tcp_timewait.c revision 136151
1/*
2 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 4. Neither the name of the University nor the names of its contributors
14 *    may be used to endorse or promote products derived from this software
15 *    without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 *
29 *	@(#)tcp_subr.c	8.2 (Berkeley) 5/24/95
30 * $FreeBSD: head/sys/netinet/tcp_timewait.c 136151 2004-10-05 18:36:24Z ps $
31 */
32
33#include "opt_compat.h"
34#include "opt_inet.h"
35#include "opt_inet6.h"
36#include "opt_ipsec.h"
37#include "opt_mac.h"
38#include "opt_tcpdebug.h"
39#include "opt_tcp_sack.h"
40
41#include <sys/param.h>
42#include <sys/systm.h>
43#include <sys/callout.h>
44#include <sys/kernel.h>
45#include <sys/sysctl.h>
46#include <sys/mac.h>
47#include <sys/malloc.h>
48#include <sys/mbuf.h>
49#ifdef INET6
50#include <sys/domain.h>
51#endif
52#include <sys/proc.h>
53#include <sys/socket.h>
54#include <sys/socketvar.h>
55#include <sys/protosw.h>
56#include <sys/random.h>
57
58#include <vm/uma.h>
59
60#include <net/route.h>
61#include <net/if.h>
62
63#include <netinet/in.h>
64#include <netinet/in_systm.h>
65#include <netinet/ip.h>
66#ifdef INET6
67#include <netinet/ip6.h>
68#endif
69#include <netinet/in_pcb.h>
70#ifdef INET6
71#include <netinet6/in6_pcb.h>
72#endif
73#include <netinet/in_var.h>
74#include <netinet/ip_var.h>
75#ifdef INET6
76#include <netinet6/ip6_var.h>
77#include <netinet6/nd6.h>
78#endif
79#include <netinet/tcp.h>
80#include <netinet/tcp_fsm.h>
81#include <netinet/tcp_seq.h>
82#include <netinet/tcp_timer.h>
83#include <netinet/tcp_var.h>
84#ifdef INET6
85#include <netinet6/tcp6_var.h>
86#endif
87#include <netinet/tcpip.h>
88#ifdef TCPDEBUG
89#include <netinet/tcp_debug.h>
90#endif
91#include <netinet6/ip6protosw.h>
92
93#ifdef IPSEC
94#include <netinet6/ipsec.h>
95#ifdef INET6
96#include <netinet6/ipsec6.h>
97#endif
98#endif /*IPSEC*/
99
100#ifdef FAST_IPSEC
101#include <netipsec/ipsec.h>
102#include <netipsec/xform.h>
103#ifdef INET6
104#include <netipsec/ipsec6.h>
105#endif
106#include <netipsec/key.h>
107#define	IPSEC
108#endif /*FAST_IPSEC*/
109
110#include <machine/in_cksum.h>
111#include <sys/md5.h>
112
113int	tcp_mssdflt = TCP_MSS;
114SYSCTL_INT(_net_inet_tcp, TCPCTL_MSSDFLT, mssdflt, CTLFLAG_RW,
115    &tcp_mssdflt , 0, "Default TCP Maximum Segment Size");
116
117#ifdef INET6
118int	tcp_v6mssdflt = TCP6_MSS;
119SYSCTL_INT(_net_inet_tcp, TCPCTL_V6MSSDFLT, v6mssdflt,
120	CTLFLAG_RW, &tcp_v6mssdflt , 0,
121	"Default TCP Maximum Segment Size for IPv6");
122#endif
123
124/*
125 * Minimum MSS we accept and use. This prevents DoS attacks where
126 * we are forced to a ridiculous low MSS like 20 and send hundreds
127 * of packets instead of one. The effect scales with the available
128 * bandwidth and quickly saturates the CPU and network interface
129 * with packet generation and sending. Set to zero to disable MINMSS
130 * checking. This setting prevents us from sending too small packets.
131 */
132int	tcp_minmss = TCP_MINMSS;
133SYSCTL_INT(_net_inet_tcp, OID_AUTO, minmss, CTLFLAG_RW,
134    &tcp_minmss , 0, "Minmum TCP Maximum Segment Size");
135/*
136 * Number of TCP segments per second we accept from remote host
137 * before we start to calculate average segment size. If average
138 * segment size drops below the minimum TCP MSS we assume a DoS
139 * attack and reset+drop the connection. Care has to be taken not to
140 * set this value too small to not kill interactive type connections
141 * (telnet, SSH) which send many small packets.
142 */
143int     tcp_minmssoverload = TCP_MINMSSOVERLOAD;
144SYSCTL_INT(_net_inet_tcp, OID_AUTO, minmssoverload, CTLFLAG_RW,
145    &tcp_minmssoverload , 0, "Number of TCP Segments per Second allowed to"
146    "be under the MINMSS Size");
147
148#if 0
149static int	tcp_rttdflt = TCPTV_SRTTDFLT / PR_SLOWHZ;
150SYSCTL_INT(_net_inet_tcp, TCPCTL_RTTDFLT, rttdflt, CTLFLAG_RW,
151    &tcp_rttdflt , 0, "Default maximum TCP Round Trip Time");
152#endif
153
154int	tcp_do_rfc1323 = 1;
155SYSCTL_INT(_net_inet_tcp, TCPCTL_DO_RFC1323, rfc1323, CTLFLAG_RW,
156    &tcp_do_rfc1323 , 0, "Enable rfc1323 (high performance TCP) extensions");
157
158int	tcp_do_rfc1644 = 0;
159SYSCTL_INT(_net_inet_tcp, TCPCTL_DO_RFC1644, rfc1644, CTLFLAG_RW,
160    &tcp_do_rfc1644 , 0, "Enable rfc1644 (TTCP) extensions");
161
162static int	tcp_tcbhashsize = 0;
163SYSCTL_INT(_net_inet_tcp, OID_AUTO, tcbhashsize, CTLFLAG_RDTUN,
164     &tcp_tcbhashsize, 0, "Size of TCP control-block hashtable");
165
166static int	do_tcpdrain = 1;
167SYSCTL_INT(_net_inet_tcp, OID_AUTO, do_tcpdrain, CTLFLAG_RW, &do_tcpdrain, 0,
168     "Enable tcp_drain routine for extra help when low on mbufs");
169
170SYSCTL_INT(_net_inet_tcp, OID_AUTO, pcbcount, CTLFLAG_RD,
171    &tcbinfo.ipi_count, 0, "Number of active PCBs");
172
173static int	icmp_may_rst = 1;
174SYSCTL_INT(_net_inet_tcp, OID_AUTO, icmp_may_rst, CTLFLAG_RW, &icmp_may_rst, 0,
175    "Certain ICMP unreachable messages may abort connections in SYN_SENT");
176
177static int	tcp_isn_reseed_interval = 0;
178SYSCTL_INT(_net_inet_tcp, OID_AUTO, isn_reseed_interval, CTLFLAG_RW,
179    &tcp_isn_reseed_interval, 0, "Seconds between reseeding of ISN secret");
180
181/*
182 * TCP bandwidth limiting sysctls.  Note that the default lower bound of
183 * 1024 exists only for debugging.  A good production default would be
184 * something like 6100.
185 */
186SYSCTL_NODE(_net_inet_tcp, OID_AUTO, inflight, CTLFLAG_RW, 0,
187    "TCP inflight data limiting");
188
189static int	tcp_inflight_enable = 1;
190SYSCTL_INT(_net_inet_tcp_inflight, OID_AUTO, enable, CTLFLAG_RW,
191    &tcp_inflight_enable, 0, "Enable automatic TCP inflight data limiting");
192
193static int	tcp_inflight_debug = 0;
194SYSCTL_INT(_net_inet_tcp_inflight, OID_AUTO, debug, CTLFLAG_RW,
195    &tcp_inflight_debug, 0, "Debug TCP inflight calculations");
196
197static int	tcp_inflight_min = 6144;
198SYSCTL_INT(_net_inet_tcp_inflight, OID_AUTO, min, CTLFLAG_RW,
199    &tcp_inflight_min, 0, "Lower-bound for TCP inflight window");
200
201static int	tcp_inflight_max = TCP_MAXWIN << TCP_MAX_WINSHIFT;
202SYSCTL_INT(_net_inet_tcp_inflight, OID_AUTO, max, CTLFLAG_RW,
203    &tcp_inflight_max, 0, "Upper-bound for TCP inflight window");
204
205static int	tcp_inflight_stab = 20;
206SYSCTL_INT(_net_inet_tcp_inflight, OID_AUTO, stab, CTLFLAG_RW,
207    &tcp_inflight_stab, 0, "Inflight Algorithm Stabilization 20 = 2 packets");
208
209uma_zone_t sack_hole_zone;
210
211static struct inpcb *tcp_notify(struct inpcb *, int);
212static void	tcp_discardcb(struct tcpcb *);
213static void	tcp_isn_tick(void *);
214
215/*
216 * Target size of TCP PCB hash tables. Must be a power of two.
217 *
218 * Note that this can be overridden by the kernel environment
219 * variable net.inet.tcp.tcbhashsize
220 */
221#ifndef TCBHASHSIZE
222#define TCBHASHSIZE	512
223#endif
224
225/*
226 * XXX
227 * Callouts should be moved into struct tcp directly.  They are currently
228 * separate because the tcpcb structure is exported to userland for sysctl
229 * parsing purposes, which do not know about callouts.
230 */
231struct	tcpcb_mem {
232	struct	tcpcb tcb;
233	struct	callout tcpcb_mem_rexmt, tcpcb_mem_persist, tcpcb_mem_keep;
234	struct	callout tcpcb_mem_2msl, tcpcb_mem_delack;
235};
236
237static uma_zone_t tcpcb_zone;
238static uma_zone_t tcptw_zone;
239struct callout isn_callout;
240
241/*
242 * Tcp initialization
243 */
244void
245tcp_init()
246{
247	int hashsize = TCBHASHSIZE;
248
249	tcp_ccgen = 1;
250
251	tcp_delacktime = TCPTV_DELACK;
252	tcp_keepinit = TCPTV_KEEP_INIT;
253	tcp_keepidle = TCPTV_KEEP_IDLE;
254	tcp_keepintvl = TCPTV_KEEPINTVL;
255	tcp_maxpersistidle = TCPTV_KEEP_IDLE;
256	tcp_msl = TCPTV_MSL;
257	tcp_rexmit_min = TCPTV_MIN;
258	tcp_rexmit_slop = TCPTV_CPU_VAR;
259
260	INP_INFO_LOCK_INIT(&tcbinfo, "tcp");
261	LIST_INIT(&tcb);
262	tcbinfo.listhead = &tcb;
263	TUNABLE_INT_FETCH("net.inet.tcp.tcbhashsize", &hashsize);
264	if (!powerof2(hashsize)) {
265		printf("WARNING: TCB hash size not a power of 2\n");
266		hashsize = 512; /* safe default */
267	}
268	tcp_tcbhashsize = hashsize;
269	tcbinfo.hashbase = hashinit(hashsize, M_PCB, &tcbinfo.hashmask);
270	tcbinfo.porthashbase = hashinit(hashsize, M_PCB,
271					&tcbinfo.porthashmask);
272	tcbinfo.ipi_zone = uma_zcreate("inpcb", sizeof(struct inpcb),
273	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
274	uma_zone_set_max(tcbinfo.ipi_zone, maxsockets);
275#ifdef INET6
276#define TCP_MINPROTOHDR (sizeof(struct ip6_hdr) + sizeof(struct tcphdr))
277#else /* INET6 */
278#define TCP_MINPROTOHDR (sizeof(struct tcpiphdr))
279#endif /* INET6 */
280	if (max_protohdr < TCP_MINPROTOHDR)
281		max_protohdr = TCP_MINPROTOHDR;
282	if (max_linkhdr + TCP_MINPROTOHDR > MHLEN)
283		panic("tcp_init");
284#undef TCP_MINPROTOHDR
285	/*
286	 * These have to be type stable for the benefit of the timers.
