tcp_timewait.c revision 157430
1/*-
2 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 4. Neither the name of the University nor the names of its contributors
14 *    may be used to endorse or promote products derived from this software
15 *    without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 *
29 *	@(#)tcp_subr.c	8.2 (Berkeley) 5/24/95
30 * $FreeBSD: head/sys/netinet/tcp_timewait.c 157430 2006-04-03 12:52:13Z rwatson $
31 */
32
33#include "opt_compat.h"
34#include "opt_inet.h"
35#include "opt_inet6.h"
36#include "opt_ipsec.h"
37#include "opt_mac.h"
38#include "opt_tcpdebug.h"
39#include "opt_tcp_sack.h"
40
41#include <sys/param.h>
42#include <sys/systm.h>
43#include <sys/callout.h>
44#include <sys/kernel.h>
45#include <sys/sysctl.h>
46#include <sys/mac.h>
47#include <sys/malloc.h>
48#include <sys/mbuf.h>
49#ifdef INET6
50#include <sys/domain.h>
51#endif
52#include <sys/proc.h>
53#include <sys/socket.h>
54#include <sys/socketvar.h>
55#include <sys/protosw.h>
56#include <sys/random.h>
57
58#include <vm/uma.h>
59
60#include <net/route.h>
61#include <net/if.h>
62
63#include <netinet/in.h>
64#include <netinet/in_systm.h>
65#include <netinet/ip.h>
66#ifdef INET6
67#include <netinet/ip6.h>
68#endif
69#include <netinet/in_pcb.h>
70#ifdef INET6
71#include <netinet6/in6_pcb.h>
72#endif
73#include <netinet/in_var.h>
74#include <netinet/ip_var.h>
75#ifdef INET6
76#include <netinet6/ip6_var.h>
77#include <netinet6/scope6_var.h>
78#include <netinet6/nd6.h>
79#endif
80#include <netinet/ip_icmp.h>
81#include <netinet/tcp.h>
82#include <netinet/tcp_fsm.h>
83#include <netinet/tcp_seq.h>
84#include <netinet/tcp_timer.h>
85#include <netinet/tcp_var.h>
86#ifdef INET6
87#include <netinet6/tcp6_var.h>
88#endif
89#include <netinet/tcpip.h>
90#ifdef TCPDEBUG
91#include <netinet/tcp_debug.h>
92#endif
93#include <netinet6/ip6protosw.h>
94
95#ifdef IPSEC
96#include <netinet6/ipsec.h>
97#ifdef INET6
98#include <netinet6/ipsec6.h>
99#endif
100#include <netkey/key.h>
101#endif /*IPSEC*/
102
103#ifdef FAST_IPSEC
104#include <netipsec/ipsec.h>
105#include <netipsec/xform.h>
106#ifdef INET6
107#include <netipsec/ipsec6.h>
108#endif
109#include <netipsec/key.h>
110#define	IPSEC
111#endif /*FAST_IPSEC*/
112
113#include <machine/in_cksum.h>
114#include <sys/md5.h>
115
116int	tcp_mssdflt = TCP_MSS;
117SYSCTL_INT(_net_inet_tcp, TCPCTL_MSSDFLT, mssdflt, CTLFLAG_RW,
118    &tcp_mssdflt , 0, "Default TCP Maximum Segment Size");
119
120#ifdef INET6
121int	tcp_v6mssdflt = TCP6_MSS;
122SYSCTL_INT(_net_inet_tcp, TCPCTL_V6MSSDFLT, v6mssdflt,
123	CTLFLAG_RW, &tcp_v6mssdflt , 0,
124	"Default TCP Maximum Segment Size for IPv6");
125#endif
126
127/*
128 * Minimum MSS we accept and use. This prevents DoS attacks where
129 * we are forced to a ridiculous low MSS like 20 and send hundreds
130 * of packets instead of one. The effect scales with the available
131 * bandwidth and quickly saturates the CPU and network interface
132 * with packet generation and sending. Set to zero to disable MINMSS
133 * checking. This setting prevents us from sending too small packets.
134 */
135int	tcp_minmss = TCP_MINMSS;
136SYSCTL_INT(_net_inet_tcp, OID_AUTO, minmss, CTLFLAG_RW,
137    &tcp_minmss , 0, "Minmum TCP Maximum Segment Size");
138/*
139 * Number of TCP segments per second we accept from remote host
140 * before we start to calculate average segment size. If average
141 * segment size drops below the minimum TCP MSS we assume a DoS
142 * attack and reset+drop the connection. Care has to be taken not to
143 * set this value too small to not kill interactive type connections
144 * (telnet, SSH) which send many small packets.
145 */
146int     tcp_minmssoverload = TCP_MINMSSOVERLOAD;
147SYSCTL_INT(_net_inet_tcp, OID_AUTO, minmssoverload, CTLFLAG_RW,
148    &tcp_minmssoverload , 0, "Number of TCP Segments per Second allowed to"
149    "be under the MINMSS Size");
150
151#if 0
152static int	tcp_rttdflt = TCPTV_SRTTDFLT / PR_SLOWHZ;
153SYSCTL_INT(_net_inet_tcp, TCPCTL_RTTDFLT, rttdflt, CTLFLAG_RW,
154    &tcp_rttdflt , 0, "Default maximum TCP Round Trip Time");
155#endif
156
157int	tcp_do_rfc1323 = 1;
158SYSCTL_INT(_net_inet_tcp, TCPCTL_DO_RFC1323, rfc1323, CTLFLAG_RW,
159    &tcp_do_rfc1323 , 0, "Enable rfc1323 (high performance TCP) extensions");
160
161static int	tcp_tcbhashsize = 0;
162SYSCTL_INT(_net_inet_tcp, OID_AUTO, tcbhashsize, CTLFLAG_RDTUN,
163     &tcp_tcbhashsize, 0, "Size of TCP control-block hashtable");
164
165static int	do_tcpdrain = 1;
166SYSCTL_INT(_net_inet_tcp, OID_AUTO, do_tcpdrain, CTLFLAG_RW, &do_tcpdrain, 0,
167     "Enable tcp_drain routine for extra help when low on mbufs");
168
169SYSCTL_INT(_net_inet_tcp, OID_AUTO, pcbcount, CTLFLAG_RD,
170    &tcbinfo.ipi_count, 0, "Number of active PCBs");
171
172static int	icmp_may_rst = 1;
173SYSCTL_INT(_net_inet_tcp, OID_AUTO, icmp_may_rst, CTLFLAG_RW, &icmp_may_rst, 0,
174    "Certain ICMP unreachable messages may abort connections in SYN_SENT");
175
176static int	tcp_isn_reseed_interval = 0;
177SYSCTL_INT(_net_inet_tcp, OID_AUTO, isn_reseed_interval, CTLFLAG_RW,
178    &tcp_isn_reseed_interval, 0, "Seconds between reseeding of ISN secret");
179
180/*
181 * TCP bandwidth limiting sysctls.  Note that the default lower bound of
182 * 1024 exists only for debugging.  A good production default would be
183 * something like 6100.
184 */
185SYSCTL_NODE(_net_inet_tcp, OID_AUTO, inflight, CTLFLAG_RW, 0,
186    "TCP inflight data limiting");
187
188static int	tcp_inflight_enable = 1;
189SYSCTL_INT(_net_inet_tcp_inflight, OID_AUTO, enable, CTLFLAG_RW,
190    &tcp_inflight_enable, 0, "Enable automatic TCP inflight data limiting");
191
192static int	tcp_inflight_debug = 0;
193SYSCTL_INT(_net_inet_tcp_inflight, OID_AUTO, debug, CTLFLAG_RW,
194    &tcp_inflight_debug, 0, "Debug TCP inflight calculations");
195
196static int	tcp_inflight_rttthresh;
197SYSCTL_PROC(_net_inet_tcp_inflight, OID_AUTO, rttthresh, CTLTYPE_INT|CTLFLAG_RW,
198    &tcp_inflight_rttthresh, 0, sysctl_msec_to_ticks, "I",
199    "RTT threshold below which inflight will deactivate itself");
200
201static int	tcp_inflight_min = 6144;
202SYSCTL_INT(_net_inet_tcp_inflight, OID_AUTO, min, CTLFLAG_RW,
203    &tcp_inflight_min, 0, "Lower-bound for TCP inflight window");
204
205static int	tcp_inflight_max = TCP_MAXWIN << TCP_MAX_WINSHIFT;
206SYSCTL_INT(_net_inet_tcp_inflight, OID_AUTO, max, CTLFLAG_RW,
207    &tcp_inflight_max, 0, "Upper-bound for TCP inflight window");
208
209static int	tcp_inflight_stab = 20;
210SYSCTL_INT(_net_inet_tcp_inflight, OID_AUTO, stab, CTLFLAG_RW,
211    &tcp_inflight_stab, 0, "Inflight Algorithm Stabilization 20 = 2 packets");
212
213uma_zone_t sack_hole_zone;
214
215static struct inpcb *tcp_notify(struct inpcb *, int);
216static void	tcp_isn_tick(void *);
217
218/*
219 * Target size of TCP PCB hash tables. Must be a power of two.
220 *
221 * Note that this can be overridden by the kernel environment
222 * variable net.inet.tcp.tcbhashsize
223 */
224#ifndef TCBHASHSIZE
225#define TCBHASHSIZE	512
226#endif
227
228/*
229 * XXX
230 * Callouts should be moved into struct tcp directly.  They are currently
231 * separate because the tcpcb structure is exported to userland for sysctl
232 * parsing purposes, which do not know about callouts.
233 */
234struct	tcpcb_mem {
235	struct	tcpcb tcb;
236	struct	callout tcpcb_mem_rexmt, tcpcb_mem_persist, tcpcb_mem_keep;
237	struct	callout tcpcb_mem_2msl, tcpcb_mem_delack;
238};
239
240static uma_zone_t tcpcb_zone;
241static uma_zone_t tcptw_zone;
242struct callout isn_callout;
243
244/*
245 * Tcp initialization
246 */
247void
248tcp_init()
249{
250	int hashsize = TCBHASHSIZE;
251
252	tcp_delacktime = TCPTV_DELACK;
253	tcp_keepinit = TCPTV_KEEP_INIT;
254	tcp_keepidle = TCPTV_KEEP_IDLE;
255	tcp_keepintvl = TCPTV_KEEPINTVL;
256	tcp_maxpersistidle = TCPTV_KEEP_IDLE;
257	tcp_msl = TCPTV_MSL;
258	tcp_rexmit_min = TCPTV_MIN;
259	tcp_rexmit_slop = TCPTV_CPU_VAR;
260	tcp_inflight_rttthresh = TCPTV_INFLIGHT_RTTTHRESH;
261
262	INP_INFO_LOCK_INIT(&tcbinfo, "tcp");
263	LIST_INIT(&tcb);
264	tcbinfo.listhead = &tcb;
265	TUNABLE_INT_FETCH("net.inet.tcp.tcbhashsize", &hashsize);
266	if (!powerof2(hashsize)) {
267		printf("WARNING: TCB hash size not a power of 2\n");
268		hashsize = 512; /* safe default */
269	}
270	tcp_tcbhashsize = hashsize;
271	tcbinfo.hashbase = hashinit(hashsize, M_PCB, &tcbinfo.hashmask);
272	tcbinfo.porthashbase = hashinit(hashsize, M_PCB,
273					&tcbinfo.porthashmask);
274	tcbinfo.ipi_zone = uma_zcreate("inpcb", sizeof(struct inpcb),
275	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
276	uma_zone_set_max(tcbinfo.ipi_zone, maxsockets);
277#ifdef INET6
278#define TCP_MINPROTOHDR (sizeof(struct ip6_hdr) + sizeof(struct tcphdr))
279#else /* INET6 */
280#define TCP_MINPROTOHDR (sizeof(struct tcpiphdr))
281#endif /* INET6 */
282	if (max_protohdr < TCP_MINPROTOHDR)
283		max_protohdr = TCP_MINPROTOHDR;
284	if (max_linkhdr + TCP_MINPROTOHDR > MHLEN)
285		panic("tcp_init");
286#undef TCP_MINPROTOHDR
287	/*
288	 * These have to be type stable for the benefit of the timers.
