 */
1497			;
1498
1499		/*
1500		 * XXX - The above conditional probably violates the TCP
1501		 * spec.  The problem is that, since we don't know the
1502		 * other end's MSS, we are supposed to use a conservative
1503		 * default.  But, if we do that, then MTU discovery will
1504		 * never actually take place, because the conservative
1505		 * default is much less than the MTUs typically seen
1506		 * on the Internet today.  For the moment, we'll sweep
1507		 * this under the carpet.
1508		 *
1509		 * The conservative default might not actually be a problem
1510		 * if the only case this occurs is when sending an initial
1511		 * SYN with options and data to a host we've never talked
1512		 * to before.  Then, they will reply with an MSS value which
1513		 * will get recorded and the new parameters should get
1514		 * recomputed.  For Further Study.
1515		 */
1516		if (tp->t_maxopd <= mss)
1517			return (inp);
1518		tp->t_maxopd = mss;
1519
1520		if ((tp->t_flags & (TF_REQ_TSTMP|TF_NOOPT)) == TF_REQ_TSTMP &&
1521		    (tp->t_flags & TF_RCVD_TSTMP) == TF_RCVD_TSTMP)
1522			mss -= TCPOLEN_TSTAMP_APPA;
1523#if	(MCLBYTES & (MCLBYTES - 1)) == 0
1524		if (mss > MCLBYTES)
1525			mss &= ~(MCLBYTES-1);
1526#else
1527		if (mss > MCLBYTES)
1528			mss = mss / MCLBYTES * MCLBYTES;
1529#endif
1530		if (so->so_snd.sb_hiwat < mss)
1531			mss = so->so_snd.sb_hiwat;
1532
1533		tp->t_maxseg = mss;
1534
1535		tcpstat.tcps_mturesent++;
1536		tp->t_rtttime = 0;
1537		tp->snd_nxt = tp->snd_una;
1538		tcp_output(tp);
1539	}
1540	return (inp);
1541}
1542
1543/*
1544 * Look-up the routing entry to the peer of this inpcb.  If no route
1545 * is found and it cannot be allocated, then return NULL.  This routine
1546 * is called by TCP routines that access the rmx structure and by tcp_mss
1547 * to get the interface MTU.
1548 */
1549u_long
1550tcp_maxmtu(struct in_conninfo *inc)
1551{
1552	struct route sro;
1553	struct sockaddr_in *dst;
1554	struct ifnet *ifp;
1555	u_long maxmtu = 0;
1556
1557	KASSERT(inc != NULL, ("tcp_maxmtu with NULL in_conninfo pointer"));
1558
1559	bzero(&sro, sizeof(sro));
1560	if (inc->inc_faddr.s_addr != INADDR_ANY) {
1561	        dst = (struct sockaddr_in *)&sro.ro_dst;
1562		dst->sin_family = AF_INET;
1563		dst->sin_len = sizeof(*dst);
1564		dst->sin_addr = inc->inc_faddr;
1565		rtalloc_ign(&sro, RTF_CLONING);
1566	}
1567	if (sro.ro_rt != NULL) {
1568		ifp = sro.ro_rt->rt_ifp;
1569		if (sro.ro_rt->rt_rmx.rmx_mtu == 0)
1570			maxmtu = ifp->if_mtu;
1571		else
1572			maxmtu = min(sro.ro_rt->rt_rmx.rmx_mtu, ifp->if_mtu);
1573		RTFREE(sro.ro_rt);
1574	}
1575	return (maxmtu);
1576}
1577
1578#ifdef INET6
1579u_long
1580tcp_maxmtu6(struct in_conninfo *inc)
1581{
1582	struct route_in6 sro6;
1583	struct ifnet *ifp;
1584	u_long maxmtu = 0;
1585
1586	KASSERT(inc != NULL, ("tcp_maxmtu6 with NULL in_conninfo pointer"));
1587
1588	bzero(&sro6, sizeof(sro6));
1589	if (!IN6_IS_ADDR_UNSPECIFIED(&inc->inc6_faddr)) {
1590		sro6.ro_dst.sin6_family = AF_INET6;
1591		sro6.ro_dst.sin6_len = sizeof(struct sockaddr_in6);
1592		sro6.ro_dst.sin6_addr = inc->inc6_faddr;
1593		rtalloc_ign((struct route *)&sro6, RTF_CLONING);
1594	}
1595	if (sro6.ro_rt != NULL) {