287	 */
288	tcpcb_zone = uma_zcreate("tcpcb", sizeof(struct tcpcb_mem),
289	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
290	uma_zone_set_max(tcpcb_zone, maxsockets);
291	tcptw_zone = uma_zcreate("tcptw", sizeof(struct tcptw),
292	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
293	uma_zone_set_max(tcptw_zone, maxsockets / 5);
294	tcp_timer_init();
295	syncache_init();
296	tcp_hc_init();
297	tcp_reass_init();
298	callout_init(&isn_callout, CALLOUT_MPSAFE);
299	tcp_isn_tick(NULL);
300	EVENTHANDLER_REGISTER(shutdown_pre_sync, tcp_fini, NULL,
301		SHUTDOWN_PRI_DEFAULT);
302	sack_hole_zone = uma_zcreate("sackhole", sizeof(struct sackhole),
303	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
304}
305
306void
307tcp_fini(xtp)
308	void *xtp;
309{
310	callout_stop(&isn_callout);
311
312}
313
314/*
315 * Fill in the IP and TCP headers for an outgoing packet, given the tcpcb.
316 * tcp_template used to store this data in mbufs, but we now recopy it out
317 * of the tcpcb each time to conserve mbufs.
318 */
319void
320tcpip_fillheaders(inp, ip_ptr, tcp_ptr)
321	struct inpcb *inp;
322	void *ip_ptr;
323	void *tcp_ptr;
324{
325	struct tcphdr *th = (struct tcphdr *)tcp_ptr;
326
327#ifdef INET6
328	if ((inp->inp_vflag & INP_IPV6) != 0) {
329		struct ip6_hdr *ip6;
330
331		ip6 = (struct ip6_hdr *)ip_ptr;
332		ip6->ip6_flow = (ip6->ip6_flow & ~IPV6_FLOWINFO_MASK) |
333			(inp->in6p_flowinfo & IPV6_FLOWINFO_MASK);
334		ip6->ip6_vfc = (ip6->ip6_vfc & ~IPV6_VERSION_MASK) |
335			(IPV6_VERSION & IPV6_VERSION_MASK);
336		ip6->ip6_nxt = IPPROTO_TCP;
337		ip6->ip6_plen = sizeof(struct tcphdr);
338		ip6->ip6_src = inp->in6p_laddr;
339		ip6->ip6_dst = inp->in6p_faddr;
340	} else
341#endif
342	{
343		struct ip *ip;
344
345		ip = (struct ip *)ip_ptr;
346		ip->ip_v = IPVERSION;
347		ip->ip_hl = 5;
348		ip->ip_tos = inp->inp_ip_tos;
349		ip->ip_len = 0;
350		ip->ip_id = 0;
351		ip->ip_off = 0;
352		ip->ip_ttl = inp->inp_ip_ttl;
353		ip->ip_sum = 0;
354		ip->ip_p = IPPROTO_TCP;
355		ip->ip_src = inp->inp_laddr;
356		ip->ip_dst = inp->inp_faddr;
357	}
358	th->th_sport = inp->inp_lport;
359	th->th_dport = inp->inp_fport;
360	th->th_seq = 0;
361	th->th_ack = 0;
362	th->th_x2 = 0;
363	th->th_off = 5;
364	th->th_flags = 0;
365	th->th_win = 0;
366	th->th_urp = 0;
367	th->th_sum = 0;		/* in_pseudo() is called later for ipv4 */
368}
369
370/*
371 * Create template to be used to send tcp packets on a connection.
372 * Allocates an mbuf and fills in a skeletal tcp/ip header.  The only
373 * use for this function is in keepalives, which use tcp_respond.
374 */
375struct tcptemp *
376tcpip_maketemplate(inp)
377	struct inpcb *inp;
378{
379	struct mbuf *m;
380	struct tcptemp *n;
381
382	m = m_get(M_DONTWAIT, MT_HEADER);
383	if (m == NULL)
384		return (0);
385	m->m_len = sizeof(struct tcptemp);
386	n = mtod(m, struct tcptemp *);
387
388	tcpip_fillheaders(inp, (void *)&n->tt_ipgen, (void *)&n->tt_t);
389	return (n);
390}
391
392/*
393 * Send a single message to the TCP at address specified by
394 * the given TCP/IP header.  If m == NULL, then we make a copy
395 * of the tcpiphdr at ti and send directly to the addressed host.
396 * This is used to force keep alive messages out using the TCP
397 * template for a connection.  If flags are given then we send
398 * a message back to the TCP which originated the * segment ti,
399 * and discard the mbuf containing it and any other attached mbufs.
400 *
401 * In any case the ack and sequence number of the transmitted
402 * segment are as specified by the parameters.
403 *
404 * NOTE: If m != NULL, then ti must point to *inside* the mbuf.
405 */
406void
407tcp_respond(tp, ipgen, th, m, ack, seq, flags)
408	struct tcpcb *tp;
409	void *ipgen;
410	register struct tcphdr *th;
411	register struct mbuf *m;
412	tcp_seq ack, seq;
413	int flags;
414{
415	register int tlen;
416	int win = 0;
417	struct ip *ip;
418	struct tcphdr *nth;
419#ifdef INET6
420	struct ip6_hdr *ip6;
421	int isipv6;
422#endif /* INET6 */
423	int ipflags = 0;
424	struct inpcb *inp;
425
426	KASSERT(tp != NULL || m != NULL, ("tcp_respond: tp and m both NULL"));
427
428#ifdef INET6
429	isipv6 = ((struct ip *)ipgen)->ip_v == 6;
430	ip6 = ipgen;
431#endif /* INET6 */
432	ip = ipgen;
433
434	if (tp != NULL) {
435		inp = tp->t_inpcb;
436		KASSERT(inp != NULL, ("tcp control block w/o inpcb"));
437		INP_INFO_WLOCK_ASSERT(&tcbinfo);
438		INP_LOCK_ASSERT(inp);
439	} else
440		inp = NULL;
441
442	if (tp != NULL) {
443		if (!(flags & TH_RST)) {
444			win = sbspace(&inp->inp_socket->so_rcv);
445			if (win > (long)TCP_MAXWIN << tp->rcv_scale)
446				win = (long)TCP_MAXWIN << tp->rcv_scale;
447		}
448	}
449	if (m == NULL) {
450		m = m_gethdr(M_DONTWAIT, MT_HEADER);
451		if (m == NULL)
452			return;
453		tlen = 0;
454		m->m_data += max_linkhdr;
455#ifdef INET6
456		if (isipv6) {
457			bcopy((caddr_t)ip6, mtod(m, caddr_t),
458			      sizeof(struct ip6_hdr));
459			ip6 = mtod(m, struct ip6_hdr *);
460			nth = (struct tcphdr *)(ip6 + 1);
461		} else
462#endif /* INET6 */
463	      {
464		bcopy((caddr_t)ip, mtod(m, caddr_t), sizeof(struct ip));
465		ip = mtod(m, struct ip *);
466		nth = (struct tcphdr *)(ip + 1);
467	      }
468		bcopy((caddr_t)th, (caddr_t)nth, sizeof(struct tcphdr));
469		flags = TH_ACK;
470	} else {
471		m_freem(m->m_next);
472		m->m_next = NULL;
473		m->m_data = (caddr_t)ipgen;
474		/* m_len is set later */
475		tlen = 0;
476#define xchg(a,b,type) { type t; t=a; a=b; b=t; }
477#ifdef INET6
478		if (isipv6) {
479			xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr);
480			nth = (struct tcphdr *)(ip6 + 1);
481		} else
482#endif /* INET6 */
483	      {
484		xchg(ip->ip_dst.s_addr, ip->ip_src.s_addr, n_long);
485		nth = (struct tcphdr *)(ip + 1);
486	      }
487		if (th != nth) {
488			/*
489			 * this is usually a case when an extension header
490			 * exists between the IPv6 header and the
491			 * TCP header.
492			 */
493			nth->th_sport = th->th_sport;
494			nth->th_dport = th->th_dport;
495		}
496		xchg(nth->th_dport, nth->th_sport, n_short);
497#undef xchg
498	}
499#ifdef INET6
500	if (isipv6) {
501		ip6->ip6_flow = 0;
502		ip6->ip6_vfc = IPV6_VERSION;
503		ip6->ip6_nxt = IPPROTO_TCP;
504		ip6->ip6_plen = htons((u_short)(sizeof (struct tcphdr) +
505						tlen));
506		tlen += sizeof (struct ip6_hdr) + sizeof (struct tcphdr);
507	} else
508#endif
509	{
510		tlen += sizeof (struct tcpiphdr);
511		ip->ip_len = tlen;
512		ip->ip_ttl = ip_defttl;
513		if (path_mtu_discovery)
514			ip->ip_off |= IP_DF;
515	}
516	m->m_len = tlen;
517	m->m_pkthdr.len = tlen;
518	m->m_pkthdr.rcvif = NULL;
519#ifdef MAC
520	if (inp != NULL) {
521		/*
522		 * Packet is associated with a socket, so allow the
523		 * label of the response to reflect the socket label.
524		 */
525		INP_LOCK_ASSERT(inp);
526		mac_create_mbuf_from_inpcb(inp, m);
527	} else {
528		/*
529		 * Packet is not associated with a socket, so possibly
530		 * update the label in place.
