tcp_timewait.c revision 142906
1/*-
2 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 4. Neither the name of the University nor the names of its contributors
14 *    may be used to endorse or promote products derived from this software
15 *    without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 *
29 *	@(#)tcp_subr.c	8.2 (Berkeley) 5/24/95
30 * $FreeBSD: head/sys/netinet/tcp_timewait.c 142906 2005-03-01 12:01:17Z glebius $
31 */
32
33#include "opt_compat.h"
34#include "opt_inet.h"
35#include "opt_inet6.h"
36#include "opt_ipsec.h"
37#include "opt_mac.h"
38#include "opt_tcpdebug.h"
39#include "opt_tcp_sack.h"
40
41#include <sys/param.h>
42#include <sys/systm.h>
43#include <sys/callout.h>
44#include <sys/kernel.h>
45#include <sys/sysctl.h>
46#include <sys/mac.h>
47#include <sys/malloc.h>
48#include <sys/mbuf.h>
49#ifdef INET6
50#include <sys/domain.h>
51#endif
52#include <sys/proc.h>
53#include <sys/socket.h>
54#include <sys/socketvar.h>
55#include <sys/protosw.h>
56#include <sys/random.h>
57
58#include <vm/uma.h>
59
60#include <net/route.h>
61#include <net/if.h>
62
63#include <netinet/in.h>
64#include <netinet/in_systm.h>
65#include <netinet/ip.h>
66#ifdef INET6
67#include <netinet/ip6.h>
68#endif
69#include <netinet/in_pcb.h>
70#ifdef INET6
71#include <netinet6/in6_pcb.h>
72#endif
73#include <netinet/in_var.h>
74#include <netinet/ip_var.h>
75#ifdef INET6
76#include <netinet6/ip6_var.h>
77#include <netinet6/nd6.h>
78#endif
79#include <netinet/tcp.h>
80#include <netinet/tcp_fsm.h>
81#include <netinet/tcp_seq.h>
82#include <netinet/tcp_timer.h>
83#include <netinet/tcp_var.h>
84#ifdef INET6
85#include <netinet6/tcp6_var.h>
86#endif
87#include <netinet/tcpip.h>
88#ifdef TCPDEBUG
89#include <netinet/tcp_debug.h>
90#endif
91#include <netinet6/ip6protosw.h>
92
93#ifdef IPSEC
94#include <netinet6/ipsec.h>
95#ifdef INET6
96#include <netinet6/ipsec6.h>
97#endif
98#include <netkey/key.h>
99#endif /*IPSEC*/
100
101#ifdef FAST_IPSEC
102#include <netipsec/ipsec.h>
103#include <netipsec/xform.h>
104#ifdef INET6
105#include <netipsec/ipsec6.h>
106#endif
107#include <netipsec/key.h>
108#define	IPSEC
109#endif /*FAST_IPSEC*/
110
111#include <machine/in_cksum.h>
112#include <sys/md5.h>
113
114int	tcp_mssdflt = TCP_MSS;
115SYSCTL_INT(_net_inet_tcp, TCPCTL_MSSDFLT, mssdflt, CTLFLAG_RW,
116    &tcp_mssdflt , 0, "Default TCP Maximum Segment Size");
117
118#ifdef INET6
119int	tcp_v6mssdflt = TCP6_MSS;
120SYSCTL_INT(_net_inet_tcp, TCPCTL_V6MSSDFLT, v6mssdflt,
121	CTLFLAG_RW, &tcp_v6mssdflt , 0,
122	"Default TCP Maximum Segment Size for IPv6");
123#endif
124
125/*
126 * Minimum MSS we accept and use. This prevents DoS attacks where
127 * we are forced to a ridiculous low MSS like 20 and send hundreds
128 * of packets instead of one. The effect scales with the available
129 * bandwidth and quickly saturates the CPU and network interface
130 * with packet generation and sending. Set to zero to disable MINMSS
131 * checking. This setting prevents us from sending too small packets.
132 */
133int	tcp_minmss = TCP_MINMSS;
134SYSCTL_INT(_net_inet_tcp, OID_AUTO, minmss, CTLFLAG_RW,
135    &tcp_minmss , 0, "Minmum TCP Maximum Segment Size");
136/*
137 * Number of TCP segments per second we accept from remote host
138 * before we start to calculate average segment size. If average
139 * segment size drops below the minimum TCP MSS we assume a DoS
140 * attack and reset+drop the connection. Care has to be taken not to
141 * set this value too small to not kill interactive type connections
142 * (telnet, SSH) which send many small packets.
143 */
144int     tcp_minmssoverload = TCP_MINMSSOVERLOAD;
145SYSCTL_INT(_net_inet_tcp, OID_AUTO, minmssoverload, CTLFLAG_RW,
146    &tcp_minmssoverload , 0, "Number of TCP Segments per Second allowed to"
147    "be under the MINMSS Size");
148
149#if 0
150static int	tcp_rttdflt = TCPTV_SRTTDFLT / PR_SLOWHZ;
151SYSCTL_INT(_net_inet_tcp, TCPCTL_RTTDFLT, rttdflt, CTLFLAG_RW,
152    &tcp_rttdflt , 0, "Default maximum TCP Round Trip Time");
153#endif
154
155int	tcp_do_rfc1323 = 1;
156SYSCTL_INT(_net_inet_tcp, TCPCTL_DO_RFC1323, rfc1323, CTLFLAG_RW,
157    &tcp_do_rfc1323 , 0, "Enable rfc1323 (high performance TCP) extensions");
158
159static int	tcp_tcbhashsize = 0;
160SYSCTL_INT(_net_inet_tcp, OID_AUTO, tcbhashsize, CTLFLAG_RDTUN,
161     &tcp_tcbhashsize, 0, "Size of TCP control-block hashtable");
162
163static int	do_tcpdrain = 1;
164SYSCTL_INT(_net_inet_tcp, OID_AUTO, do_tcpdrain, CTLFLAG_RW, &do_tcpdrain, 0,
165     "Enable tcp_drain routine for extra help when low on mbufs");
166
167SYSCTL_INT(_net_inet_tcp, OID_AUTO, pcbcount, CTLFLAG_RD,
168    &tcbinfo.ipi_count, 0, "Number of active PCBs");
169
170static int	icmp_may_rst = 1;
171SYSCTL_INT(_net_inet_tcp, OID_AUTO, icmp_may_rst, CTLFLAG_RW, &icmp_may_rst, 0,
172    "Certain ICMP unreachable messages may abort connections in SYN_SENT");
173
174static int	tcp_isn_reseed_interval = 0;
175SYSCTL_INT(_net_inet_tcp, OID_AUTO, isn_reseed_interval, CTLFLAG_RW,
176    &tcp_isn_reseed_interval, 0, "Seconds between reseeding of ISN secret");
177
178/*
179 * TCP bandwidth limiting sysctls.  Note that the default lower bound of
180 * 1024 exists only for debugging.  A good production default would be
181 * something like 6100.
182 */
183SYSCTL_NODE(_net_inet_tcp, OID_AUTO, inflight, CTLFLAG_RW, 0,
184    "TCP inflight data limiting");
185
186static int	tcp_inflight_enable = 1;
187SYSCTL_INT(_net_inet_tcp_inflight, OID_AUTO, enable, CTLFLAG_RW,
188    &tcp_inflight_enable, 0, "Enable automatic TCP inflight data limiting");
189
190static int	tcp_inflight_debug = 0;
191SYSCTL_INT(_net_inet_tcp_inflight, OID_AUTO, debug, CTLFLAG_RW,
192    &tcp_inflight_debug, 0, "Debug TCP inflight calculations");
193
194static int	tcp_inflight_min = 6144;
195SYSCTL_INT(_net_inet_tcp_inflight, OID_AUTO, min, CTLFLAG_RW,
196    &tcp_inflight_min, 0, "Lower-bound for TCP inflight window");
197
198static int	tcp_inflight_max = TCP_MAXWIN << TCP_MAX_WINSHIFT;
199SYSCTL_INT(_net_inet_tcp_inflight, OID_AUTO, max, CTLFLAG_RW,
200    &tcp_inflight_max, 0, "Upper-bound for TCP inflight window");
201
202static int	tcp_inflight_stab = 20;
203SYSCTL_INT(_net_inet_tcp_inflight, OID_AUTO, stab, CTLFLAG_RW,
204    &tcp_inflight_stab, 0, "Inflight Algorithm Stabilization 20 = 2 packets");
205
206uma_zone_t sack_hole_zone;
207
208static struct inpcb *tcp_notify(struct inpcb *, int);
209static void	tcp_discardcb(struct tcpcb *);
210static void	tcp_isn_tick(void *);
211
212/*
213 * Target size of TCP PCB hash tables. Must be a power of two.
214 *
215 * Note that this can be overridden by the kernel environment
216 * variable net.inet.tcp.tcbhashsize
217 */
218#ifndef TCBHASHSIZE
219#define TCBHASHSIZE	512
220#endif
221
222/*
223 * XXX
224 * Callouts should be moved into struct tcp directly.  They are currently
225 * separate because the tcpcb structure is exported to userland for sysctl
226 * parsing purposes, which do not know about callouts.
227 */
228struct	tcpcb_mem {
229	struct	tcpcb tcb;
230	struct	callout tcpcb_mem_rexmt, tcpcb_mem_persist, tcpcb_mem_keep;
231	struct	callout tcpcb_mem_2msl, tcpcb_mem_delack;
232};
233
234static uma_zone_t tcpcb_zone;
235static uma_zone_t tcptw_zone;
236struct callout isn_callout;
237
238/*
239 * Tcp initialization
240 */
241void
242tcp_init()
243{
244	int hashsize = TCBHASHSIZE;
245
246	tcp_delacktime = TCPTV_DELACK;
247	tcp_keepinit = TCPTV_KEEP_INIT;
248	tcp_keepidle = TCPTV_KEEP_IDLE;
249	tcp_keepintvl = TCPTV_KEEPINTVL;
250	tcp_maxpersistidle = TCPTV_KEEP_IDLE;
251	tcp_msl = TCPTV_MSL;
252	tcp_rexmit_min = TCPTV_MIN;
253	tcp_rexmit_slop = TCPTV_CPU_VAR;
254
255	INP_INFO_LOCK_INIT(&tcbinfo, "tcp");
256	LIST_INIT(&tcb);
257	tcbinfo.listhead = &tcb;
258	TUNABLE_INT_FETCH("net.inet.tcp.tcbhashsize", &hashsize);
259	if (!powerof2(hashsize)) {
260		printf("WARNING: TCB hash size not a power of 2\n");
261		hashsize = 512; /* safe default */
262	}
263	tcp_tcbhashsize = hashsize;
264	tcbinfo.hashbase = hashinit(hashsize, M_PCB, &tcbinfo.hashmask);
265	tcbinfo.porthashbase = hashinit(hashsize, M_PCB,
266					&tcbinfo.porthashmask);
267	tcbinfo.ipi_zone = uma_zcreate("inpcb", sizeof(struct inpcb),
268	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
269	uma_zone_set_max(tcbinfo.ipi_zone, maxsockets);
270#ifdef INET6
271#define TCP_MINPROTOHDR (sizeof(struct ip6_hdr) + sizeof(struct tcphdr))
272#else /* INET6 */
273#define TCP_MINPROTOHDR (sizeof(struct tcpiphdr))
274#endif /* INET6 */
275	if (max_protohdr < TCP_MINPROTOHDR)
276		max_protohdr = TCP_MINPROTOHDR;
277	if (max_linkhdr + TCP_MINPROTOHDR > MHLEN)
278		panic("tcp_init");
279#undef TCP_MINPROTOHDR
280	/*
281	 * These have to be type stable for the benefit of the timers.