1596		ifp = sro6.ro_rt->rt_ifp;
1597		if (sro6.ro_rt->rt_rmx.rmx_mtu == 0)
1598			maxmtu = IN6_LINKMTU(sro6.ro_rt->rt_ifp);
1599		else
1600			maxmtu = min(sro6.ro_rt->rt_rmx.rmx_mtu,
1601				     IN6_LINKMTU(sro6.ro_rt->rt_ifp));
1602		RTFREE(sro6.ro_rt);
1603	}
1604
1605	return (maxmtu);
1606}
1607#endif /* INET6 */
1608
1609#ifdef IPSEC
1610/* compute ESP/AH header size for TCP, including outer IP header. */
1611size_t
1612ipsec_hdrsiz_tcp(struct tcpcb *tp)
1613{
1614	struct inpcb *inp;
1615	struct mbuf *m;
1616	size_t hdrsiz;
1617	struct ip *ip;
1618#ifdef INET6
1619	struct ip6_hdr *ip6;
1620#endif
1621	struct tcphdr *th;
1622
1623	if ((tp == NULL) || ((inp = tp->t_inpcb) == NULL))
1624		return (0);
1625	MGETHDR(m, M_DONTWAIT, MT_DATA);
1626	if (!m)
1627		return (0);
1628
1629#ifdef INET6
1630	if ((inp->inp_vflag & INP_IPV6) != 0) {
1631		ip6 = mtod(m, struct ip6_hdr *);
1632		th = (struct tcphdr *)(ip6 + 1);
1633		m->m_pkthdr.len = m->m_len =
1634			sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
1635		tcpip_fillheaders(inp, ip6, th);
1636		hdrsiz = ipsec6_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
1637	} else
1638#endif /* INET6 */
1639	{
1640		ip = mtod(m, struct ip *);
1641		th = (struct tcphdr *)(ip + 1);
1642		m->m_pkthdr.len = m->m_len = sizeof(struct tcpiphdr);
1643		tcpip_fillheaders(inp, ip, th);
1644		hdrsiz = ipsec4_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
1645	}
1646
1647	m_free(m);
1648	return (hdrsiz);
1649}
1650#endif /*IPSEC*/
1651
1652/*
1653 * Move a TCP connection into TIME_WAIT state.
1654 *    tcbinfo is locked.
1655 *    inp is locked, and is unlocked before returning.
1656 */
1657void
1658tcp_twstart(struct tcpcb *tp)
1659{
1660	struct tcptw *tw;
1661	struct inpcb *inp;
1662	int tw_time, acknow;
1663	struct socket *so;
1664
1665	INP_INFO_WLOCK_ASSERT(&tcbinfo);	/* tcp_timer_2msl_reset(). */
1666	INP_LOCK_ASSERT(tp->t_inpcb);
1667
1668	tw = uma_zalloc(tcptw_zone, M_NOWAIT);
1669	if (tw == NULL) {
1670		tw = tcp_timer_2msl_tw(1);
1671		if (tw == NULL) {
1672			tp = tcp_close(tp);
1673			if (tp != NULL)
1674				INP_UNLOCK(tp->t_inpcb);
1675			return;
1676		}
1677	}
1678	inp = tp->t_inpcb;
1679	tw->tw_inpcb = inp;
1680
1681	/*
1682	 * Recover last window size sent.
1683	 */
1684	tw->last_win = (tp->rcv_adv - tp->rcv_nxt) >> tp->rcv_scale;
1685
1686	/*
1687	 * Set t_recent if timestamps are used on the connection.
1688	 */
1689	if ((tp->t_flags & (TF_REQ_TSTMP|TF_RCVD_TSTMP|TF_NOOPT)) ==
1690	    (TF_REQ_TSTMP|TF_RCVD_TSTMP))
1691		tw->t_recent = tp->ts_recent;
1692	else
1693		tw->t_recent = 0;
1694
1695	tw->snd_nxt = tp->snd_nxt;
1696	tw->rcv_nxt = tp->rcv_nxt;
1697	tw->iss     = tp->iss;
1698	tw->irs     = tp->irs;
1699	tw->t_starttime = tp->t_starttime;
1700	tw->tw_time = 0;
1701
1702/* XXX
1703 * If this code will
1704 * be used for fin-wait-2 state also, then we may need
1705 * a ts_recent from the last segment.
1706 */
1707	tw_time = 2 * tcp_msl;
1708	acknow = tp->t_flags & TF_ACKNOW;
1709
1710	/*
1711	 * First, discard tcpcb state, which includes stopping its timers and
1712	 * freeing it.  tcp_discardcb() used to also release the inpcb, but
1713	 * that work is now done in the caller.