531		 */
532		mac_reflect_mbuf_tcp(m);
533	}
534#endif
535	nth->th_seq = htonl(seq);
536	nth->th_ack = htonl(ack);
537	nth->th_x2 = 0;
538	nth->th_off = sizeof (struct tcphdr) >> 2;
539	nth->th_flags = flags;
540	if (tp != NULL)
541		nth->th_win = htons((u_short) (win >> tp->rcv_scale));
542	else
543		nth->th_win = htons((u_short)win);
544	nth->th_urp = 0;
545#ifdef INET6
546	if (isipv6) {
547		nth->th_sum = 0;
548		nth->th_sum = in6_cksum(m, IPPROTO_TCP,
549					sizeof(struct ip6_hdr),
550					tlen - sizeof(struct ip6_hdr));
551		ip6->ip6_hlim = in6_selecthlim(tp != NULL ? tp->t_inpcb :
552		    NULL, NULL);
553	} else
554#endif /* INET6 */
555	{
556		nth->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
557		    htons((u_short)(tlen - sizeof(struct ip) + ip->ip_p)));
558		m->m_pkthdr.csum_flags = CSUM_TCP;
559		m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
560	}
561#ifdef TCPDEBUG
562	if (tp == NULL || (inp->inp_socket->so_options & SO_DEBUG))
563		tcp_trace(TA_OUTPUT, 0, tp, mtod(m, void *), th, 0);
564#endif
565#ifdef INET6
566	if (isipv6)
567		(void) ip6_output(m, NULL, NULL, ipflags, NULL, NULL, inp);
568	else
569#endif /* INET6 */
570	(void) ip_output(m, NULL, NULL, ipflags, NULL, inp);
571}
572
573/*
574 * Create a new TCP control block, making an
575 * empty reassembly queue and hooking it to the argument
576 * protocol control block.  The `inp' parameter must have
577 * come from the zone allocator set up in tcp_init().
578 */
579struct tcpcb *
580tcp_newtcpcb(inp)
581	struct inpcb *inp;
582{
583	struct tcpcb_mem *tm;
584	struct tcpcb *tp;
585#ifdef INET6
586	int isipv6 = (inp->inp_vflag & INP_IPV6) != 0;
587#endif /* INET6 */
588	int callout_flag;
589
590	tm = uma_zalloc(tcpcb_zone, M_NOWAIT | M_ZERO);
591	if (tm == NULL)
592		return (NULL);
593	tp = &tm->tcb;
594	/*	LIST_INIT(&tp->t_segq); */	/* XXX covered by M_ZERO */
595	tp->t_maxseg = tp->t_maxopd =
596#ifdef INET6
597		isipv6 ? tcp_v6mssdflt :
598#endif /* INET6 */
599		tcp_mssdflt;
600
601	/* Set up our timeouts. */
602	/*
603	 * XXXRW: Are these actually MPSAFE?  I think so, but need to
604	 * review the timed wait code, as it has some list variables,
605	 * etc, that are global.
606	 */
607	callout_flag = debug_mpsafenet ? CALLOUT_MPSAFE : 0;
608	callout_init(tp->tt_rexmt = &tm->tcpcb_mem_rexmt, callout_flag);
609	callout_init(tp->tt_persist = &tm->tcpcb_mem_persist, callout_flag);
610	callout_init(tp->tt_keep = &tm->tcpcb_mem_keep, callout_flag);
611	callout_init(tp->tt_2msl = &tm->tcpcb_mem_2msl, callout_flag);
612	callout_init(tp->tt_delack = &tm->tcpcb_mem_delack, callout_flag);
613
614	if (tcp_do_rfc1323)
615		tp->t_flags = (TF_REQ_SCALE|TF_REQ_TSTMP);
616	if (tcp_do_rfc1644)
617		tp->t_flags |= TF_REQ_CC;
618	tp->sack_enable = tcp_do_sack;
619	tp->t_inpcb = inp;	/* XXX */
620	/*
621	 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
622	 * rtt estimate.  Set rttvar so that srtt + 4 * rttvar gives
623	 * reasonable initial retransmit time.
624	 */
625	tp->t_srtt = TCPTV_SRTTBASE;
626	tp->t_rttvar = ((TCPTV_RTOBASE - TCPTV_SRTTBASE) << TCP_RTTVAR_SHIFT) / 4;
627	tp->t_rttmin = tcp_rexmit_min;
628	tp->t_rxtcur = TCPTV_RTOBASE;
629	tp->snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
630	tp->snd_bwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
631	tp->snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT;
632	tp->t_rcvtime = ticks;
633	tp->t_bw_rtttime = ticks;
634	/*
635	 * IPv4 TTL initialization is necessary for an IPv6 socket as well,
636	 * because the socket may be bound to an IPv6 wildcard address,
637	 * which may match an IPv4-mapped IPv6 address.
638	 */
639	inp->inp_ip_ttl = ip_defttl;
640	inp->inp_ppcb = (caddr_t)tp;
641	return (tp);		/* XXX */
642}
643
644/*
645 * Drop a TCP connection, reporting
646 * the specified error.  If connection is synchronized,
647 * then send a RST to peer.
648 */
649struct tcpcb *
650tcp_drop(tp, errno)
651	register struct tcpcb *tp;
652	int errno;
653{
654	struct socket *so = tp->t_inpcb->inp_socket;
655
656	if (TCPS_HAVERCVDSYN(tp->t_state)) {
657		tp->t_state = TCPS_CLOSED;
658		(void) tcp_output(tp);
659		tcpstat.tcps_drops++;
660	} else
661		tcpstat.tcps_conndrops++;
662	if (errno == ETIMEDOUT && tp->t_softerror)
663		errno = tp->t_softerror;
664	so->so_error = errno;
665	return (tcp_close(tp));
666}
667
668static void
669tcp_discardcb(tp)
670	struct tcpcb *tp;
671{
672	struct tseg_qent *q;
673	struct inpcb *inp = tp->t_inpcb;
674	struct socket *so = inp->inp_socket;
675#ifdef INET6
676	int isipv6 = (inp->inp_vflag & INP_IPV6) != 0;
677#endif /* INET6 */
678
679	/*
680	 * Make sure that all of our timers are stopped before we
681	 * delete the PCB.
682	 */
683	callout_stop(tp->tt_rexmt);
684	callout_stop(tp->tt_persist);
685	callout_stop(tp->tt_keep);
686	callout_stop(tp->tt_2msl);
687	callout_stop(tp->tt_delack);
688
689	/*
690	 * If we got enough samples through the srtt filter,
691	 * save the rtt and rttvar in the routing entry.
692	 * 'Enough' is arbitrarily defined as 4 rtt samples.
693	 * 4 samples is enough for the srtt filter to converge
694	 * to within enough % of the correct value; fewer samples
695	 * and we could save a bogus rtt. The danger is not high
696	 * as tcp quickly recovers from everything.
697	 * XXX: Works very well but needs some more statistics!
698	 */
699	if (tp->t_rttupdated >= 4) {
700		struct hc_metrics_lite metrics;
701		u_long ssthresh;
702
703		bzero(&metrics, sizeof(metrics));
704		/*
705		 * Update the ssthresh always when the conditions below
706		 * are satisfied. This gives us better new start value
707		 * for the congestion avoidance for new connections.
708		 * ssthresh is only set if packet loss occured on a session.
709		 */
710		ssthresh = tp->snd_ssthresh;
711		if (ssthresh != 0 && ssthresh < so->so_snd.sb_hiwat / 2) {
712			/*
713			 * convert the limit from user data bytes to
714			 * packets then to packet data bytes.
715			 */
716			ssthresh = (ssthresh + tp->t_maxseg / 2) / tp->t_maxseg;
717			if (ssthresh < 2)
718				ssthresh = 2;
719			ssthresh *= (u_long)(tp->t_maxseg +
720#ifdef INET6
721				      (isipv6 ? sizeof (struct ip6_hdr) +
722					       sizeof (struct tcphdr) :
723#endif
724				       sizeof (struct tcpiphdr)
725#ifdef INET6
726				       )
727#endif
728				      );
729		} else
730			ssthresh = 0;
731		metrics.rmx_ssthresh = ssthresh;
732
733		metrics.rmx_rtt = tp->t_srtt;
734		metrics.rmx_rttvar = tp->t_rttvar;
735		/* XXX: This wraps if the pipe is more than 4 Gbit per second */
736		metrics.rmx_bandwidth = tp->snd_bandwidth;
737		metrics.rmx_cwnd = tp->snd_cwnd;
738		metrics.rmx_sendpipe = 0;
739		metrics.rmx_recvpipe = 0;
740
741		tcp_hc_update(&inp->inp_inc, &metrics);
742	}
743
744	/* free the reassembly queue, if any */
745	while ((q = LIST_FIRST(&tp->t_segq)) != NULL) {
746		LIST_REMOVE(q, tqe_q);
747		m_freem(q->tqe_m);
748		uma_zfree(tcp_reass_zone, q);
749		tp->t_segqlen--;
750		tcp_reass_qsize--;
751	}
752	tcp_free_sackholes(tp);
753	inp->inp_ppcb = NULL;
754	tp->t_inpcb = NULL;
755	uma_zfree(tcpcb_zone, tp);
756	soisdisconnected(so);
757}
758
759/*
760 * Close a TCP control block:
761 *    discard all space held by the tcp
762 *    discard internet protocol block
763 *    wake up any sleepers
764 */
765struct tcpcb *
766tcp_close(tp)
767	struct tcpcb *tp;
768{
769	struct inpcb *inp = tp->t_inpcb;
770#ifdef INET6
771	struct socket *so = inp->inp_socket;
772#endif
773
774	tcp_discardcb(tp);
775#ifdef INET6
776	if (INP_CHECK_SOCKAF(so, AF_INET6))
777		in6_pcbdetach(inp);
778	else
779#endif
780		in_pcbdetach(inp);
781	tcpstat.tcps_closed++;
782	return (NULL);
783}
784
785void
786tcp_drain()
787{
788	if (do_tcpdrain)
789	{
790		struct inpcb *inpb;
791		struct tcpcb *tcpb;
792		struct tseg_qent *te;
793
794	/*
795	 * Walk the tcpbs, if existing, and flush the reassembly queue,
796	 * if there is one...
797	 * XXX: The "Net/3" implementation doesn't imply that the TCP
798	 *      reassembly queue should be flushed, but in a situation
799	 *	where we're really low on mbufs, this is potentially
800	 *	usefull.
801	 */
802		INP_INFO_RLOCK(&tcbinfo);
803		LIST_FOREACH(inpb, tcbinfo.listhead, inp_list) {
804			if (inpb->inp_vflag & INP_TIMEWAIT)
805				continue;
806			INP_LOCK(inpb);
807			if ((tcpb = intotcpcb(inpb)) != NULL) {
808				while ((te = LIST_FIRST(&tcpb->t_segq))
809			            != NULL) {
810					LIST_REMOVE(te, tqe_q);
811					m_freem(te->tqe_m);
812					uma_zfree(tcp_reass_zone, te);
813					tcpb->t_segqlen--;
814					tcp_reass_qsize--;
815				}
816			}
817			INP_UNLOCK(inpb);
818		}
819		INP_INFO_RUNLOCK(&tcbinfo);
820	}
821}
822
823/*
824 * Notify a tcp user of an asynchronous error;
825 * store error as soft error, but wake up user
826 * (for now, won't do anything until can select for soft error).
