tcp_timewait.c revision 132653
1/*
2 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 4. Neither the name of the University nor the names of its contributors
14 *    may be used to endorse or promote products derived from this software
15 *    without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 *
29 *	@(#)tcp_subr.c	8.2 (Berkeley) 5/24/95
30 * $FreeBSD: head/sys/netinet/tcp_timewait.c 132653 2004-07-26 07:24:04Z cperciva $
31 */
32
33#include "opt_compat.h"
34#include "opt_inet.h"
35#include "opt_inet6.h"
36#include "opt_ipsec.h"
37#include "opt_mac.h"
38#include "opt_tcpdebug.h"
39#include "opt_tcp_sack.h"
40
41#include <sys/param.h>
42#include <sys/systm.h>
43#include <sys/callout.h>
44#include <sys/kernel.h>
45#include <sys/sysctl.h>
46#include <sys/mac.h>
47#include <sys/malloc.h>
48#include <sys/mbuf.h>
49#ifdef INET6
50#include <sys/domain.h>
51#endif
52#include <sys/proc.h>
53#include <sys/socket.h>
54#include <sys/socketvar.h>
55#include <sys/protosw.h>
56#include <sys/random.h>
57
58#include <vm/uma.h>
59
60#include <net/route.h>
61#include <net/if.h>
62
63#include <netinet/in.h>
64#include <netinet/in_systm.h>
65#include <netinet/ip.h>
66#ifdef INET6
67#include <netinet/ip6.h>
68#endif
69#include <netinet/in_pcb.h>
70#ifdef INET6
71#include <netinet6/in6_pcb.h>
72#endif
73#include <netinet/in_var.h>
74#include <netinet/ip_var.h>
75#ifdef INET6
76#include <netinet6/ip6_var.h>
77#include <netinet6/nd6.h>
78#endif
79#include <netinet/tcp.h>
80#include <netinet/tcp_fsm.h>
81#include <netinet/tcp_seq.h>
82#include <netinet/tcp_timer.h>
83#include <netinet/tcp_var.h>
84#ifdef INET6
85#include <netinet6/tcp6_var.h>
86#endif
87#include <netinet/tcpip.h>
88#ifdef TCPDEBUG
89#include <netinet/tcp_debug.h>
90#endif
91#include <netinet6/ip6protosw.h>
92
93#ifdef IPSEC
94#include <netinet6/ipsec.h>
95#ifdef INET6
96#include <netinet6/ipsec6.h>
97#endif
98#endif /*IPSEC*/
99
100#ifdef FAST_IPSEC
101#include <netipsec/ipsec.h>
102#include <netipsec/xform.h>
103#ifdef INET6
104#include <netipsec/ipsec6.h>
105#endif
106#include <netipsec/key.h>
107#define	IPSEC
108#endif /*FAST_IPSEC*/
109
110#include <machine/in_cksum.h>
111#include <sys/md5.h>
112
113int 	tcp_mssdflt = TCP_MSS;
114SYSCTL_INT(_net_inet_tcp, TCPCTL_MSSDFLT, mssdflt, CTLFLAG_RW,
115    &tcp_mssdflt , 0, "Default TCP Maximum Segment Size");
116
117#ifdef INET6
118int	tcp_v6mssdflt = TCP6_MSS;
119SYSCTL_INT(_net_inet_tcp, TCPCTL_V6MSSDFLT, v6mssdflt,
120	CTLFLAG_RW, &tcp_v6mssdflt , 0,
121	"Default TCP Maximum Segment Size for IPv6");
122#endif
123
124/*
125 * Minimum MSS we accept and use. This prevents DoS attacks where
126 * we are forced to a ridiculous low MSS like 20 and send hundreds
127 * of packets instead of one. The effect scales with the available
128 * bandwidth and quickly saturates the CPU and network interface
129 * with packet generation and sending. Set to zero to disable MINMSS
130 * checking. This setting prevents us from sending too small packets.