1714	 */
1715	tcp_discardcb(tp);
1716	so = inp->inp_socket;
1717	SOCK_LOCK(so);
1718	tw->tw_cred = crhold(so->so_cred);
1719	tw->tw_so_options = so->so_options;
1720	SOCK_UNLOCK(so);
1721	if (acknow)
1722		tcp_twrespond(tw, TH_ACK);
1723	inp->inp_ppcb = (caddr_t)tw;
1724	inp->inp_vflag |= INP_TIMEWAIT;
1725	tcp_timer_2msl_reset(tw, tw_time);
1726
1727	/*
1728	 * If the inpcb owns the sole reference to the socket, then we can
1729	 * detach and free the socket as it is not needed in time wait.
1730	 */
1731	if (inp->inp_vflag & INP_SOCKREF) {
1732		KASSERT(so->so_state & SS_PROTOREF,
1733		    ("tcp_twstart: !SS_PROTOREF"));
1734		inp->inp_vflag &= ~INP_SOCKREF;
1735#ifdef INET6
1736		if (inp->inp_vflag & INP_IPV6PROTO)
1737			in6_pcbdetach(inp);
1738		else
1739#endif
1740			in_pcbdetach(inp);
1741		INP_UNLOCK(inp);
1742		ACCEPT_LOCK();
1743		SOCK_LOCK(so);
1744		so->so_state &= ~SS_PROTOREF;
1745		sofree(so);
1746	} else
1747		INP_UNLOCK(inp);
1748}
1749
1750/*
1751 * The appromixate rate of ISN increase of Microsoft TCP stacks;
1752 * the actual rate is slightly higher due to the addition of
1753 * random positive increments.
1754 *
1755 * Most other new OSes use semi-randomized ISN values, so we
1756 * do not need to worry about them.
1757 */
1758#define MS_ISN_BYTES_PER_SECOND		250000
1759
1760/*
1761 * Determine if the ISN we will generate has advanced beyond the last
1762 * sequence number used by the previous connection.  If so, indicate
1763 * that it is safe to recycle this tw socket by returning 1.
1764 *
1765 * XXXRW: This function should assert the inpcb lock as it does multiple
1766 * non-atomic reads from the tcptw, but is currently called without it from
1767 * in_pcb.c:in_pcblookup_local().
1768 */
1769int
1770tcp_twrecycleable(struct tcptw *tw)
1771{
1772	tcp_seq new_iss = tw->iss;
1773	tcp_seq new_irs = tw->irs;
1774
1775	new_iss += (ticks - tw->t_starttime) * (ISN_BYTES_PER_SECOND / hz);
1776	new_irs += (ticks - tw->t_starttime) * (MS_ISN_BYTES_PER_SECOND / hz);
1777
1778	if (SEQ_GT(new_iss, tw->snd_nxt) && SEQ_GT(new_irs, tw->rcv_nxt))
1779		return (1);
1780	else
1781		return (0);
1782}
1783
1784void
1785tcp_twclose(struct tcptw *tw, int reuse)
1786{
1787	struct socket *so;
1788	struct inpcb *inp;
1789
1790	/*
1791	 * At this point, we are in one of two situations:
1792	 *
1793	 * (1) We have no socket, just an inpcb<->twtcp pair.  Release it all
1794	 * after validating.
1795	 *
1796	 * (2) We have a socket, which we may or may now own the reference
1797	 * for.  If we own the reference, release all the state after
1798	 * validating.  If not, leave it for the socket close to clean up.
1799	 */
1800	inp = tw->tw_inpcb;
1801	KASSERT((inp->inp_vflag & INP_TIMEWAIT), ("tcp_twclose: !timewait"));
1802	KASSERT(inp->inp_ppcb == (void *)tw, ("tcp_twclose: inp_ppcb != tw"));
1803	INP_INFO_WLOCK_ASSERT(&tcbinfo);	/* tcp_timer_2msl_stop(). */
1804	INP_LOCK_ASSERT(inp);
1805
1806	tw->tw_inpcb = NULL;
1807	tcp_timer_2msl_stop(tw);
1808	inp->inp_ppcb = NULL;
1809	inp->inp_vflag |= INP_DROPPED;
1810
1811	so = inp->inp_socket;
1812	if (so != NULL) {
1813		if (inp->inp_vflag & INP_SOCKREF) {
1814			/*
1815			 * If a socket is present, and we own the only
1816			 * reference, we need to tear down the socket and the
1817			 * inpcb.