827 *
828 * Do not wake up user since there currently is no mechanism for
829 * reporting soft errors (yet - a kqueue filter may be added).
830 */
831static struct inpcb *
832tcp_notify(inp, error)
833	struct inpcb *inp;
834	int error;
835{
836	struct tcpcb *tp = (struct tcpcb *)inp->inp_ppcb;
837
838	/*
839	 * Ignore some errors if we are hooked up.
840	 * If connection hasn't completed, has retransmitted several times,
841	 * and receives a second error, give up now.  This is better
842	 * than waiting a long time to establish a connection that
843	 * can never complete.
844	 */
845	if (tp->t_state == TCPS_ESTABLISHED &&
846	    (error == EHOSTUNREACH || error == ENETUNREACH ||
847	     error == EHOSTDOWN)) {
848		return inp;
849	} else if (tp->t_state < TCPS_ESTABLISHED && tp->t_rxtshift > 3 &&
850	    tp->t_softerror) {
851		tcp_drop(tp, error);
852		return (struct inpcb *)0;
853	} else {
854		tp->t_softerror = error;
855		return inp;
856	}
857#if 0
858	wakeup( &so->so_timeo);
859	sorwakeup(so);
860	sowwakeup(so);
861#endif
862}
863
864static int
865tcp_pcblist(SYSCTL_HANDLER_ARGS)
866{
867	int error, i, n, s;
868	struct inpcb *inp, **inp_list;
869	inp_gen_t gencnt;
870	struct xinpgen xig;
871
872	/*
873	 * The process of preparing the TCB list is too time-consuming and
874	 * resource-intensive to repeat twice on every request.
875	 */
876	if (req->oldptr == NULL) {
877		n = tcbinfo.ipi_count;
878		req->oldidx = 2 * (sizeof xig)
879			+ (n + n/8) * sizeof(struct xtcpcb);
880		return 0;
881	}
882
883	if (req->newptr != NULL)
884		return EPERM;
885
886	/*
887	 * OK, now we're committed to doing something.
888	 */
889	s = splnet();
890	INP_INFO_RLOCK(&tcbinfo);
891	gencnt = tcbinfo.ipi_gencnt;
892	n = tcbinfo.ipi_count;
893	INP_INFO_RUNLOCK(&tcbinfo);
894	splx(s);
895
896	error = sysctl_wire_old_buffer(req, 2 * (sizeof xig)
897		+ n * sizeof(struct xtcpcb));
898	if (error != 0)
899		return (error);
900
901	xig.xig_len = sizeof xig;
902	xig.xig_count = n;
903	xig.xig_gen = gencnt;
904	xig.xig_sogen = so_gencnt;
905	error = SYSCTL_OUT(req, &xig, sizeof xig);
906	if (error)
907		return error;
908
909	inp_list = malloc(n * sizeof *inp_list, M_TEMP, M_WAITOK);
910	if (inp_list == NULL)
911		return ENOMEM;
912
913	s = splnet();
914	INP_INFO_RLOCK(&tcbinfo);
915	for (inp = LIST_FIRST(tcbinfo.listhead), i = 0; inp != NULL && i < n;
916	     inp = LIST_NEXT(inp, inp_list)) {
917		INP_LOCK(inp);
918		if (inp->inp_gencnt <= gencnt) {
919			/*
920			 * XXX: This use of cr_cansee(), introduced with
921			 * TCP state changes, is not quite right, but for
922			 * now, better than nothing.
923			 */
924			if (inp->inp_vflag & INP_TIMEWAIT)
925				error = cr_cansee(req->td->td_ucred,
926				    intotw(inp)->tw_cred);
927			else
928				error = cr_canseesocket(req->td->td_ucred,
929				    inp->inp_socket);
930			if (error == 0)
931				inp_list[i++] = inp;
932		}
933		INP_UNLOCK(inp);
934	}
935	INP_INFO_RUNLOCK(&tcbinfo);
936	splx(s);
937	n = i;
938
939	error = 0;
940	for (i = 0; i < n; i++) {
941		inp = inp_list[i];
942		if (inp->inp_gencnt <= gencnt) {
943			struct xtcpcb xt;
944			caddr_t inp_ppcb;
945			xt.xt_len = sizeof xt;
946			/* XXX should avoid extra copy */
947			bcopy(inp, &xt.xt_inp, sizeof *inp);
948			inp_ppcb = inp->inp_ppcb;
949			if (inp_ppcb == NULL)
950				bzero((char *) &xt.xt_tp, sizeof xt.xt_tp);
951			else if (inp->inp_vflag & INP_TIMEWAIT) {
952				bzero((char *) &xt.xt_tp, sizeof xt.xt_tp);
953				xt.xt_tp.t_state = TCPS_TIME_WAIT;
954			} else
955				bcopy(inp_ppcb, &xt.xt_tp, sizeof xt.xt_tp);
956			if (inp->inp_socket != NULL)
957				sotoxsocket(inp->inp_socket, &xt.xt_socket);
958			else {
959				bzero(&xt.xt_socket, sizeof xt.xt_socket);
960				xt.xt_socket.xso_protocol = IPPROTO_TCP;
961			}
962			xt.xt_inp.inp_gencnt = inp->inp_gencnt;
963			error = SYSCTL_OUT(req, &xt, sizeof xt);
964		}
965	}
966	if (!error) {
967		/*
968		 * Give the user an updated idea of our state.
969		 * If the generation differs from what we told
970		 * her before, she knows that something happened
971		 * while we were processing this request, and it
972		 * might be necessary to retry.
973		 */
974		s = splnet();
975		INP_INFO_RLOCK(&tcbinfo);
976		xig.xig_gen = tcbinfo.ipi_gencnt;
977		xig.xig_sogen = so_gencnt;
978		xig.xig_count = tcbinfo.ipi_count;
979		INP_INFO_RUNLOCK(&tcbinfo);
980		splx(s);
981		error = SYSCTL_OUT(req, &xig, sizeof xig);
982	}
983	free(inp_list, M_TEMP);
984	return error;
985}
986
987SYSCTL_PROC(_net_inet_tcp, TCPCTL_PCBLIST, pcblist, CTLFLAG_RD, 0, 0,
988	    tcp_pcblist, "S,xtcpcb", "List of active TCP connections");
989
990static int
991tcp_getcred(SYSCTL_HANDLER_ARGS)
992{
993	struct xucred xuc;
994	struct sockaddr_in addrs[2];
995	struct inpcb *inp;
996	int error, s;
997
998	error = suser_cred(req->td->td_ucred, SUSER_ALLOWJAIL);
999	if (error)
1000		return (error);
1001	error = SYSCTL_IN(req, addrs, sizeof(addrs));
1002	if (error)
1003		return (error);
1004	s = splnet();
1005	INP_INFO_RLOCK(&tcbinfo);
1006	inp = in_pcblookup_hash(&tcbinfo, addrs[1].sin_addr, addrs[1].sin_port,
1007	    addrs[0].sin_addr, addrs[0].sin_port, 0, NULL);
1008	if (inp == NULL) {
1009		error = ENOENT;
1010		goto outunlocked;
1011	}
1012	INP_LOCK(inp);
1013	if (inp->inp_socket == NULL) {
1014		error = ENOENT;
1015		goto out;
1016	}
1017	error = cr_canseesocket(req->td->td_ucred, inp->inp_socket);
1018	if (error)
1019		goto out;
1020	cru2x(inp->inp_socket->so_cred, &xuc);
1021out:
1022	INP_UNLOCK(inp);
1023outunlocked:
1024	INP_INFO_RUNLOCK(&tcbinfo);
1025	splx(s);
1026	if (error == 0)
1027		error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred));
1028	return (error);
1029}
1030
1031SYSCTL_PROC(_net_inet_tcp, OID_AUTO, getcred,
1032    CTLTYPE_OPAQUE|CTLFLAG_RW|CTLFLAG_PRISON, 0, 0,
1033    tcp_getcred, "S,xucred", "Get the xucred of a TCP connection");
1034
1035#ifdef INET6
1036static int
1037tcp6_getcred(SYSCTL_HANDLER_ARGS)
1038{
1039	struct xucred xuc;
1040	struct sockaddr_in6 addrs[2];
1041	struct inpcb *inp;
1042	int error, s, mapped = 0;
1043
1044	error = suser_cred(req->td->td_ucred, SUSER_ALLOWJAIL);
1045	if (error)
1046		return (error);
1047	error = SYSCTL_IN(req, addrs, sizeof(addrs));
1048	if (error)
1049		return (error);
1050	if (IN6_IS_ADDR_V4MAPPED(&addrs[0].sin6_addr)) {
1051		if (IN6_IS_ADDR_V4MAPPED(&addrs[1].sin6_addr))
1052			mapped = 1;
1053		else
1054			return (EINVAL);
1055	}
1056	s = splnet();
1057	INP_INFO_RLOCK(&tcbinfo);
1058	if (mapped == 1)
1059		inp = in_pcblookup_hash(&tcbinfo,
1060			*(struct in_addr *)&addrs[1].sin6_addr.s6_addr[12],
1061			addrs[1].sin6_port,
1062			*(struct in_addr *)&addrs[0].sin6_addr.s6_addr[12],
1063			addrs[0].sin6_port,
1064			0, NULL);
1065	else
1066		inp = in6_pcblookup_hash(&tcbinfo, &addrs[1].sin6_addr,
1067				 addrs[1].sin6_port,
1068				 &addrs[0].sin6_addr, addrs[0].sin6_port,
1069				 0, NULL);
1070	if (inp == NULL) {
1071		error = ENOENT;
1072		goto outunlocked;
1073	}
1074	INP_LOCK(inp);
1075	if (inp->inp_socket == NULL) {
1076		error = ENOENT;
1077		goto out;
1078	}
1079	error = cr_canseesocket(req->td->td_ucred, inp->inp_socket);
1080	if (error)
1081		goto out;
1082	cru2x(inp->inp_socket->so_cred, &xuc);
1083out:
1084	INP_UNLOCK(inp);
1085outunlocked:
1086	INP_INFO_RUNLOCK(&tcbinfo);
1087	splx(s);
1088	if (error == 0)
1089		error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred));
1090	return (error);
1091}
1092
1093SYSCTL_PROC(_net_inet6_tcp6, OID_AUTO, getcred,
1094    CTLTYPE_OPAQUE|CTLFLAG_RW|CTLFLAG_PRISON, 0, 0,
1095    tcp6_getcred, "S,xucred", "Get the xucred of a TCP6 connection");
1096#endif
1097
1098
1099void
1100tcp_ctlinput(cmd, sa, vip)
1101	int cmd;
1102	struct sockaddr *sa;
1103	void *vip;
1104{
1105	struct ip *ip = vip;
1106	struct tcphdr *th;
1107	struct in_addr faddr;
1108	struct inpcb *inp;
1109	struct tcpcb *tp;
1110	struct inpcb *(*notify)(struct inpcb *, int) = tcp_notify;
1111	tcp_seq icmp_seq;
1112	int s;
1113
1114	faddr = ((struct sockaddr_in *)sa)->sin_addr;
1115	if (sa->sa_family != AF_INET || faddr.s_addr == INADDR_ANY)
1116		return;
1117
1118	if (cmd == PRC_QUENCH)
1119		notify = tcp_quench;
1120	else if (icmp_may_rst && (cmd == PRC_UNREACH_ADMIN_PROHIB ||
1121		cmd == PRC_UNREACH_PORT || cmd == PRC_TIMXCEED_INTRANS) && ip)
1122		notify = tcp_drop_syn_sent;
1123	else if (cmd == PRC_MSGSIZE)
1124		notify = tcp_mtudisc;
1125	/*
1126	 * Redirects don't need to be handled up here.