282	 */
283	tcpcb_zone = uma_zcreate("tcpcb", sizeof(struct tcpcb_mem),
284	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
285	uma_zone_set_max(tcpcb_zone, maxsockets);
286	tcptw_zone = uma_zcreate("tcptw", sizeof(struct tcptw),
287	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
288	uma_zone_set_max(tcptw_zone, maxsockets / 5);
289	tcp_timer_init();
290	syncache_init();
291	tcp_hc_init();
292	tcp_reass_init();
293	callout_init(&isn_callout, CALLOUT_MPSAFE);
294	tcp_isn_tick(NULL);
295	EVENTHANDLER_REGISTER(shutdown_pre_sync, tcp_fini, NULL,
296		SHUTDOWN_PRI_DEFAULT);
297	sack_hole_zone = uma_zcreate("sackhole", sizeof(struct sackhole),
298	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
299}
300
301void
302tcp_fini(xtp)
303	void *xtp;
304{
305	callout_stop(&isn_callout);
306
307}
308
309/*
310 * Fill in the IP and TCP headers for an outgoing packet, given the tcpcb.
311 * tcp_template used to store this data in mbufs, but we now recopy it out
312 * of the tcpcb each time to conserve mbufs.
313 */
314void
315tcpip_fillheaders(inp, ip_ptr, tcp_ptr)
316	struct inpcb *inp;
317	void *ip_ptr;
318	void *tcp_ptr;
319{
320	struct tcphdr *th = (struct tcphdr *)tcp_ptr;
321
322	INP_LOCK_ASSERT(inp);
323
324#ifdef INET6
325	if ((inp->inp_vflag & INP_IPV6) != 0) {
326		struct ip6_hdr *ip6;
327
328		ip6 = (struct ip6_hdr *)ip_ptr;
329		ip6->ip6_flow = (ip6->ip6_flow & ~IPV6_FLOWINFO_MASK) |
330			(inp->in6p_flowinfo & IPV6_FLOWINFO_MASK);
331		ip6->ip6_vfc = (ip6->ip6_vfc & ~IPV6_VERSION_MASK) |
332			(IPV6_VERSION & IPV6_VERSION_MASK);
333		ip6->ip6_nxt = IPPROTO_TCP;
334		ip6->ip6_plen = sizeof(struct tcphdr);
335		ip6->ip6_src = inp->in6p_laddr;
336		ip6->ip6_dst = inp->in6p_faddr;
337	} else
338#endif
339	{
340		struct ip *ip;
341
342		ip = (struct ip *)ip_ptr;
343		ip->ip_v = IPVERSION;
344		ip->ip_hl = 5;
345		ip->ip_tos = inp->inp_ip_tos;
346		ip->ip_len = 0;
347		ip->ip_id = 0;
348		ip->ip_off = 0;
349		ip->ip_ttl = inp->inp_ip_ttl;
350		ip->ip_sum = 0;
351		ip->ip_p = IPPROTO_TCP;
352		ip->ip_src = inp->inp_laddr;
353		ip->ip_dst = inp->inp_faddr;
354	}
355	th->th_sport = inp->inp_lport;
356	th->th_dport = inp->inp_fport;
357	th->th_seq = 0;
358	th->th_ack = 0;
359	th->th_x2 = 0;
360	th->th_off = 5;
361	th->th_flags = 0;
362	th->th_win = 0;
363	th->th_urp = 0;
364	th->th_sum = 0;		/* in_pseudo() is called later for ipv4 */
365}
366
367/*
368 * Create template to be used to send tcp packets on a connection.
369 * Allocates an mbuf and fills in a skeletal tcp/ip header.  The only
370 * use for this function is in keepalives, which use tcp_respond.
371 */
372struct tcptemp *
373tcpip_maketemplate(inp)
374	struct inpcb *inp;
375{
376	struct mbuf *m;
377	struct tcptemp *n;
378
379	m = m_get(M_DONTWAIT, MT_HEADER);
380	if (m == NULL)
381		return (0);
382	m->m_len = sizeof(struct tcptemp);
383	n = mtod(m, struct tcptemp *);
384
385	tcpip_fillheaders(inp, (void *)&n->tt_ipgen, (void *)&n->tt_t);
386	return (n);
387}
388
389/*
390 * Send a single message to the TCP at address specified by
391 * the given TCP/IP header.  If m == NULL, then we make a copy
392 * of the tcpiphdr at ti and send directly to the addressed host.
393 * This is used to force keep alive messages out using the TCP
394 * template for a connection.  If flags are given then we send
395 * a message back to the TCP which originated the * segment ti,
396 * and discard the mbuf containing it and any other attached mbufs.
397 *
398 * In any case the ack and sequence number of the transmitted
399 * segment are as specified by the parameters.
400 *
401 * NOTE: If m != NULL, then ti must point to *inside* the mbuf.
402 */
403void
404tcp_respond(tp, ipgen, th, m, ack, seq, flags)
405	struct tcpcb *tp;
406	void *ipgen;
407	register struct tcphdr *th;
408	register struct mbuf *m;
409	tcp_seq ack, seq;
410	int flags;
411{
412	register int tlen;
413	int win = 0;
414	struct ip *ip;
415	struct tcphdr *nth;
416#ifdef INET6
417	struct ip6_hdr *ip6;
418	int isipv6;
419#endif /* INET6 */
420	int ipflags = 0;
421	struct inpcb *inp;
422
423	KASSERT(tp != NULL || m != NULL, ("tcp_respond: tp and m both NULL"));
424
425#ifdef INET6
426	isipv6 = ((struct ip *)ipgen)->ip_v == 6;
427	ip6 = ipgen;
428#endif /* INET6 */
429	ip = ipgen;
430
431	if (tp != NULL) {
432		inp = tp->t_inpcb;
433		KASSERT(inp != NULL, ("tcp control block w/o inpcb"));
434		INP_INFO_WLOCK_ASSERT(&tcbinfo);
435		INP_LOCK_ASSERT(inp);
436	} else
437		inp = NULL;
438
439	if (tp != NULL) {
440		if (!(flags & TH_RST)) {
441			win = sbspace(&inp->inp_socket->so_rcv);
442			if (win > (long)TCP_MAXWIN << tp->rcv_scale)
443				win = (long)TCP_MAXWIN << tp->rcv_scale;
444		}
445	}
446	if (m == NULL) {
447		m = m_gethdr(M_DONTWAIT, MT_HEADER);
448		if (m == NULL)
449			return;
450		tlen = 0;
451		m->m_data += max_linkhdr;
452#ifdef INET6
453		if (isipv6) {
454			bcopy((caddr_t)ip6, mtod(m, caddr_t),
455			      sizeof(struct ip6_hdr));
456			ip6 = mtod(m, struct ip6_hdr *);
457			nth = (struct tcphdr *)(ip6 + 1);
458		} else
459#endif /* INET6 */
460	      {
461		bcopy((caddr_t)ip, mtod(m, caddr_t), sizeof(struct ip));
462		ip = mtod(m, struct ip *);
463		nth = (struct tcphdr *)(ip + 1);
464	      }
465		bcopy((caddr_t)th, (caddr_t)nth, sizeof(struct tcphdr));
466		flags = TH_ACK;
467	} else {
468		m_freem(m->m_next);
469		m->m_next = NULL;
470		m->m_data = (caddr_t)ipgen;
471		/* m_len is set later */
472		tlen = 0;
473#define xchg(a,b,type) { type t; t=a; a=b; b=t; }
474#ifdef INET6
475		if (isipv6) {
476			xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr);
477			nth = (struct tcphdr *)(ip6 + 1);
478		} else
479#endif /* INET6 */
480	      {
481		xchg(ip->ip_dst.s_addr, ip->ip_src.s_addr, n_long);
482		nth = (struct tcphdr *)(ip + 1);
483	      }
484		if (th != nth) {
485			/*
486			 * this is usually a case when an extension header
487			 * exists between the IPv6 header and the
488			 * TCP header.
489			 */
490			nth->th_sport = th->th_sport;
491			nth->th_dport = th->th_dport;
492		}
493		xchg(nth->th_dport, nth->th_sport, n_short);
494#undef xchg
495	}
496#ifdef INET6
497	if (isipv6) {
498		ip6->ip6_flow = 0;
499		ip6->ip6_vfc = IPV6_VERSION;
500		ip6->ip6_nxt = IPPROTO_TCP;
501		ip6->ip6_plen = htons((u_short)(sizeof (struct tcphdr) +
502						tlen));
503		tlen += sizeof (struct ip6_hdr) + sizeof (struct tcphdr);
504	} else
505#endif
506	{
507		tlen += sizeof (struct tcpiphdr);
508		ip->ip_len = tlen;
509		ip->ip_ttl = ip_defttl;
510		if (path_mtu_discovery)
511			ip->ip_off |= IP_DF;
512	}
513	m->m_len = tlen;
514	m->m_pkthdr.len = tlen;
515	m->m_pkthdr.rcvif = NULL;
516#ifdef MAC
517	if (inp != NULL) {
518		/*
519		 * Packet is associated with a socket, so allow the
520		 * label of the response to reflect the socket label.
521		 */
522		INP_LOCK_ASSERT(inp);
523		mac_create_mbuf_from_inpcb(inp, m);
524	} else {
525		/*
526		 * Packet is not associated with a socket, so possibly
527		 * update the label in place.
528		 */
529		mac_reflect_mbuf_tcp(m);
530	}
531#endif
532	nth->th_seq = htonl(seq);
533	nth->th_ack = htonl(ack);
534	nth->th_x2 = 0;
535	nth->th_off = sizeof (struct tcphdr) >> 2;
536	nth->th_flags = flags;
537	if (tp != NULL)
538		nth->th_win = htons((u_short) (win >> tp->rcv_scale));
539	else
540		nth->th_win = htons((u_short)win);
541	nth->th_urp = 0;
542#ifdef INET6
543	if (isipv6) {
544		nth->th_sum = 0;
545		nth->th_sum = in6_cksum(m, IPPROTO_TCP,
546					sizeof(struct ip6_hdr),
547					tlen - sizeof(struct ip6_hdr));
548		ip6->ip6_hlim = in6_selecthlim(tp != NULL ? tp->t_inpcb :
549		    NULL, NULL);
550	} else
551#endif /* INET6 */
552	{
553		nth->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
554		    htons((u_short)(tlen - sizeof(struct ip) + ip->ip_p)));
555		m->m_pkthdr.csum_flags = CSUM_TCP;
556		m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
557	}
558#ifdef TCPDEBUG
559	if (tp == NULL || (inp->inp_socket->so_options & SO_DEBUG))
560		tcp_trace(TA_OUTPUT, 0, tp, mtod(m, void *), th, 0);
561#endif
562#ifdef INET6
563	if (isipv6)
564		(void) ip6_output(m, NULL, NULL, ipflags, NULL, NULL, inp);
565	else
566#endif /* INET6 */
567	(void) ip_output(m, NULL, NULL, ipflags, NULL, inp);
568}
569
570/*
571 * Create a new TCP control block, making an
572 * empty reassembly queue and hooking it to the argument
573 * protocol control block.  The `inp' parameter must have
574 * come from the zone allocator set up in tcp_init().
