tcp_timewait.c revision 14754
1/*
2 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 *    must display the following acknowledgement:
15 *	This product includes software developed by the University of
16 *	California, Berkeley and its contributors.
17 * 4. Neither the name of the University nor the names of its contributors
18 *    may be used to endorse or promote products derived from this software
19 *    without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
32 *
33 *	@(#)tcp_subr.c	8.2 (Berkeley) 5/24/95
34 *	$Id: tcp_subr.c,v 1.26 1996/03/11 15:13:33 davidg Exp $
35 */
36
37#include <sys/param.h>
38#include <sys/queue.h>
39#include <sys/proc.h>
40#include <sys/systm.h>
41#include <sys/kernel.h>
42#include <sys/sysctl.h>
43#include <sys/malloc.h>
44#include <sys/mbuf.h>
45#include <sys/socket.h>
46#include <sys/socketvar.h>
47#include <sys/protosw.h>
48#include <sys/errno.h>
49
50#include <net/route.h>
51#include <net/if.h>
52
53#include <netinet/in.h>
54#include <netinet/in_systm.h>
55#include <netinet/ip.h>
56#include <netinet/in_pcb.h>
57#include <netinet/in_var.h>
58#include <netinet/ip_var.h>
59#include <netinet/ip_icmp.h>
60#include <netinet/tcp.h>
61#include <netinet/tcp_fsm.h>
62#include <netinet/tcp_seq.h>
63#include <netinet/tcp_timer.h>
64#include <netinet/tcp_var.h>
65#include <netinet/tcpip.h>
66#ifdef TCPDEBUG
67#include <netinet/tcp_debug.h>
68#endif
69
70int 	tcp_mssdflt = TCP_MSS;
71SYSCTL_INT(_net_inet_tcp, TCPCTL_MSSDFLT, mssdflt,
72	CTLFLAG_RW, &tcp_mssdflt , 0, "");
73
74static int 	tcp_rttdflt = TCPTV_SRTTDFLT / PR_SLOWHZ;
75SYSCTL_INT(_net_inet_tcp, TCPCTL_RTTDFLT, rttdflt,
76	CTLFLAG_RW, &tcp_rttdflt , 0, "");
77
78static int	tcp_do_rfc1323 = 1;
79SYSCTL_INT(_net_inet_tcp, TCPCTL_DO_RFC1323, rfc1323,
80	CTLFLAG_RW, &tcp_do_rfc1323 , 0, "");
81
82static int	tcp_do_rfc1644 = 1;
83SYSCTL_INT(_net_inet_tcp, TCPCTL_DO_RFC1644, rfc1644,
84	CTLFLAG_RW, &tcp_do_rfc1644 , 0, "");
85
86static void	tcp_cleartaocache(void);
87static void	tcp_notify __P((struct inpcb *, int));
88
89/*
90 * Target size of TCP PCB hash table. Will be rounded down to a prime
91 * number.
92 */
93#ifndef TCBHASHSIZE
94#define TCBHASHSIZE	128
95#endif
96
97/*
98 * Tcp initialization
99 */
100void
101tcp_init()
102{
103
104	tcp_iss = random();	/* wrong, but better than a constant */
105	tcp_ccgen = 1;
106	tcp_cleartaocache();
107	LIST_INIT(&tcb);
108	tcbinfo.listhead = &tcb;
109	tcbinfo.hashbase = phashinit(TCBHASHSIZE, M_PCB, &tcbinfo.hashsize);
110	if (max_protohdr < sizeof(struct tcpiphdr))
111		max_protohdr = sizeof(struct tcpiphdr);
112	if (max_linkhdr + sizeof(struct tcpiphdr) > MHLEN)
113		panic("tcp_init");
114}
115
116/*
117 * Create template to be used to send tcp packets on a connection.
118 * Call after host entry created, allocates an mbuf and fills
119 * in a skeletal tcp/ip header, minimizing the amount of work
120 * necessary when the connection is used.