1127	 */
1128	else if (PRC_IS_REDIRECT(cmd))
1129		return;
1130	/*
1131	 * Hostdead is ugly because it goes linearly through all PCBs.
1132	 * XXX: We never get this from ICMP, otherwise it makes an
1133	 * excellent DoS attack on machines with many connections.
1134	 */
1135	else if (cmd == PRC_HOSTDEAD)
1136		ip = NULL;
1137	else if ((unsigned)cmd >= PRC_NCMDS || inetctlerrmap[cmd] == 0)
1138		return;
1139	if (ip != NULL) {
1140		s = splnet();
1141		th = (struct tcphdr *)((caddr_t)ip
1142				       + (ip->ip_hl << 2));
1143		INP_INFO_WLOCK(&tcbinfo);
1144		inp = in_pcblookup_hash(&tcbinfo, faddr, th->th_dport,
1145		    ip->ip_src, th->th_sport, 0, NULL);
1146		if (inp != NULL)  {
1147			INP_LOCK(inp);
1148			if (inp->inp_socket != NULL) {
1149				icmp_seq = htonl(th->th_seq);
1150				tp = intotcpcb(inp);
1151				if (SEQ_GEQ(icmp_seq, tp->snd_una) &&
1152					SEQ_LT(icmp_seq, tp->snd_max))
1153					inp = (*notify)(inp, inetctlerrmap[cmd]);
1154			}
1155			if (inp != NULL)
1156				INP_UNLOCK(inp);
1157		} else {
1158			struct in_conninfo inc;
1159
1160			inc.inc_fport = th->th_dport;
1161			inc.inc_lport = th->th_sport;
1162			inc.inc_faddr = faddr;
1163			inc.inc_laddr = ip->ip_src;
1164#ifdef INET6
1165			inc.inc_isipv6 = 0;
1166#endif
1167			syncache_unreach(&inc, th);
1168		}
1169		INP_INFO_WUNLOCK(&tcbinfo);
1170		splx(s);
1171	} else
1172		in_pcbnotifyall(&tcbinfo, faddr, inetctlerrmap[cmd], notify);
1173}
1174
1175#ifdef INET6
1176void
1177tcp6_ctlinput(cmd, sa, d)
1178	int cmd;
1179	struct sockaddr *sa;
1180	void *d;
1181{
1182	struct tcphdr th;
1183	struct inpcb *(*notify)(struct inpcb *, int) = tcp_notify;
1184	struct ip6_hdr *ip6;
1185	struct mbuf *m;
1186	struct ip6ctlparam *ip6cp = NULL;
1187	const struct sockaddr_in6 *sa6_src = NULL;
1188	int off;
1189	struct tcp_portonly {
1190		u_int16_t th_sport;
1191		u_int16_t th_dport;
1192	} *thp;
1193
1194	if (sa->sa_family != AF_INET6 ||
1195	    sa->sa_len != sizeof(struct sockaddr_in6))
1196		return;
1197
1198	if (cmd == PRC_QUENCH)
1199		notify = tcp_quench;
1200	else if (cmd == PRC_MSGSIZE)
1201		notify = tcp_mtudisc;
1202	else if (!PRC_IS_REDIRECT(cmd) &&
1203		 ((unsigned)cmd >= PRC_NCMDS || inet6ctlerrmap[cmd] == 0))
1204		return;
1205
1206	/* if the parameter is from icmp6, decode it. */
1207	if (d != NULL) {
1208		ip6cp = (struct ip6ctlparam *)d;
1209		m = ip6cp->ip6c_m;
1210		ip6 = ip6cp->ip6c_ip6;
1211		off = ip6cp->ip6c_off;
1212		sa6_src = ip6cp->ip6c_src;
1213	} else {
1214		m = NULL;
1215		ip6 = NULL;
1216		off = 0;	/* fool gcc */
1217		sa6_src = &sa6_any;
1218	}
1219
1220	if (ip6 != NULL) {
1221		struct in_conninfo inc;
1222		/*
1223		 * XXX: We assume that when IPV6 is non NULL,
1224		 * M and OFF are valid.
1225		 */
1226
1227		/* check if we can safely examine src and dst ports */
1228		if (m->m_pkthdr.len < off + sizeof(*thp))
1229			return;
1230
1231		bzero(&th, sizeof(th));
1232		m_copydata(m, off, sizeof(*thp), (caddr_t)&th);
1233
1234		in6_pcbnotify(&tcbinfo, sa, th.th_dport,
1235		    (struct sockaddr *)ip6cp->ip6c_src,
1236		    th.th_sport, cmd, NULL, notify);
1237
1238		inc.inc_fport = th.th_dport;
1239		inc.inc_lport = th.th_sport;
1240		inc.inc6_faddr = ((struct sockaddr_in6 *)sa)->sin6_addr;
1241		inc.inc6_laddr = ip6cp->ip6c_src->sin6_addr;
1242		inc.inc_isipv6 = 1;
1243		INP_INFO_WLOCK(&tcbinfo);
1244		syncache_unreach(&inc, &th);
1245		INP_INFO_WUNLOCK(&tcbinfo);
1246	} else
1247		in6_pcbnotify(&tcbinfo, sa, 0, (const struct sockaddr *)sa6_src,
1248			      0, cmd, NULL, notify);
1249}
1250#endif /* INET6 */
1251
1252
1253/*
1254 * Following is where TCP initial sequence number generation occurs.
1255 *
1256 * There are two places where we must use initial sequence numbers:
1257 * 1.  In SYN-ACK packets.
1258 * 2.  In SYN packets.
1259 *
1260 * All ISNs for SYN-ACK packets are generated by the syncache.  See
1261 * tcp_syncache.c for details.
1262 *
1263 * The ISNs in SYN packets must be monotonic; TIME_WAIT recycling
1264 * depends on this property.  In addition, these ISNs should be
1265 * unguessable so as to prevent connection hijacking.  To satisfy
1266 * the requirements of this situation, the algorithm outlined in
1267 * RFC 1948 is used, with only small modifications.
1268 *
1269 * Implementation details:
1270 *
1271 * Time is based off the system timer, and is corrected so that it
1272 * increases by one megabyte per second.  This allows for proper
1273 * recycling on high speed LANs while still leaving over an hour
1274 * before rollover.
1275 *
1276 * As reading the *exact* system time is too expensive to be done
1277 * whenever setting up a TCP connection, we increment the time
1278 * offset in two ways.  First, a small random positive increment
1279 * is added to isn_offset for each connection that is set up.
1280 * Second, the function tcp_isn_tick fires once per clock tick
1281 * and increments isn_offset as necessary so that sequence numbers
1282 * are incremented at approximately ISN_BYTES_PER_SECOND.  The
1283 * random positive increments serve only to ensure that the same
1284 * exact sequence number is never sent out twice (as could otherwise
1285 * happen when a port is recycled in less than the system tick
1286 * interval.)
1287 *
1288 * net.inet.tcp.isn_reseed_interval controls the number of seconds
1289 * between seeding of isn_secret.  This is normally set to zero,
1290 * as reseeding should not be necessary.
1291 *
1292 */
1293
1294#define ISN_BYTES_PER_SECOND 1048576
1295#define ISN_STATIC_INCREMENT 4096
1296#define ISN_RANDOM_INCREMENT (4096 - 1)
1297
1298u_char isn_secret[32];
1299int isn_last_reseed;
1300u_int32_t isn_offset, isn_offset_old;
1301MD5_CTX isn_ctx;
1302
1303tcp_seq
1304tcp_new_isn(tp)
1305	struct tcpcb *tp;
1306{
1307	u_int32_t md5_buffer[4];
1308	tcp_seq new_isn;
1309
1310	/* Seed if this is the first use, reseed if requested. */
1311	if ((isn_last_reseed == 0) || ((tcp_isn_reseed_interval > 0) &&
1312	     (((u_int)isn_last_reseed + (u_int)tcp_isn_reseed_interval*hz)
1313		< (u_int)ticks))) {
1314		read_random(&isn_secret, sizeof(isn_secret));
1315		isn_last_reseed = ticks;
1316	}
1317
1318	/* Compute the md5 hash and return the ISN. */
1319	MD5Init(&isn_ctx);
1320	MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_fport, sizeof(u_short));
1321	MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_lport, sizeof(u_short));
1322#ifdef INET6
1323	if ((tp->t_inpcb->inp_vflag & INP_IPV6) != 0) {
1324		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_faddr,
1325			  sizeof(struct in6_addr));
1326		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_laddr,
1327			  sizeof(struct in6_addr));
1328	} else
1329#endif
1330	{
1331		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_faddr,
1332			  sizeof(struct in_addr));
1333		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_laddr,
1334			  sizeof(struct in_addr));
1335	}
1336	MD5Update(&isn_ctx, (u_char *) &isn_secret, sizeof(isn_secret));
1337	MD5Final((u_char *) &md5_buffer, &isn_ctx);
1338	new_isn = (tcp_seq) md5_buffer[0];
1339	isn_offset += ISN_STATIC_INCREMENT +
1340		(arc4random() & ISN_RANDOM_INCREMENT);
1341	new_isn += isn_offset;
1342	return new_isn;
1343}
1344
1345/*
1346 * Increment the offset to the next ISN_BYTES_PER_SECOND / hz boundary
1347 * to keep time flowing at a relatively constant rate.  If the random
1348 * increments have already pushed us past the projected offset, do nothing.