289	 */
290	tcpcb_zone = uma_zcreate("tcpcb", sizeof(struct tcpcb_mem),
291	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
292	uma_zone_set_max(tcpcb_zone, maxsockets);
293	tcptw_zone = uma_zcreate("tcptw", sizeof(struct tcptw),
294	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
295	uma_zone_set_max(tcptw_zone, maxsockets / 5);
296	tcp_timer_init();
297	syncache_init();
298	tcp_hc_init();
299	tcp_reass_init();
300	callout_init(&isn_callout, CALLOUT_MPSAFE);
301	tcp_isn_tick(NULL);
302	EVENTHANDLER_REGISTER(shutdown_pre_sync, tcp_fini, NULL,
303		SHUTDOWN_PRI_DEFAULT);
304	sack_hole_zone = uma_zcreate("sackhole", sizeof(struct sackhole),
305	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
306}
307
308void
309tcp_fini(xtp)
310	void *xtp;
311{
312	callout_stop(&isn_callout);
313
314}
315
316/*
317 * Fill in the IP and TCP headers for an outgoing packet, given the tcpcb.
318 * tcp_template used to store this data in mbufs, but we now recopy it out
319 * of the tcpcb each time to conserve mbufs.
320 */
321void
322tcpip_fillheaders(inp, ip_ptr, tcp_ptr)
323	struct inpcb *inp;
324	void *ip_ptr;
325	void *tcp_ptr;
326{
327	struct tcphdr *th = (struct tcphdr *)tcp_ptr;
328
329	INP_LOCK_ASSERT(inp);
330
331#ifdef INET6
332	if ((inp->inp_vflag & INP_IPV6) != 0) {
333		struct ip6_hdr *ip6;
334
335		ip6 = (struct ip6_hdr *)ip_ptr;
336		ip6->ip6_flow = (ip6->ip6_flow & ~IPV6_FLOWINFO_MASK) |
337			(inp->in6p_flowinfo & IPV6_FLOWINFO_MASK);
338		ip6->ip6_vfc = (ip6->ip6_vfc & ~IPV6_VERSION_MASK) |
339			(IPV6_VERSION & IPV6_VERSION_MASK);
340		ip6->ip6_nxt = IPPROTO_TCP;
341		ip6->ip6_plen = sizeof(struct tcphdr);
342		ip6->ip6_src = inp->in6p_laddr;
343		ip6->ip6_dst = inp->in6p_faddr;
344	} else
345#endif
346	{
347		struct ip *ip;
348
349		ip = (struct ip *)ip_ptr;
350		ip->ip_v = IPVERSION;
351		ip->ip_hl = 5;
352		ip->ip_tos = inp->inp_ip_tos;
353		ip->ip_len = 0;
354		ip->ip_id = 0;
355		ip->ip_off = 0;
356		ip->ip_ttl = inp->inp_ip_ttl;
357		ip->ip_sum = 0;
358		ip->ip_p = IPPROTO_TCP;
359		ip->ip_src = inp->inp_laddr;
360		ip->ip_dst = inp->inp_faddr;
361	}
362	th->th_sport = inp->inp_lport;
363	th->th_dport = inp->inp_fport;
364	th->th_seq = 0;
365	th->th_ack = 0;
366	th->th_x2 = 0;
367	th->th_off = 5;
368	th->th_flags = 0;
369	th->th_win = 0;
370	th->th_urp = 0;
371	th->th_sum = 0;		/* in_pseudo() is called later for ipv4 */
372}
373
374/*
375 * Create template to be used to send tcp packets on a connection.
376 * Allocates an mbuf and fills in a skeletal tcp/ip header.  The only
377 * use for this function is in keepalives, which use tcp_respond.
378 */
379struct tcptemp *
380tcpip_maketemplate(inp)
381	struct inpcb *inp;
382{
383	struct mbuf *m;
384	struct tcptemp *n;
385
386	m = m_get(M_DONTWAIT, MT_DATA);
387	if (m == NULL)
388		return (0);
389	m->m_len = sizeof(struct tcptemp);
390	n = mtod(m, struct tcptemp *);
391
392	tcpip_fillheaders(inp, (void *)&n->tt_ipgen, (void *)&n->tt_t);
393	return (n);
394}
395
396/*
397 * Send a single message to the TCP at address specified by
398 * the given TCP/IP header.  If m == NULL, then we make a copy
399 * of the tcpiphdr at ti and send directly to the addressed host.
400 * This is used to force keep alive messages out using the TCP
401 * template for a connection.  If flags are given then we send
402 * a message back to the TCP which originated the * segment ti,
403 * and discard the mbuf containing it and any other attached mbufs.
404 *
405 * In any case the ack and sequence number of the transmitted
406 * segment are as specified by the parameters.
407 *
408 * NOTE: If m != NULL, then ti must point to *inside* the mbuf.
409 */
410void
411tcp_respond(tp, ipgen, th, m, ack, seq, flags)
412	struct tcpcb *tp;
413	void *ipgen;
414	register struct tcphdr *th;
415	register struct mbuf *m;
416	tcp_seq ack, seq;
417	int flags;
418{
419	register int tlen;
420	int win = 0;
421	struct ip *ip;
422	struct tcphdr *nth;
423#ifdef INET6
424	struct ip6_hdr *ip6;
425	int isipv6;
426#endif /* INET6 */
427	int ipflags = 0;
428	struct inpcb *inp;
429
430	KASSERT(tp != NULL || m != NULL, ("tcp_respond: tp and m both NULL"));
431
432#ifdef INET6
433	isipv6 = ((struct ip *)ipgen)->ip_v == 6;
434	ip6 = ipgen;
435#endif /* INET6 */
436	ip = ipgen;
437
438	if (tp != NULL) {
439		inp = tp->t_inpcb;
440		KASSERT(inp != NULL, ("tcp control block w/o inpcb"));
441		INP_INFO_WLOCK_ASSERT(&tcbinfo);
442		INP_LOCK_ASSERT(inp);
443	} else
444		inp = NULL;
445
446	if (tp != NULL) {
447		if (!(flags & TH_RST)) {
448			win = sbspace(&inp->inp_socket->so_rcv);
449			if (win > (long)TCP_MAXWIN << tp->rcv_scale)
450				win = (long)TCP_MAXWIN << tp->rcv_scale;
451		}
452	}
453	if (m == NULL) {
454		m = m_gethdr(M_DONTWAIT, MT_DATA);
455		if (m == NULL)
456			return;
457		tlen = 0;
458		m->m_data += max_linkhdr;
459#ifdef INET6
460		if (isipv6) {
461			bcopy((caddr_t)ip6, mtod(m, caddr_t),
462			      sizeof(struct ip6_hdr));
463			ip6 = mtod(m, struct ip6_hdr *);
464			nth = (struct tcphdr *)(ip6 + 1);
465		} else
466#endif /* INET6 */
467	      {
468		bcopy((caddr_t)ip, mtod(m, caddr_t), sizeof(struct ip));
469		ip = mtod(m, struct ip *);
470		nth = (struct tcphdr *)(ip + 1);
471	      }
472		bcopy((caddr_t)th, (caddr_t)nth, sizeof(struct tcphdr));
473		flags = TH_ACK;
474	} else {
475		m_freem(m->m_next);
476		m->m_next = NULL;
477		m->m_data = (caddr_t)ipgen;
478		/* m_len is set later */
479		tlen = 0;
480#define xchg(a,b,type) { type t; t=a; a=b; b=t; }
481#ifdef INET6
482		if (isipv6) {
483			xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr);
484			nth = (struct tcphdr *)(ip6 + 1);
485		} else
486#endif /* INET6 */
487	      {
488		xchg(ip->ip_dst.s_addr, ip->ip_src.s_addr, n_long);
489		nth = (struct tcphdr *)(ip + 1);
490	      }
491		if (th != nth) {
492			/*
493			 * this is usually a case when an extension header
494			 * exists between the IPv6 header and the
495			 * TCP header.
496			 */
497			nth->th_sport = th->th_sport;
498			nth->th_dport = th->th_dport;
499		}
500		xchg(nth->th_dport, nth->th_sport, n_short);
501#undef xchg
502	}
503#ifdef INET6
504	if (isipv6) {
505		ip6->ip6_flow = 0;
506		ip6->ip6_vfc = IPV6_VERSION;
507		ip6->ip6_nxt = IPPROTO_TCP;
508		ip6->ip6_plen = htons((u_short)(sizeof (struct tcphdr) +
509						tlen));
510		tlen += sizeof (struct ip6_hdr) + sizeof (struct tcphdr);
511	} else
512#endif
513	{
514		tlen += sizeof (struct tcpiphdr);
515		ip->ip_len = tlen;
516		ip->ip_ttl = ip_defttl;
517		if (path_mtu_discovery)
518			ip->ip_off |= IP_DF;
519	}
520	m->m_len = tlen;
521	m->m_pkthdr.len = tlen;
522	m->m_pkthdr.rcvif = NULL;
523#ifdef MAC
524	if (inp != NULL) {
525		/*
526		 * Packet is associated with a socket, so allow the
527		 * label of the response to reflect the socket label.
528		 */
529		INP_LOCK_ASSERT(inp);
530		mac_create_mbuf_from_inpcb(inp, m);
531	} else {
532		/*
533		 * Packet is not associated with a socket, so possibly
534		 * update the label in place.
535		 */
536		mac_reflect_mbuf_tcp(m);
537	}
538#endif
539	nth->th_seq = htonl(seq);
540	nth->th_ack = htonl(ack);
541	nth->th_x2 = 0;
542	nth->th_off = sizeof (struct tcphdr) >> 2;
543	nth->th_flags = flags;
544	if (tp != NULL)
545		nth->th_win = htons((u_short) (win >> tp->rcv_scale));
546	else
547		nth->th_win = htons((u_short)win);
548	nth->th_urp = 0;
549#ifdef INET6
550	if (isipv6) {
551		nth->th_sum = 0;
552		nth->th_sum = in6_cksum(m, IPPROTO_TCP,
553					sizeof(struct ip6_hdr),
554					tlen - sizeof(struct ip6_hdr));
555		ip6->ip6_hlim = in6_selecthlim(tp != NULL ? tp->t_inpcb :
556		    NULL, NULL);
557	} else
558#endif /* INET6 */
559	{
560		nth->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
561		    htons((u_short)(tlen - sizeof(struct ip) + ip->ip_p)));
562		m->m_pkthdr.csum_flags = CSUM_TCP;
563		m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
564	}
565#ifdef TCPDEBUG
566	if (tp == NULL || (inp->inp_socket->so_options & SO_DEBUG))
567		tcp_trace(TA_OUTPUT, 0, tp, mtod(m, void *), th, 0);
568#endif
569#ifdef INET6
570	if (isipv6)
571		(void) ip6_output(m, NULL, NULL, ipflags, NULL, NULL, inp);
572	else
573#endif /* INET6 */
574	(void) ip_output(m, NULL, NULL, ipflags, NULL, inp);
575}
576
577/*
578 * Create a new TCP control block, making an
579 * empty reassembly queue and hooking it to the argument
580 * protocol control block.  The `inp' parameter must have
581 * come from the zone allocator set up in tcp_init().