131 */
132int	tcp_minmss = TCP_MINMSS;
133SYSCTL_INT(_net_inet_tcp, OID_AUTO, minmss, CTLFLAG_RW,
134    &tcp_minmss , 0, "Minmum TCP Maximum Segment Size");
135/*
136 * Number of TCP segments per second we accept from remote host
137 * before we start to calculate average segment size. If average
138 * segment size drops below the minimum TCP MSS we assume a DoS
139 * attack and reset+drop the connection. Care has to be taken not to
140 * set this value too small to not kill interactive type connections
141 * (telnet, SSH) which send many small packets.
142 */
143int     tcp_minmssoverload = TCP_MINMSSOVERLOAD;
144SYSCTL_INT(_net_inet_tcp, OID_AUTO, minmssoverload, CTLFLAG_RW,
145    &tcp_minmssoverload , 0, "Number of TCP Segments per Second allowed to"
146    "be under the MINMSS Size");
147
148#if 0
149static int 	tcp_rttdflt = TCPTV_SRTTDFLT / PR_SLOWHZ;
150SYSCTL_INT(_net_inet_tcp, TCPCTL_RTTDFLT, rttdflt, CTLFLAG_RW,
151    &tcp_rttdflt , 0, "Default maximum TCP Round Trip Time");
152#endif
153
154int	tcp_do_rfc1323 = 1;
155SYSCTL_INT(_net_inet_tcp, TCPCTL_DO_RFC1323, rfc1323, CTLFLAG_RW,
156    &tcp_do_rfc1323 , 0, "Enable rfc1323 (high performance TCP) extensions");
157
158int	tcp_do_rfc1644 = 0;
159SYSCTL_INT(_net_inet_tcp, TCPCTL_DO_RFC1644, rfc1644, CTLFLAG_RW,
160    &tcp_do_rfc1644 , 0, "Enable rfc1644 (TTCP) extensions");
161
162static int	tcp_tcbhashsize = 0;
163SYSCTL_INT(_net_inet_tcp, OID_AUTO, tcbhashsize, CTLFLAG_RDTUN,
164     &tcp_tcbhashsize, 0, "Size of TCP control-block hashtable");
165
166static int	do_tcpdrain = 1;
167SYSCTL_INT(_net_inet_tcp, OID_AUTO, do_tcpdrain, CTLFLAG_RW, &do_tcpdrain, 0,
168     "Enable tcp_drain routine for extra help when low on mbufs");
169
170SYSCTL_INT(_net_inet_tcp, OID_AUTO, pcbcount, CTLFLAG_RD,
171    &tcbinfo.ipi_count, 0, "Number of active PCBs");
172
173static int	icmp_may_rst = 1;
174SYSCTL_INT(_net_inet_tcp, OID_AUTO, icmp_may_rst, CTLFLAG_RW, &icmp_may_rst, 0,
175    "Certain ICMP unreachable messages may abort connections in SYN_SENT");
176
177static int	tcp_isn_reseed_interval = 0;
178SYSCTL_INT(_net_inet_tcp, OID_AUTO, isn_reseed_interval, CTLFLAG_RW,
179    &tcp_isn_reseed_interval, 0, "Seconds between reseeding of ISN secret");
180
181/*
182 * TCP bandwidth limiting sysctls.  Note that the default lower bound of
183 * 1024 exists only for debugging.  A good production default would be
184 * something like 6100.
185 */
186static int	tcp_inflight_enable = 1;
187SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_enable, CTLFLAG_RW,
188    &tcp_inflight_enable, 0, "Enable automatic TCP inflight data limiting");
189
190static int	tcp_inflight_debug = 0;
191SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_debug, CTLFLAG_RW,
192    &tcp_inflight_debug, 0, "Debug TCP inflight calculations");
193
194static int	tcp_inflight_min = 6144;
195SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_min, CTLFLAG_RW,
196    &tcp_inflight_min, 0, "Lower-bound for TCP inflight window");
197
198static int	tcp_inflight_max = TCP_MAXWIN << TCP_MAX_WINSHIFT;
199SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_max, CTLFLAG_RW,
200    &tcp_inflight_max, 0, "Upper-bound for TCP inflight window");
201static int	tcp_inflight_stab = 20;
202SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_stab, CTLFLAG_RW,
203    &tcp_inflight_stab, 0, "Inflight Algorithm Stabilization 20 = 2 packets");
204
205SYSCTL_NODE(_net_inet_tcp, OID_AUTO, sack, CTLFLAG_RW, 0, "TCP SACK");
206int tcp_do_sack = 1;
207SYSCTL_INT(_net_inet_tcp_sack, OID_AUTO, enable, CTLFLAG_RW,
208    &tcp_do_sack, 0, "Enable/Disable TCP SACK support");
209
210uma_zone_t sack_hole_zone;
211
212static struct inpcb *tcp_notify(struct inpcb *, int);
213static void	tcp_discardcb(struct tcpcb *);
214static void	tcp_isn_tick(void *);
215
216/*
217 * Target size of TCP PCB hash tables. Must be a power of two.