1818			 */
1819			inp->inp_vflag &= ~INP_SOCKREF;
1820#ifdef INET6
1821			if (inp->inp_vflag & INP_IPV6PROTO) {
1822				in6_pcbdetach(inp);
1823				in6_pcbfree(inp);
1824			} else {
1825				in_pcbdetach(inp);
1826				in_pcbfree(inp);
1827			}
1828#endif
1829			ACCEPT_LOCK();
1830			SOCK_LOCK(so);
1831			KASSERT(so->so_state & SS_PROTOREF,
1832			    ("tcp_twclose: INP_SOCKREF && !SS_PROTOREF"));
1833			so->so_state &= ~SS_PROTOREF;
1834			sofree(so);
1835		} else {
1836			/*
1837			 * If we don't own the only reference, the socket and
1838			 * inpcb need to be left around to be handled by
1839			 * tcp_usr_detach() later.
1840			 */
1841			INP_UNLOCK(inp);
1842		}
1843	} else {
1844#ifdef INET6
1845		if (inp->inp_vflag & INP_IPV6PROTO)
1846			in6_pcbfree(inp);
1847		else
1848#endif
1849			in_pcbfree(inp);
1850	}
1851	tcpstat.tcps_closed++;
1852	crfree(tw->tw_cred);
1853	tw->tw_cred = NULL;
1854	if (reuse)
1855		return;
1856	uma_zfree(tcptw_zone, tw);
1857}
1858
1859int
1860tcp_twrespond(struct tcptw *tw, int flags)
1861{
1862	struct inpcb *inp = tw->tw_inpcb;
1863	struct tcphdr *th;
1864	struct mbuf *m;
1865	struct ip *ip = NULL;
1866	u_int8_t *optp;
1867	u_int hdrlen, optlen;
1868	int error;
1869#ifdef INET6
1870	struct ip6_hdr *ip6 = NULL;
1871	int isipv6 = inp->inp_inc.inc_isipv6;
1872#endif
1873
1874	INP_LOCK_ASSERT(inp);
1875
1876	m = m_gethdr(M_DONTWAIT, MT_DATA);
1877	if (m == NULL)
1878		return (ENOBUFS);
1879	m->m_data += max_linkhdr;
1880
1881#ifdef MAC
1882	mac_create_mbuf_from_inpcb(inp, m);
1883#endif
1884
1885#ifdef INET6
1886	if (isipv6) {
1887		hdrlen = sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
1888		ip6 = mtod(m, struct ip6_hdr *);
1889		th = (struct tcphdr *)(ip6 + 1);
1890		tcpip_fillheaders(inp, ip6, th);
1891	} else
1892#endif
1893	{
1894		hdrlen = sizeof(struct tcpiphdr);
1895		ip = mtod(m, struct ip *);
1896		th = (struct tcphdr *)(ip + 1);
1897		tcpip_fillheaders(inp, ip, th);
1898	}
1899	optp = (u_int8_t *)(th + 1);
1900
1901	/*
1902	 * Send a timestamp and echo-reply if both our side and our peer
1903	 * have sent timestamps in our SYN's and this is not a RST.
1904	 */
1905	if (tw->t_recent && flags == TH_ACK) {
1906		u_int32_t *lp = (u_int32_t *)optp;
1907
1908		/* Form timestamp option as shown in appendix A of RFC 1323. */
1909		*lp++ = htonl(TCPOPT_TSTAMP_HDR);
1910		*lp++ = htonl(ticks);
1911		*lp   = htonl(tw->t_recent);
1912		optp += TCPOLEN_TSTAMP_APPA;
1913	}
1914
1915	optlen = optp - (u_int8_t *)(th + 1);
1916
1917	m->m_len = hdrlen + optlen;
1918	m->m_pkthdr.len = m->m_len;
1919
1920	KASSERT(max_linkhdr + m->m_len <= MHLEN, ("tcptw: mbuf too small"));
1921
1922	th->th_seq = htonl(tw->snd_nxt);
1923	th->th_ack = htonl(tw->rcv_nxt);
1924	th->th_off = (sizeof(struct tcphdr) + optlen) >> 2;
1925	th->th_flags = flags;
1926	th->th_win = htons(tw->last_win);
1927
1928#ifdef INET6
1929	if (isipv6) {
1930		th->th_sum = in6_cksum(m, IPPROTO_TCP, sizeof(struct ip6_hdr),
1931		    sizeof(struct tcphdr) + optlen);
1932		ip6->ip6_hlim = in6_selecthlim(inp, NULL);
1933		error = ip6_output(m, inp->in6p_outputopts, NULL,
1934		    (tw->tw_so_options & SO_DONTROUTE), NULL, NULL, inp);
1935	} else
1936#endif
1937	{
1938		th->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
1939		    htons(sizeof(struct tcphdr) + optlen + IPPROTO_TCP));
1940		m->m_pkthdr.csum_flags = CSUM_TCP;
1941		m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
1942		ip->ip_len = m->m_pkthdr.len;
1943		if (path_mtu_discovery)
1944			ip->ip_off |= IP_DF;
1945		error = ip_output(m, inp->inp_options, NULL,
1946		    ((tw->tw_so_options & SO_DONTROUTE) ? IP_ROUTETOIF : 0),