575 */
576struct tcpcb *
577tcp_newtcpcb(inp)
578	struct inpcb *inp;
579{
580	struct tcpcb_mem *tm;
581	struct tcpcb *tp;
582#ifdef INET6
583	int isipv6 = (inp->inp_vflag & INP_IPV6) != 0;
584#endif /* INET6 */
585
586	tm = uma_zalloc(tcpcb_zone, M_NOWAIT | M_ZERO);
587	if (tm == NULL)
588		return (NULL);
589	tp = &tm->tcb;
590	/*	LIST_INIT(&tp->t_segq); */	/* XXX covered by M_ZERO */
591	tp->t_maxseg = tp->t_maxopd =
592#ifdef INET6
593		isipv6 ? tcp_v6mssdflt :
594#endif /* INET6 */
595		tcp_mssdflt;
596
597	/* Set up our timeouts. */
598	callout_init(tp->tt_rexmt = &tm->tcpcb_mem_rexmt, NET_CALLOUT_MPSAFE);
599	callout_init(tp->tt_persist = &tm->tcpcb_mem_persist, NET_CALLOUT_MPSAFE);
600	callout_init(tp->tt_keep = &tm->tcpcb_mem_keep, NET_CALLOUT_MPSAFE);
601	callout_init(tp->tt_2msl = &tm->tcpcb_mem_2msl, NET_CALLOUT_MPSAFE);
602	callout_init(tp->tt_delack = &tm->tcpcb_mem_delack, NET_CALLOUT_MPSAFE);
603
604	if (tcp_do_rfc1323)
605		tp->t_flags = (TF_REQ_SCALE|TF_REQ_TSTMP);
606	tp->sack_enable = tcp_do_sack;
607	tp->t_inpcb = inp;	/* XXX */
608	/*
609	 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
610	 * rtt estimate.  Set rttvar so that srtt + 4 * rttvar gives
611	 * reasonable initial retransmit time.
612	 */
613	tp->t_srtt = TCPTV_SRTTBASE;
614	tp->t_rttvar = ((TCPTV_RTOBASE - TCPTV_SRTTBASE) << TCP_RTTVAR_SHIFT) / 4;
615	tp->t_rttmin = tcp_rexmit_min;
616	tp->t_rxtcur = TCPTV_RTOBASE;
617	tp->snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
618	tp->snd_bwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
619	tp->snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT;
620	tp->t_rcvtime = ticks;
621	tp->t_bw_rtttime = ticks;
622	/*
623	 * IPv4 TTL initialization is necessary for an IPv6 socket as well,
624	 * because the socket may be bound to an IPv6 wildcard address,
625	 * which may match an IPv4-mapped IPv6 address.
626	 */
627	inp->inp_ip_ttl = ip_defttl;
628	inp->inp_ppcb = (caddr_t)tp;
629	return (tp);		/* XXX */
630}
631
632/*
633 * Drop a TCP connection, reporting
634 * the specified error.  If connection is synchronized,
635 * then send a RST to peer.
636 */
637struct tcpcb *
638tcp_drop(tp, errno)
639	register struct tcpcb *tp;
640	int errno;
641{
642	struct socket *so = tp->t_inpcb->inp_socket;
643
644	INP_LOCK_ASSERT(tp->t_inpcb);
645	if (TCPS_HAVERCVDSYN(tp->t_state)) {
646		tp->t_state = TCPS_CLOSED;
647		(void) tcp_output(tp);
648		tcpstat.tcps_drops++;
649	} else
650		tcpstat.tcps_conndrops++;
651	if (errno == ETIMEDOUT && tp->t_softerror)
652		errno = tp->t_softerror;
653	so->so_error = errno;
654	return (tcp_close(tp));
655}
656
657static void
658tcp_discardcb(tp)
659	struct tcpcb *tp;
660{
661	struct tseg_qent *q;
662	struct inpcb *inp = tp->t_inpcb;
663	struct socket *so = inp->inp_socket;
664#ifdef INET6
665	int isipv6 = (inp->inp_vflag & INP_IPV6) != 0;
666#endif /* INET6 */
667
668	INP_LOCK_ASSERT(inp);
669
670	/*
671	 * Make sure that all of our timers are stopped before we
672	 * delete the PCB.
673	 */
674	callout_stop(tp->tt_rexmt);
675	callout_stop(tp->tt_persist);
676	callout_stop(tp->tt_keep);
677	callout_stop(tp->tt_2msl);
678	callout_stop(tp->tt_delack);
679
680	/*
681	 * If we got enough samples through the srtt filter,
682	 * save the rtt and rttvar in the routing entry.
683	 * 'Enough' is arbitrarily defined as 4 rtt samples.
684	 * 4 samples is enough for the srtt filter to converge
685	 * to within enough % of the correct value; fewer samples
686	 * and we could save a bogus rtt. The danger is not high
687	 * as tcp quickly recovers from everything.
688	 * XXX: Works very well but needs some more statistics!
689	 */
690	if (tp->t_rttupdated >= 4) {
691		struct hc_metrics_lite metrics;
692		u_long ssthresh;
693
694		bzero(&metrics, sizeof(metrics));
695		/*
696		 * Update the ssthresh always when the conditions below
697		 * are satisfied. This gives us better new start value
698		 * for the congestion avoidance for new connections.
699		 * ssthresh is only set if packet loss occured on a session.
700		 */
701		ssthresh = tp->snd_ssthresh;
702		if (ssthresh != 0 && ssthresh < so->so_snd.sb_hiwat / 2) {
703			/*
704			 * convert the limit from user data bytes to
705			 * packets then to packet data bytes.
706			 */
707			ssthresh = (ssthresh + tp->t_maxseg / 2) / tp->t_maxseg;
708			if (ssthresh < 2)
709				ssthresh = 2;
710			ssthresh *= (u_long)(tp->t_maxseg +
711#ifdef INET6
712				      (isipv6 ? sizeof (struct ip6_hdr) +
713					       sizeof (struct tcphdr) :
714#endif
715				       sizeof (struct tcpiphdr)
716#ifdef INET6
717				       )
718#endif
719				      );
720		} else
721			ssthresh = 0;
722		metrics.rmx_ssthresh = ssthresh;
723
724		metrics.rmx_rtt = tp->t_srtt;
725		metrics.rmx_rttvar = tp->t_rttvar;
726		/* XXX: This wraps if the pipe is more than 4 Gbit per second */
727		metrics.rmx_bandwidth = tp->snd_bandwidth;
728		metrics.rmx_cwnd = tp->snd_cwnd;
729		metrics.rmx_sendpipe = 0;
730		metrics.rmx_recvpipe = 0;
731
732		tcp_hc_update(&inp->inp_inc, &metrics);
733	}
734
735	/* free the reassembly queue, if any */
736	while ((q = LIST_FIRST(&tp->t_segq)) != NULL) {
737		LIST_REMOVE(q, tqe_q);
738		m_freem(q->tqe_m);
739		uma_zfree(tcp_reass_zone, q);
740		tp->t_segqlen--;
741		tcp_reass_qsize--;
742	}
743	tcp_free_sackholes(tp);
744	inp->inp_ppcb = NULL;
745	tp->t_inpcb = NULL;
746	uma_zfree(tcpcb_zone, tp);
747	soisdisconnected(so);
748}
749
750/*
751 * Close a TCP control block:
752 *    discard all space held by the tcp
753 *    discard internet protocol block
754 *    wake up any sleepers
755 */
756struct tcpcb *
757tcp_close(tp)
758	struct tcpcb *tp;
759{
760	struct inpcb *inp = tp->t_inpcb;
761#ifdef INET6
762	struct socket *so = inp->inp_socket;
763#endif
764
765	INP_LOCK_ASSERT(inp);
766
767	tcp_discardcb(tp);
768#ifdef INET6
769	if (INP_CHECK_SOCKAF(so, AF_INET6))
770		in6_pcbdetach(inp);
771	else
772#endif
773		in_pcbdetach(inp);
774	tcpstat.tcps_closed++;
775	return (NULL);
776}
777
778void
779tcp_drain()
780{
781	if (do_tcpdrain)
782	{
783		struct inpcb *inpb;
784		struct tcpcb *tcpb;
785		struct tseg_qent *te;
786
787	/*
788	 * Walk the tcpbs, if existing, and flush the reassembly queue,
789	 * if there is one...
790	 * XXX: The "Net/3" implementation doesn't imply that the TCP
791	 *      reassembly queue should be flushed, but in a situation
792	 *	where we're really low on mbufs, this is potentially
793	 *	usefull.
794	 */
795		INP_INFO_RLOCK(&tcbinfo);
796		LIST_FOREACH(inpb, tcbinfo.listhead, inp_list) {
797			if (inpb->inp_vflag & INP_TIMEWAIT)
798				continue;
799			INP_LOCK(inpb);
800			if ((tcpb = intotcpcb(inpb)) != NULL) {
801				while ((te = LIST_FIRST(&tcpb->t_segq))
802			            != NULL) {
803					LIST_REMOVE(te, tqe_q);
804					m_freem(te->tqe_m);
805					uma_zfree(tcp_reass_zone, te);
806					tcpb->t_segqlen--;
807					tcp_reass_qsize--;
808				}
809			}
810			INP_UNLOCK(inpb);
811		}
812		INP_INFO_RUNLOCK(&tcbinfo);
813	}
814}
815
816/*
817 * Notify a tcp user of an asynchronous error;
818 * store error as soft error, but wake up user
819 * (for now, won't do anything until can select for soft error).
820 *
821 * Do not wake up user since there currently is no mechanism for
822 * reporting soft errors (yet - a kqueue filter may be added).
823 */
824static struct inpcb *
825tcp_notify(inp, error)
826	struct inpcb *inp;
827	int error;
828{
829	struct tcpcb *tp = (struct tcpcb *)inp->inp_ppcb;
830
831	INP_LOCK_ASSERT(inp);
832
833	/*
834	 * Ignore some errors if we are hooked up.
835	 * If connection hasn't completed, has retransmitted several times,
836	 * and receives a second error, give up now.  This is better
837	 * than waiting a long time to establish a connection that
838	 * can never complete.
839	 */
840	if (tp->t_state == TCPS_ESTABLISHED &&
841	    (error == EHOSTUNREACH || error == ENETUNREACH ||
842	     error == EHOSTDOWN)) {
843		return (inp);
844	} else if (tp->t_state < TCPS_ESTABLISHED && tp->t_rxtshift > 3 &&
845	    tp->t_softerror) {
846		tcp_drop(tp, error);
847		return (struct inpcb *)0;
848	} else {
849		tp->t_softerror = error;
850		return (inp);
851	}
852#if 0
853	wakeup( &so->so_timeo);
854	sorwakeup(so);
855	sowwakeup(so);
856#endif
857}
858
859static int
860tcp_pcblist(SYSCTL_HANDLER_ARGS)
861{
862	int error, i, n, s;
863	struct inpcb *inp, **inp_list;
864	inp_gen_t gencnt;
865	struct xinpgen xig;
866
867	/*
868	 * The process of preparing the TCB list is too time-consuming and
869	 * resource-intensive to repeat twice on every request.