582 */
583struct tcpcb *
584tcp_newtcpcb(inp)
585	struct inpcb *inp;
586{
587	struct tcpcb_mem *tm;
588	struct tcpcb *tp;
589#ifdef INET6
590	int isipv6 = (inp->inp_vflag & INP_IPV6) != 0;
591#endif /* INET6 */
592
593	tm = uma_zalloc(tcpcb_zone, M_NOWAIT | M_ZERO);
594	if (tm == NULL)
595		return (NULL);
596	tp = &tm->tcb;
597	/*	LIST_INIT(&tp->t_segq); */	/* XXX covered by M_ZERO */
598	tp->t_maxseg = tp->t_maxopd =
599#ifdef INET6
600		isipv6 ? tcp_v6mssdflt :
601#endif /* INET6 */
602		tcp_mssdflt;
603
604	/* Set up our timeouts. */
605	callout_init(tp->tt_rexmt = &tm->tcpcb_mem_rexmt, NET_CALLOUT_MPSAFE);
606	callout_init(tp->tt_persist = &tm->tcpcb_mem_persist, NET_CALLOUT_MPSAFE);
607	callout_init(tp->tt_keep = &tm->tcpcb_mem_keep, NET_CALLOUT_MPSAFE);
608	callout_init(tp->tt_2msl = &tm->tcpcb_mem_2msl, NET_CALLOUT_MPSAFE);
609	callout_init(tp->tt_delack = &tm->tcpcb_mem_delack, NET_CALLOUT_MPSAFE);
610
611	if (tcp_do_rfc1323)
612		tp->t_flags = (TF_REQ_SCALE|TF_REQ_TSTMP);
613	tp->sack_enable = tcp_do_sack;
614	TAILQ_INIT(&tp->snd_holes);
615	tp->t_inpcb = inp;	/* XXX */
616	/*
617	 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
618	 * rtt estimate.  Set rttvar so that srtt + 4 * rttvar gives
619	 * reasonable initial retransmit time.
620	 */
621	tp->t_srtt = TCPTV_SRTTBASE;
622	tp->t_rttvar = ((TCPTV_RTOBASE - TCPTV_SRTTBASE) << TCP_RTTVAR_SHIFT) / 4;
623	tp->t_rttmin = tcp_rexmit_min;
624	tp->t_rxtcur = TCPTV_RTOBASE;
625	tp->snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
626	tp->snd_bwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
627	tp->snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT;
628	tp->t_rcvtime = ticks;
629	tp->t_bw_rtttime = ticks;
630	/*
631	 * IPv4 TTL initialization is necessary for an IPv6 socket as well,
632	 * because the socket may be bound to an IPv6 wildcard address,
633	 * which may match an IPv4-mapped IPv6 address.
634	 */
635	inp->inp_ip_ttl = ip_defttl;
636	inp->inp_ppcb = (caddr_t)tp;
637	return (tp);		/* XXX */
638}
639
640/*
641 * Drop a TCP connection, reporting
642 * the specified error.  If connection is synchronized,
643 * then send a RST to peer.
644 */
645struct tcpcb *
646tcp_drop(tp, errno)
647	register struct tcpcb *tp;
648	int errno;
649{
650	struct socket *so = tp->t_inpcb->inp_socket;
651
652	INP_INFO_WLOCK_ASSERT(&tcbinfo);
653	INP_LOCK_ASSERT(tp->t_inpcb);
654
655	if (TCPS_HAVERCVDSYN(tp->t_state)) {
656		tp->t_state = TCPS_CLOSED;
657		(void) tcp_output(tp);
658		tcpstat.tcps_drops++;
659	} else
660		tcpstat.tcps_conndrops++;
661	if (errno == ETIMEDOUT && tp->t_softerror)
662		errno = tp->t_softerror;
663	so->so_error = errno;
664	return (tcp_close(tp));
665}
666
667void
668tcp_discardcb(tp)
669	struct tcpcb *tp;
670{
671	struct tseg_qent *q;
672	struct inpcb *inp = tp->t_inpcb;
673	struct socket *so = inp->inp_socket;
674#ifdef INET6
675	int isipv6 = (inp->inp_vflag & INP_IPV6) != 0;
676#endif /* INET6 */
677
678	/*
679	 * XXXRW: This is all very well and good, but actually, we might be
680	 * discarding the tcpcb after the socket is gone, so we can't do
681	 * this:
682	KASSERT(so != NULL, ("tcp_discardcb: so == NULL"));
683	 */
684	INP_LOCK_ASSERT(inp);
685
686	/*
687	 * Make sure that all of our timers are stopped before we
688	 * delete the PCB.
689	 */
690	callout_stop(tp->tt_rexmt);
691	callout_stop(tp->tt_persist);
692	callout_stop(tp->tt_keep);
693	callout_stop(tp->tt_2msl);
694	callout_stop(tp->tt_delack);
695
696	/*
697	 * If we got enough samples through the srtt filter,
698	 * save the rtt and rttvar in the routing entry.
699	 * 'Enough' is arbitrarily defined as 4 rtt samples.
700	 * 4 samples is enough for the srtt filter to converge
701	 * to within enough % of the correct value; fewer samples
702	 * and we could save a bogus rtt. The danger is not high
703	 * as tcp quickly recovers from everything.
704	 * XXX: Works very well but needs some more statistics!
705	 */
706	if (tp->t_rttupdated >= 4) {
707		struct hc_metrics_lite metrics;
708		u_long ssthresh;
709
710		bzero(&metrics, sizeof(metrics));
711		/*
712		 * Update the ssthresh always when the conditions below
713		 * are satisfied. This gives us better new start value
714		 * for the congestion avoidance for new connections.
715		 * ssthresh is only set if packet loss occured on a session.
716		 */
717		ssthresh = tp->snd_ssthresh;
718		if (ssthresh != 0 && ssthresh < so->so_snd.sb_hiwat / 2) {
719			/*
720			 * convert the limit from user data bytes to
721			 * packets then to packet data bytes.
722			 */
723			ssthresh = (ssthresh + tp->t_maxseg / 2) / tp->t_maxseg;
724			if (ssthresh < 2)
725				ssthresh = 2;
726			ssthresh *= (u_long)(tp->t_maxseg +
727#ifdef INET6
728				      (isipv6 ? sizeof (struct ip6_hdr) +
729					       sizeof (struct tcphdr) :
730#endif
731				       sizeof (struct tcpiphdr)
732#ifdef INET6
733				       )
734#endif
735				      );
736		} else
737			ssthresh = 0;
738		metrics.rmx_ssthresh = ssthresh;
739
740		metrics.rmx_rtt = tp->t_srtt;
741		metrics.rmx_rttvar = tp->t_rttvar;
742		/* XXX: This wraps if the pipe is more than 4 Gbit per second */
743		metrics.rmx_bandwidth = tp->snd_bandwidth;
744		metrics.rmx_cwnd = tp->snd_cwnd;
745		metrics.rmx_sendpipe = 0;
746		metrics.rmx_recvpipe = 0;
747
748		tcp_hc_update(&inp->inp_inc, &metrics);
749	}
750
751	/* free the reassembly queue, if any */
752	while ((q = LIST_FIRST(&tp->t_segq)) != NULL) {
753		LIST_REMOVE(q, tqe_q);
754		m_freem(q->tqe_m);
755		uma_zfree(tcp_reass_zone, q);
756		tp->t_segqlen--;
757		tcp_reass_qsize--;
758	}
759	tcp_free_sackholes(tp);
760	inp->inp_ppcb = NULL;
761	tp->t_inpcb = NULL;
762	uma_zfree(tcpcb_zone, tp);
763
764	/*
765	 * XXXRW: This seems a bit unclean.
766	 */
767	if (so != NULL)
768		soisdisconnected(so);
769}
770
771/*
772 * Attempt to close a TCP control block, marking it as dropped, and freeing
773 * the socket if we hold the only reference.
774 */
775struct tcpcb *
776tcp_close(tp)
777	struct tcpcb *tp;
778{
779	struct inpcb *inp = tp->t_inpcb;
780	struct socket *so;
781
782	INP_INFO_WLOCK_ASSERT(&tcbinfo);
783	INP_LOCK_ASSERT(inp);
784
785	inp->inp_vflag |= INP_DROPPED;
786
787	tcpstat.tcps_closed++;
788	KASSERT(inp->inp_socket != NULL, ("tcp_close: inp_socket NULL"));
789	so = inp->inp_socket;
790	soisdisconnected(so);
791	if (inp->inp_vflag & INP_SOCKREF) {
792		KASSERT(so->so_state & SS_PROTOREF,
793		    ("tcp_close: !SS_PROTOREF"));
794		inp->inp_vflag &= ~INP_SOCKREF;
795		tcp_discardcb(tp);
796#ifdef INET6
797		if (inp->inp_vflag & INP_IPV6PROTO) {
798			in6_pcbdetach(inp);
799			in6_pcbfree(inp);
800		} else {
801#endif
802			in_pcbdetach(inp);
803			in_pcbfree(inp);
804#ifdef INET6
805		}
806#endif
807		ACCEPT_LOCK();
808		SOCK_LOCK(so);
809		so->so_state &= ~SS_PROTOREF;
810		sofree(so);
811		return (NULL);
812	}
813	return (tp);
814}
815
816void
817tcp_drain()
818{
819	if (do_tcpdrain)
820	{
821		struct inpcb *inpb;
822		struct tcpcb *tcpb;
823		struct tseg_qent *te;
824
825	/*
826	 * Walk the tcpbs, if existing, and flush the reassembly queue,
827	 * if there is one...
828	 * XXX: The "Net/3" implementation doesn't imply that the TCP
829	 *      reassembly queue should be flushed, but in a situation
830	 *	where we're really low on mbufs, this is potentially
831	 *	usefull.
832	 */
833		INP_INFO_RLOCK(&tcbinfo);
834		LIST_FOREACH(inpb, tcbinfo.listhead, inp_list) {
835			if (inpb->inp_vflag & INP_TIMEWAIT)
836				continue;
837			INP_LOCK(inpb);
838			if ((tcpb = intotcpcb(inpb)) != NULL) {
839				while ((te = LIST_FIRST(&tcpb->t_segq))
840			            != NULL) {
841					LIST_REMOVE(te, tqe_q);
842					m_freem(te->tqe_m);
843					uma_zfree(tcp_reass_zone, te);
844					tcpb->t_segqlen--;
845					tcp_reass_qsize--;
846				}
847				tcp_clean_sackreport(tcpb);
848			}
849			INP_UNLOCK(inpb);
850		}
851		INP_INFO_RUNLOCK(&tcbinfo);
852	}
853}
854
855/*
856 * Notify a tcp user of an asynchronous error;
857 * store error as soft error, but wake up user
858 * (for now, won't do anything until can select for soft error).
859 *
860 * Do not wake up user since there currently is no mechanism for
861 * reporting soft errors (yet - a kqueue filter may be added).
862 */
863static struct inpcb *
864tcp_notify(inp, error)
865	struct inpcb *inp;
866	int error;
867{
868	struct tcpcb *tp = (struct tcpcb *)inp->inp_ppcb;
869
870	INP_INFO_WLOCK_ASSERT(&tcbinfo);
871	INP_LOCK_ASSERT(inp);
872
873	/*
874	 * Ignore some errors if we are hooked up.
875	 * If connection hasn't completed, has retransmitted several times,
876	 * and receives a second error, give up now.  This is better
877	 * than waiting a long time to establish a connection that
878	 * can never complete.
879	 */
880	if (tp->t_state == TCPS_ESTABLISHED &&
881	    (error == EHOSTUNREACH || error == ENETUNREACH ||
882	     error == EHOSTDOWN)) {
883		return (inp);
884	} else if (tp->t_state < TCPS_ESTABLISHED && tp->t_rxtshift > 3 &&
885	    tp->t_softerror) {
886		tp = tcp_drop(tp, error);
887		if (tp != NULL)
888			return (inp);
889		else
890			return (NULL);
891	} else {
892		tp->t_softerror = error;
893		return (inp);
894	}
895#if 0
896	wakeup( &so->so_timeo);
897	sorwakeup(so);
898	sowwakeup(so);
899#endif
900}
901
902static int
903tcp_pcblist(SYSCTL_HANDLER_ARGS)
904{
905	int error, i, n;
906	struct inpcb *inp, **inp_list;
907	inp_gen_t gencnt;
908	struct xinpgen xig;
909
910	/*
911	 * The process of preparing the TCB list is too time-consuming and
912	 * resource-intensive to repeat twice on every request.
913	 */
914	if (req->oldptr == NULL) {
915		n = tcbinfo.ipi_count;
916		req->oldidx = 2 * (sizeof xig)
917			+ (n + n/8) * sizeof(struct xtcpcb);
918		return (0);
919	}
920
921	if (req->newptr != NULL)
922		return (EPERM);
923
924	/*
925	 * OK, now we're committed to doing something.