121 */
122struct tcpiphdr *
123tcp_template(tp)
124	struct tcpcb *tp;
125{
126	register struct inpcb *inp = tp->t_inpcb;
127	register struct mbuf *m;
128	register struct tcpiphdr *n;
129
130	if ((n = tp->t_template) == 0) {
131		m = m_get(M_DONTWAIT, MT_HEADER);
132		if (m == NULL)
133			return (0);
134		m->m_len = sizeof (struct tcpiphdr);
135		n = mtod(m, struct tcpiphdr *);
136	}
137	n->ti_next = n->ti_prev = 0;
138	n->ti_x1 = 0;
139	n->ti_pr = IPPROTO_TCP;
140	n->ti_len = htons(sizeof (struct tcpiphdr) - sizeof (struct ip));
141	n->ti_src = inp->inp_laddr;
142	n->ti_dst = inp->inp_faddr;
143	n->ti_sport = inp->inp_lport;
144	n->ti_dport = inp->inp_fport;
145	n->ti_seq = 0;
146	n->ti_ack = 0;
147	n->ti_x2 = 0;
148	n->ti_off = 5;
149	n->ti_flags = 0;
150	n->ti_win = 0;
151	n->ti_sum = 0;
152	n->ti_urp = 0;
153	return (n);
154}
155
156/*
157 * Send a single message to the TCP at address specified by
158 * the given TCP/IP header.  If m == 0, then we make a copy
159 * of the tcpiphdr at ti and send directly to the addressed host.
160 * This is used to force keep alive messages out using the TCP
161 * template for a connection tp->t_template.  If flags are given
162 * then we send a message back to the TCP which originated the
163 * segment ti, and discard the mbuf containing it and any other
164 * attached mbufs.
165 *
166 * In any case the ack and sequence number of the transmitted
167 * segment are as specified by the parameters.
168 */
169void
170tcp_respond(tp, ti, m, ack, seq, flags)
171	struct tcpcb *tp;
172	register struct tcpiphdr *ti;
173	register struct mbuf *m;
174	tcp_seq ack, seq;
175	int flags;
176{
177	register int tlen;
178	int win = 0;
179	struct route *ro = 0;
180	struct route sro;
181
182	if (tp) {
183		win = sbspace(&tp->t_inpcb->inp_socket->so_rcv);
184		ro = &tp->t_inpcb->inp_route;
185	} else {
186		ro = &sro;
187		bzero(ro, sizeof *ro);
188	}
189	if (m == 0) {
190		m = m_gethdr(M_DONTWAIT, MT_HEADER);
191		if (m == NULL)
192			return;
193#ifdef TCP_COMPAT_42
194		tlen = 1;
195#else
196		tlen = 0;
197#endif
198		m->m_data += max_linkhdr;
199		*mtod(m, struct tcpiphdr *) = *ti;
200		ti = mtod(m, struct tcpiphdr *);
201		flags = TH_ACK;
202	} else {
203		m_freem(m->m_next);
204		m->m_next = 0;
205		m->m_data = (caddr_t)ti;
206		m->m_len = sizeof (struct tcpiphdr);
207		tlen = 0;
208#define xchg(a,b,type) { type t; t=a; a=b; b=t; }
209		xchg(ti->ti_dst.s_addr, ti->ti_src.s_addr, u_long);
210		xchg(ti->ti_dport, ti->ti_sport, u_short);
211#undef xchg
212	}
213	ti->ti_len = htons((u_short)(sizeof (struct tcphdr) + tlen));
214	tlen += sizeof (struct tcpiphdr);
215	m->m_len = tlen;
216	m->m_pkthdr.len = tlen;
217	m->m_pkthdr.rcvif = (struct ifnet *) 0;
218	ti->ti_next = ti->ti_prev = 0;
219	ti->ti_x1 = 0;
220	ti->ti_seq = htonl(seq);
221	ti->ti_ack = htonl(ack);
222	ti->ti_x2 = 0;
223	ti->ti_off = sizeof (struct tcphdr) >> 2;
224	ti->ti_flags = flags;
225	if (tp)
226		ti->ti_win = htons((u_short) (win >> tp->rcv_scale));
227	else
228		ti->ti_win = htons((u_short)win);
229	ti->ti_urp = 0;
230	ti->ti_sum = 0;
231	ti->ti_sum = in_cksum(m, tlen);
232	((struct ip *)ti)->ip_len = tlen;
233	((struct ip *)ti)->ip_ttl = ip_defttl;
234#ifdef TCPDEBUG
235	if (tp == NULL || (tp->t_inpcb->inp_socket->so_options & SO_DEBUG))
236		tcp_trace(TA_OUTPUT, 0, tp, ti, 0);
237#endif
238	(void) ip_output(m, NULL, ro, 0, NULL);
239	if (ro == &sro) {
240		RTFREE(ro->ro_rt);
241	}
242}
243
244/*
245 * Create a new TCP control block, making an
246 * empty reassembly queue and hooking it to the argument
247 * protocol control block.