870	 */
871	if (req->oldptr == NULL) {
872		n = tcbinfo.ipi_count;
873		req->oldidx = 2 * (sizeof xig)
874			+ (n + n/8) * sizeof(struct xtcpcb);
875		return (0);
876	}
877
878	if (req->newptr != NULL)
879		return (EPERM);
880
881	/*
882	 * OK, now we're committed to doing something.
883	 */
884	s = splnet();
885	INP_INFO_RLOCK(&tcbinfo);
886	gencnt = tcbinfo.ipi_gencnt;
887	n = tcbinfo.ipi_count;
888	INP_INFO_RUNLOCK(&tcbinfo);
889	splx(s);
890
891	error = sysctl_wire_old_buffer(req, 2 * (sizeof xig)
892		+ n * sizeof(struct xtcpcb));
893	if (error != 0)
894		return (error);
895
896	xig.xig_len = sizeof xig;
897	xig.xig_count = n;
898	xig.xig_gen = gencnt;
899	xig.xig_sogen = so_gencnt;
900	error = SYSCTL_OUT(req, &xig, sizeof xig);
901	if (error)
902		return (error);
903
904	inp_list = malloc(n * sizeof *inp_list, M_TEMP, M_WAITOK);
905	if (inp_list == NULL)
906		return (ENOMEM);
907
908	s = splnet();
909	INP_INFO_RLOCK(&tcbinfo);
910	for (inp = LIST_FIRST(tcbinfo.listhead), i = 0; inp != NULL && i < n;
911	     inp = LIST_NEXT(inp, inp_list)) {
912		INP_LOCK(inp);
913		if (inp->inp_gencnt <= gencnt) {
914			/*
915			 * XXX: This use of cr_cansee(), introduced with
916			 * TCP state changes, is not quite right, but for
917			 * now, better than nothing.
918			 */
919			if (inp->inp_vflag & INP_TIMEWAIT)
920				error = cr_cansee(req->td->td_ucred,
921				    intotw(inp)->tw_cred);
922			else
923				error = cr_canseesocket(req->td->td_ucred,
924				    inp->inp_socket);
925			if (error == 0)
926				inp_list[i++] = inp;
927		}
928		INP_UNLOCK(inp);
929	}
930	INP_INFO_RUNLOCK(&tcbinfo);
931	splx(s);
932	n = i;
933
934	error = 0;
935	for (i = 0; i < n; i++) {
936		inp = inp_list[i];
937		if (inp->inp_gencnt <= gencnt) {
938			struct xtcpcb xt;
939			caddr_t inp_ppcb;
940			xt.xt_len = sizeof xt;
941			/* XXX should avoid extra copy */
942			bcopy(inp, &xt.xt_inp, sizeof *inp);
943			inp_ppcb = inp->inp_ppcb;
944			if (inp_ppcb == NULL)
945				bzero((char *) &xt.xt_tp, sizeof xt.xt_tp);
946			else if (inp->inp_vflag & INP_TIMEWAIT) {
947				bzero((char *) &xt.xt_tp, sizeof xt.xt_tp);
948				xt.xt_tp.t_state = TCPS_TIME_WAIT;
949			} else
950				bcopy(inp_ppcb, &xt.xt_tp, sizeof xt.xt_tp);
951			if (inp->inp_socket != NULL)
952				sotoxsocket(inp->inp_socket, &xt.xt_socket);
953			else {
954				bzero(&xt.xt_socket, sizeof xt.xt_socket);
955				xt.xt_socket.xso_protocol = IPPROTO_TCP;
956			}
957			xt.xt_inp.inp_gencnt = inp->inp_gencnt;
958			error = SYSCTL_OUT(req, &xt, sizeof xt);
959		}
960	}
961	if (!error) {
962		/*
963		 * Give the user an updated idea of our state.
964		 * If the generation differs from what we told
965		 * her before, she knows that something happened
966		 * while we were processing this request, and it
967		 * might be necessary to retry.
968		 */
969		s = splnet();
970		INP_INFO_RLOCK(&tcbinfo);
971		xig.xig_gen = tcbinfo.ipi_gencnt;
972		xig.xig_sogen = so_gencnt;
973		xig.xig_count = tcbinfo.ipi_count;
974		INP_INFO_RUNLOCK(&tcbinfo);
975		splx(s);
976		error = SYSCTL_OUT(req, &xig, sizeof xig);
977	}
978	free(inp_list, M_TEMP);
979	return (error);
980}
981
982SYSCTL_PROC(_net_inet_tcp, TCPCTL_PCBLIST, pcblist, CTLFLAG_RD, 0, 0,
983	    tcp_pcblist, "S,xtcpcb", "List of active TCP connections");
984
985static int
986tcp_getcred(SYSCTL_HANDLER_ARGS)
987{
988	struct xucred xuc;
989	struct sockaddr_in addrs[2];
990	struct inpcb *inp;
991	int error, s;
992
993	error = suser_cred(req->td->td_ucred, SUSER_ALLOWJAIL);
994	if (error)
995		return (error);
996	error = SYSCTL_IN(req, addrs, sizeof(addrs));
997	if (error)
998		return (error);
999	s = splnet();
1000	INP_INFO_RLOCK(&tcbinfo);
1001	inp = in_pcblookup_hash(&tcbinfo, addrs[1].sin_addr, addrs[1].sin_port,
1002	    addrs[0].sin_addr, addrs[0].sin_port, 0, NULL);
1003	if (inp == NULL) {
1004		error = ENOENT;
1005		goto outunlocked;
1006	}
1007	INP_LOCK(inp);
1008	if (inp->inp_socket == NULL) {
1009		error = ENOENT;
1010		goto out;
1011	}
1012	error = cr_canseesocket(req->td->td_ucred, inp->inp_socket);
1013	if (error)
1014		goto out;
1015	cru2x(inp->inp_socket->so_cred, &xuc);
1016out:
1017	INP_UNLOCK(inp);
1018outunlocked:
1019	INP_INFO_RUNLOCK(&tcbinfo);
1020	splx(s);
1021	if (error == 0)
1022		error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred));
1023	return (error);
1024}
1025
1026SYSCTL_PROC(_net_inet_tcp, OID_AUTO, getcred,
1027    CTLTYPE_OPAQUE|CTLFLAG_RW|CTLFLAG_PRISON, 0, 0,
1028    tcp_getcred, "S,xucred", "Get the xucred of a TCP connection");
1029
1030#ifdef INET6
1031static int
1032tcp6_getcred(SYSCTL_HANDLER_ARGS)
1033{
1034	struct xucred xuc;
1035	struct sockaddr_in6 addrs[2];
1036	struct in6_addr a6[2];
1037	struct inpcb *inp;
1038	int error, s, mapped = 0;
1039
1040	error = suser_cred(req->td->td_ucred, SUSER_ALLOWJAIL);
1041	if (error)
1042		return (error);
1043	error = SYSCTL_IN(req, addrs, sizeof(addrs));
1044	if (error)
1045		return (error);
1046	if (IN6_IS_ADDR_V4MAPPED(&addrs[0].sin6_addr)) {
1047		if (IN6_IS_ADDR_V4MAPPED(&addrs[1].sin6_addr))
1048			mapped = 1;
1049		else
1050			return (EINVAL);
1051	} else {
1052		error = in6_embedscope(&a6[0], &addrs[0], NULL, NULL);
1053		if (error)
1054			return (EINVAL);
1055		error = in6_embedscope(&a6[1], &addrs[1], NULL, NULL);
1056		if (error)
1057			return (EINVAL);
1058	}
1059	s = splnet();
1060	INP_INFO_RLOCK(&tcbinfo);
1061	if (mapped == 1)
1062		inp = in_pcblookup_hash(&tcbinfo,
1063			*(struct in_addr *)&addrs[1].sin6_addr.s6_addr[12],
1064			addrs[1].sin6_port,
1065			*(struct in_addr *)&addrs[0].sin6_addr.s6_addr[12],
1066			addrs[0].sin6_port,
1067			0, NULL);
1068	else
1069		inp = in6_pcblookup_hash(&tcbinfo, &a6[1], addrs[1].sin6_port,
1070			&a6[0], addrs[0].sin6_port, 0, NULL);
1071	if (inp == NULL) {
1072		error = ENOENT;
1073		goto outunlocked;
1074	}
1075	INP_LOCK(inp);
1076	if (inp->inp_socket == NULL) {
1077		error = ENOENT;
1078		goto out;
1079	}
1080	error = cr_canseesocket(req->td->td_ucred, inp->inp_socket);
1081	if (error)
1082		goto out;
1083	cru2x(inp->inp_socket->so_cred, &xuc);
1084out:
1085	INP_UNLOCK(inp);
1086outunlocked:
1087	INP_INFO_RUNLOCK(&tcbinfo);
1088	splx(s);
1089	if (error == 0)
1090		error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred));
1091	return (error);
1092}
1093
1094SYSCTL_PROC(_net_inet6_tcp6, OID_AUTO, getcred,
1095    CTLTYPE_OPAQUE|CTLFLAG_RW|CTLFLAG_PRISON, 0, 0,
1096    tcp6_getcred, "S,xucred", "Get the xucred of a TCP6 connection");
1097#endif
1098
1099
1100void
1101tcp_ctlinput(cmd, sa, vip)
1102	int cmd;
1103	struct sockaddr *sa;
1104	void *vip;
1105{
1106	struct ip *ip = vip;
1107	struct tcphdr *th;
1108	struct in_addr faddr;
1109	struct inpcb *inp;
1110	struct tcpcb *tp;
1111	struct inpcb *(*notify)(struct inpcb *, int) = tcp_notify;
1112	tcp_seq icmp_seq;
1113	int s;
1114
1115	faddr = ((struct sockaddr_in *)sa)->sin_addr;
1116	if (sa->sa_family != AF_INET || faddr.s_addr == INADDR_ANY)
1117		return;
1118
1119	if (cmd == PRC_QUENCH)
1120		notify = tcp_quench;
1121	else if (icmp_may_rst && (cmd == PRC_UNREACH_ADMIN_PROHIB ||
1122		cmd == PRC_UNREACH_PORT || cmd == PRC_TIMXCEED_INTRANS) && ip)
1123		notify = tcp_drop_syn_sent;
1124	else if (cmd == PRC_MSGSIZE)
1125		notify = tcp_mtudisc;
1126	/*
1127	 * Redirects don't need to be handled up here.
1128	 */
1129	else if (PRC_IS_REDIRECT(cmd))
1130		return;
1131	/*
1132	 * Hostdead is ugly because it goes linearly through all PCBs.
1133	 * XXX: We never get this from ICMP, otherwise it makes an
1134	 * excellent DoS attack on machines with many connections.