926	 */
927	INP_INFO_RLOCK(&tcbinfo);
928	gencnt = tcbinfo.ipi_gencnt;
929	n = tcbinfo.ipi_count;
930	INP_INFO_RUNLOCK(&tcbinfo);
931
932	error = sysctl_wire_old_buffer(req, 2 * (sizeof xig)
933		+ n * sizeof(struct xtcpcb));
934	if (error != 0)
935		return (error);
936
937	xig.xig_len = sizeof xig;
938	xig.xig_count = n;
939	xig.xig_gen = gencnt;
940	xig.xig_sogen = so_gencnt;
941	error = SYSCTL_OUT(req, &xig, sizeof xig);
942	if (error)
943		return (error);
944
945	inp_list = malloc(n * sizeof *inp_list, M_TEMP, M_WAITOK);
946	if (inp_list == NULL)
947		return (ENOMEM);
948
949	INP_INFO_RLOCK(&tcbinfo);
950	for (inp = LIST_FIRST(tcbinfo.listhead), i = 0; inp != NULL && i < n;
951	     inp = LIST_NEXT(inp, inp_list)) {
952		INP_LOCK(inp);
953		if (inp->inp_gencnt <= gencnt) {
954			/*
955			 * XXX: This use of cr_cansee(), introduced with
956			 * TCP state changes, is not quite right, but for
957			 * now, better than nothing.
958			 */
959			if (inp->inp_vflag & INP_TIMEWAIT)
960				error = cr_cansee(req->td->td_ucred,
961				    intotw(inp)->tw_cred);
962			else
963				error = cr_canseesocket(req->td->td_ucred,
964				    inp->inp_socket);
965			if (error == 0)
966				inp_list[i++] = inp;
967		}
968		INP_UNLOCK(inp);
969	}
970	INP_INFO_RUNLOCK(&tcbinfo);
971	n = i;
972
973	error = 0;
974	for (i = 0; i < n; i++) {
975		inp = inp_list[i];
976		if (inp->inp_gencnt <= gencnt) {
977			struct xtcpcb xt;
978			caddr_t inp_ppcb;
979
980			bzero(&xt, sizeof(xt));
981			xt.xt_len = sizeof xt;
982			/* XXX should avoid extra copy */
983			bcopy(inp, &xt.xt_inp, sizeof *inp);
984			inp_ppcb = inp->inp_ppcb;
985			if (inp_ppcb == NULL)
986				bzero((char *) &xt.xt_tp, sizeof xt.xt_tp);
987			else if (inp->inp_vflag & INP_TIMEWAIT) {
988				bzero((char *) &xt.xt_tp, sizeof xt.xt_tp);
989				xt.xt_tp.t_state = TCPS_TIME_WAIT;
990			} else
991				bcopy(inp_ppcb, &xt.xt_tp, sizeof xt.xt_tp);
992			if (inp->inp_socket != NULL)
993				sotoxsocket(inp->inp_socket, &xt.xt_socket);
994			else {
995				bzero(&xt.xt_socket, sizeof xt.xt_socket);
996				xt.xt_socket.xso_protocol = IPPROTO_TCP;
997			}
998			xt.xt_inp.inp_gencnt = inp->inp_gencnt;
999			error = SYSCTL_OUT(req, &xt, sizeof xt);
1000		}
1001	}
1002	if (!error) {
1003		/*
1004		 * Give the user an updated idea of our state.
1005		 * If the generation differs from what we told
1006		 * her before, she knows that something happened
1007		 * while we were processing this request, and it
1008		 * might be necessary to retry.
1009		 */
1010		INP_INFO_RLOCK(&tcbinfo);
1011		xig.xig_gen = tcbinfo.ipi_gencnt;
1012		xig.xig_sogen = so_gencnt;
1013		xig.xig_count = tcbinfo.ipi_count;
1014		INP_INFO_RUNLOCK(&tcbinfo);
1015		error = SYSCTL_OUT(req, &xig, sizeof xig);
1016	}
1017	free(inp_list, M_TEMP);
1018	return (error);
1019}
1020
1021SYSCTL_PROC(_net_inet_tcp, TCPCTL_PCBLIST, pcblist, CTLFLAG_RD, 0, 0,
1022	    tcp_pcblist, "S,xtcpcb", "List of active TCP connections");
1023
1024static int
1025tcp_getcred(SYSCTL_HANDLER_ARGS)
1026{
1027	struct xucred xuc;
1028	struct sockaddr_in addrs[2];
1029	struct inpcb *inp;
1030	int error;
1031
1032	error = suser_cred(req->td->td_ucred, SUSER_ALLOWJAIL);
1033	if (error)
1034		return (error);
1035	error = SYSCTL_IN(req, addrs, sizeof(addrs));
1036	if (error)
1037		return (error);
1038	INP_INFO_RLOCK(&tcbinfo);
1039	inp = in_pcblookup_hash(&tcbinfo, addrs[1].sin_addr, addrs[1].sin_port,
1040	    addrs[0].sin_addr, addrs[0].sin_port, 0, NULL);
1041	if (inp == NULL) {
1042		error = ENOENT;
1043		goto outunlocked;
1044	}
1045	INP_LOCK(inp);
1046	if (inp->inp_socket == NULL) {
1047		error = ENOENT;
1048		goto out;
1049	}
1050	error = cr_canseesocket(req->td->td_ucred, inp->inp_socket);
1051	if (error)
1052		goto out;
1053	cru2x(inp->inp_socket->so_cred, &xuc);
1054out:
1055	INP_UNLOCK(inp);
1056outunlocked:
1057	INP_INFO_RUNLOCK(&tcbinfo);
1058	if (error == 0)
1059		error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred));
1060	return (error);
1061}
1062
1063SYSCTL_PROC(_net_inet_tcp, OID_AUTO, getcred,
1064    CTLTYPE_OPAQUE|CTLFLAG_RW|CTLFLAG_PRISON, 0, 0,
1065    tcp_getcred, "S,xucred", "Get the xucred of a TCP connection");
1066
1067#ifdef INET6
1068static int
1069tcp6_getcred(SYSCTL_HANDLER_ARGS)
1070{
1071	struct xucred xuc;
1072	struct sockaddr_in6 addrs[2];
1073	struct inpcb *inp;
1074	int error, mapped = 0;
1075
1076	error = suser_cred(req->td->td_ucred, SUSER_ALLOWJAIL);
1077	if (error)
1078		return (error);
1079	error = SYSCTL_IN(req, addrs, sizeof(addrs));
1080	if (error)
1081		return (error);
1082	if ((error = sa6_embedscope(&addrs[0], ip6_use_defzone)) != 0 ||
1083	    (error = sa6_embedscope(&addrs[1], ip6_use_defzone)) != 0) {
1084		return (error);
1085	}
1086	if (IN6_IS_ADDR_V4MAPPED(&addrs[0].sin6_addr)) {
1087		if (IN6_IS_ADDR_V4MAPPED(&addrs[1].sin6_addr))
1088			mapped = 1;
1089		else
1090			return (EINVAL);
1091	}
1092
1093	INP_INFO_RLOCK(&tcbinfo);
1094	if (mapped == 1)
1095		inp = in_pcblookup_hash(&tcbinfo,
1096			*(struct in_addr *)&addrs[1].sin6_addr.s6_addr[12],
1097			addrs[1].sin6_port,
1098			*(struct in_addr *)&addrs[0].sin6_addr.s6_addr[12],
1099			addrs[0].sin6_port,
1100			0, NULL);
1101	else
1102		inp = in6_pcblookup_hash(&tcbinfo,
1103			&addrs[1].sin6_addr, addrs[1].sin6_port,
1104			&addrs[0].sin6_addr, addrs[0].sin6_port, 0, NULL);
1105	if (inp == NULL) {
1106		error = ENOENT;
1107		goto outunlocked;
1108	}
1109	INP_LOCK(inp);
1110	if (inp->inp_socket == NULL) {
1111		error = ENOENT;
1112		goto out;
1113	}
1114	error = cr_canseesocket(req->td->td_ucred, inp->inp_socket);
1115	if (error)
1116		goto out;
1117	cru2x(inp->inp_socket->so_cred, &xuc);
1118out:
1119	INP_UNLOCK(inp);
1120outunlocked:
1121	INP_INFO_RUNLOCK(&tcbinfo);
1122	if (error == 0)
1123		error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred));
1124	return (error);
1125}
1126
1127SYSCTL_PROC(_net_inet6_tcp6, OID_AUTO, getcred,
1128    CTLTYPE_OPAQUE|CTLFLAG_RW|CTLFLAG_PRISON, 0, 0,
1129    tcp6_getcred, "S,xucred", "Get the xucred of a TCP6 connection");
1130#endif
1131
1132
1133void
1134tcp_ctlinput(cmd, sa, vip)
1135	int cmd;
1136	struct sockaddr *sa;
1137	void *vip;
1138{
1139	struct ip *ip = vip;
1140	struct tcphdr *th;
1141	struct in_addr faddr;
1142	struct inpcb *inp;
1143	struct tcpcb *tp;
1144	struct inpcb *(*notify)(struct inpcb *, int) = tcp_notify;
1145	struct icmp *icp;
1146	struct in_conninfo inc;
1147	tcp_seq icmp_tcp_seq;
1148	int mtu;
1149
1150	faddr = ((struct sockaddr_in *)sa)->sin_addr;
1151	if (sa->sa_family != AF_INET || faddr.s_addr == INADDR_ANY)
1152		return;
1153
1154	if (cmd == PRC_MSGSIZE)
1155		notify = tcp_mtudisc;
1156	else if (icmp_may_rst && (cmd == PRC_UNREACH_ADMIN_PROHIB ||
1157		cmd == PRC_UNREACH_PORT || cmd == PRC_TIMXCEED_INTRANS) && ip)
1158		notify = tcp_drop_syn_sent;
1159	/*
1160	 * Redirects don't need to be handled up here.
1161	 */
1162	else if (PRC_IS_REDIRECT(cmd))
1163		return;
1164	/*
1165	 * Source quench is depreciated.
1166	 */
1167	else if (cmd == PRC_QUENCH)
1168		return;
1169	/*
1170	 * Hostdead is ugly because it goes linearly through all PCBs.
1171	 * XXX: We never get this from ICMP, otherwise it makes an
1172	 * excellent DoS attack on machines with many connections.
1173	 */
1174	else if (cmd == PRC_HOSTDEAD)
1175		ip = NULL;
1176	else if ((unsigned)cmd >= PRC_NCMDS || inetctlerrmap[cmd] == 0)
1177		return;
1178	if (ip != NULL) {
1179		icp = (struct icmp *)((caddr_t)ip
1180				      - offsetof(struct icmp, icmp_ip));
1181		th = (struct tcphdr *)((caddr_t)ip
1182				       + (ip->ip_hl << 2));
1183		INP_INFO_WLOCK(&tcbinfo);
1184		inp = in_pcblookup_hash(&tcbinfo, faddr, th->th_dport,
1185		    ip->ip_src, th->th_sport, 0, NULL);
1186		if (inp != NULL)  {
1187			INP_LOCK(inp);
1188			if (inp->inp_socket != NULL) {
1189				icmp_tcp_seq = htonl(th->th_seq);
1190				tp = intotcpcb(inp);
1191				if (SEQ_GEQ(icmp_tcp_seq, tp->snd_una) &&
1192				    SEQ_LT(icmp_tcp_seq, tp->snd_max)) {
1193					if (cmd == PRC_MSGSIZE) {
1194					    /*
1195					     * MTU discovery:
1196					     * If we got a needfrag set the MTU
1197					     * in the route to the suggested new
1198					     * value (if given) and then notify.
1199					     */
1200					    bzero(&inc, sizeof(inc));
1201					    inc.inc_flags = 0;	/* IPv4 */
1202					    inc.inc_faddr = faddr;
1203
1204					    mtu = ntohs(icp->icmp_nextmtu);
1205					    /*
1206					     * If no alternative MTU was
1207					     * proposed, try the next smaller
1208					     * one.  ip->ip_len has already
1209					     * been swapped in icmp_input().