1947		    NULL, inp);
1948	}
1949	if (flags & TH_ACK)
1950		tcpstat.tcps_sndacks++;
1951	else
1952		tcpstat.tcps_sndctrl++;
1953	tcpstat.tcps_sndtotal++;
1954	return (error);
1955}
1956
1957/*
1958 * TCP BANDWIDTH DELAY PRODUCT WINDOW LIMITING
1959 *
1960 * This code attempts to calculate the bandwidth-delay product as a
1961 * means of determining the optimal window size to maximize bandwidth,
1962 * minimize RTT, and avoid the over-allocation of buffers on interfaces and
1963 * routers.  This code also does a fairly good job keeping RTTs in check
1964 * across slow links like modems.  We implement an algorithm which is very
1965 * similar (but not meant to be) TCP/Vegas.  The code operates on the
1966 * transmitter side of a TCP connection and so only effects the transmit
1967 * side of the connection.
1968 *
1969 * BACKGROUND:  TCP makes no provision for the management of buffer space
1970 * at the end points or at the intermediate routers and switches.  A TCP
1971 * stream, whether using NewReno or not, will eventually buffer as
1972 * many packets as it is able and the only reason this typically works is
1973 * due to the fairly small default buffers made available for a connection
1974 * (typicaly 16K or 32K).  As machines use larger windows and/or window
1975 * scaling it is now fairly easy for even a single TCP connection to blow-out
1976 * all available buffer space not only on the local interface, but on
1977 * intermediate routers and switches as well.  NewReno makes a misguided
1978 * attempt to 'solve' this problem by waiting for an actual failure to occur,
1979 * then backing off, then steadily increasing the window again until another
1980 * failure occurs, ad-infinitum.  This results in terrible oscillation that
1981 * is only made worse as network loads increase and the idea of intentionally
1982 * blowing out network buffers is, frankly, a terrible way to manage network
1983 * resources.
1984 *
1985 * It is far better to limit the transmit window prior to the failure
1986 * condition being achieved.  There are two general ways to do this:  First
1987 * you can 'scan' through different transmit window sizes and locate the
1988 * point where the RTT stops increasing, indicating that you have filled the
1989 * pipe, then scan backwards until you note that RTT stops decreasing, then
1990 * repeat ad-infinitum.  This method works in principle but has severe
1991 * implementation issues due to RTT variances, timer granularity, and
1992 * instability in the algorithm which can lead to many false positives and
1993 * create oscillations as well as interact badly with other TCP streams
1994 * implementing the same algorithm.
1995 *
1996 * The second method is to limit the window to the bandwidth delay product
1997 * of the link.  This is the method we implement.  RTT variances and our
1998 * own manipulation of the congestion window, bwnd, can potentially
1999 * destabilize the algorithm.  For this reason we have to stabilize the
2000 * elements used to calculate the window.  We do this by using the minimum
2001 * observed RTT, the long term average of the observed bandwidth, and
2002 * by adding two segments worth of slop.  It isn't perfect but it is able
2003 * to react to changing conditions and gives us a very stable basis on
2004 * which to extend the algorithm.
2005 */
2006void
2007tcp_xmit_bandwidth_limit(struct tcpcb *tp, tcp_seq ack_seq)
2008{
2009	u_long bw;
2010	u_long bwnd;
2011	int save_ticks;
2012
2013	INP_LOCK_ASSERT(tp->t_inpcb);
2014
2015	/*
2016	 * If inflight_enable is disabled in the middle of a tcp connection,
2017	 * make sure snd_bwnd is effectively disabled.