218 *
219 * Note that this can be overridden by the kernel environment
220 * variable net.inet.tcp.tcbhashsize
221 */
222#ifndef TCBHASHSIZE
223#define TCBHASHSIZE	512
224#endif
225
226/*
227 * XXX
228 * Callouts should be moved into struct tcp directly.  They are currently
229 * separate because the tcpcb structure is exported to userland for sysctl
230 * parsing purposes, which do not know about callouts.
231 */
232struct	tcpcb_mem {
233	struct	tcpcb tcb;
234	struct	callout tcpcb_mem_rexmt, tcpcb_mem_persist, tcpcb_mem_keep;
235	struct	callout tcpcb_mem_2msl, tcpcb_mem_delack;
236};
237
238static uma_zone_t tcpcb_zone;
239static uma_zone_t tcptw_zone;
240struct callout isn_callout;
241
242/*
243 * Tcp initialization
244 */
245void
246tcp_init()
247{
248	int hashsize = TCBHASHSIZE;
249
250	tcp_ccgen = 1;
251
252	tcp_delacktime = TCPTV_DELACK;
253	tcp_keepinit = TCPTV_KEEP_INIT;
254	tcp_keepidle = TCPTV_KEEP_IDLE;
255	tcp_keepintvl = TCPTV_KEEPINTVL;
256	tcp_maxpersistidle = TCPTV_KEEP_IDLE;
257	tcp_msl = TCPTV_MSL;
258	tcp_rexmit_min = TCPTV_MIN;
259	tcp_rexmit_slop = TCPTV_CPU_VAR;
260
261	INP_INFO_LOCK_INIT(&tcbinfo, "tcp");
262	LIST_INIT(&tcb);
263	tcbinfo.listhead = &tcb;
264	TUNABLE_INT_FETCH("net.inet.tcp.tcbhashsize", &hashsize);
265	if (!powerof2(hashsize)) {
266		printf("WARNING: TCB hash size not a power of 2\n");
267		hashsize = 512; /* safe default */
268	}
269	tcp_tcbhashsize = hashsize;
270	tcbinfo.hashbase = hashinit(hashsize, M_PCB, &tcbinfo.hashmask);
271	tcbinfo.porthashbase = hashinit(hashsize, M_PCB,
272					&tcbinfo.porthashmask);
273	tcbinfo.ipi_zone = uma_zcreate("inpcb", sizeof(struct inpcb),
274	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
275	uma_zone_set_max(tcbinfo.ipi_zone, maxsockets);
276#ifdef INET6
277#define TCP_MINPROTOHDR (sizeof(struct ip6_hdr) + sizeof(struct tcphdr))
278#else /* INET6 */
279#define TCP_MINPROTOHDR (sizeof(struct tcpiphdr))
280#endif /* INET6 */
281	if (max_protohdr < TCP_MINPROTOHDR)
282		max_protohdr = TCP_MINPROTOHDR;
283	if (max_linkhdr + TCP_MINPROTOHDR > MHLEN)
284		panic("tcp_init");
285#undef TCP_MINPROTOHDR
286	/*
287	 * These have to be type stable for the benefit of the timers.