1210					     */
1211					    if (!mtu)
1212						mtu = ip_next_mtu(ip->ip_len,
1213						 1);
1214					    if (mtu < max(296, (tcp_minmss)
1215						 + sizeof(struct tcpiphdr)))
1216						mtu = 0;
1217					    if (!mtu)
1218						mtu = tcp_mssdflt
1219						 + sizeof(struct tcpiphdr);
1220					    /*
1221					     * Only cache the the MTU if it
1222					     * is smaller than the interface
1223					     * or route MTU.  tcp_mtudisc()
1224					     * will do right thing by itself.
1225					     */
1226					    if (mtu <= tcp_maxmtu(&inc))
1227						tcp_hc_updatemtu(&inc, mtu);
1228					}
1229
1230					inp = (*notify)(inp, inetctlerrmap[cmd]);
1231				}
1232			}
1233			if (inp != NULL)
1234				INP_UNLOCK(inp);
1235		} else {
1236			inc.inc_fport = th->th_dport;
1237			inc.inc_lport = th->th_sport;
1238			inc.inc_faddr = faddr;
1239			inc.inc_laddr = ip->ip_src;
1240#ifdef INET6
1241			inc.inc_isipv6 = 0;
1242#endif
1243			syncache_unreach(&inc, th);
1244		}
1245		INP_INFO_WUNLOCK(&tcbinfo);
1246	} else
1247		in_pcbnotifyall(&tcbinfo, faddr, inetctlerrmap[cmd], notify);
1248}
1249
1250#ifdef INET6
1251void
1252tcp6_ctlinput(cmd, sa, d)
1253	int cmd;
1254	struct sockaddr *sa;
1255	void *d;
1256{
1257	struct tcphdr th;
1258	struct inpcb *(*notify)(struct inpcb *, int) = tcp_notify;
1259	struct ip6_hdr *ip6;
1260	struct mbuf *m;
1261	struct ip6ctlparam *ip6cp = NULL;
1262	const struct sockaddr_in6 *sa6_src = NULL;
1263	int off;
1264	struct tcp_portonly {
1265		u_int16_t th_sport;
1266		u_int16_t th_dport;
1267	} *thp;
1268
1269	if (sa->sa_family != AF_INET6 ||
1270	    sa->sa_len != sizeof(struct sockaddr_in6))
1271		return;
1272
1273	if (cmd == PRC_MSGSIZE)
1274		notify = tcp_mtudisc;
1275	else if (!PRC_IS_REDIRECT(cmd) &&
1276		 ((unsigned)cmd >= PRC_NCMDS || inet6ctlerrmap[cmd] == 0))
1277		return;
1278	/* Source quench is depreciated. */
1279	else if (cmd == PRC_QUENCH)
1280		return;
1281
1282	/* if the parameter is from icmp6, decode it. */
1283	if (d != NULL) {
1284		ip6cp = (struct ip6ctlparam *)d;
1285		m = ip6cp->ip6c_m;
1286		ip6 = ip6cp->ip6c_ip6;
1287		off = ip6cp->ip6c_off;
1288		sa6_src = ip6cp->ip6c_src;
1289	} else {
1290		m = NULL;
1291		ip6 = NULL;
1292		off = 0;	/* fool gcc */
1293		sa6_src = &sa6_any;
1294	}
1295
1296	if (ip6 != NULL) {
1297		struct in_conninfo inc;
1298		/*
1299		 * XXX: We assume that when IPV6 is non NULL,
1300		 * M and OFF are valid.
1301		 */
1302
1303		/* check if we can safely examine src and dst ports */
1304		if (m->m_pkthdr.len < off + sizeof(*thp))
1305			return;
1306
1307		bzero(&th, sizeof(th));
1308		m_copydata(m, off, sizeof(*thp), (caddr_t)&th);
1309
1310		in6_pcbnotify(&tcbinfo, sa, th.th_dport,
1311		    (struct sockaddr *)ip6cp->ip6c_src,
1312		    th.th_sport, cmd, NULL, notify);
1313
1314		inc.inc_fport = th.th_dport;
1315		inc.inc_lport = th.th_sport;
1316		inc.inc6_faddr = ((struct sockaddr_in6 *)sa)->sin6_addr;
1317		inc.inc6_laddr = ip6cp->ip6c_src->sin6_addr;
1318		inc.inc_isipv6 = 1;
1319		INP_INFO_WLOCK(&tcbinfo);
1320		syncache_unreach(&inc, &th);
1321		INP_INFO_WUNLOCK(&tcbinfo);
1322	} else
1323		in6_pcbnotify(&tcbinfo, sa, 0, (const struct sockaddr *)sa6_src,
1324			      0, cmd, NULL, notify);
1325}
1326#endif /* INET6 */
1327
1328
1329/*
1330 * Following is where TCP initial sequence number generation occurs.
1331 *
1332 * There are two places where we must use initial sequence numbers:
1333 * 1.  In SYN-ACK packets.
1334 * 2.  In SYN packets.
1335 *
1336 * All ISNs for SYN-ACK packets are generated by the syncache.  See
1337 * tcp_syncache.c for details.
1338 *
1339 * The ISNs in SYN packets must be monotonic; TIME_WAIT recycling
1340 * depends on this property.  In addition, these ISNs should be
1341 * unguessable so as to prevent connection hijacking.  To satisfy
1342 * the requirements of this situation, the algorithm outlined in
1343 * RFC 1948 is used, with only small modifications.
1344 *
1345 * Implementation details:
1346 *
1347 * Time is based off the system timer, and is corrected so that it
1348 * increases by one megabyte per second.  This allows for proper
1349 * recycling on high speed LANs while still leaving over an hour
1350 * before rollover.
1351 *
1352 * As reading the *exact* system time is too expensive to be done
1353 * whenever setting up a TCP connection, we increment the time
1354 * offset in two ways.  First, a small random positive increment
1355 * is added to isn_offset for each connection that is set up.
1356 * Second, the function tcp_isn_tick fires once per clock tick
1357 * and increments isn_offset as necessary so that sequence numbers
1358 * are incremented at approximately ISN_BYTES_PER_SECOND.  The
1359 * random positive increments serve only to ensure that the same
1360 * exact sequence number is never sent out twice (as could otherwise
1361 * happen when a port is recycled in less than the system tick
1362 * interval.)
1363 *
1364 * net.inet.tcp.isn_reseed_interval controls the number of seconds
1365 * between seeding of isn_secret.  This is normally set to zero,
1366 * as reseeding should not be necessary.
1367 *
1368 * Locking of the global variables isn_secret, isn_last_reseed, isn_offset,
1369 * isn_offset_old, and isn_ctx is performed using the TCP pcbinfo lock.  In
1370 * general, this means holding an exclusive (write) lock.
1371 */
1372
1373#define ISN_BYTES_PER_SECOND 1048576
1374#define ISN_STATIC_INCREMENT 4096
1375#define ISN_RANDOM_INCREMENT (4096 - 1)
1376
1377static u_char isn_secret[32];
1378static int isn_last_reseed;
1379static u_int32_t isn_offset, isn_offset_old;
1380static MD5_CTX isn_ctx;
1381
1382tcp_seq
1383tcp_new_isn(tp)
1384	struct tcpcb *tp;
1385{
1386	u_int32_t md5_buffer[4];
1387	tcp_seq new_isn;
1388
1389	INP_INFO_WLOCK_ASSERT(&tcbinfo);
1390	INP_LOCK_ASSERT(tp->t_inpcb);
1391
1392	/* Seed if this is the first use, reseed if requested. */
1393	if ((isn_last_reseed == 0) || ((tcp_isn_reseed_interval > 0) &&
1394	     (((u_int)isn_last_reseed + (u_int)tcp_isn_reseed_interval*hz)
1395		< (u_int)ticks))) {
1396		read_random(&isn_secret, sizeof(isn_secret));
1397		isn_last_reseed = ticks;
1398	}
1399
1400	/* Compute the md5 hash and return the ISN. */
1401	MD5Init(&isn_ctx);
1402	MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_fport, sizeof(u_short));
1403	MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_lport, sizeof(u_short));
1404#ifdef INET6
1405	if ((tp->t_inpcb->inp_vflag & INP_IPV6) != 0) {
1406		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_faddr,
1407			  sizeof(struct in6_addr));
1408		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_laddr,
1409			  sizeof(struct in6_addr));
1410	} else
1411#endif
1412	{
1413		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_faddr,
1414			  sizeof(struct in_addr));
1415		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_laddr,
1416			  sizeof(struct in_addr));
1417	}
1418	MD5Update(&isn_ctx, (u_char *) &isn_secret, sizeof(isn_secret));
1419	MD5Final((u_char *) &md5_buffer, &isn_ctx);
1420	new_isn = (tcp_seq) md5_buffer[0];
1421	isn_offset += ISN_STATIC_INCREMENT +
1422		(arc4random() & ISN_RANDOM_INCREMENT);
1423	new_isn += isn_offset;
1424	return (new_isn);
1425}
1426
1427/*
1428 * Increment the offset to the next ISN_BYTES_PER_SECOND / hz boundary
1429 * to keep time flowing at a relatively constant rate.  If the random
1430 * increments have already pushed us past the projected offset, do nothing.
1431 */
1432static void
1433tcp_isn_tick(xtp)
1434	void *xtp;
1435{
1436	u_int32_t projected_offset;
1437
1438	INP_INFO_WLOCK(&tcbinfo);
1439	projected_offset = isn_offset_old + ISN_BYTES_PER_SECOND / 100;
1440
1441	if (projected_offset > isn_offset)
1442		isn_offset = projected_offset;
1443
1444	isn_offset_old = isn_offset;
1445	callout_reset(&isn_callout, hz/100, tcp_isn_tick, NULL);
1446	INP_INFO_WUNLOCK(&tcbinfo);
1447}
1448
1449/*
1450 * When a specific ICMP unreachable message is received and the
1451 * connection state is SYN-SENT, drop the connection.  This behavior
1452 * is controlled by the icmp_may_rst sysctl.
1453 */
1454struct inpcb *
1455tcp_drop_syn_sent(inp, errno)
1456	struct inpcb *inp;
1457	int errno;
1458{
1459	struct tcpcb *tp = intotcpcb(inp);
1460
1461	INP_INFO_WLOCK_ASSERT(&tcbinfo);
1462	INP_LOCK_ASSERT(inp);
1463
1464	if (tp != NULL && tp->t_state == TCPS_SYN_SENT) {
1465		tp = tcp_drop(tp, errno);
1466		if (tp != NULL)
1467			return (inp);
1468		else
1469			return (NULL);
1470	}
1471	return (inp);
1472}
1473
1474/*
1475 * When `need fragmentation' ICMP is received, update our idea of the MSS
1476 * based on the new value in the route.  Also nudge TCP to send something,
1477 * since we know the packet we just sent was dropped.
1478 * This duplicates some code in the tcp_mss() function in tcp_input.c.
1479 */
1480struct inpcb *
1481tcp_mtudisc(inp, errno)
1482	struct inpcb *inp;
1483	int errno;
1484{
1485	struct tcpcb *tp = intotcpcb(inp);
1486	struct socket *so = inp->inp_socket;
1487	u_int maxmtu;
1488	u_int romtu;
1489	int mss;
1490#ifdef INET6
1491	int isipv6;
1492#endif /* INET6 */
1493
1494	INP_LOCK_ASSERT(inp);
1495	if (tp != NULL) {
1496#ifdef INET6
1497		isipv6 = (tp->t_inpcb->inp_vflag & INP_IPV6) != 0;
1498#endif
1499		maxmtu = tcp_hc_getmtu(&inp->inp_inc); /* IPv4 and IPv6 */
1500		romtu =
1501#ifdef INET6
1502		    isipv6 ? tcp_maxmtu6(&inp->inp_inc) :
1503#endif /* INET6 */
1504		    tcp_maxmtu(&inp->inp_inc);
1505		if (!maxmtu)
1506			maxmtu = romtu;
1507		else
1508			maxmtu = min(maxmtu, romtu);
1509		if (!maxmtu) {
1510			tp->t_maxopd = tp->t_maxseg =
1511#ifdef INET6
1512				isipv6 ? tcp_v6mssdflt :
1513#endif /* INET6 */
1514				tcp_mssdflt;
1515			return (inp);
1516		}
1517		mss = maxmtu -
1518#ifdef INET6
1519			(isipv6 ?