1135	 */
1136	else if (cmd == PRC_HOSTDEAD)
1137		ip = NULL;
1138	else if ((unsigned)cmd >= PRC_NCMDS || inetctlerrmap[cmd] == 0)
1139		return;
1140	if (ip != NULL) {
1141		s = splnet();
1142		th = (struct tcphdr *)((caddr_t)ip
1143				       + (ip->ip_hl << 2));
1144		INP_INFO_WLOCK(&tcbinfo);
1145		inp = in_pcblookup_hash(&tcbinfo, faddr, th->th_dport,
1146		    ip->ip_src, th->th_sport, 0, NULL);
1147		if (inp != NULL)  {
1148			INP_LOCK(inp);
1149			if (inp->inp_socket != NULL) {
1150				icmp_seq = htonl(th->th_seq);
1151				tp = intotcpcb(inp);
1152				if (SEQ_GEQ(icmp_seq, tp->snd_una) &&
1153					SEQ_LT(icmp_seq, tp->snd_max))
1154					inp = (*notify)(inp, inetctlerrmap[cmd]);
1155			}
1156			if (inp != NULL)
1157				INP_UNLOCK(inp);
1158		} else {
1159			struct in_conninfo inc;
1160
1161			inc.inc_fport = th->th_dport;
1162			inc.inc_lport = th->th_sport;
1163			inc.inc_faddr = faddr;
1164			inc.inc_laddr = ip->ip_src;
1165#ifdef INET6
1166			inc.inc_isipv6 = 0;
1167#endif
1168			syncache_unreach(&inc, th);
1169		}
1170		INP_INFO_WUNLOCK(&tcbinfo);
1171		splx(s);
1172	} else
1173		in_pcbnotifyall(&tcbinfo, faddr, inetctlerrmap[cmd], notify);
1174}
1175
1176#ifdef INET6
1177void
1178tcp6_ctlinput(cmd, sa, d)
1179	int cmd;
1180	struct sockaddr *sa;
1181	void *d;
1182{
1183	struct tcphdr th;
1184	struct inpcb *(*notify)(struct inpcb *, int) = tcp_notify;
1185	struct ip6_hdr *ip6;
1186	struct mbuf *m;
1187	struct ip6ctlparam *ip6cp = NULL;
1188	const struct sockaddr_in6 *sa6_src = NULL;
1189	int off;
1190	struct tcp_portonly {
1191		u_int16_t th_sport;
1192		u_int16_t th_dport;
1193	} *thp;
1194
1195	if (sa->sa_family != AF_INET6 ||
1196	    sa->sa_len != sizeof(struct sockaddr_in6))
1197		return;
1198
1199	if (cmd == PRC_QUENCH)
1200		notify = tcp_quench;
1201	else if (cmd == PRC_MSGSIZE)
1202		notify = tcp_mtudisc;
1203	else if (!PRC_IS_REDIRECT(cmd) &&
1204		 ((unsigned)cmd >= PRC_NCMDS || inet6ctlerrmap[cmd] == 0))
1205		return;
1206
1207	/* if the parameter is from icmp6, decode it. */
1208	if (d != NULL) {
1209		ip6cp = (struct ip6ctlparam *)d;
1210		m = ip6cp->ip6c_m;
1211		ip6 = ip6cp->ip6c_ip6;
1212		off = ip6cp->ip6c_off;
1213		sa6_src = ip6cp->ip6c_src;
1214	} else {
1215		m = NULL;
1216		ip6 = NULL;
1217		off = 0;	/* fool gcc */
1218		sa6_src = &sa6_any;
1219	}
1220
1221	if (ip6 != NULL) {
1222		struct in_conninfo inc;
1223		/*
1224		 * XXX: We assume that when IPV6 is non NULL,
1225		 * M and OFF are valid.
1226		 */
1227
1228		/* check if we can safely examine src and dst ports */
1229		if (m->m_pkthdr.len < off + sizeof(*thp))
1230			return;
1231
1232		bzero(&th, sizeof(th));
1233		m_copydata(m, off, sizeof(*thp), (caddr_t)&th);
1234
1235		in6_pcbnotify(&tcbinfo, sa, th.th_dport,
1236		    (struct sockaddr *)ip6cp->ip6c_src,
1237		    th.th_sport, cmd, NULL, notify);
1238
1239		inc.inc_fport = th.th_dport;
1240		inc.inc_lport = th.th_sport;
1241		inc.inc6_faddr = ((struct sockaddr_in6 *)sa)->sin6_addr;
1242		inc.inc6_laddr = ip6cp->ip6c_src->sin6_addr;
1243		inc.inc_isipv6 = 1;
1244		INP_INFO_WLOCK(&tcbinfo);
1245		syncache_unreach(&inc, &th);
1246		INP_INFO_WUNLOCK(&tcbinfo);
1247	} else
1248		in6_pcbnotify(&tcbinfo, sa, 0, (const struct sockaddr *)sa6_src,
1249			      0, cmd, NULL, notify);
1250}
1251#endif /* INET6 */
1252
1253
1254/*
1255 * Following is where TCP initial sequence number generation occurs.
1256 *
1257 * There are two places where we must use initial sequence numbers:
1258 * 1.  In SYN-ACK packets.
1259 * 2.  In SYN packets.
1260 *
1261 * All ISNs for SYN-ACK packets are generated by the syncache.  See
1262 * tcp_syncache.c for details.
1263 *
1264 * The ISNs in SYN packets must be monotonic; TIME_WAIT recycling
1265 * depends on this property.  In addition, these ISNs should be
1266 * unguessable so as to prevent connection hijacking.  To satisfy
1267 * the requirements of this situation, the algorithm outlined in
1268 * RFC 1948 is used, with only small modifications.
1269 *
1270 * Implementation details:
1271 *
1272 * Time is based off the system timer, and is corrected so that it
1273 * increases by one megabyte per second.  This allows for proper
1274 * recycling on high speed LANs while still leaving over an hour
1275 * before rollover.
1276 *
1277 * As reading the *exact* system time is too expensive to be done
1278 * whenever setting up a TCP connection, we increment the time
1279 * offset in two ways.  First, a small random positive increment
1280 * is added to isn_offset for each connection that is set up.
1281 * Second, the function tcp_isn_tick fires once per clock tick
1282 * and increments isn_offset as necessary so that sequence numbers
1283 * are incremented at approximately ISN_BYTES_PER_SECOND.  The
1284 * random positive increments serve only to ensure that the same
1285 * exact sequence number is never sent out twice (as could otherwise
1286 * happen when a port is recycled in less than the system tick
1287 * interval.)
1288 *
1289 * net.inet.tcp.isn_reseed_interval controls the number of seconds
1290 * between seeding of isn_secret.  This is normally set to zero,
1291 * as reseeding should not be necessary.
1292 *
1293 * Locking of the global variables isn_secret, isn_last_reseed, isn_offset,
1294 * isn_offset_old, and isn_ctx is performed using the TCP pcbinfo lock.  In
1295 * general, this means holding an exclusive (write) lock.
1296 */
1297
1298#define ISN_BYTES_PER_SECOND 1048576
1299#define ISN_STATIC_INCREMENT 4096
1300#define ISN_RANDOM_INCREMENT (4096 - 1)
1301
1302static u_char isn_secret[32];
1303static int isn_last_reseed;
1304static u_int32_t isn_offset, isn_offset_old;
1305static MD5_CTX isn_ctx;
1306
1307tcp_seq
1308tcp_new_isn(tp)
1309	struct tcpcb *tp;
1310{
1311	u_int32_t md5_buffer[4];
1312	tcp_seq new_isn;
1313
1314	INP_INFO_WLOCK_ASSERT(&tcbinfo);
1315	INP_LOCK_ASSERT(tp->t_inpcb);
1316
1317	/* Seed if this is the first use, reseed if requested. */
1318	if ((isn_last_reseed == 0) || ((tcp_isn_reseed_interval > 0) &&
1319	     (((u_int)isn_last_reseed + (u_int)tcp_isn_reseed_interval*hz)
1320		< (u_int)ticks))) {
1321		read_random(&isn_secret, sizeof(isn_secret));
1322		isn_last_reseed = ticks;
1323	}
1324
1325	/* Compute the md5 hash and return the ISN. */
1326	MD5Init(&isn_ctx);
1327	MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_fport, sizeof(u_short));
1328	MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_lport, sizeof(u_short));
1329#ifdef INET6
1330	if ((tp->t_inpcb->inp_vflag & INP_IPV6) != 0) {
1331		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_faddr,
1332			  sizeof(struct in6_addr));
1333		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_laddr,
1334			  sizeof(struct in6_addr));
1335	} else
1336#endif
1337	{
1338		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_faddr,
1339			  sizeof(struct in_addr));
1340		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_laddr,
1341			  sizeof(struct in_addr));
1342	}
1343	MD5Update(&isn_ctx, (u_char *) &isn_secret, sizeof(isn_secret));
1344	MD5Final((u_char *) &md5_buffer, &isn_ctx);
1345	new_isn = (tcp_seq) md5_buffer[0];
1346	isn_offset += ISN_STATIC_INCREMENT +
1347		(arc4random() & ISN_RANDOM_INCREMENT);
1348	new_isn += isn_offset;
1349	return (new_isn);
1350}
1351
1352/*
1353 * Increment the offset to the next ISN_BYTES_PER_SECOND / hz boundary
1354 * to keep time flowing at a relatively constant rate.  If the random
1355 * increments have already pushed us past the projected offset, do nothing.
1356 */
1357static void
1358tcp_isn_tick(xtp)
1359	void *xtp;
1360{
1361	u_int32_t projected_offset;
1362
1363	INP_INFO_WLOCK(&tcbinfo);
1364	projected_offset = isn_offset_old + ISN_BYTES_PER_SECOND / 100;
1365
1366	if (projected_offset > isn_offset)
1367		isn_offset = projected_offset;
1368
1369	isn_offset_old = isn_offset;
1370	callout_reset(&isn_callout, hz/100, tcp_isn_tick, NULL);
1371	INP_INFO_WUNLOCK(&tcbinfo);
1372}
1373
1374/*
1375 * When a source quench is received, close congestion window
1376 * to one segment.  We will gradually open it again as we proceed.
1377 */
1378struct inpcb *
1379tcp_quench(inp, errno)
1380	struct inpcb *inp;
1381	int errno;
1382{
1383	struct tcpcb *tp = intotcpcb(inp);
1384
1385	INP_LOCK_ASSERT(inp);
1386	if (tp != NULL)
1387		tp->snd_cwnd = tp->t_maxseg;
1388	return (inp);
1389}
1390
1391/*
1392 * When a specific ICMP unreachable message is received and the
1393 * connection state is SYN-SENT, drop the connection.  This behavior
1394 * is controlled by the icmp_may_rst sysctl.
1395 */
1396struct inpcb *
1397tcp_drop_syn_sent(inp, errno)
1398	struct inpcb *inp;
1399	int errno;
1400{
1401	struct tcpcb *tp = intotcpcb(inp);
1402
1403	INP_LOCK_ASSERT(inp);
1404	if (tp != NULL && tp->t_state == TCPS_SYN_SENT) {
1405		tcp_drop(tp, errno);
1406		return (NULL);
1407	}
1408	return (inp);
1409}
1410
1411/*
1412 * When `need fragmentation' ICMP is received, update our idea of the MSS
1413 * based on the new value in the route.  Also nudge TCP to send something,
1414 * since we know the packet we just sent was dropped.
1415 * This duplicates some code in the tcp_mss() function in tcp_input.c.