2018	 */
2019	if (tcp_inflight_enable == 0 || tp->t_rttlow < tcp_inflight_rttthresh) {
2020		tp->snd_bwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
2021		tp->snd_bandwidth = 0;
2022		return;
2023	}
2024
2025	/*
2026	 * Figure out the bandwidth.  Due to the tick granularity this
2027	 * is a very rough number and it MUST be averaged over a fairly
2028	 * long period of time.  XXX we need to take into account a link
2029	 * that is not using all available bandwidth, but for now our
2030	 * slop will ramp us up if this case occurs and the bandwidth later
2031	 * increases.
2032	 *
2033	 * Note: if ticks rollover 'bw' may wind up negative.  We must
2034	 * effectively reset t_bw_rtttime for this case.
2035	 */
2036	save_ticks = ticks;
2037	if ((u_int)(save_ticks - tp->t_bw_rtttime) < 1)
2038		return;
2039
2040	bw = (int64_t)(ack_seq - tp->t_bw_rtseq) * hz /
2041	    (save_ticks - tp->t_bw_rtttime);
2042	tp->t_bw_rtttime = save_ticks;
2043	tp->t_bw_rtseq = ack_seq;
2044	if (tp->t_bw_rtttime == 0 || (int)bw < 0)
2045		return;
2046	bw = ((int64_t)tp->snd_bandwidth * 15 + bw) >> 4;
2047
2048	tp->snd_bandwidth = bw;
2049
2050	/*
2051	 * Calculate the semi-static bandwidth delay product, plus two maximal
2052	 * segments.  The additional slop puts us squarely in the sweet
2053	 * spot and also handles the bandwidth run-up case and stabilization.
2054	 * Without the slop we could be locking ourselves into a lower
2055	 * bandwidth.
2056	 *
2057	 * Situations Handled:
2058	 *	(1) Prevents over-queueing of packets on LANs, especially on
2059	 *	    high speed LANs, allowing larger TCP buffers to be
2060	 *	    specified, and also does a good job preventing
2061	 *	    over-queueing of packets over choke points like modems
2062	 *	    (at least for the transmit side).
2063	 *
2064	 *	(2) Is able to handle changing network loads (bandwidth
2065	 *	    drops so bwnd drops, bandwidth increases so bwnd
2066	 *	    increases).
2067	 *
2068	 *	(3) Theoretically should stabilize in the face of multiple
2069	 *	    connections implementing the same algorithm (this may need
2070	 *	    a little work).
2071	 *
2072	 *	(4) Stability value (defaults to 20 = 2 maximal packets) can
2073	 *	    be adjusted with a sysctl but typically only needs to be
2074	 *	    on very slow connections.  A value no smaller then 5
2075	 *	    should be used, but only reduce this default if you have
2076	 *	    no other choice.
2077	 */
2078#define USERTT	((tp->t_srtt + tp->t_rttbest) / 2)
2079	bwnd = (int64_t)bw * USERTT / (hz << TCP_RTT_SHIFT) + tcp_inflight_stab * tp->t_maxseg / 10;
2080#undef USERTT
2081
2082	if (tcp_inflight_debug > 0) {
2083		static int ltime;
2084		if ((u_int)(ticks - ltime) >= hz / tcp_inflight_debug) {
2085			ltime = ticks;
2086			printf("%p bw %ld rttbest %d srtt %d bwnd %ld\n",
2087			    tp,
2088			    bw,
2089			    tp->t_rttbest,
2090			    tp->t_srtt,
2091			    bwnd
2092			);
2093		}
2094	}
2095	if ((long)bwnd < tcp_inflight_min)
2096		bwnd = tcp_inflight_min;
2097	if (bwnd > tcp_inflight_max)
2098		bwnd = tcp_inflight_max;
2099	if ((long)bwnd < tp->t_maxseg * 2)
2100		bwnd = tp->t_maxseg * 2;
2101	tp->snd_bwnd = bwnd;
2102}
2103
2104#ifdef TCP_SIGNATURE
2105/*
2106 * Callback function invoked by m_apply() to digest TCP segment data
2107 * contained within an mbuf chain.
2108 */
2109static int
2110tcp_signature_apply(void *fstate, void *data, u_int len)
2111{
2112
2113	MD5Update(fstate, (u_char *)data, len);
2114	return (0);
2115}
2116
2117/*
2118 * Compute TCP-MD5 hash of a TCPv4 segment. (RFC2385)
2119 *
2120 * Parameters:
2121 * m		pointer to head of mbuf chain
2122 * off0		offset to TCP header within the mbuf chain
2123 * len		length of TCP segment data, excluding options
2124 * optlen	length of TCP segment options
2125 * buf		pointer to storage for computed MD5 digest
2126 * direction	direction of flow (IPSEC_DIR_INBOUND or OUTBOUND)
2127 *
2128 * We do this over ip, tcphdr, segment data, and the key in the SADB.