1520			 sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
1521#endif /* INET6 */
1522			 sizeof(struct tcpiphdr)
1523#ifdef INET6
1524			 )
1525#endif /* INET6 */
1526			;
1527
1528		/*
1529		 * XXX - The above conditional probably violates the TCP
1530		 * spec.  The problem is that, since we don't know the
1531		 * other end's MSS, we are supposed to use a conservative
1532		 * default.  But, if we do that, then MTU discovery will
1533		 * never actually take place, because the conservative
1534		 * default is much less than the MTUs typically seen
1535		 * on the Internet today.  For the moment, we'll sweep
1536		 * this under the carpet.
1537		 *
1538		 * The conservative default might not actually be a problem
1539		 * if the only case this occurs is when sending an initial
1540		 * SYN with options and data to a host we've never talked
1541		 * to before.  Then, they will reply with an MSS value which
1542		 * will get recorded and the new parameters should get
1543		 * recomputed.  For Further Study.
1544		 */
1545		if (tp->t_maxopd <= mss)
1546			return (inp);
1547		tp->t_maxopd = mss;
1548
1549		if ((tp->t_flags & (TF_REQ_TSTMP|TF_NOOPT)) == TF_REQ_TSTMP &&
1550		    (tp->t_flags & TF_RCVD_TSTMP) == TF_RCVD_TSTMP)
1551			mss -= TCPOLEN_TSTAMP_APPA;
1552#if	(MCLBYTES & (MCLBYTES - 1)) == 0
1553		if (mss > MCLBYTES)
1554			mss &= ~(MCLBYTES-1);
1555#else
1556		if (mss > MCLBYTES)
1557			mss = mss / MCLBYTES * MCLBYTES;
1558#endif
1559		if (so->so_snd.sb_hiwat < mss)
1560			mss = so->so_snd.sb_hiwat;
1561
1562		tp->t_maxseg = mss;
1563
1564		tcpstat.tcps_mturesent++;
1565		tp->t_rtttime = 0;
1566		tp->snd_nxt = tp->snd_una;
1567		tcp_output(tp);
1568	}
1569	return (inp);
1570}
1571
1572/*
1573 * Look-up the routing entry to the peer of this inpcb.  If no route
1574 * is found and it cannot be allocated, then return NULL.  This routine
1575 * is called by TCP routines that access the rmx structure and by tcp_mss
1576 * to get the interface MTU.
1577 */
1578u_long
1579tcp_maxmtu(inc)
1580	struct in_conninfo *inc;
1581{
1582	struct route sro;
1583	struct sockaddr_in *dst;
1584	struct ifnet *ifp;
1585	u_long maxmtu = 0;
1586
1587	KASSERT(inc != NULL, ("tcp_maxmtu with NULL in_conninfo pointer"));
1588
1589	bzero(&sro, sizeof(sro));
1590	if (inc->inc_faddr.s_addr != INADDR_ANY) {
1591	        dst = (struct sockaddr_in *)&sro.ro_dst;
1592		dst->sin_family = AF_INET;
1593		dst->sin_len = sizeof(*dst);
1594		dst->sin_addr = inc->inc_faddr;
1595		rtalloc_ign(&sro, RTF_CLONING);
1596	}
1597	if (sro.ro_rt != NULL) {
1598		ifp = sro.ro_rt->rt_ifp;
1599		if (sro.ro_rt->rt_rmx.rmx_mtu == 0)
1600			maxmtu = ifp->if_mtu;
1601		else
1602			maxmtu = min(sro.ro_rt->rt_rmx.rmx_mtu, ifp->if_mtu);
1603		RTFREE(sro.ro_rt);
1604	}
1605	return (maxmtu);
1606}
1607
1608#ifdef INET6
1609u_long
1610tcp_maxmtu6(inc)
1611	struct in_conninfo *inc;
1612{
1613	struct route_in6 sro6;
1614	struct ifnet *ifp;
1615	u_long maxmtu = 0;
1616
1617	KASSERT(inc != NULL, ("tcp_maxmtu6 with NULL in_conninfo pointer"));
1618
1619	bzero(&sro6, sizeof(sro6));
1620	if (!IN6_IS_ADDR_UNSPECIFIED(&inc->inc6_faddr)) {
1621		sro6.ro_dst.sin6_family = AF_INET6;
1622		sro6.ro_dst.sin6_len = sizeof(struct sockaddr_in6);
1623		sro6.ro_dst.sin6_addr = inc->inc6_faddr;
1624		rtalloc_ign((struct route *)&sro6, RTF_CLONING);
1625	}
1626	if (sro6.ro_rt != NULL) {
1627		ifp = sro6.ro_rt->rt_ifp;
1628		if (sro6.ro_rt->rt_rmx.rmx_mtu == 0)
1629			maxmtu = IN6_LINKMTU(sro6.ro_rt->rt_ifp);
1630		else
1631			maxmtu = min(sro6.ro_rt->rt_rmx.rmx_mtu,
1632				     IN6_LINKMTU(sro6.ro_rt->rt_ifp));
1633		RTFREE(sro6.ro_rt);
1634	}
1635
1636	return (maxmtu);
1637}
1638#endif /* INET6 */
1639
1640#ifdef IPSEC
1641/* compute ESP/AH header size for TCP, including outer IP header. */
1642size_t
1643ipsec_hdrsiz_tcp(tp)
1644	struct tcpcb *tp;
1645{
1646	struct inpcb *inp;
1647	struct mbuf *m;
1648	size_t hdrsiz;
1649	struct ip *ip;
1650#ifdef INET6
1651	struct ip6_hdr *ip6;
1652#endif
1653	struct tcphdr *th;
1654
1655	if ((tp == NULL) || ((inp = tp->t_inpcb) == NULL))
1656		return (0);
1657	MGETHDR(m, M_DONTWAIT, MT_DATA);
1658	if (!m)
1659		return (0);
1660
1661#ifdef INET6
1662	if ((inp->inp_vflag & INP_IPV6) != 0) {
1663		ip6 = mtod(m, struct ip6_hdr *);
1664		th = (struct tcphdr *)(ip6 + 1);
1665		m->m_pkthdr.len = m->m_len =
1666			sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
1667		tcpip_fillheaders(inp, ip6, th);
1668		hdrsiz = ipsec6_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
1669	} else
1670#endif /* INET6 */
1671	{
1672		ip = mtod(m, struct ip *);
1673		th = (struct tcphdr *)(ip + 1);
1674		m->m_pkthdr.len = m->m_len = sizeof(struct tcpiphdr);
1675		tcpip_fillheaders(inp, ip, th);
1676		hdrsiz = ipsec4_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
1677	}
1678
1679	m_free(m);
1680	return (hdrsiz);
1681}
1682#endif /*IPSEC*/
1683
1684/*
1685 * Move a TCP connection into TIME_WAIT state.
1686 *    tcbinfo is locked.
1687 *    inp is locked, and is unlocked before returning.
1688 */
1689void
1690tcp_twstart(tp)
1691	struct tcpcb *tp;
1692{
1693	struct tcptw *tw;
1694	struct inpcb *inp;
1695	int tw_time, acknow;
1696	struct socket *so;
1697
1698	INP_INFO_WLOCK_ASSERT(&tcbinfo);	/* tcp_timer_2msl_reset(). */
1699	INP_LOCK_ASSERT(tp->t_inpcb);
1700
1701	tw = uma_zalloc(tcptw_zone, M_NOWAIT);
1702	if (tw == NULL) {
1703		tw = tcp_timer_2msl_tw(1);
1704		if (tw == NULL) {
1705			tp = tcp_close(tp);
1706			if (tp != NULL)
1707				INP_UNLOCK(tp->t_inpcb);
1708			return;
1709		}
1710	}
1711	inp = tp->t_inpcb;
1712	tw->tw_inpcb = inp;
1713
1714	/*
1715	 * Recover last window size sent.
1716	 */
1717	tw->last_win = (tp->rcv_adv - tp->rcv_nxt) >> tp->rcv_scale;
1718
1719	/*
1720	 * Set t_recent if timestamps are used on the connection.
1721	 */
1722	if ((tp->t_flags & (TF_REQ_TSTMP|TF_RCVD_TSTMP|TF_NOOPT)) ==
1723	    (TF_REQ_TSTMP|TF_RCVD_TSTMP))
1724		tw->t_recent = tp->ts_recent;
1725	else
1726		tw->t_recent = 0;
1727
1728	tw->snd_nxt = tp->snd_nxt;
1729	tw->rcv_nxt = tp->rcv_nxt;
1730	tw->iss     = tp->iss;
1731	tw->irs     = tp->irs;
1732	tw->t_starttime = tp->t_starttime;
1733	tw->tw_time = 0;
1734
1735/* XXX
1736 * If this code will
1737 * be used for fin-wait-2 state also, then we may need
1738 * a ts_recent from the last segment.
1739 */
1740	tw_time = 2 * tcp_msl;
1741	acknow = tp->t_flags & TF_ACKNOW;
1742
1743	/*
1744	 * First, discard tcpcb state, which includes stopping its timers and
1745	 * freeing it.  tcp_discardcb() used to also release the inpcb, but
1746	 * that work is now done in the caller.
1747	 */
1748	tcp_discardcb(tp);
1749	so = inp->inp_socket;
1750	SOCK_LOCK(so);
1751	tw->tw_cred = crhold(so->so_cred);
1752	tw->tw_so_options = so->so_options;
1753	SOCK_UNLOCK(so);
1754	if (acknow)
1755		tcp_twrespond(tw, TH_ACK);
1756	inp->inp_ppcb = (caddr_t)tw;
1757	inp->inp_vflag |= INP_TIMEWAIT;
1758	tcp_timer_2msl_reset(tw, tw_time);
1759
1760	/*
1761	 * If the inpcb owns the sole reference to the socket, then we can
1762	 * detach and free the socket as it is not needed in time wait.
1763	 */
1764	if (inp->inp_vflag & INP_SOCKREF) {
1765		KASSERT(so->so_state & SS_PROTOREF,
1766		    ("tcp_twstart: !SS_PROTOREF"));
1767		inp->inp_vflag &= ~INP_SOCKREF;
1768#ifdef INET6
1769		if (inp->inp_vflag & INP_IPV6PROTO)
1770			in6_pcbdetach(inp);
1771		else
1772#endif
1773			in_pcbdetach(inp);
1774		INP_UNLOCK(inp);
1775		ACCEPT_LOCK();
1776		SOCK_LOCK(so);
1777		so->so_state &= ~SS_PROTOREF;
1778		sofree(so);
1779	} else
1780		INP_UNLOCK(inp);
1781}
1782
1783/*
1784 * The appromixate rate of ISN increase of Microsoft TCP stacks;
1785 * the actual rate is slightly higher due to the addition of
1786 * random positive increments.
1787 *
1788 * Most other new OSes use semi-randomized ISN values, so we
1789 * do not need to worry about them.
1790 */
1791#define MS_ISN_BYTES_PER_SECOND		250000
1792
1793/*
1794 * Determine if the ISN we will generate has advanced beyond the last
1795 * sequence number used by the previous connection.  If so, indicate
1796 * that it is safe to recycle this tw socket by returning 1.
1797 *
1798 * XXXRW: This function should assert the inpcb lock as it does multiple
1799 * non-atomic reads from the tcptw, but is currently called without it from
1800 * in_pcb.c:in_pcblookup_local().