288	 */
289	tcpcb_zone = uma_zcreate("tcpcb", sizeof(struct tcpcb_mem),
290	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
291	uma_zone_set_max(tcpcb_zone, maxsockets);
292	tcptw_zone = uma_zcreate("tcptw", sizeof(struct tcptw),
293	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
294	uma_zone_set_max(tcptw_zone, maxsockets / 5);
295	tcp_timer_init();
296	syncache_init();
297	tcp_hc_init();
298	tcp_reass_init();
299	callout_init(&isn_callout, CALLOUT_MPSAFE);
300	tcp_isn_tick(NULL);
301	EVENTHANDLER_REGISTER(shutdown_pre_sync, tcp_fini, NULL,
302		SHUTDOWN_PRI_DEFAULT);
303	sack_hole_zone = uma_zcreate("sackhole", sizeof(struct sackhole),
304	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
305}
306
307void
308tcp_fini(xtp)
309	void *xtp;
310{
311	callout_stop(&isn_callout);
312
313}
314
315/*
316 * Fill in the IP and TCP headers for an outgoing packet, given the tcpcb.
317 * tcp_template used to store this data in mbufs, but we now recopy it out
318 * of the tcpcb each time to conserve mbufs.
319 */
320void
321tcpip_fillheaders(inp, ip_ptr, tcp_ptr)
322	struct inpcb *inp;
323	void *ip_ptr;
324	void *tcp_ptr;
325{
326	struct tcphdr *th = (struct tcphdr *)tcp_ptr;
327
328#ifdef INET6
329	if ((inp->inp_vflag & INP_IPV6) != 0) {
330		struct ip6_hdr *ip6;
331
332		ip6 = (struct ip6_hdr *)ip_ptr;
333		ip6->ip6_flow = (ip6->ip6_flow & ~IPV6_FLOWINFO_MASK) |
334			(inp->in6p_flowinfo & IPV6_FLOWINFO_MASK);
335		ip6->ip6_vfc = (ip6->ip6_vfc & ~IPV6_VERSION_MASK) |
336			(IPV6_VERSION & IPV6_VERSION_MASK);
337		ip6->ip6_nxt = IPPROTO_TCP;
338		ip6->ip6_plen = sizeof(struct tcphdr);
339		ip6->ip6_src = inp->in6p_laddr;
340		ip6->ip6_dst = inp->in6p_faddr;
341	} else
342#endif
343	{
344		struct ip *ip;
345
346		ip = (struct ip *)ip_ptr;
347		ip->ip_v = IPVERSION;
348		ip->ip_hl = 5;
349		ip->ip_tos = inp->inp_ip_tos;
350		ip->ip_len = 0;
351		ip->ip_id = 0;
352		ip->ip_off = 0;
353		ip->ip_ttl = inp->inp_ip_ttl;
354		ip->ip_sum = 0;
355		ip->ip_p = IPPROTO_TCP;
356		ip->ip_src = inp->inp_laddr;
357		ip->ip_dst = inp->inp_faddr;
358	}
359	th->th_sport = inp->inp_lport;
360	th->th_dport = inp->inp_fport;
361	th->th_seq = 0;
362	th->th_ack = 0;
363	th->th_x2 = 0;
364	th->th_off = 5;
365	th->th_flags = 0;
366	th->th_win = 0;
367	th->th_urp = 0;
368	th->th_sum = 0;		/* in_pseudo() is called later for ipv4 */
369}
370
371/*
372 * Create template to be used to send tcp packets on a connection.
373 * Allocates an mbuf and fills in a skeletal tcp/ip header.  The only
374 * use for this function is in keepalives, which use tcp_respond.
375 */
376struct tcptemp *
377tcpip_maketemplate(inp)
378	struct inpcb *inp;
379{
380	struct mbuf *m;
381	struct tcptemp *n;
382
383	m = m_get(M_DONTWAIT, MT_HEADER);
384	if (m == NULL)
385		return (0);
386	m->m_len = sizeof(struct tcptemp);
387	n = mtod(m, struct tcptemp *);
388
389	tcpip_fillheaders(inp, (void *)&n->tt_ipgen, (void *)&n->tt_t);
390	return (n);
391}
392
393/*
394 * Send a single message to the TCP at address specified by
395 * the given TCP/IP header.  If m == NULL, then we make a copy
396 * of the tcpiphdr at ti and send directly to the addressed host.