2129 * When called from tcp_input(), we can be sure that th_sum has been
2130 * zeroed out and verified already.
2131 *
2132 * This function is for IPv4 use only. Calling this function with an
2133 * IPv6 packet in the mbuf chain will yield undefined results.
2134 *
2135 * Return 0 if successful, otherwise return -1.
2136 *
2137 * XXX The key is retrieved from the system's PF_KEY SADB, by keying a
2138 * search with the destination IP address, and a 'magic SPI' to be
2139 * determined by the application. This is hardcoded elsewhere to 1179
2140 * right now. Another branch of this code exists which uses the SPD to
2141 * specify per-application flows but it is unstable.
2142 */
2143int
2144tcp_signature_compute(struct mbuf *m, int off0, int len, int optlen,
2145    u_char *buf, u_int direction)
2146{
2147	union sockaddr_union dst;
2148	struct ippseudo ippseudo;
2149	MD5_CTX ctx;
2150	int doff;
2151	struct ip *ip;
2152	struct ipovly *ipovly;
2153	struct secasvar *sav;
2154	struct tcphdr *th;
2155	u_short savecsum;
2156
2157	KASSERT(m != NULL, ("NULL mbuf chain"));
2158	KASSERT(buf != NULL, ("NULL signature pointer"));
2159
2160	/* Extract the destination from the IP header in the mbuf. */
2161	ip = mtod(m, struct ip *);
2162	bzero(&dst, sizeof(union sockaddr_union));
2163	dst.sa.sa_len = sizeof(struct sockaddr_in);
2164	dst.sa.sa_family = AF_INET;
2165	dst.sin.sin_addr = (direction == IPSEC_DIR_INBOUND) ?
2166	    ip->ip_src : ip->ip_dst;
2167
2168	/* Look up an SADB entry which matches the address of the peer. */
2169	sav = KEY_ALLOCSA(&dst, IPPROTO_TCP, htonl(TCP_SIG_SPI));
2170	if (sav == NULL) {
2171		printf("%s: SADB lookup failed for %s\n", __func__,
2172		    inet_ntoa(dst.sin.sin_addr));
2173		return (EINVAL);
2174	}
2175
2176	MD5Init(&ctx);
2177	ipovly = (struct ipovly *)ip;
2178	th = (struct tcphdr *)((u_char *)ip + off0);
2179	doff = off0 + sizeof(struct tcphdr) + optlen;
2180
2181	/*
2182	 * Step 1: Update MD5 hash with IP pseudo-header.
2183	 *
2184	 * XXX The ippseudo header MUST be digested in network byte order,
2185	 * or else we'll fail the regression test. Assume all fields we've
2186	 * been doing arithmetic on have been in host byte order.
2187	 * XXX One cannot depend on ipovly->ih_len here. When called from
2188	 * tcp_output(), the underlying ip_len member has not yet been set.
2189	 */
2190	ippseudo.ippseudo_src = ipovly->ih_src;
2191	ippseudo.ippseudo_dst = ipovly->ih_dst;
2192	ippseudo.ippseudo_pad = 0;
2193	ippseudo.ippseudo_p = IPPROTO_TCP;
2194	ippseudo.ippseudo_len = htons(len + sizeof(struct tcphdr) + optlen);
2195	MD5Update(&ctx, (char *)&ippseudo, sizeof(struct ippseudo));
2196
2197	/*
2198	 * Step 2: Update MD5 hash with TCP header, excluding options.
2199	 * The TCP checksum must be set to zero.
2200	 */
2201	savecsum = th->th_sum;
2202	th->th_sum = 0;
2203	MD5Update(&ctx, (char *)th, sizeof(struct tcphdr));
2204	th->th_sum = savecsum;
2205
2206	/*
2207	 * Step 3: Update MD5 hash with TCP segment data.
2208	 *         Use m_apply() to avoid an early m_pullup().
2209	 */
2210	if (len > 0)
2211		m_apply(m, doff, len, tcp_signature_apply, &ctx);
2212
2213	/*
2214	 * Step 4: Update MD5 hash with shared secret.