248 */
249struct tcpcb *
250tcp_newtcpcb(inp)
251	struct inpcb *inp;
252{
253	register struct tcpcb *tp;
254
255	tp = malloc(sizeof(*tp), M_PCB, M_NOWAIT);
256	if (tp == NULL)
257		return ((struct tcpcb *)0);
258	bzero((char *) tp, sizeof(struct tcpcb));
259	tp->seg_next = tp->seg_prev = (struct tcpiphdr *)tp;
260	tp->t_maxseg = tp->t_maxopd = tcp_mssdflt;
261
262	if (tcp_do_rfc1323)
263		tp->t_flags = (TF_REQ_SCALE|TF_REQ_TSTMP);
264	if (tcp_do_rfc1644)
265		tp->t_flags |= TF_REQ_CC;
266	tp->t_inpcb = inp;
267	/*
268	 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
269	 * rtt estimate.  Set rttvar so that srtt + 2 * rttvar gives
270	 * reasonable initial retransmit time.
271	 */
272	tp->t_srtt = TCPTV_SRTTBASE;
273	tp->t_rttvar = tcp_rttdflt * PR_SLOWHZ << 2;
274	tp->t_rttmin = TCPTV_MIN;
275	TCPT_RANGESET(tp->t_rxtcur,
276	    ((TCPTV_SRTTBASE >> 2) + (TCPTV_SRTTDFLT << 2)) >> 1,
277	    TCPTV_MIN, TCPTV_REXMTMAX);
278	tp->snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
279	tp->snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT;
280	inp->inp_ip.ip_ttl = ip_defttl;
281	inp->inp_ppcb = (caddr_t)tp;
282	return (tp);
283}
284
285/*
286 * Drop a TCP connection, reporting
287 * the specified error.  If connection is synchronized,
288 * then send a RST to peer.
289 */
290struct tcpcb *
291tcp_drop(tp, errno)
292	register struct tcpcb *tp;
293	int errno;
294{
295	struct socket *so = tp->t_inpcb->inp_socket;
296
297	if (TCPS_HAVERCVDSYN(tp->t_state)) {
298		tp->t_state = TCPS_CLOSED;
299		(void) tcp_output(tp);
300		tcpstat.tcps_drops++;
301	} else
302		tcpstat.tcps_conndrops++;
303	if (errno == ETIMEDOUT && tp->t_softerror)
304		errno = tp->t_softerror;
305	so->so_error = errno;
306	return (tcp_close(tp));
307}
308
309/*
310 * Close a TCP control block:
311 *	discard all space held by the tcp
312 *	discard internet protocol block
313 *	wake up any sleepers
314 */
315struct tcpcb *
316tcp_close(tp)
317	register struct tcpcb *tp;
318{
319	register struct tcpiphdr *t;
320	struct inpcb *inp = tp->t_inpcb;
321	struct socket *so = inp->inp_socket;
322	register struct mbuf *m;
323#ifdef RTV_RTT
324	register struct rtentry *rt;
325
326	/*
327	 * If we got enough samples through the srtt filter,
328	 * save the rtt and rttvar in the routing entry.