397 * This is used to force keep alive messages out using the TCP
398 * template for a connection.  If flags are given then we send
399 * a message back to the TCP which originated the * segment ti,
400 * and discard the mbuf containing it and any other attached mbufs.
401 *
402 * In any case the ack and sequence number of the transmitted
403 * segment are as specified by the parameters.
404 *
405 * NOTE: If m != NULL, then ti must point to *inside* the mbuf.
406 */
407void
408tcp_respond(tp, ipgen, th, m, ack, seq, flags)
409	struct tcpcb *tp;
410	void *ipgen;
411	register struct tcphdr *th;
412	register struct mbuf *m;
413	tcp_seq ack, seq;
414	int flags;
415{
416	register int tlen;
417	int win = 0;
418	struct ip *ip;
419	struct tcphdr *nth;
420#ifdef INET6
421	struct ip6_hdr *ip6;
422	int isipv6;
423#endif /* INET6 */
424	int ipflags = 0;
425	struct inpcb *inp;
426
427	KASSERT(tp != NULL || m != NULL, ("tcp_respond: tp and m both NULL"));
428
429#ifdef INET6
430	isipv6 = ((struct ip *)ipgen)->ip_v == 6;
431	ip6 = ipgen;
432#endif /* INET6 */
433	ip = ipgen;
434
435	if (tp != NULL) {
436		inp = tp->t_inpcb;
437		KASSERT(inp != NULL, ("tcp control block w/o inpcb"));
438		INP_INFO_WLOCK_ASSERT(&tcbinfo);
439		INP_LOCK_ASSERT(inp);
440	} else
441		inp = NULL;
442
443	if (tp != NULL) {
444		if (!(flags & TH_RST)) {
445			win = sbspace(&inp->inp_socket->so_rcv);
446			if (win > (long)TCP_MAXWIN << tp->rcv_scale)
447				win = (long)TCP_MAXWIN << tp->rcv_scale;
448		}
449	}
450	if (m == NULL) {
451		m = m_gethdr(M_DONTWAIT, MT_HEADER);
452		if (m == NULL)
453			return;
454		tlen = 0;
455		m->m_data += max_linkhdr;
456#ifdef INET6
457		if (isipv6) {
458			bcopy((caddr_t)ip6, mtod(m, caddr_t),
459			      sizeof(struct ip6_hdr));
460			ip6 = mtod(m, struct ip6_hdr *);
461			nth = (struct tcphdr *)(ip6 + 1);
462		} else
463#endif /* INET6 */
464	      {
465		bcopy((caddr_t)ip, mtod(m, caddr_t), sizeof(struct ip));
466		ip = mtod(m, struct ip *);
467		nth = (struct tcphdr *)(ip + 1);
468	      }
469		bcopy((caddr_t)th, (caddr_t)nth, sizeof(struct tcphdr));
470		flags = TH_ACK;
471	} else {
472		m_freem(m->m_next);
473		m->m_next = NULL;
474		m->m_data = (caddr_t)ipgen;
475		/* m_len is set later */
476		tlen = 0;
477#define xchg(a,b,type) { type t; t=a; a=b; b=t; }
478#ifdef INET6
479		if (isipv6) {
480			xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr);
481			nth = (struct tcphdr *)(ip6 + 1);
482		} else
483#endif /* INET6 */
484	      {
485		xchg(ip->ip_dst.s_addr, ip->ip_src.s_addr, n_long);
486		nth = (struct tcphdr *)(ip + 1);
487	      }
488		if (th != nth) {
489			/*
490			 * this is usually a case when an extension header
491			 * exists between the IPv6 header and the
492			 * TCP header.
493			 */
494			nth->th_sport = th->th_sport;
495			nth->th_dport = th->th_dport;
496		}
497		xchg(nth->th_dport, nth->th_sport, n_short);
498#undef xchg
499	}
500#ifdef INET6
501	if (isipv6) {
502		ip6->ip6_flow = 0;
503		ip6->ip6_vfc = IPV6_VERSION;
504		ip6->ip6_nxt = IPPROTO_TCP;
505		ip6->ip6_plen = htons((u_short)(sizeof (struct tcphdr) +
506						tlen));
507		tlen += sizeof (struct ip6_hdr) + sizeof (struct tcphdr);
508	} else
509#endif
510      {
511	tlen += sizeof (struct tcpiphdr);
512	ip->ip_len = tlen;
513	ip->ip_ttl = ip_defttl;
514	if (path_mtu_discovery)
515		ip->ip_off |= IP_DF;
516      }
517	m->m_len = tlen;
518	m->m_pkthdr.len = tlen;
519	m->m_pkthdr.rcvif = NULL;
520#ifdef MAC
521	if (inp != NULL) {
522		/*
523		 * Packet is associated with a socket, so allow the
524		 * label of the response to reflect the socket label.