1801 */
1802int
1803tcp_twrecycleable(struct tcptw *tw)
1804{
1805	tcp_seq new_iss = tw->iss;
1806	tcp_seq new_irs = tw->irs;
1807
1808	new_iss += (ticks - tw->t_starttime) * (ISN_BYTES_PER_SECOND / hz);
1809	new_irs += (ticks - tw->t_starttime) * (MS_ISN_BYTES_PER_SECOND / hz);
1810
1811	if (SEQ_GT(new_iss, tw->snd_nxt) && SEQ_GT(new_irs, tw->rcv_nxt))
1812		return (1);
1813	else
1814		return (0);
1815}
1816
1817void
1818tcp_twclose(struct tcptw *tw, int reuse)
1819{
1820	struct socket *so;
1821	struct inpcb *inp;
1822
1823	/*
1824	 * At this point, we are in one of two situations:
1825	 *
1826	 * (1) We have no socket, just an inpcb<->twtcp pair.  Release it all
1827	 * after validating.
1828	 *
1829	 * (2) We have a socket, which we may or may now own the reference
1830	 * for.  If we own the reference, release all the state after
1831	 * validating.  If not, leave it for the socket close to clean up.
1832	 */
1833	inp = tw->tw_inpcb;
1834	KASSERT((inp->inp_vflag & INP_TIMEWAIT), ("tcp_twclose: !timewait"));
1835	KASSERT(inp->inp_ppcb == (void *)tw, ("tcp_twclose: inp_ppcb != tw"));
1836	INP_INFO_WLOCK_ASSERT(&tcbinfo);	/* tcp_timer_2msl_stop(). */
1837	INP_LOCK_ASSERT(inp);
1838
1839	tw->tw_inpcb = NULL;
1840	tcp_timer_2msl_stop(tw);
1841	inp->inp_ppcb = NULL;
1842	inp->inp_vflag |= INP_DROPPED;
1843
1844	so = inp->inp_socket;
1845	if (so != NULL) {
1846		if (inp->inp_vflag & INP_SOCKREF) {
1847			/*
1848			 * If a socket is present, and we own the only
1849			 * reference, we need to tear down the socket and the
1850			 * inpcb.
1851			 */
1852			inp->inp_vflag &= ~INP_SOCKREF;
1853#ifdef INET6
1854			if (inp->inp_vflag & INP_IPV6PROTO) {
1855				in6_pcbdetach(inp);
1856				in6_pcbfree(inp);
1857			} else {
1858				in_pcbdetach(inp);
1859				in_pcbfree(inp);
1860			}
1861#endif
1862			ACCEPT_LOCK();
1863			SOCK_LOCK(so);
1864			KASSERT(so->so_state & SS_PROTOREF,
1865			    ("tcp_twclose: INP_SOCKREF && !SS_PROTOREF"));
1866			so->so_state &= ~SS_PROTOREF;
1867			sofree(so);
1868		} else {
1869			/*
1870			 * If we don't own the only reference, the socket and
1871			 * inpcb need to be left around to be handled by
1872			 * tcp_usr_detach() later.
1873			 */
1874			INP_UNLOCK(inp);
1875		}
1876	} else {
1877#ifdef INET6
1878		if (inp->inp_vflag & INP_IPV6PROTO)
1879			in6_pcbfree(inp);
1880		else
1881#endif
1882			in_pcbfree(inp);
1883	}
1884	tcpstat.tcps_closed++;
1885	crfree(tw->tw_cred);
1886	tw->tw_cred = NULL;
1887	if (reuse)
1888		return;
1889	uma_zfree(tcptw_zone, tw);
1890}
1891
1892int
1893tcp_twrespond(struct tcptw *tw, int flags)
1894{
1895	struct inpcb *inp = tw->tw_inpcb;
1896	struct tcphdr *th;
1897	struct mbuf *m;
1898	struct ip *ip = NULL;
1899	u_int8_t *optp;
1900	u_int hdrlen, optlen;
1901	int error;
1902#ifdef INET6
1903	struct ip6_hdr *ip6 = NULL;
1904	int isipv6 = inp->inp_inc.inc_isipv6;
1905#endif
1906
1907	INP_LOCK_ASSERT(inp);
1908
1909	m = m_gethdr(M_DONTWAIT, MT_DATA);
1910	if (m == NULL)
1911		return (ENOBUFS);
1912	m->m_data += max_linkhdr;
1913
1914#ifdef MAC
1915	mac_create_mbuf_from_inpcb(inp, m);
1916#endif
1917
1918#ifdef INET6
1919	if (isipv6) {
1920		hdrlen = sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
1921		ip6 = mtod(m, struct ip6_hdr *);
1922		th = (struct tcphdr *)(ip6 + 1);
1923		tcpip_fillheaders(inp, ip6, th);
1924	} else
1925#endif
1926	{
1927		hdrlen = sizeof(struct tcpiphdr);
1928		ip = mtod(m, struct ip *);
1929		th = (struct tcphdr *)(ip + 1);
1930		tcpip_fillheaders(inp, ip, th);
1931	}
1932	optp = (u_int8_t *)(th + 1);
1933
1934	/*
1935	 * Send a timestamp and echo-reply if both our side and our peer
1936	 * have sent timestamps in our SYN's and this is not a RST.
1937	 */
1938	if (tw->t_recent && flags == TH_ACK) {
1939		u_int32_t *lp = (u_int32_t *)optp;
1940
1941		/* Form timestamp option as shown in appendix A of RFC 1323. */
1942		*lp++ = htonl(TCPOPT_TSTAMP_HDR);
1943		*lp++ = htonl(ticks);
1944		*lp   = htonl(tw->t_recent);
1945		optp += TCPOLEN_TSTAMP_APPA;
1946	}
1947
1948	optlen = optp - (u_int8_t *)(th + 1);
1949
1950	m->m_len = hdrlen + optlen;
1951	m->m_pkthdr.len = m->m_len;
1952
1953	KASSERT(max_linkhdr + m->m_len <= MHLEN, ("tcptw: mbuf too small"));
1954
1955	th->th_seq = htonl(tw->snd_nxt);
1956	th->th_ack = htonl(tw->rcv_nxt);
1957	th->th_off = (sizeof(struct tcphdr) + optlen) >> 2;
1958	th->th_flags = flags;
1959	th->th_win = htons(tw->last_win);
1960
1961#ifdef INET6
1962	if (isipv6) {
1963		th->th_sum = in6_cksum(m, IPPROTO_TCP, sizeof(struct ip6_hdr),
1964		    sizeof(struct tcphdr) + optlen);
1965		ip6->ip6_hlim = in6_selecthlim(inp, NULL);
1966		error = ip6_output(m, inp->in6p_outputopts, NULL,
1967		    (tw->tw_so_options & SO_DONTROUTE), NULL, NULL, inp);
1968	} else
1969#endif
1970	{
1971		th->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
1972		    htons(sizeof(struct tcphdr) + optlen + IPPROTO_TCP));
1973		m->m_pkthdr.csum_flags = CSUM_TCP;
1974		m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
1975		ip->ip_len = m->m_pkthdr.len;
1976		if (path_mtu_discovery)
1977			ip->ip_off |= IP_DF;
1978		error = ip_output(m, inp->inp_options, NULL,
1979		    ((tw->tw_so_options & SO_DONTROUTE) ? IP_ROUTETOIF : 0),
1980		    NULL, inp);
1981	}
1982	if (flags & TH_ACK)
1983		tcpstat.tcps_sndacks++;
1984	else
1985		tcpstat.tcps_sndctrl++;
1986	tcpstat.tcps_sndtotal++;
1987	return (error);
1988}
1989
1990/*
1991 * TCP BANDWIDTH DELAY PRODUCT WINDOW LIMITING
1992 *
1993 * This code attempts to calculate the bandwidth-delay product as a
1994 * means of determining the optimal window size to maximize bandwidth,
1995 * minimize RTT, and avoid the over-allocation of buffers on interfaces and
1996 * routers.  This code also does a fairly good job keeping RTTs in check
1997 * across slow links like modems.  We implement an algorithm which is very
1998 * similar (but not meant to be) TCP/Vegas.  The code operates on the
1999 * transmitter side of a TCP connection and so only effects the transmit
2000 * side of the connection.
2001 *
2002 * BACKGROUND:  TCP makes no provision for the management of buffer space
2003 * at the end points or at the intermediate routers and switches.  A TCP
2004 * stream, whether using NewReno or not, will eventually buffer as
2005 * many packets as it is able and the only reason this typically works is
2006 * due to the fairly small default buffers made available for a connection
2007 * (typicaly 16K or 32K).  As machines use larger windows and/or window
2008 * scaling it is now fairly easy for even a single TCP connection to blow-out
2009 * all available buffer space not only on the local interface, but on
2010 * intermediate routers and switches as well.  NewReno makes a misguided
2011 * attempt to 'solve' this problem by waiting for an actual failure to occur,
2012 * then backing off, then steadily increasing the window again until another
2013 * failure occurs, ad-infinitum.  This results in terrible oscillation that
2014 * is only made worse as network loads increase and the idea of intentionally
2015 * blowing out network buffers is, frankly, a terrible way to manage network
2016 * resources.
2017 *
2018 * It is far better to limit the transmit window prior to the failure
2019 * condition being achieved.  There are two general ways to do this:  First
2020 * you can 'scan' through different transmit window sizes and locate the
2021 * point where the RTT stops increasing, indicating that you have filled the
2022 * pipe, then scan backwards until you note that RTT stops decreasing, then
2023 * repeat ad-infinitum.  This method works in principle but has severe
2024 * implementation issues due to RTT variances, timer granularity, and
2025 * instability in the algorithm which can lead to many false positives and
2026 * create oscillations as well as interact badly with other TCP streams
2027 * implementing the same algorithm.
2028 *
2029 * The second method is to limit the window to the bandwidth delay product
2030 * of the link.  This is the method we implement.  RTT variances and our
2031 * own manipulation of the congestion window, bwnd, can potentially
2032 * destabilize the algorithm.  For this reason we have to stabilize the
2033 * elements used to calculate the window.  We do this by using the minimum
2034 * observed RTT, the long term average of the observed bandwidth, and
2035 * by adding two segments worth of slop.  It isn't perfect but it is able
2036 * to react to changing conditions and gives us a very stable basis on
2037 * which to extend the algorithm.
2038 */
2039void
2040tcp_xmit_bandwidth_limit(struct tcpcb *tp, tcp_seq ack_seq)
2041{
2042	u_long bw;
2043	u_long bwnd;
2044	int save_ticks;
2045
2046	INP_LOCK_ASSERT(tp->t_inpcb);
2047
2048	/*
2049	 * If inflight_enable is disabled in the middle of a tcp connection,
2050	 * make sure snd_bwnd is effectively disabled.
2051	 */
2052	if (tcp_inflight_enable == 0 || tp->t_rttlow < tcp_inflight_rttthresh) {
2053		tp->snd_bwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
2054		tp->snd_bandwidth = 0;
2055		return;
2056	}
2057
2058	/*
2059	 * Figure out the bandwidth.  Due to the tick granularity this
2060	 * is a very rough number and it MUST be averaged over a fairly
2061	 * long period of time.  XXX we need to take into account a link
2062	 * that is not using all available bandwidth, but for now our
2063	 * slop will ramp us up if this case occurs and the bandwidth later
2064	 * increases.
2065	 *
2066	 * Note: if ticks rollover 'bw' may wind up negative.  We must
2067	 * effectively reset t_bw_rtttime for this case.
2068	 */
2069	save_ticks = ticks;
2070	if ((u_int)(save_ticks - tp->t_bw_rtttime) < 1)
2071		return;
2072
2073	bw = (int64_t)(ack_seq - tp->t_bw_rtseq) * hz /
2074	    (save_ticks - tp->t_bw_rtttime);
2075	tp->t_bw_rtttime = save_ticks;
2076	tp->t_bw_rtseq = ack_seq;
2077	if (tp->t_bw_rtttime == 0 || (int)bw < 0)
2078		return;
2079	bw = ((int64_t)tp->snd_bandwidth * 15 + bw) >> 4;
2080
2081	tp->snd_bandwidth = bw;
2082
2083	/*
2084	 * Calculate the semi-static bandwidth delay product, plus two maximal
2085	 * segments.  The additional slop puts us squarely in the sweet
2086	 * spot and also handles the bandwidth run-up case and stabilization.