1416 */
1417struct inpcb *
1418tcp_mtudisc(inp, errno)
1419	struct inpcb *inp;
1420	int errno;
1421{
1422	struct tcpcb *tp = intotcpcb(inp);
1423	struct socket *so = inp->inp_socket;
1424	u_int maxmtu;
1425	u_int romtu;
1426	int mss;
1427#ifdef INET6
1428	int isipv6;
1429#endif /* INET6 */
1430
1431	INP_LOCK_ASSERT(inp);
1432	if (tp != NULL) {
1433#ifdef INET6
1434		isipv6 = (tp->t_inpcb->inp_vflag & INP_IPV6) != 0;
1435#endif
1436		maxmtu = tcp_hc_getmtu(&inp->inp_inc); /* IPv4 and IPv6 */
1437		romtu =
1438#ifdef INET6
1439		    isipv6 ? tcp_maxmtu6(&inp->inp_inc) :
1440#endif /* INET6 */
1441		    tcp_maxmtu(&inp->inp_inc);
1442		if (!maxmtu)
1443			maxmtu = romtu;
1444		else
1445			maxmtu = min(maxmtu, romtu);
1446		if (!maxmtu) {
1447			tp->t_maxopd = tp->t_maxseg =
1448#ifdef INET6
1449				isipv6 ? tcp_v6mssdflt :
1450#endif /* INET6 */
1451				tcp_mssdflt;
1452			return (inp);
1453		}
1454		mss = maxmtu -
1455#ifdef INET6
1456			(isipv6 ?
1457			 sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
1458#endif /* INET6 */
1459			 sizeof(struct tcpiphdr)
1460#ifdef INET6
1461			 )
1462#endif /* INET6 */
1463			;
1464
1465		/*
1466		 * XXX - The above conditional probably violates the TCP
1467		 * spec.  The problem is that, since we don't know the
1468		 * other end's MSS, we are supposed to use a conservative
1469		 * default.  But, if we do that, then MTU discovery will
1470		 * never actually take place, because the conservative
1471		 * default is much less than the MTUs typically seen
1472		 * on the Internet today.  For the moment, we'll sweep
1473		 * this under the carpet.
1474		 *
1475		 * The conservative default might not actually be a problem
1476		 * if the only case this occurs is when sending an initial
1477		 * SYN with options and data to a host we've never talked
1478		 * to before.  Then, they will reply with an MSS value which
1479		 * will get recorded and the new parameters should get
1480		 * recomputed.  For Further Study.
1481		 */
1482		if (tp->t_maxopd <= mss)
1483			return (inp);
1484		tp->t_maxopd = mss;
1485
1486		if ((tp->t_flags & (TF_REQ_TSTMP|TF_NOOPT)) == TF_REQ_TSTMP &&
1487		    (tp->t_flags & TF_RCVD_TSTMP) == TF_RCVD_TSTMP)
1488			mss -= TCPOLEN_TSTAMP_APPA;
1489#if	(MCLBYTES & (MCLBYTES - 1)) == 0
1490		if (mss > MCLBYTES)
1491			mss &= ~(MCLBYTES-1);
1492#else
1493		if (mss > MCLBYTES)
1494			mss = mss / MCLBYTES * MCLBYTES;
1495#endif
1496		if (so->so_snd.sb_hiwat < mss)
1497			mss = so->so_snd.sb_hiwat;
1498
1499		tp->t_maxseg = mss;
1500
1501		tcpstat.tcps_mturesent++;
1502		tp->t_rtttime = 0;
1503		tp->snd_nxt = tp->snd_una;
1504		tcp_output(tp);
1505	}
1506	return (inp);
1507}
1508
1509/*
1510 * Look-up the routing entry to the peer of this inpcb.  If no route
1511 * is found and it cannot be allocated, then return NULL.  This routine
1512 * is called by TCP routines that access the rmx structure and by tcp_mss
1513 * to get the interface MTU.
1514 */
1515u_long
1516tcp_maxmtu(inc)
1517	struct in_conninfo *inc;
1518{
1519	struct route sro;
1520	struct sockaddr_in *dst;
1521	struct ifnet *ifp;
1522	u_long maxmtu = 0;
1523
1524	KASSERT(inc != NULL, ("tcp_maxmtu with NULL in_conninfo pointer"));
1525
1526	bzero(&sro, sizeof(sro));
1527	if (inc->inc_faddr.s_addr != INADDR_ANY) {
1528	        dst = (struct sockaddr_in *)&sro.ro_dst;
1529		dst->sin_family = AF_INET;
1530		dst->sin_len = sizeof(*dst);
1531		dst->sin_addr = inc->inc_faddr;
1532		rtalloc_ign(&sro, RTF_CLONING);
1533	}
1534	if (sro.ro_rt != NULL) {
1535		ifp = sro.ro_rt->rt_ifp;
1536		if (sro.ro_rt->rt_rmx.rmx_mtu == 0)
1537			maxmtu = ifp->if_mtu;
1538		else
1539			maxmtu = min(sro.ro_rt->rt_rmx.rmx_mtu, ifp->if_mtu);
1540		RTFREE(sro.ro_rt);
1541	}
1542	return (maxmtu);
1543}
1544
1545#ifdef INET6
1546u_long
1547tcp_maxmtu6(inc)
1548	struct in_conninfo *inc;
1549{
1550	struct route_in6 sro6;
1551	struct ifnet *ifp;
1552	u_long maxmtu = 0;
1553
1554	KASSERT(inc != NULL, ("tcp_maxmtu6 with NULL in_conninfo pointer"));
1555
1556	bzero(&sro6, sizeof(sro6));
1557	if (!IN6_IS_ADDR_UNSPECIFIED(&inc->inc6_faddr)) {
1558		sro6.ro_dst.sin6_family = AF_INET6;
1559		sro6.ro_dst.sin6_len = sizeof(struct sockaddr_in6);
1560		sro6.ro_dst.sin6_addr = inc->inc6_faddr;
1561		rtalloc_ign((struct route *)&sro6, RTF_CLONING);
1562	}
1563	if (sro6.ro_rt != NULL) {
1564		ifp = sro6.ro_rt->rt_ifp;
1565		if (sro6.ro_rt->rt_rmx.rmx_mtu == 0)
1566			maxmtu = IN6_LINKMTU(sro6.ro_rt->rt_ifp);
1567		else
1568			maxmtu = min(sro6.ro_rt->rt_rmx.rmx_mtu,
1569				     IN6_LINKMTU(sro6.ro_rt->rt_ifp));
1570		RTFREE(sro6.ro_rt);
1571	}
1572
1573	return (maxmtu);
1574}
1575#endif /* INET6 */
1576
1577#ifdef IPSEC
1578/* compute ESP/AH header size for TCP, including outer IP header. */
1579size_t
1580ipsec_hdrsiz_tcp(tp)
1581	struct tcpcb *tp;
1582{
1583	struct inpcb *inp;
1584	struct mbuf *m;
1585	size_t hdrsiz;
1586	struct ip *ip;
1587#ifdef INET6
1588	struct ip6_hdr *ip6;
1589#endif
1590	struct tcphdr *th;
1591
1592	if ((tp == NULL) || ((inp = tp->t_inpcb) == NULL))
1593		return (0);
1594	MGETHDR(m, M_DONTWAIT, MT_DATA);
1595	if (!m)
1596		return (0);
1597
1598#ifdef INET6
1599	if ((inp->inp_vflag & INP_IPV6) != 0) {
1600		ip6 = mtod(m, struct ip6_hdr *);
1601		th = (struct tcphdr *)(ip6 + 1);
1602		m->m_pkthdr.len = m->m_len =
1603			sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
1604		tcpip_fillheaders(inp, ip6, th);
1605		hdrsiz = ipsec6_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
1606	} else
1607#endif /* INET6 */
1608	{
1609		ip = mtod(m, struct ip *);
1610		th = (struct tcphdr *)(ip + 1);
1611		m->m_pkthdr.len = m->m_len = sizeof(struct tcpiphdr);
1612		tcpip_fillheaders(inp, ip, th);
1613		hdrsiz = ipsec4_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
1614	}
1615
1616	m_free(m);
1617	return (hdrsiz);
1618}
1619#endif /*IPSEC*/
1620
1621/*
1622 * Move a TCP connection into TIME_WAIT state.
1623 *    tcbinfo is locked.
1624 *    inp is locked, and is unlocked before returning.
1625 */
1626void
1627tcp_twstart(tp)
1628	struct tcpcb *tp;
1629{
1630	struct tcptw *tw;
1631	struct inpcb *inp;
1632	int tw_time, acknow;
1633	struct socket *so;
1634
1635	INP_INFO_WLOCK_ASSERT(&tcbinfo);	/* tcp_timer_2msl_reset(). */
1636	INP_LOCK_ASSERT(tp->t_inpcb);
1637
1638	tw = uma_zalloc(tcptw_zone, M_NOWAIT);
1639	if (tw == NULL) {
1640		tw = tcp_timer_2msl_tw(1);
1641		if (tw == NULL) {
1642			tcp_close(tp);
1643			return;
1644		}
1645	}
1646	inp = tp->t_inpcb;
1647	tw->tw_inpcb = inp;
1648
1649	/*
1650	 * Recover last window size sent.
1651	 */
1652	tw->last_win = (tp->rcv_adv - tp->rcv_nxt) >> tp->rcv_scale;
1653
1654	/*
1655	 * Set t_recent if timestamps are used on the connection.
1656	 */
1657	if ((tp->t_flags & (TF_REQ_TSTMP|TF_RCVD_TSTMP|TF_NOOPT)) ==
1658	    (TF_REQ_TSTMP|TF_RCVD_TSTMP))
1659		tw->t_recent = tp->ts_recent;
1660	else
1661		tw->t_recent = 0;
1662
1663	tw->snd_nxt = tp->snd_nxt;
1664	tw->rcv_nxt = tp->rcv_nxt;
1665	tw->iss     = tp->iss;
1666	tw->irs     = tp->irs;
1667	tw->t_starttime = tp->t_starttime;
1668	tw->tw_time = 0;
1669
1670/* XXX
1671 * If this code will
1672 * be used for fin-wait-2 state also, then we may need
1673 * a ts_recent from the last segment.
1674 */
1675	tw_time = 2 * tcp_msl;
1676	acknow = tp->t_flags & TF_ACKNOW;
1677	tcp_discardcb(tp);
1678	so = inp->inp_socket;
1679	ACCEPT_LOCK();
1680	SOCK_LOCK(so);
1681	so->so_pcb = NULL;
1682	tw->tw_cred = crhold(so->so_cred);
1683	tw->tw_so_options = so->so_options;
1684	sotryfree(so);
1685	inp->inp_socket = NULL;
1686	if (acknow)
1687		tcp_twrespond(tw, TH_ACK);
1688	inp->inp_ppcb = (caddr_t)tw;
1689	inp->inp_vflag |= INP_TIMEWAIT;
1690	tcp_timer_2msl_reset(tw, tw_time);
1691	INP_UNLOCK(inp);
1692}
1693
1694/*
1695 * The appromixate rate of ISN increase of Microsoft TCP stacks;
1696 * the actual rate is slightly higher due to the addition of
1697 * random positive increments.
1698 *
1699 * Most other new OSes use semi-randomized ISN values, so we
1700 * do not need to worry about them.