2215	 */
2216	MD5Update(&ctx, _KEYBUF(sav->key_auth), _KEYLEN(sav->key_auth));
2217	MD5Final(buf, &ctx);
2218
2219	key_sa_recordxfer(sav, m);
2220	KEY_FREESAV(&sav);
2221	return (0);
2222}
2223#endif /* TCP_SIGNATURE */
2224
2225static int
2226sysctl_drop(SYSCTL_HANDLER_ARGS)
2227{
2228	/* addrs[0] is a foreign socket, addrs[1] is a local one. */
2229	struct sockaddr_storage addrs[2];
2230	struct inpcb *inp;
2231	struct tcpcb *tp;
2232	struct tcptw *tw;
2233	struct sockaddr_in *fin, *lin;
2234#ifdef INET6
2235	struct sockaddr_in6 *fin6, *lin6;
2236	struct in6_addr f6, l6;
2237#endif
2238	int error;
2239
2240	inp = NULL;
2241	fin = lin = NULL;
2242#ifdef INET6
2243	fin6 = lin6 = NULL;
2244#endif
2245	error = 0;
2246
2247	if (req->oldptr != NULL || req->oldlen != 0)
2248		return (EINVAL);
2249	if (req->newptr == NULL)
2250		return (EPERM);
2251	if (req->newlen < sizeof(addrs))
2252		return (ENOMEM);
2253	error = SYSCTL_IN(req, &addrs, sizeof(addrs));
2254	if (error)
2255		return (error);
2256
2257	switch (addrs[0].ss_family) {
2258#ifdef INET6
2259	case AF_INET6:
2260		fin6 = (struct sockaddr_in6 *)&addrs[0];
2261		lin6 = (struct sockaddr_in6 *)&addrs[1];
2262		if (fin6->sin6_len != sizeof(struct sockaddr_in6) ||
2263		    lin6->sin6_len != sizeof(struct sockaddr_in6))
2264			return (EINVAL);
2265		if (IN6_IS_ADDR_V4MAPPED(&fin6->sin6_addr)) {
2266			if (!IN6_IS_ADDR_V4MAPPED(&lin6->sin6_addr))
2267				return (EINVAL);
2268			in6_sin6_2_sin_in_sock((struct sockaddr *)&addrs[0]);
2269			in6_sin6_2_sin_in_sock((struct sockaddr *)&addrs[1]);
2270			fin = (struct sockaddr_in *)&addrs[0];
2271			lin = (struct sockaddr_in *)&addrs[1];
2272			break;
2273		}
2274		error = sa6_embedscope(fin6, ip6_use_defzone);
2275		if (error)
2276			return (error);
2277		error = sa6_embedscope(lin6, ip6_use_defzone);
2278		if (error)
2279			return (error);
2280		break;
2281#endif
2282	case AF_INET:
2283		fin = (struct sockaddr_in *)&addrs[0];
2284		lin = (struct sockaddr_in *)&addrs[1];
2285		if (fin->sin_len != sizeof(struct sockaddr_in) ||
2286		    lin->sin_len != sizeof(struct sockaddr_in))
2287			return (EINVAL);
2288		break;
2289	default:
2290		return (EINVAL);
2291	}
2292	INP_INFO_WLOCK(&tcbinfo);
2293	switch (addrs[0].ss_family) {
2294#ifdef INET6
2295	case AF_INET6:
2296		inp = in6_pcblookup_hash(&tcbinfo, &f6, fin6->sin6_port,
2297		    &l6, lin6->sin6_port, 0, NULL);
2298		break;
2299#endif
2300	case AF_INET:
2301		inp = in_pcblookup_hash(&tcbinfo, fin->sin_addr, fin->sin_port,
2302		    lin->sin_addr, lin->sin_port, 0, NULL);
2303		break;
2304	}
2305	if (inp != NULL) {
2306		INP_LOCK(inp);
2307		if (inp->inp_vflag & INP_TIMEWAIT) {
2308			tw = intotw(inp);
2309			tcp_twclose(tw, 0);
2310		} else if (!(inp->inp_vflag & INP_DROPPED) &&
2311			   !(inp->inp_socket->so_options & SO_ACCEPTCONN)) {
2312			tp = intotcpcb(inp);
2313			tcp_drop(tp, ECONNABORTED);
2314		}
2315		INP_UNLOCK(inp);
2316	} else
2317		error = ESRCH;
2318	INP_INFO_WUNLOCK(&tcbinfo);
2319	return (error);
2320}
2321
2322SYSCTL_PROC(_net_inet_tcp, TCPCTL_DROP, drop,
2323    CTLTYPE_STRUCT|CTLFLAG_WR|CTLFLAG_SKIP, NULL,
2324    0, sysctl_drop, "", "Drop TCP connection");
2325