1349 */
1350static void
1351tcp_isn_tick(xtp)
1352	void *xtp;
1353{
1354	u_int32_t projected_offset;
1355
1356	projected_offset = isn_offset_old + ISN_BYTES_PER_SECOND / hz;
1357
1358	if (projected_offset > isn_offset)
1359		isn_offset = projected_offset;
1360
1361	isn_offset_old = isn_offset;
1362	callout_reset(&isn_callout, 1, tcp_isn_tick, NULL);
1363}
1364
1365/*
1366 * When a source quench is received, close congestion window
1367 * to one segment.  We will gradually open it again as we proceed.
1368 */
1369struct inpcb *
1370tcp_quench(inp, errno)
1371	struct inpcb *inp;
1372	int errno;
1373{
1374	struct tcpcb *tp = intotcpcb(inp);
1375
1376	if (tp != NULL)
1377		tp->snd_cwnd = tp->t_maxseg;
1378	return (inp);
1379}
1380
1381/*
1382 * When a specific ICMP unreachable message is received and the
1383 * connection state is SYN-SENT, drop the connection.  This behavior
1384 * is controlled by the icmp_may_rst sysctl.
1385 */
1386struct inpcb *
1387tcp_drop_syn_sent(inp, errno)
1388	struct inpcb *inp;
1389	int errno;
1390{
1391	struct tcpcb *tp = intotcpcb(inp);
1392
1393	if (tp != NULL && tp->t_state == TCPS_SYN_SENT) {
1394		tcp_drop(tp, errno);
1395		return (struct inpcb *)0;
1396	}
1397	return inp;
1398}
1399
1400/*
1401 * When `need fragmentation' ICMP is received, update our idea of the MSS
1402 * based on the new value in the route.  Also nudge TCP to send something,
1403 * since we know the packet we just sent was dropped.
1404 * This duplicates some code in the tcp_mss() function in tcp_input.c.
1405 */
1406struct inpcb *
1407tcp_mtudisc(inp, errno)
1408	struct inpcb *inp;
1409	int errno;
1410{
1411	struct tcpcb *tp = intotcpcb(inp);
1412	struct rmxp_tao tao;
1413	struct socket *so = inp->inp_socket;
1414	u_int maxmtu;
1415	u_int romtu;
1416	int mss;
1417#ifdef INET6
1418	int isipv6;
1419#endif /* INET6 */
1420	bzero(&tao, sizeof(tao));
1421
1422	if (tp != NULL) {
1423#ifdef INET6
1424		isipv6 = (tp->t_inpcb->inp_vflag & INP_IPV6) != 0;
1425#endif
1426		maxmtu = tcp_hc_getmtu(&inp->inp_inc); /* IPv4 and IPv6 */
1427		romtu =
1428#ifdef INET6
1429		    isipv6 ? tcp_maxmtu6(&inp->inp_inc) :
1430#endif /* INET6 */
1431		    tcp_maxmtu(&inp->inp_inc);
1432		if (!maxmtu)
1433			maxmtu = romtu;
1434		else
1435			maxmtu = min(maxmtu, romtu);
1436		if (!maxmtu) {
1437			tp->t_maxopd = tp->t_maxseg =
1438#ifdef INET6
1439				isipv6 ? tcp_v6mssdflt :
1440#endif /* INET6 */
1441				tcp_mssdflt;
1442			return inp;
1443		}
1444		mss = maxmtu -
1445#ifdef INET6
1446			(isipv6 ?
1447			 sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
1448#endif /* INET6 */
1449			 sizeof(struct tcpiphdr)
1450#ifdef INET6
1451			 )
1452#endif /* INET6 */
1453			;
1454
1455		if (tcp_do_rfc1644) {
1456			tcp_hc_gettao(&inp->inp_inc, &tao);
1457			if (tao.tao_mssopt)
1458				mss = min(mss, tao.tao_mssopt);
1459		}
1460		/*
1461		 * XXX - The above conditional probably violates the TCP
1462		 * spec.  The problem is that, since we don't know the
1463		 * other end's MSS, we are supposed to use a conservative
1464		 * default.  But, if we do that, then MTU discovery will
1465		 * never actually take place, because the conservative
1466		 * default is much less than the MTUs typically seen
1467		 * on the Internet today.  For the moment, we'll sweep
1468		 * this under the carpet.
1469		 *
1470		 * The conservative default might not actually be a problem
1471		 * if the only case this occurs is when sending an initial
1472		 * SYN with options and data to a host we've never talked
1473		 * to before.  Then, they will reply with an MSS value which
1474		 * will get recorded and the new parameters should get
1475		 * recomputed.  For Further Study.
1476		 */
1477		if (tp->t_maxopd <= mss)
1478			return inp;
1479		tp->t_maxopd = mss;
1480
1481		if ((tp->t_flags & (TF_REQ_TSTMP|TF_NOOPT)) == TF_REQ_TSTMP &&
1482		    (tp->t_flags & TF_RCVD_TSTMP) == TF_RCVD_TSTMP)
1483			mss -= TCPOLEN_TSTAMP_APPA;
1484		if ((tp->t_flags & (TF_REQ_CC|TF_NOOPT)) == TF_REQ_CC &&
1485		    (tp->t_flags & TF_RCVD_CC) == TF_RCVD_CC)
1486			mss -= TCPOLEN_CC_APPA;
1487#if	(MCLBYTES & (MCLBYTES - 1)) == 0
1488		if (mss > MCLBYTES)
1489			mss &= ~(MCLBYTES-1);
1490#else
1491		if (mss > MCLBYTES)
1492			mss = mss / MCLBYTES * MCLBYTES;
1493#endif
1494		if (so->so_snd.sb_hiwat < mss)
1495			mss = so->so_snd.sb_hiwat;
1496
1497		tp->t_maxseg = mss;
1498
1499		tcpstat.tcps_mturesent++;
1500		tp->t_rtttime = 0;
1501		tp->snd_nxt = tp->snd_una;
1502		tcp_output(tp);
1503	}
1504	return inp;
1505}
1506
1507/*
1508 * Look-up the routing entry to the peer of this inpcb.  If no route
1509 * is found and it cannot be allocated, then return NULL.  This routine
1510 * is called by TCP routines that access the rmx structure and by tcp_mss
1511 * to get the interface MTU.
1512 */
1513u_long
1514tcp_maxmtu(inc)
1515	struct in_conninfo *inc;
1516{
1517	struct route sro;
1518	struct sockaddr_in *dst;
1519	struct ifnet *ifp;
1520	u_long maxmtu = 0;
1521
1522	KASSERT(inc != NULL, ("tcp_maxmtu with NULL in_conninfo pointer"));
1523
1524	bzero(&sro, sizeof(sro));
1525	if (inc->inc_faddr.s_addr != INADDR_ANY) {
1526	        dst = (struct sockaddr_in *)&sro.ro_dst;
1527		dst->sin_family = AF_INET;
1528		dst->sin_len = sizeof(*dst);
1529		dst->sin_addr = inc->inc_faddr;
1530		rtalloc_ign(&sro, RTF_CLONING);
1531	}
1532	if (sro.ro_rt != NULL) {
1533		ifp = sro.ro_rt->rt_ifp;
1534		if (sro.ro_rt->rt_rmx.rmx_mtu == 0)
1535			maxmtu = ifp->if_mtu;
1536		else
1537			maxmtu = min(sro.ro_rt->rt_rmx.rmx_mtu, ifp->if_mtu);
1538		RTFREE(sro.ro_rt);
1539	}
1540	return (maxmtu);
1541}
1542
1543#ifdef INET6
1544u_long
1545tcp_maxmtu6(inc)
1546	struct in_conninfo *inc;
1547{
1548	struct route_in6 sro6;
1549	struct ifnet *ifp;
1550	u_long maxmtu = 0;
1551
1552	KASSERT(inc != NULL, ("tcp_maxmtu6 with NULL in_conninfo pointer"));
1553
1554	bzero(&sro6, sizeof(sro6));
1555	if (!IN6_IS_ADDR_UNSPECIFIED(&inc->inc6_faddr)) {
1556		sro6.ro_dst.sin6_family = AF_INET6;
1557		sro6.ro_dst.sin6_len = sizeof(struct sockaddr_in6);
1558		sro6.ro_dst.sin6_addr = inc->inc6_faddr;
1559		rtalloc_ign((struct route *)&sro6, RTF_CLONING);
1560	}
1561	if (sro6.ro_rt != NULL) {
1562		ifp = sro6.ro_rt->rt_ifp;
1563		if (sro6.ro_rt->rt_rmx.rmx_mtu == 0)
1564			maxmtu = IN6_LINKMTU(sro6.ro_rt->rt_ifp);
1565		else
1566			maxmtu = min(sro6.ro_rt->rt_rmx.rmx_mtu,
1567				     IN6_LINKMTU(sro6.ro_rt->rt_ifp));
1568		RTFREE(sro6.ro_rt);
1569	}
1570
1571	return (maxmtu);
1572}
1573#endif /* INET6 */
1574
1575#ifdef IPSEC
1576/* compute ESP/AH header size for TCP, including outer IP header. */
1577size_t
1578ipsec_hdrsiz_tcp(tp)
1579	struct tcpcb *tp;
1580{
1581	struct inpcb *inp;
1582	struct mbuf *m;
1583	size_t hdrsiz;
1584	struct ip *ip;
1585#ifdef INET6
1586	struct ip6_hdr *ip6;
1587#endif
1588	struct tcphdr *th;
1589
1590	if ((tp == NULL) || ((inp = tp->t_inpcb) == NULL))
1591		return 0;
1592	MGETHDR(m, M_DONTWAIT, MT_DATA);
1593	if (!m)
1594		return 0;
1595
1596#ifdef INET6
1597	if ((inp->inp_vflag & INP_IPV6) != 0) {
1598		ip6 = mtod(m, struct ip6_hdr *);
1599		th = (struct tcphdr *)(ip6 + 1);
1600		m->m_pkthdr.len = m->m_len =
1601			sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
1602		tcpip_fillheaders(inp, ip6, th);
1603		hdrsiz = ipsec6_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
1604	} else
1605#endif /* INET6 */
1606	{
1607		ip = mtod(m, struct ip *);
1608		th = (struct tcphdr *)(ip + 1);
1609		m->m_pkthdr.len = m->m_len = sizeof(struct tcpiphdr);
1610		tcpip_fillheaders(inp, ip, th);
1611		hdrsiz = ipsec4_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
1612	}
1613
1614	m_free(m);
1615	return hdrsiz;
1616}
1617#endif /*IPSEC*/
1618
1619/*
1620 * Move a TCP connection into TIME_WAIT state.
1621 *    tcbinfo is unlocked.
1622 *    inp is locked, and is unlocked before returning.