2087	 * Without the slop we could be locking ourselves into a lower
2088	 * bandwidth.
2089	 *
2090	 * Situations Handled:
2091	 *	(1) Prevents over-queueing of packets on LANs, especially on
2092	 *	    high speed LANs, allowing larger TCP buffers to be
2093	 *	    specified, and also does a good job preventing
2094	 *	    over-queueing of packets over choke points like modems
2095	 *	    (at least for the transmit side).
2096	 *
2097	 *	(2) Is able to handle changing network loads (bandwidth
2098	 *	    drops so bwnd drops, bandwidth increases so bwnd
2099	 *	    increases).
2100	 *
2101	 *	(3) Theoretically should stabilize in the face of multiple
2102	 *	    connections implementing the same algorithm (this may need
2103	 *	    a little work).
2104	 *
2105	 *	(4) Stability value (defaults to 20 = 2 maximal packets) can
2106	 *	    be adjusted with a sysctl but typically only needs to be
2107	 *	    on very slow connections.  A value no smaller then 5
2108	 *	    should be used, but only reduce this default if you have
2109	 *	    no other choice.
2110	 */
2111#define USERTT	((tp->t_srtt + tp->t_rttbest) / 2)
2112	bwnd = (int64_t)bw * USERTT / (hz << TCP_RTT_SHIFT) + tcp_inflight_stab * tp->t_maxseg / 10;
2113#undef USERTT
2114
2115	if (tcp_inflight_debug > 0) {
2116		static int ltime;
2117		if ((u_int)(ticks - ltime) >= hz / tcp_inflight_debug) {
2118			ltime = ticks;
2119			printf("%p bw %ld rttbest %d srtt %d bwnd %ld\n",
2120			    tp,
2121			    bw,
2122			    tp->t_rttbest,
2123			    tp->t_srtt,
2124			    bwnd
2125			);
2126		}
2127	}
2128	if ((long)bwnd < tcp_inflight_min)
2129		bwnd = tcp_inflight_min;
2130	if (bwnd > tcp_inflight_max)
2131		bwnd = tcp_inflight_max;
2132	if ((long)bwnd < tp->t_maxseg * 2)
2133		bwnd = tp->t_maxseg * 2;
2134	tp->snd_bwnd = bwnd;
2135}
2136
2137#ifdef TCP_SIGNATURE
2138/*
2139 * Callback function invoked by m_apply() to digest TCP segment data
2140 * contained within an mbuf chain.
2141 */
2142static int
2143tcp_signature_apply(void *fstate, void *data, u_int len)
2144{
2145
2146	MD5Update(fstate, (u_char *)data, len);
2147	return (0);
2148}
2149
2150/*
2151 * Compute TCP-MD5 hash of a TCPv4 segment. (RFC2385)
2152 *
2153 * Parameters:
2154 * m		pointer to head of mbuf chain
2155 * off0		offset to TCP header within the mbuf chain
2156 * len		length of TCP segment data, excluding options
2157 * optlen	length of TCP segment options
2158 * buf		pointer to storage for computed MD5 digest
2159 * direction	direction of flow (IPSEC_DIR_INBOUND or OUTBOUND)
2160 *
2161 * We do this over ip, tcphdr, segment data, and the key in the SADB.
2162 * When called from tcp_input(), we can be sure that th_sum has been
2163 * zeroed out and verified already.
2164 *
2165 * This function is for IPv4 use only. Calling this function with an
2166 * IPv6 packet in the mbuf chain will yield undefined results.
2167 *
2168 * Return 0 if successful, otherwise return -1.
2169 *
2170 * XXX The key is retrieved from the system's PF_KEY SADB, by keying a
2171 * search with the destination IP address, and a 'magic SPI' to be
2172 * determined by the application. This is hardcoded elsewhere to 1179
2173 * right now. Another branch of this code exists which uses the SPD to
2174 * specify per-application flows but it is unstable.
2175 */
2176int
2177tcp_signature_compute(struct mbuf *m, int off0, int len, int optlen,
2178    u_char *buf, u_int direction)
2179{
2180	union sockaddr_union dst;
2181	struct ippseudo ippseudo;
2182	MD5_CTX ctx;
2183	int doff;
2184	struct ip *ip;
2185	struct ipovly *ipovly;
2186	struct secasvar *sav;
2187	struct tcphdr *th;
2188	u_short savecsum;
2189
2190	KASSERT(m != NULL, ("NULL mbuf chain"));
2191	KASSERT(buf != NULL, ("NULL signature pointer"));
2192
2193	/* Extract the destination from the IP header in the mbuf. */
2194	ip = mtod(m, struct ip *);
2195	bzero(&dst, sizeof(union sockaddr_union));
2196	dst.sa.sa_len = sizeof(struct sockaddr_in);
2197	dst.sa.sa_family = AF_INET;
2198	dst.sin.sin_addr = (direction == IPSEC_DIR_INBOUND) ?
2199	    ip->ip_src : ip->ip_dst;
2200
2201	/* Look up an SADB entry which matches the address of the peer. */
2202	sav = KEY_ALLOCSA(&dst, IPPROTO_TCP, htonl(TCP_SIG_SPI));
2203	if (sav == NULL) {
2204		printf("%s: SADB lookup failed for %s\n", __func__,
2205		    inet_ntoa(dst.sin.sin_addr));
2206		return (EINVAL);
2207	}
2208
2209	MD5Init(&ctx);
2210	ipovly = (struct ipovly *)ip;
2211	th = (struct tcphdr *)((u_char *)ip + off0);
2212	doff = off0 + sizeof(struct tcphdr) + optlen;
2213
2214	/*
2215	 * Step 1: Update MD5 hash with IP pseudo-header.
2216	 *
2217	 * XXX The ippseudo header MUST be digested in network byte order,
2218	 * or else we'll fail the regression test. Assume all fields we've
2219	 * been doing arithmetic on have been in host byte order.
2220	 * XXX One cannot depend on ipovly->ih_len here. When called from
2221	 * tcp_output(), the underlying ip_len member has not yet been set.
2222	 */
2223	ippseudo.ippseudo_src = ipovly->ih_src;
2224	ippseudo.ippseudo_dst = ipovly->ih_dst;
2225	ippseudo.ippseudo_pad = 0;
2226	ippseudo.ippseudo_p = IPPROTO_TCP;
2227	ippseudo.ippseudo_len = htons(len + sizeof(struct tcphdr) + optlen);
2228	MD5Update(&ctx, (char *)&ippseudo, sizeof(struct ippseudo));
2229
2230	/*
2231	 * Step 2: Update MD5 hash with TCP header, excluding options.
2232	 * The TCP checksum must be set to zero.
2233	 */
2234	savecsum = th->th_sum;
2235	th->th_sum = 0;
2236	MD5Update(&ctx, (char *)th, sizeof(struct tcphdr));
2237	th->th_sum = savecsum;
2238
2239	/*
2240	 * Step 3: Update MD5 hash with TCP segment data.
2241	 *         Use m_apply() to avoid an early m_pullup().
2242	 */
2243	if (len > 0)
2244		m_apply(m, doff, len, tcp_signature_apply, &ctx);
2245
2246	/*
2247	 * Step 4: Update MD5 hash with shared secret.
2248	 */
2249	MD5Update(&ctx, _KEYBUF(sav->key_auth), _KEYLEN(sav->key_auth));
2250	MD5Final(buf, &ctx);
2251
2252	key_sa_recordxfer(sav, m);
2253	KEY_FREESAV(&sav);
2254	return (0);
2255}
2256#endif /* TCP_SIGNATURE */
2257
2258static int
2259sysctl_drop(SYSCTL_HANDLER_ARGS)
2260{
2261	/* addrs[0] is a foreign socket, addrs[1] is a local one. */
2262	struct sockaddr_storage addrs[2];
2263	struct inpcb *inp;
2264	struct tcpcb *tp;
2265	struct tcptw *tw;
2266	struct sockaddr_in *fin, *lin;
2267#ifdef INET6
2268	struct sockaddr_in6 *fin6, *lin6;
2269	struct in6_addr f6, l6;
2270#endif
2271	int error;
2272
2273	inp = NULL;
2274	fin = lin = NULL;
2275#ifdef INET6
2276	fin6 = lin6 = NULL;
2277#endif
2278	error = 0;
2279
2280	if (req->oldptr != NULL || req->oldlen != 0)
2281		return (EINVAL);
2282	if (req->newptr == NULL)
2283		return (EPERM);
2284	if (req->newlen < sizeof(addrs))
2285		return (ENOMEM);
2286	error = SYSCTL_IN(req, &addrs, sizeof(addrs));
2287	if (error)
2288		return (error);
2289
2290	switch (addrs[0].ss_family) {
2291#ifdef INET6
2292	case AF_INET6:
2293		fin6 = (struct sockaddr_in6 *)&addrs[0];
2294		lin6 = (struct sockaddr_in6 *)&addrs[1];
2295		if (fin6->sin6_len != sizeof(struct sockaddr_in6) ||
2296		    lin6->sin6_len != sizeof(struct sockaddr_in6))
2297			return (EINVAL);
2298		if (IN6_IS_ADDR_V4MAPPED(&fin6->sin6_addr)) {
2299			if (!IN6_IS_ADDR_V4MAPPED(&lin6->sin6_addr))
2300				return (EINVAL);
2301			in6_sin6_2_sin_in_sock((struct sockaddr *)&addrs[0]);
2302			in6_sin6_2_sin_in_sock((struct sockaddr *)&addrs[1]);
2303			fin = (struct sockaddr_in *)&addrs[0];
2304			lin = (struct sockaddr_in *)&addrs[1];
2305			break;
2306		}
2307		error = sa6_embedscope(fin6, ip6_use_defzone);
2308		if (error)
2309			return (error);
2310		error = sa6_embedscope(lin6, ip6_use_defzone);
2311		if (error)
2312			return (error);
2313		break;
2314#endif
2315	case AF_INET:
2316		fin = (struct sockaddr_in *)&addrs[0];
2317		lin = (struct sockaddr_in *)&addrs[1];
2318		if (fin->sin_len != sizeof(struct sockaddr_in) ||
2319		    lin->sin_len != sizeof(struct sockaddr_in))
2320			return (EINVAL);
2321		break;
2322	default:
2323		return (EINVAL);
2324	}
2325	INP_INFO_WLOCK(&tcbinfo);
2326	switch (addrs[0].ss_family) {
2327#ifdef INET6
2328	case AF_INET6:
2329		inp = in6_pcblookup_hash(&tcbinfo, &f6, fin6->sin6_port,
2330		    &l6, lin6->sin6_port, 0, NULL);
2331		break;
2332#endif
2333	case AF_INET:
2334		inp = in_pcblookup_hash(&tcbinfo, fin->sin_addr, fin->sin_port,
2335		    lin->sin_addr, lin->sin_port, 0, NULL);
2336		break;
2337	}
2338	if (inp != NULL) {
2339		INP_LOCK(inp);
2340		if (inp->inp_vflag & INP_TIMEWAIT) {
2341			tw = intotw(inp);
2342			tcp_twclose(tw, 0);
2343		} else if (!(inp->inp_vflag & INP_DROPPED) &&
2344			   !(inp->inp_socket->so_options & SO_ACCEPTCONN)) {
2345			tp = intotcpcb(inp);
2346			tcp_drop(tp, ECONNABORTED);
2347		}
2348		INP_UNLOCK(inp);
2349	} else
2350		error = ESRCH;
2351	INP_INFO_WUNLOCK(&tcbinfo);
2352	return (error);
2353}
2354
2355SYSCTL_PROC(_net_inet_tcp, TCPCTL_DROP, drop,
2356    CTLTYPE_STRUCT|CTLFLAG_WR|CTLFLAG_SKIP, NULL,
2357    0, sysctl_drop, "", "Drop TCP connection");
2358