1701 */
1702#define MS_ISN_BYTES_PER_SECOND		250000
1703
1704/*
1705 * Determine if the ISN we will generate has advanced beyond the last
1706 * sequence number used by the previous connection.  If so, indicate
1707 * that it is safe to recycle this tw socket by returning 1.
1708 *
1709 * XXXRW: This function should assert the inpcb lock as it does multiple
1710 * non-atomic reads from the tcptw, but is currently called without it from
1711 * in_pcb.c:in_pcblookup_local().
1712 */
1713int
1714tcp_twrecycleable(struct tcptw *tw)
1715{
1716	tcp_seq new_iss = tw->iss;
1717	tcp_seq new_irs = tw->irs;
1718
1719	new_iss += (ticks - tw->t_starttime) * (ISN_BYTES_PER_SECOND / hz);
1720	new_irs += (ticks - tw->t_starttime) * (MS_ISN_BYTES_PER_SECOND / hz);
1721
1722	if (SEQ_GT(new_iss, tw->snd_nxt) && SEQ_GT(new_irs, tw->rcv_nxt))
1723		return (1);
1724	else
1725		return (0);
1726}
1727
1728struct tcptw *
1729tcp_twclose(struct tcptw *tw, int reuse)
1730{
1731	struct inpcb *inp;
1732
1733	inp = tw->tw_inpcb;
1734	INP_INFO_WLOCK_ASSERT(&tcbinfo);	/* tcp_timer_2msl_stop(). */
1735	INP_LOCK_ASSERT(inp);
1736
1737	tw->tw_inpcb = NULL;
1738	tcp_timer_2msl_stop(tw);
1739	inp->inp_ppcb = NULL;
1740#ifdef INET6
1741	if (inp->inp_vflag & INP_IPV6PROTO)
1742		in6_pcbdetach(inp);
1743	else
1744#endif
1745		in_pcbdetach(inp);
1746	tcpstat.tcps_closed++;
1747	crfree(tw->tw_cred);
1748	tw->tw_cred = NULL;
1749	if (reuse)
1750		return (tw);
1751	uma_zfree(tcptw_zone, tw);
1752	return (NULL);
1753}
1754
1755int
1756tcp_twrespond(struct tcptw *tw, int flags)
1757{
1758	struct inpcb *inp = tw->tw_inpcb;
1759	struct tcphdr *th;
1760	struct mbuf *m;
1761	struct ip *ip = NULL;
1762	u_int8_t *optp;
1763	u_int hdrlen, optlen;
1764	int error;
1765#ifdef INET6
1766	struct ip6_hdr *ip6 = NULL;
1767	int isipv6 = inp->inp_inc.inc_isipv6;
1768#endif
1769
1770	INP_LOCK_ASSERT(inp);
1771
1772	m = m_gethdr(M_DONTWAIT, MT_HEADER);
1773	if (m == NULL)
1774		return (ENOBUFS);
1775	m->m_data += max_linkhdr;
1776
1777#ifdef MAC
1778	mac_create_mbuf_from_inpcb(inp, m);
1779#endif
1780
1781#ifdef INET6
1782	if (isipv6) {
1783		hdrlen = sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
1784		ip6 = mtod(m, struct ip6_hdr *);
1785		th = (struct tcphdr *)(ip6 + 1);
1786		tcpip_fillheaders(inp, ip6, th);
1787	} else
1788#endif
1789	{
1790		hdrlen = sizeof(struct tcpiphdr);
1791		ip = mtod(m, struct ip *);
1792		th = (struct tcphdr *)(ip + 1);
1793		tcpip_fillheaders(inp, ip, th);
1794	}
1795	optp = (u_int8_t *)(th + 1);
1796
1797	/*
1798	 * Send a timestamp and echo-reply if both our side and our peer
1799	 * have sent timestamps in our SYN's and this is not a RST.
1800	 */
1801	if (tw->t_recent && flags == TH_ACK) {
1802		u_int32_t *lp = (u_int32_t *)optp;
1803
1804		/* Form timestamp option as shown in appendix A of RFC 1323. */
1805		*lp++ = htonl(TCPOPT_TSTAMP_HDR);
1806		*lp++ = htonl(ticks);
1807		*lp   = htonl(tw->t_recent);
1808		optp += TCPOLEN_TSTAMP_APPA;
1809	}
1810
1811	optlen = optp - (u_int8_t *)(th + 1);
1812
1813	m->m_len = hdrlen + optlen;
1814	m->m_pkthdr.len = m->m_len;
1815
1816	KASSERT(max_linkhdr + m->m_len <= MHLEN, ("tcptw: mbuf too small"));
1817
1818	th->th_seq = htonl(tw->snd_nxt);
1819	th->th_ack = htonl(tw->rcv_nxt);
1820	th->th_off = (sizeof(struct tcphdr) + optlen) >> 2;
1821	th->th_flags = flags;
1822	th->th_win = htons(tw->last_win);
1823
1824#ifdef INET6
1825	if (isipv6) {
1826		th->th_sum = in6_cksum(m, IPPROTO_TCP, sizeof(struct ip6_hdr),
1827		    sizeof(struct tcphdr) + optlen);
1828		ip6->ip6_hlim = in6_selecthlim(inp, NULL);
1829		error = ip6_output(m, inp->in6p_outputopts, NULL,
1830		    (tw->tw_so_options & SO_DONTROUTE), NULL, NULL, inp);
1831	} else
1832#endif
1833	{
1834		th->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
1835		    htons(sizeof(struct tcphdr) + optlen + IPPROTO_TCP));
1836		m->m_pkthdr.csum_flags = CSUM_TCP;
1837		m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
1838		ip->ip_len = m->m_pkthdr.len;
1839		if (path_mtu_discovery)
1840			ip->ip_off |= IP_DF;
1841		error = ip_output(m, inp->inp_options, NULL,
1842		    ((tw->tw_so_options & SO_DONTROUTE) ? IP_ROUTETOIF : 0),
1843		    NULL, inp);
1844	}
1845	if (flags & TH_ACK)
1846		tcpstat.tcps_sndacks++;
1847	else
1848		tcpstat.tcps_sndctrl++;
1849	tcpstat.tcps_sndtotal++;
1850	return (error);
1851}
1852
1853/*
1854 * TCP BANDWIDTH DELAY PRODUCT WINDOW LIMITING
1855 *
1856 * This code attempts to calculate the bandwidth-delay product as a
1857 * means of determining the optimal window size to maximize bandwidth,
1858 * minimize RTT, and avoid the over-allocation of buffers on interfaces and
1859 * routers.  This code also does a fairly good job keeping RTTs in check
1860 * across slow links like modems.  We implement an algorithm which is very
1861 * similar (but not meant to be) TCP/Vegas.  The code operates on the
1862 * transmitter side of a TCP connection and so only effects the transmit
1863 * side of the connection.
1864 *
1865 * BACKGROUND:  TCP makes no provision for the management of buffer space
1866 * at the end points or at the intermediate routers and switches.  A TCP
1867 * stream, whether using NewReno or not, will eventually buffer as
1868 * many packets as it is able and the only reason this typically works is
1869 * due to the fairly small default buffers made available for a connection
1870 * (typicaly 16K or 32K).  As machines use larger windows and/or window
1871 * scaling it is now fairly easy for even a single TCP connection to blow-out
1872 * all available buffer space not only on the local interface, but on
1873 * intermediate routers and switches as well.  NewReno makes a misguided
1874 * attempt to 'solve' this problem by waiting for an actual failure to occur,
1875 * then backing off, then steadily increasing the window again until another
1876 * failure occurs, ad-infinitum.  This results in terrible oscillation that
1877 * is only made worse as network loads increase and the idea of intentionally
1878 * blowing out network buffers is, frankly, a terrible way to manage network
1879 * resources.
1880 *
1881 * It is far better to limit the transmit window prior to the failure
1882 * condition being achieved.  There are two general ways to do this:  First
1883 * you can 'scan' through different transmit window sizes and locate the
1884 * point where the RTT stops increasing, indicating that you have filled the
1885 * pipe, then scan backwards until you note that RTT stops decreasing, then
1886 * repeat ad-infinitum.  This method works in principle but has severe
1887 * implementation issues due to RTT variances, timer granularity, and
1888 * instability in the algorithm which can lead to many false positives and
1889 * create oscillations as well as interact badly with other TCP streams
1890 * implementing the same algorithm.
1891 *
1892 * The second method is to limit the window to the bandwidth delay product
1893 * of the link.  This is the method we implement.  RTT variances and our
1894 * own manipulation of the congestion window, bwnd, can potentially
1895 * destabilize the algorithm.  For this reason we have to stabilize the
1896 * elements used to calculate the window.  We do this by using the minimum
1897 * observed RTT, the long term average of the observed bandwidth, and
1898 * by adding two segments worth of slop.  It isn't perfect but it is able
1899 * to react to changing conditions and gives us a very stable basis on
1900 * which to extend the algorithm.
1901 */
1902void
1903tcp_xmit_bandwidth_limit(struct tcpcb *tp, tcp_seq ack_seq)
1904{
1905	u_long bw;
1906	u_long bwnd;
1907	int save_ticks;
1908
1909	INP_LOCK_ASSERT(tp->t_inpcb);
1910
1911	/*
1912	 * If inflight_enable is disabled in the middle of a tcp connection,
1913	 * make sure snd_bwnd is effectively disabled.
1914	 */
1915	if (tcp_inflight_enable == 0) {
1916		tp->snd_bwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
1917		tp->snd_bandwidth = 0;
1918		return;
1919	}
1920
1921	/*
1922	 * Figure out the bandwidth.  Due to the tick granularity this
1923	 * is a very rough number and it MUST be averaged over a fairly
1924	 * long period of time.  XXX we need to take into account a link
1925	 * that is not using all available bandwidth, but for now our
1926	 * slop will ramp us up if this case occurs and the bandwidth later
1927	 * increases.
1928	 *
1929	 * Note: if ticks rollover 'bw' may wind up negative.  We must
1930	 * effectively reset t_bw_rtttime for this case.
1931	 */
1932	save_ticks = ticks;
1933	if ((u_int)(save_ticks - tp->t_bw_rtttime) < 1)
1934		return;
1935
1936	bw = (int64_t)(ack_seq - tp->t_bw_rtseq) * hz /
1937	    (save_ticks - tp->t_bw_rtttime);
1938	tp->t_bw_rtttime = save_ticks;
1939	tp->t_bw_rtseq = ack_seq;
1940	if (tp->t_bw_rtttime == 0 || (int)bw < 0)
1941		return;
1942	bw = ((int64_t)tp->snd_bandwidth * 15 + bw) >> 4;
1943
1944	tp->snd_bandwidth = bw;
1945
1946	/*
1947	 * Calculate the semi-static bandwidth delay product, plus two maximal
1948	 * segments.  The additional slop puts us squarely in the sweet
1949	 * spot and also handles the bandwidth run-up case and stabilization.
1950	 * Without the slop we could be locking ourselves into a lower
1951	 * bandwidth.
1952	 *
1953	 * Situations Handled:
1954	 *	(1) Prevents over-queueing of packets on LANs, especially on
1955	 *	    high speed LANs, allowing larger TCP buffers to be
1956	 *	    specified, and also does a good job preventing
1957	 *	    over-queueing of packets over choke points like modems
1958	 *	    (at least for the transmit side).