1623 */
1624void
1625tcp_twstart(tp)
1626	struct tcpcb *tp;
1627{
1628	struct tcptw *tw;
1629	struct inpcb *inp;
1630	int tw_time, acknow;
1631	struct socket *so;
1632
1633	tw = uma_zalloc(tcptw_zone, M_NOWAIT);
1634	if (tw == NULL) {
1635		tw = tcp_timer_2msl_tw(1);
1636		if (tw == NULL) {
1637			tcp_close(tp);
1638			return;
1639		}
1640	}
1641	inp = tp->t_inpcb;
1642	tw->tw_inpcb = inp;
1643
1644	/*
1645	 * Recover last window size sent.
1646	 */
1647	tw->last_win = (tp->rcv_adv - tp->rcv_nxt) >> tp->rcv_scale;
1648
1649	/*
1650	 * Set t_recent if timestamps are used on the connection.
1651	 */
1652	if ((tp->t_flags & (TF_REQ_TSTMP|TF_RCVD_TSTMP|TF_NOOPT)) ==
1653	    (TF_REQ_TSTMP|TF_RCVD_TSTMP))
1654		tw->t_recent = tp->ts_recent;
1655	else
1656		tw->t_recent = 0;
1657
1658	tw->snd_nxt = tp->snd_nxt;
1659	tw->rcv_nxt = tp->rcv_nxt;
1660	tw->iss     = tp->iss;
1661	tw->irs     = tp->irs;
1662	tw->cc_recv = tp->cc_recv;
1663	tw->cc_send = tp->cc_send;
1664	tw->t_starttime = tp->t_starttime;
1665	tw->tw_time = 0;
1666
1667/* XXX
1668 * If this code will
1669 * be used for fin-wait-2 state also, then we may need
1670 * a ts_recent from the last segment.
1671 */
1672	/* Shorten TIME_WAIT [RFC-1644, p.28] */
1673	if (tp->cc_recv != 0 && (ticks - tp->t_starttime) < tcp_msl) {
1674		tw_time = tp->t_rxtcur * TCPTV_TWTRUNC;
1675		/* For T/TCP client, force ACK now. */
1676		acknow = 1;
1677	} else {
1678		tw_time = 2 * tcp_msl;
1679		acknow = tp->t_flags & TF_ACKNOW;
1680	}
1681	tcp_discardcb(tp);
1682	so = inp->inp_socket;
1683	SOCK_LOCK(so);
1684	so->so_pcb = NULL;
1685	tw->tw_cred = crhold(so->so_cred);
1686	tw->tw_so_options = so->so_options;
1687	sotryfree(so);
1688	inp->inp_socket = NULL;
1689	if (acknow)
1690		tcp_twrespond(tw, TH_ACK);
1691	inp->inp_ppcb = (caddr_t)tw;
1692	inp->inp_vflag |= INP_TIMEWAIT;
1693	tcp_timer_2msl_reset(tw, tw_time);
1694	INP_UNLOCK(inp);
1695}
1696
1697/*
1698 * The appromixate rate of ISN increase of Microsoft TCP stacks;
1699 * the actual rate is slightly higher due to the addition of
1700 * random positive increments.
1701 *
1702 * Most other new OSes use semi-randomized ISN values, so we
1703 * do not need to worry about them.
1704 */
1705#define MS_ISN_BYTES_PER_SECOND		250000
1706
1707/*
1708 * Determine if the ISN we will generate has advanced beyond the last
1709 * sequence number used by the previous connection.  If so, indicate
1710 * that it is safe to recycle this tw socket by returning 1.
1711 */
1712int
1713tcp_twrecycleable(struct tcptw *tw)
1714{
1715	tcp_seq new_iss = tw->iss;
1716	tcp_seq new_irs = tw->irs;
1717
1718	new_iss += (ticks - tw->t_starttime) * (ISN_BYTES_PER_SECOND / hz);
1719	new_irs += (ticks - tw->t_starttime) * (MS_ISN_BYTES_PER_SECOND / hz);
1720
1721	if (SEQ_GT(new_iss, tw->snd_nxt) && SEQ_GT(new_irs, tw->rcv_nxt))
1722		return 1;
1723	else
1724		return 0;
1725}
1726
1727struct tcptw *
1728tcp_twclose(struct tcptw *tw, int reuse)
1729{
1730	struct inpcb *inp;
1731
1732	inp = tw->tw_inpcb;
1733	tw->tw_inpcb = NULL;
1734	tcp_timer_2msl_stop(tw);
1735	inp->inp_ppcb = NULL;
1736#ifdef INET6
1737	if (inp->inp_vflag & INP_IPV6PROTO)
1738		in6_pcbdetach(inp);
1739	else
1740#endif
1741		in_pcbdetach(inp);
1742	tcpstat.tcps_closed++;
1743	crfree(tw->tw_cred);
1744	tw->tw_cred = NULL;
1745	if (reuse)
1746		return (tw);
1747	uma_zfree(tcptw_zone, tw);
1748	return (NULL);
1749}
1750
1751int
1752tcp_twrespond(struct tcptw *tw, int flags)
1753{
1754	struct inpcb *inp = tw->tw_inpcb;
1755	struct tcphdr *th;
1756	struct mbuf *m;
1757	struct ip *ip = NULL;
1758	u_int8_t *optp;
1759	u_int hdrlen, optlen;
1760	int error;
1761#ifdef INET6
1762	struct ip6_hdr *ip6 = NULL;
1763	int isipv6 = inp->inp_inc.inc_isipv6;
1764#endif
1765
1766	m = m_gethdr(M_DONTWAIT, MT_HEADER);
1767	if (m == NULL)
1768		return (ENOBUFS);
1769	m->m_data += max_linkhdr;
1770
1771#ifdef MAC
1772	mac_create_mbuf_from_inpcb(inp, m);
1773#endif
1774
1775#ifdef INET6
1776	if (isipv6) {
1777		hdrlen = sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
1778		ip6 = mtod(m, struct ip6_hdr *);
1779		th = (struct tcphdr *)(ip6 + 1);
1780		tcpip_fillheaders(inp, ip6, th);
1781	} else
1782#endif
1783	{
1784		hdrlen = sizeof(struct tcpiphdr);
1785		ip = mtod(m, struct ip *);
1786		th = (struct tcphdr *)(ip + 1);
1787		tcpip_fillheaders(inp, ip, th);
1788	}
1789	optp = (u_int8_t *)(th + 1);
1790
1791	/*
1792	 * Send a timestamp and echo-reply if both our side and our peer
1793	 * have sent timestamps in our SYN's and this is not a RST.
1794	 */
1795	if (tw->t_recent && flags == TH_ACK) {
1796		u_int32_t *lp = (u_int32_t *)optp;
1797
1798		/* Form timestamp option as shown in appendix A of RFC 1323. */
1799		*lp++ = htonl(TCPOPT_TSTAMP_HDR);
1800		*lp++ = htonl(ticks);
1801		*lp   = htonl(tw->t_recent);
1802		optp += TCPOLEN_TSTAMP_APPA;
1803	}
1804
1805	/*
1806	 * Send `CC-family' options if needed, and it's not a RST.
1807	 */
1808	if (tw->cc_recv != 0 && flags == TH_ACK) {
1809		u_int32_t *lp = (u_int32_t *)optp;
1810
1811		*lp++ = htonl(TCPOPT_CC_HDR(TCPOPT_CC));
1812		*lp   = htonl(tw->cc_send);
1813		optp += TCPOLEN_CC_APPA;
1814	}
1815	optlen = optp - (u_int8_t *)(th + 1);
1816
1817	m->m_len = hdrlen + optlen;
1818	m->m_pkthdr.len = m->m_len;
1819
1820	KASSERT(max_linkhdr + m->m_len <= MHLEN, ("tcptw: mbuf too small"));
1821
1822	th->th_seq = htonl(tw->snd_nxt);
1823	th->th_ack = htonl(tw->rcv_nxt);
1824	th->th_off = (sizeof(struct tcphdr) + optlen) >> 2;
1825	th->th_flags = flags;
1826	th->th_win = htons(tw->last_win);
1827
1828#ifdef INET6
1829	if (isipv6) {
1830		th->th_sum = in6_cksum(m, IPPROTO_TCP, sizeof(struct ip6_hdr),
1831		    sizeof(struct tcphdr) + optlen);
1832		ip6->ip6_hlim = in6_selecthlim(inp, NULL);
1833		error = ip6_output(m, inp->in6p_outputopts, NULL,
1834		    (tw->tw_so_options & SO_DONTROUTE), NULL, NULL, inp);
1835	} else
1836#endif
1837	{
1838		th->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
1839		    htons(sizeof(struct tcphdr) + optlen + IPPROTO_TCP));
1840		m->m_pkthdr.csum_flags = CSUM_TCP;
1841		m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
1842		ip->ip_len = m->m_pkthdr.len;
1843		if (path_mtu_discovery)
1844			ip->ip_off |= IP_DF;
1845		error = ip_output(m, inp->inp_options, NULL,
1846		    ((tw->tw_so_options & SO_DONTROUTE) ? IP_ROUTETOIF : 0),
1847		    NULL, inp);
1848	}
1849	if (flags & TH_ACK)
1850		tcpstat.tcps_sndacks++;
1851	else
1852		tcpstat.tcps_sndctrl++;
1853	tcpstat.tcps_sndtotal++;
1854	return (error);
1855}
1856
1857/*
1858 * TCP BANDWIDTH DELAY PRODUCT WINDOW LIMITING
1859 *
1860 * This code attempts to calculate the bandwidth-delay product as a
1861 * means of determining the optimal window size to maximize bandwidth,
1862 * minimize RTT, and avoid the over-allocation of buffers on interfaces and
1863 * routers.  This code also does a fairly good job keeping RTTs in check
1864 * across slow links like modems.  We implement an algorithm which is very
1865 * similar (but not meant to be) TCP/Vegas.  The code operates on the
1866 * transmitter side of a TCP connection and so only effects the transmit
1867 * side of the connection.
1868 *
1869 * BACKGROUND:  TCP makes no provision for the management of buffer space
1870 * at the end points or at the intermediate routers and switches.  A TCP
1871 * stream, whether using NewReno or not, will eventually buffer as
1872 * many packets as it is able and the only reason this typically works is
1873 * due to the fairly small default buffers made available for a connection
1874 * (typicaly 16K or 32K).  As machines use larger windows and/or window
1875 * scaling it is now fairly easy for even a single TCP connection to blow-out
1876 * all available buffer space not only on the local interface, but on
1877 * intermediate routers and switches as well.  NewReno makes a misguided
1878 * attempt to 'solve' this problem by waiting for an actual failure to occur,
1879 * then backing off, then steadily increasing the window again until another
1880 * failure occurs, ad-infinitum.  This results in terrible oscillation that
1881 * is only made worse as network loads increase and the idea of intentionally
1882 * blowing out network buffers is, frankly, a terrible way to manage network
1883 * resources.