329	 * 'Enough' is arbitrarily defined as the 16 samples.
330	 * 16 samples is enough for the srtt filter to converge
331	 * to within 5% of the correct value; fewer samples and
332	 * we could save a very bogus rtt.
333	 *
334	 * Don't update the default route's characteristics and don't
335	 * update anything that the user "locked".
336	 */
337	if (tp->t_rttupdated >= 16 &&
338	    (rt = inp->inp_route.ro_rt) &&
339	    ((struct sockaddr_in *)rt_key(rt))->sin_addr.s_addr != INADDR_ANY) {
340		register u_long i = 0;
341
342		if ((rt->rt_rmx.rmx_locks & RTV_RTT) == 0) {
343			i = tp->t_srtt *
344			    (RTM_RTTUNIT / (PR_SLOWHZ * TCP_RTT_SCALE));
345			if (rt->rt_rmx.rmx_rtt && i)
346				/*
347				 * filter this update to half the old & half
348				 * the new values, converting scale.
349				 * See route.h and tcp_var.h for a
350				 * description of the scaling constants.
351				 */
352				rt->rt_rmx.rmx_rtt =
353				    (rt->rt_rmx.rmx_rtt + i) / 2;
354			else
355				rt->rt_rmx.rmx_rtt = i;
356			tcpstat.tcps_cachedrtt++;
357		}
358		if ((rt->rt_rmx.rmx_locks & RTV_RTTVAR) == 0) {
359			i = tp->t_rttvar *
360			    (RTM_RTTUNIT / (PR_SLOWHZ * TCP_RTTVAR_SCALE));
361			if (rt->rt_rmx.rmx_rttvar && i)
362				rt->rt_rmx.rmx_rttvar =
363				    (rt->rt_rmx.rmx_rttvar + i) / 2;
364			else
365				rt->rt_rmx.rmx_rttvar = i;
366			tcpstat.tcps_cachedrttvar++;
367		}
368		/*
369		 * update the pipelimit (ssthresh) if it has been updated
370		 * already or if a pipesize was specified & the threshhold
371		 * got below half the pipesize.  I.e., wait for bad news
372		 * before we start updating, then update on both good
373		 * and bad news.
374		 */
375		if (((rt->rt_rmx.rmx_locks & RTV_SSTHRESH) == 0 &&
376		    ((i = tp->snd_ssthresh) != 0) && rt->rt_rmx.rmx_ssthresh) ||
377		    i < (rt->rt_rmx.rmx_sendpipe / 2)) {
378			/*
379			 * convert the limit from user data bytes to
380			 * packets then to packet data bytes.
381			 */
382			i = (i + tp->t_maxseg / 2) / tp->t_maxseg;
383			if (i < 2)
384				i = 2;
385			i *= (u_long)(tp->t_maxseg + sizeof (struct tcpiphdr));
386			if (rt->rt_rmx.rmx_ssthresh)
387				rt->rt_rmx.rmx_ssthresh =
388				    (rt->rt_rmx.rmx_ssthresh + i) / 2;
389			else
390				rt->rt_rmx.rmx_ssthresh = i;
391			tcpstat.tcps_cachedssthresh++;
392		}
393	}
394#endif /* RTV_RTT */
395	/* free the reassembly queue, if any */
396	t = tp->seg_next;
397	while (t != (struct tcpiphdr *)tp) {
398		t = (struct tcpiphdr *)t->ti_next;
399		m = REASS_MBUF((struct tcpiphdr *)t->ti_prev);
400		remque(t->ti_prev);
401		m_freem(m);
402	}
403	if (tp->t_template)
404		(void) m_free(dtom(tp->t_template));
405	free(tp, M_PCB);
406	inp->inp_ppcb = 0;
407	soisdisconnected(so);
408	in_pcbdetach(inp);
409	tcpstat.tcps_closed++;
410	return ((struct tcpcb *)0);
411}
412
413void
414tcp_drain()
415{
416
417}
418
419/*
420 * Notify a tcp user of an asynchronous error;
421 * store error as soft error, but wake up user
422 * (for now, won't do anything until can select for soft error).