1959	 *
1960	 *	(2) Is able to handle changing network loads (bandwidth
1961	 *	    drops so bwnd drops, bandwidth increases so bwnd
1962	 *	    increases).
1963	 *
1964	 *	(3) Theoretically should stabilize in the face of multiple
1965	 *	    connections implementing the same algorithm (this may need
1966	 *	    a little work).
1967	 *
1968	 *	(4) Stability value (defaults to 20 = 2 maximal packets) can
1969	 *	    be adjusted with a sysctl but typically only needs to be
1970	 *	    on very slow connections.  A value no smaller then 5
1971	 *	    should be used, but only reduce this default if you have
1972	 *	    no other choice.
1973	 */
1974#define USERTT	((tp->t_srtt + tp->t_rttbest) / 2)
1975	bwnd = (int64_t)bw * USERTT / (hz << TCP_RTT_SHIFT) + tcp_inflight_stab * tp->t_maxseg / 10;
1976#undef USERTT
1977
1978	if (tcp_inflight_debug > 0) {
1979		static int ltime;
1980		if ((u_int)(ticks - ltime) >= hz / tcp_inflight_debug) {
1981			ltime = ticks;
1982			printf("%p bw %ld rttbest %d srtt %d bwnd %ld\n",
1983			    tp,
1984			    bw,
1985			    tp->t_rttbest,
1986			    tp->t_srtt,
1987			    bwnd
1988			);
1989		}
1990	}
1991	if ((long)bwnd < tcp_inflight_min)
1992		bwnd = tcp_inflight_min;
1993	if (bwnd > tcp_inflight_max)
1994		bwnd = tcp_inflight_max;
1995	if ((long)bwnd < tp->t_maxseg * 2)
1996		bwnd = tp->t_maxseg * 2;
1997	tp->snd_bwnd = bwnd;
1998}
1999
2000#ifdef TCP_SIGNATURE
2001/*
2002 * Callback function invoked by m_apply() to digest TCP segment data
2003 * contained within an mbuf chain.
2004 */
2005static int
2006tcp_signature_apply(void *fstate, void *data, u_int len)
2007{
2008
2009	MD5Update(fstate, (u_char *)data, len);
2010	return (0);
2011}
2012
2013/*
2014 * Compute TCP-MD5 hash of a TCPv4 segment. (RFC2385)
2015 *
2016 * Parameters:
2017 * m		pointer to head of mbuf chain
2018 * off0		offset to TCP header within the mbuf chain
2019 * len		length of TCP segment data, excluding options
2020 * optlen	length of TCP segment options
2021 * buf		pointer to storage for computed MD5 digest
2022 * direction	direction of flow (IPSEC_DIR_INBOUND or OUTBOUND)
2023 *
2024 * We do this over ip, tcphdr, segment data, and the key in the SADB.
2025 * When called from tcp_input(), we can be sure that th_sum has been
2026 * zeroed out and verified already.
2027 *
2028 * This function is for IPv4 use only. Calling this function with an
2029 * IPv6 packet in the mbuf chain will yield undefined results.
2030 *
2031 * Return 0 if successful, otherwise return -1.
2032 *
2033 * XXX The key is retrieved from the system's PF_KEY SADB, by keying a
2034 * search with the destination IP address, and a 'magic SPI' to be
2035 * determined by the application. This is hardcoded elsewhere to 1179
2036 * right now. Another branch of this code exists which uses the SPD to
2037 * specify per-application flows but it is unstable.
2038 */
2039int
2040tcp_signature_compute(struct mbuf *m, int off0, int len, int optlen,
2041    u_char *buf, u_int direction)
2042{
2043	union sockaddr_union dst;
2044	struct ippseudo ippseudo;
2045	MD5_CTX ctx;
2046	int doff;
2047	struct ip *ip;
2048	struct ipovly *ipovly;
2049	struct secasvar *sav;
2050	struct tcphdr *th;
2051	u_short savecsum;
2052
2053	KASSERT(m != NULL, ("NULL mbuf chain"));
2054	KASSERT(buf != NULL, ("NULL signature pointer"));
2055
2056	/* Extract the destination from the IP header in the mbuf. */
2057	ip = mtod(m, struct ip *);
2058	bzero(&dst, sizeof(union sockaddr_union));
2059	dst.sa.sa_len = sizeof(struct sockaddr_in);
2060	dst.sa.sa_family = AF_INET;
2061	dst.sin.sin_addr = (direction == IPSEC_DIR_INBOUND) ?
2062	    ip->ip_src : ip->ip_dst;
2063
2064	/* Look up an SADB entry which matches the address of the peer. */
2065	sav = KEY_ALLOCSA(&dst, IPPROTO_TCP, htonl(TCP_SIG_SPI));
2066	if (sav == NULL) {
2067		printf("%s: SADB lookup failed for %s\n", __func__,
2068		    inet_ntoa(dst.sin.sin_addr));
2069		return (EINVAL);
2070	}
2071
2072	MD5Init(&ctx);
2073	ipovly = (struct ipovly *)ip;
2074	th = (struct tcphdr *)((u_char *)ip + off0);
2075	doff = off0 + sizeof(struct tcphdr) + optlen;
2076
2077	/*
2078	 * Step 1: Update MD5 hash with IP pseudo-header.
2079	 *
2080	 * XXX The ippseudo header MUST be digested in network byte order,
2081	 * or else we'll fail the regression test. Assume all fields we've
2082	 * been doing arithmetic on have been in host byte order.
2083	 * XXX One cannot depend on ipovly->ih_len here. When called from
2084	 * tcp_output(), the underlying ip_len member has not yet been set.
2085	 */
2086	ippseudo.ippseudo_src = ipovly->ih_src;
2087	ippseudo.ippseudo_dst = ipovly->ih_dst;
2088	ippseudo.ippseudo_pad = 0;
2089	ippseudo.ippseudo_p = IPPROTO_TCP;
2090	ippseudo.ippseudo_len = htons(len + sizeof(struct tcphdr) + optlen);
2091	MD5Update(&ctx, (char *)&ippseudo, sizeof(struct ippseudo));
2092
2093	/*
2094	 * Step 2: Update MD5 hash with TCP header, excluding options.
2095	 * The TCP checksum must be set to zero.
2096	 */
2097	savecsum = th->th_sum;
2098	th->th_sum = 0;
2099	MD5Update(&ctx, (char *)th, sizeof(struct tcphdr));
2100	th->th_sum = savecsum;
2101
2102	/*
2103	 * Step 3: Update MD5 hash with TCP segment data.
2104	 *         Use m_apply() to avoid an early m_pullup().
2105	 */
2106	if (len > 0)
2107		m_apply(m, doff, len, tcp_signature_apply, &ctx);
2108
2109	/*
2110	 * Step 4: Update MD5 hash with shared secret.
2111	 */
2112	MD5Update(&ctx, _KEYBUF(sav->key_auth), _KEYLEN(sav->key_auth));
2113	MD5Final(buf, &ctx);
2114
2115	key_sa_recordxfer(sav, m);
2116	KEY_FREESAV(&sav);
2117	return (0);
2118}
2119#endif /* TCP_SIGNATURE */
2120
2121static int
2122sysctl_drop(SYSCTL_HANDLER_ARGS)
2123{
2124	/* addrs[0] is a foreign socket, addrs[1] is a local one. */
2125	struct sockaddr_storage addrs[2];
2126	struct inpcb *inp;
2127	struct tcpcb *tp;
2128	struct sockaddr_in *fin, *lin;
2129#ifdef INET6
2130	struct sockaddr_in6 *fin6, *lin6;
2131	struct in6_addr f6, l6;
2132#endif
2133	int error;
2134
2135	inp = NULL;
2136	fin = lin = NULL;
2137#ifdef INET6
2138	fin6 = lin6 = NULL;
2139#endif
2140	error = 0;
2141
2142	if (req->oldptr != NULL || req->oldlen != 0)
2143		return (EINVAL);
2144	if (req->newptr == NULL)
2145		return (EPERM);
2146	if (req->newlen < sizeof(addrs))
2147		return (ENOMEM);
2148	error = SYSCTL_IN(req, &addrs, sizeof(addrs));
2149	if (error)
2150		return (error);
2151
2152	switch (addrs[0].ss_family) {
2153#ifdef INET6
2154	case AF_INET6:
2155		fin6 = (struct sockaddr_in6 *)&addrs[0];
2156		lin6 = (struct sockaddr_in6 *)&addrs[1];
2157		if (fin6->sin6_len != sizeof(struct sockaddr_in6) ||
2158		    lin6->sin6_len != sizeof(struct sockaddr_in6))
2159			return (EINVAL);
2160		if (IN6_IS_ADDR_V4MAPPED(&fin6->sin6_addr)) {
2161			if (!IN6_IS_ADDR_V4MAPPED(&lin6->sin6_addr))
2162				return (EINVAL);
2163			in6_sin6_2_sin_in_sock((struct sockaddr *)&addrs[0]);
2164			in6_sin6_2_sin_in_sock((struct sockaddr *)&addrs[1]);
2165			fin = (struct sockaddr_in *)&addrs[0];
2166			lin = (struct sockaddr_in *)&addrs[1];
2167			break;
2168		}
2169		error = in6_embedscope(&f6, fin6, NULL, NULL);
2170		if (error)
2171			return (EINVAL);
2172		error = in6_embedscope(&l6, lin6, NULL, NULL);
2173		if (error)
2174			return (EINVAL);
2175		break;
2176#endif
2177	case AF_INET:
2178		fin = (struct sockaddr_in *)&addrs[0];
2179		lin = (struct sockaddr_in *)&addrs[1];
2180		if (fin->sin_len != sizeof(struct sockaddr_in) ||
2181		    lin->sin_len != sizeof(struct sockaddr_in))
2182			return (EINVAL);
2183		break;
2184	default:
2185		return (EINVAL);
2186	}
2187	INP_INFO_WLOCK(&tcbinfo);
2188	switch (addrs[0].ss_family) {
2189#ifdef INET6
2190	case AF_INET6:
2191		inp = in6_pcblookup_hash(&tcbinfo, &f6, fin6->sin6_port,
2192		    &l6, lin6->sin6_port, 0, NULL);
2193		break;
2194#endif
2195	case AF_INET:
2196		inp = in_pcblookup_hash(&tcbinfo, fin->sin_addr, fin->sin_port,
2197		    lin->sin_addr, lin->sin_port, 0, NULL);
2198		break;
2199	}
2200	if (inp != NULL) {
2201		INP_LOCK(inp);
2202		if ((tp = intotcpcb(inp)) &&
2203		    ((inp->inp_socket->so_options & SO_ACCEPTCONN) == 0)) {
2204			tp = tcp_drop(tp, ECONNABORTED);
2205			if (tp != NULL)
2206				INP_UNLOCK(inp);
2207		} else
2208			INP_UNLOCK(inp);
2209	} else
2210		error = ESRCH;
2211	INP_INFO_WUNLOCK(&tcbinfo);
2212	return (error);
2213}
2214
2215SYSCTL_PROC(_net_inet_tcp, TCPCTL_DROP, drop,
2216    CTLTYPE_STRUCT|CTLFLAG_WR|CTLFLAG_SKIP, NULL,
2217    0, sysctl_drop, "", "Drop TCP connection");
2218