1884 *
1885 * It is far better to limit the transmit window prior to the failure
1886 * condition being achieved.  There are two general ways to do this:  First
1887 * you can 'scan' through different transmit window sizes and locate the
1888 * point where the RTT stops increasing, indicating that you have filled the
1889 * pipe, then scan backwards until you note that RTT stops decreasing, then
1890 * repeat ad-infinitum.  This method works in principle but has severe
1891 * implementation issues due to RTT variances, timer granularity, and
1892 * instability in the algorithm which can lead to many false positives and
1893 * create oscillations as well as interact badly with other TCP streams
1894 * implementing the same algorithm.
1895 *
1896 * The second method is to limit the window to the bandwidth delay product
1897 * of the link.  This is the method we implement.  RTT variances and our
1898 * own manipulation of the congestion window, bwnd, can potentially
1899 * destabilize the algorithm.  For this reason we have to stabilize the
1900 * elements used to calculate the window.  We do this by using the minimum
1901 * observed RTT, the long term average of the observed bandwidth, and
1902 * by adding two segments worth of slop.  It isn't perfect but it is able
1903 * to react to changing conditions and gives us a very stable basis on
1904 * which to extend the algorithm.
1905 */
1906void
1907tcp_xmit_bandwidth_limit(struct tcpcb *tp, tcp_seq ack_seq)
1908{
1909	u_long bw;
1910	u_long bwnd;
1911	int save_ticks;
1912
1913	/*
1914	 * If inflight_enable is disabled in the middle of a tcp connection,
1915	 * make sure snd_bwnd is effectively disabled.
1916	 */
1917	if (tcp_inflight_enable == 0) {
1918		tp->snd_bwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
1919		tp->snd_bandwidth = 0;
1920		return;
1921	}
1922
1923	/*
1924	 * Figure out the bandwidth.  Due to the tick granularity this
1925	 * is a very rough number and it MUST be averaged over a fairly
1926	 * long period of time.  XXX we need to take into account a link
1927	 * that is not using all available bandwidth, but for now our
1928	 * slop will ramp us up if this case occurs and the bandwidth later
1929	 * increases.
1930	 *
1931	 * Note: if ticks rollover 'bw' may wind up negative.  We must
1932	 * effectively reset t_bw_rtttime for this case.
1933	 */
1934	save_ticks = ticks;
1935	if ((u_int)(save_ticks - tp->t_bw_rtttime) < 1)
1936		return;
1937
1938	bw = (int64_t)(ack_seq - tp->t_bw_rtseq) * hz /
1939	    (save_ticks - tp->t_bw_rtttime);
1940	tp->t_bw_rtttime = save_ticks;
1941	tp->t_bw_rtseq = ack_seq;
1942	if (tp->t_bw_rtttime == 0 || (int)bw < 0)
1943		return;
1944	bw = ((int64_t)tp->snd_bandwidth * 15 + bw) >> 4;
1945
1946	tp->snd_bandwidth = bw;
1947
1948	/*
1949	 * Calculate the semi-static bandwidth delay product, plus two maximal
1950	 * segments.  The additional slop puts us squarely in the sweet
1951	 * spot and also handles the bandwidth run-up case and stabilization.
1952	 * Without the slop we could be locking ourselves into a lower
1953	 * bandwidth.
1954	 *
1955	 * Situations Handled:
1956	 *	(1) Prevents over-queueing of packets on LANs, especially on
1957	 *	    high speed LANs, allowing larger TCP buffers to be
1958	 *	    specified, and also does a good job preventing
1959	 *	    over-queueing of packets over choke points like modems
1960	 *	    (at least for the transmit side).
1961	 *
1962	 *	(2) Is able to handle changing network loads (bandwidth
1963	 *	    drops so bwnd drops, bandwidth increases so bwnd
1964	 *	    increases).
1965	 *
1966	 *	(3) Theoretically should stabilize in the face of multiple
1967	 *	    connections implementing the same algorithm (this may need
1968	 *	    a little work).
1969	 *
1970	 *	(4) Stability value (defaults to 20 = 2 maximal packets) can
1971	 *	    be adjusted with a sysctl but typically only needs to be
1972	 *	    on very slow connections.  A value no smaller then 5
1973	 *	    should be used, but only reduce this default if you have
1974	 *	    no other choice.
1975	 */
1976#define USERTT	((tp->t_srtt + tp->t_rttbest) / 2)
1977	bwnd = (int64_t)bw * USERTT / (hz << TCP_RTT_SHIFT) + tcp_inflight_stab * tp->t_maxseg / 10;
1978#undef USERTT
1979
1980	if (tcp_inflight_debug > 0) {
1981		static int ltime;
1982		if ((u_int)(ticks - ltime) >= hz / tcp_inflight_debug) {
1983			ltime = ticks;
1984			printf("%p bw %ld rttbest %d srtt %d bwnd %ld\n",
1985			    tp,
1986			    bw,
1987			    tp->t_rttbest,
1988			    tp->t_srtt,
1989			    bwnd
1990			);
1991		}
1992	}
1993	if ((long)bwnd < tcp_inflight_min)
1994		bwnd = tcp_inflight_min;
1995	if (bwnd > tcp_inflight_max)
1996		bwnd = tcp_inflight_max;
1997	if ((long)bwnd < tp->t_maxseg * 2)
1998		bwnd = tp->t_maxseg * 2;
1999	tp->snd_bwnd = bwnd;
2000}
2001
2002#ifdef TCP_SIGNATURE
2003/*
2004 * Callback function invoked by m_apply() to digest TCP segment data
2005 * contained within an mbuf chain.
2006 */
2007static int
2008tcp_signature_apply(void *fstate, void *data, u_int len)
2009{
2010
2011	MD5Update(fstate, (u_char *)data, len);
2012	return (0);
2013}
2014
2015/*
2016 * Compute TCP-MD5 hash of a TCPv4 segment. (RFC2385)
2017 *
2018 * Parameters:
2019 * m		pointer to head of mbuf chain
2020 * off0		offset to TCP header within the mbuf chain
2021 * len		length of TCP segment data, excluding options
2022 * optlen	length of TCP segment options
2023 * buf		pointer to storage for computed MD5 digest
2024 * direction	direction of flow (IPSEC_DIR_INBOUND or OUTBOUND)
2025 *
2026 * We do this over ip, tcphdr, segment data, and the key in the SADB.
2027 * When called from tcp_input(), we can be sure that th_sum has been
2028 * zeroed out and verified already.
2029 *
2030 * This function is for IPv4 use only. Calling this function with an
2031 * IPv6 packet in the mbuf chain will yield undefined results.
2032 *
2033 * Return 0 if successful, otherwise return -1.
2034 *
2035 * XXX The key is retrieved from the system's PF_KEY SADB, by keying a
2036 * search with the destination IP address, and a 'magic SPI' to be
2037 * determined by the application. This is hardcoded elsewhere to 1179
2038 * right now. Another branch of this code exists which uses the SPD to
2039 * specify per-application flows but it is unstable.
2040 */
2041int
2042tcp_signature_compute(struct mbuf *m, int off0, int len, int optlen,
2043    u_char *buf, u_int direction)
2044{
2045	union sockaddr_union dst;
2046	struct ippseudo ippseudo;
2047	MD5_CTX ctx;
2048	int doff;
2049	struct ip *ip;
2050	struct ipovly *ipovly;
2051	struct secasvar *sav;
2052	struct tcphdr *th;
2053	u_short savecsum;
2054
2055	KASSERT(m != NULL, ("NULL mbuf chain"));
2056	KASSERT(buf != NULL, ("NULL signature pointer"));
2057
2058	/* Extract the destination from the IP header in the mbuf. */
2059	ip = mtod(m, struct ip *);
2060	bzero(&dst, sizeof(union sockaddr_union));
2061	dst.sa.sa_len = sizeof(struct sockaddr_in);
2062	dst.sa.sa_family = AF_INET;
2063	dst.sin.sin_addr = (direction == IPSEC_DIR_INBOUND) ?
2064	    ip->ip_src : ip->ip_dst;
2065
2066	/* Look up an SADB entry which matches the address of the peer. */
2067	sav = KEY_ALLOCSA(&dst, IPPROTO_TCP, htonl(TCP_SIG_SPI));
2068	if (sav == NULL) {
2069		printf("%s: SADB lookup failed for %s\n", __func__,
2070		    inet_ntoa(dst.sin.sin_addr));
2071		return (EINVAL);
2072	}
2073
2074	MD5Init(&ctx);
2075	ipovly = (struct ipovly *)ip;
2076	th = (struct tcphdr *)((u_char *)ip + off0);
2077	doff = off0 + sizeof(struct tcphdr) + optlen;
2078
2079	/*
2080	 * Step 1: Update MD5 hash with IP pseudo-header.
2081	 *
2082	 * XXX The ippseudo header MUST be digested in network byte order,
2083	 * or else we'll fail the regression test. Assume all fields we've
2084	 * been doing arithmetic on have been in host byte order.
2085	 * XXX One cannot depend on ipovly->ih_len here. When called from
2086	 * tcp_output(), the underlying ip_len member has not yet been set.
2087	 */
2088	ippseudo.ippseudo_src = ipovly->ih_src;
2089	ippseudo.ippseudo_dst = ipovly->ih_dst;
2090	ippseudo.ippseudo_pad = 0;
2091	ippseudo.ippseudo_p = IPPROTO_TCP;
2092	ippseudo.ippseudo_len = htons(len + sizeof(struct tcphdr) + optlen);
2093	MD5Update(&ctx, (char *)&ippseudo, sizeof(struct ippseudo));
2094
2095	/*
2096	 * Step 2: Update MD5 hash with TCP header, excluding options.
2097	 * The TCP checksum must be set to zero.
2098	 */
2099	savecsum = th->th_sum;
2100	th->th_sum = 0;
2101	MD5Update(&ctx, (char *)th, sizeof(struct tcphdr));
2102	th->th_sum = savecsum;
2103
2104	/*
2105	 * Step 3: Update MD5 hash with TCP segment data.
2106	 *         Use m_apply() to avoid an early m_pullup().
2107	 */
2108	if (len > 0)
2109		m_apply(m, doff, len, tcp_signature_apply, &ctx);
2110
2111	/*
2112	 * Step 4: Update MD5 hash with shared secret.
2113	 */
2114	MD5Update(&ctx, _KEYBUF(sav->key_auth), _KEYLEN(sav->key_auth));
2115	MD5Final(buf, &ctx);
2116
2117	key_sa_recordxfer(sav, m);
2118	KEY_FREESAV(&sav);
2119	return (0);
2120}
2121#endif /* TCP_SIGNATURE */
2122