423 */
424static void
425tcp_notify(inp, error)
426	struct inpcb *inp;
427	int error;
428{
429	register struct tcpcb *tp = (struct tcpcb *)inp->inp_ppcb;
430	register struct socket *so = inp->inp_socket;
431
432	/*
433	 * Ignore some errors if we are hooked up.
434	 * If connection hasn't completed, has retransmitted several times,
435	 * and receives a second error, give up now.  This is better
436	 * than waiting a long time to establish a connection that
437	 * can never complete.
438	 */
439	if (tp->t_state == TCPS_ESTABLISHED &&
440	     (error == EHOSTUNREACH || error == ENETUNREACH ||
441	      error == EHOSTDOWN)) {
442		return;
443	} else if (tp->t_state < TCPS_ESTABLISHED && tp->t_rxtshift > 3 &&
444	    tp->t_softerror)
445		so->so_error = error;
446	else
447		tp->t_softerror = error;
448	wakeup((caddr_t) &so->so_timeo);
449	sorwakeup(so);
450	sowwakeup(so);
451}
452
453void
454tcp_ctlinput(cmd, sa, vip)
455	int cmd;
456	struct sockaddr *sa;
457	void *vip;
458{
459	register struct ip *ip = vip;
460	register struct tcphdr *th;
461	void (*notify) __P((struct inpcb *, int)) = tcp_notify;
462
463	if (cmd == PRC_QUENCH)
464		notify = tcp_quench;
465#if 1
466	else if (cmd == PRC_MSGSIZE)
467		notify = tcp_mtudisc;
468#endif
469	else if (!PRC_IS_REDIRECT(cmd) &&
470		 ((unsigned)cmd > PRC_NCMDS || inetctlerrmap[cmd] == 0))
471		return;
472	if (ip) {
473		th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2));
474		in_pcbnotify(&tcb, sa, th->th_dport, ip->ip_src, th->th_sport,
475			cmd, notify);
476	} else
477		in_pcbnotify(&tcb, sa, 0, zeroin_addr, 0, cmd, notify);
478}
479
480/*
481 * When a source quench is received, close congestion window
482 * to one segment.  We will gradually open it again as we proceed.
483 */
484void
485tcp_quench(inp, errno)
486	struct inpcb *inp;
487	int errno;
488{
489	struct tcpcb *tp = intotcpcb(inp);
490
491	if (tp)
492		tp->snd_cwnd = tp->t_maxseg;
493}
494
495#if 1
496/*
497 * When `need fragmentation' ICMP is received, update our idea of the MSS
498 * based on the new value in the route.  Also nudge TCP to send something,
499 * since we know the packet we just sent was dropped.
500 * This duplicates some code in the tcp_mss() function in tcp_input.c.
501 */
502void
503tcp_mtudisc(inp, errno)
504	struct inpcb *inp;
505	int errno;
506{
507	struct tcpcb *tp = intotcpcb(inp);
508	struct rtentry *rt;
509	struct rmxp_tao *taop;
510	struct socket *so = inp->inp_socket;
511	int offered;
512	int mss;
513
514	if (tp) {
515		rt = tcp_rtlookup(inp);
516		if (!rt || !rt->rt_rmx.rmx_mtu) {
517			tp->t_maxopd = tp->t_maxseg = tcp_mssdflt;
518			return;
519		}
520		taop = rmx_taop(rt->rt_rmx);
521		offered = taop->tao_mssopt;
522		mss = rt->rt_rmx.rmx_mtu - sizeof(struct tcpiphdr);
523		if (offered)
524			mss = min(mss, offered);
525		/*
526		 * XXX - The above conditional probably violates the TCP
527		 * spec.  The problem is that, since we don't know the
528		 * other end's MSS, we are supposed to use a conservative
529		 * default.  But, if we do that, then MTU discovery will
530		 * never actually take place, because the conservative
531		 * default is much less than the MTUs typically seen
532		 * on the Internet today.  For the moment, we'll sweep
533		 * this under the carpet.
534		 *
535		 * The conservative default might not actually be a problem
536		 * if the only case this occurs is when sending an initial
537		 * SYN with options and data to a host we've never talked
538		 * to before.  Then, they will reply with an MSS value which
539		 * will get recorded and the new parameters should get
540		 * recomputed.  For Further Study.
541		 */
542		if (tp->t_maxopd <= mss)
543			return;
544		tp->t_maxopd = mss;
545
546		if ((tp->t_flags & (TF_REQ_TSTMP|TF_NOOPT)) == TF_REQ_TSTMP &&
547		    (tp->t_flags & TF_RCVD_TSTMP) == TF_RCVD_TSTMP)
548			mss -= TCPOLEN_TSTAMP_APPA;
549		if ((tp->t_flags & (TF_REQ_CC|TF_NOOPT)) == TF_REQ_CC &&
550		    (tp->t_flags & TF_RCVD_CC) == TF_RCVD_CC)
551			mss -= TCPOLEN_CC_APPA;
552#if	(MCLBYTES & (MCLBYTES - 1)) == 0
553		if (mss > MCLBYTES)
554			mss &= ~(MCLBYTES-1);
555#else
556		if (mss > MCLBYTES)
557			mss = mss / MCLBYTES * MCLBYTES;
558#endif
559		if (so->so_snd.sb_hiwat < mss)
560			mss = so->so_snd.sb_hiwat;
561
562		tp->t_maxseg = mss;
563
564		tcpstat.tcps_mturesent++;
565		tp->t_rtt = 0;
566		tp->snd_nxt = tp->snd_una;
567		tcp_output(tp);
568	}
569}
570#endif
571
572/*
573 * Look-up the routing entry to the peer of this inpcb.  If no route
574 * is found and it cannot be allocated the return NULL.  This routine
575 * is called by TCP routines that access the rmx structure and by tcp_mss
576 * to get the interface MTU.
577 */
578struct rtentry *
579tcp_rtlookup(inp)
580	struct inpcb *inp;
581{
582	struct route *ro;
583	struct rtentry *rt;
584
585	ro = &inp->inp_route;
586	rt = ro->ro_rt;
587	if (rt == NULL || !(rt->rt_flags & RTF_UP)) {
588		/* No route yet, so try to acquire one */
589		if (inp->inp_faddr.s_addr != INADDR_ANY) {
590			ro->ro_dst.sa_family = AF_INET;
591			ro->ro_dst.sa_len = sizeof(ro->ro_dst);
592			((struct sockaddr_in *) &ro->ro_dst)->sin_addr =
593				inp->inp_faddr;
594			rtalloc(ro);
595			rt = ro->ro_rt;
596		}
597	}
598	return rt;
599}
600
601/*
602 * Return a pointer to the cached information about the remote host.
603 * The cached information is stored in the protocol specific part of
604 * the route metrics.
605 */
606struct rmxp_tao *
607tcp_gettaocache(inp)
608	struct inpcb *inp;
609{
610	struct rtentry *rt = tcp_rtlookup(inp);
611
612	/* Make sure this is a host route and is up. */
613	if (rt == NULL ||
614	    (rt->rt_flags & (RTF_UP|RTF_HOST)) != (RTF_UP|RTF_HOST))
615		return NULL;
616
617	return rmx_taop(rt->rt_rmx);
618}
619
620/*
621 * Clear all the TAO cache entries, called from tcp_init.
622 *
623 * XXX
624 * This routine is just an empty one, because we assume that the routing
625 * routing tables are initialized at the same time when TCP, so there is
626 * nothing in the cache left over.
627 */
628static void
629tcp_cleartaocache(void)
630{ }
631