525		 */
526		INP_LOCK_ASSERT(inp);
527		mac_create_mbuf_from_inpcb(inp, m);
528	} else {
529		/*
530		 * Packet is not associated with a socket, so possibly
531		 * update the label in place.
532		 */
533		mac_reflect_mbuf_tcp(m);
534	}
535#endif
536	nth->th_seq = htonl(seq);
537	nth->th_ack = htonl(ack);
538	nth->th_x2 = 0;
539	nth->th_off = sizeof (struct tcphdr) >> 2;
540	nth->th_flags = flags;
541	if (tp != NULL)
542		nth->th_win = htons((u_short) (win >> tp->rcv_scale));
543	else
544		nth->th_win = htons((u_short)win);
545	nth->th_urp = 0;
546#ifdef INET6
547	if (isipv6) {
548		nth->th_sum = 0;
549		nth->th_sum = in6_cksum(m, IPPROTO_TCP,
550					sizeof(struct ip6_hdr),
551					tlen - sizeof(struct ip6_hdr));
552		ip6->ip6_hlim = in6_selecthlim(tp != NULL ? tp->t_inpcb :
553		    NULL, NULL);
554	} else
555#endif /* INET6 */
556      {
557        nth->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
558	    htons((u_short)(tlen - sizeof(struct ip) + ip->ip_p)));
559        m->m_pkthdr.csum_flags = CSUM_TCP;
560        m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
561      }
562#ifdef TCPDEBUG
563	if (tp == NULL || (inp->inp_socket->so_options & SO_DEBUG))
564		tcp_trace(TA_OUTPUT, 0, tp, mtod(m, void *), th, 0);
565#endif
566#ifdef INET6
567	if (isipv6)
568		(void) ip6_output(m, NULL, NULL, ipflags, NULL, NULL, inp);
569	else
570#endif /* INET6 */
571	(void) ip_output(m, NULL, NULL, ipflags, NULL, inp);
572}
573
574/*
575 * Create a new TCP control block, making an
576 * empty reassembly queue and hooking it to the argument
577 * protocol control block.  The `inp' parameter must have
578 * come from the zone allocator set up in tcp_init().
579 */
580struct tcpcb *
581tcp_newtcpcb(inp)
582	struct inpcb *inp;
583{
584	struct tcpcb_mem *tm;
585	struct tcpcb *tp;
586#ifdef INET6
587	int isipv6 = (inp->inp_vflag & INP_IPV6) != 0;
588#endif /* INET6 */
589	int callout_flag;
590
591	tm = uma_zalloc(tcpcb_zone, M_NOWAIT | M_ZERO);
592	if (tm == NULL)
593		return (NULL);
594	tp = &tm->tcb;
595	/*	LIST_INIT(&tp->t_segq); */	/* XXX covered by M_ZERO */
596	tp->t_maxseg = tp->t_maxopd =
597#ifdef INET6
598		isipv6 ? tcp_v6mssdflt :
599#endif /* INET6 */
600		tcp_mssdflt;
601
602	/* Set up our timeouts. */
603	/*
604	 * XXXRW: Are these actually MPSAFE?  I think so, but need to
605	 * review the timed wait code, as it has some list variables,
606	 * etc, that are global.
607	 */
608	callout_flag = debug_mpsafenet ? CALLOUT_MPSAFE : 0;
609	callout_init(tp->tt_rexmt = &tm->tcpcb_mem_rexmt, callout_flag);
610	callout_init(tp->tt_persist = &tm->tcpcb_mem_persist, callout_flag);
611	callout_init(tp->tt_keep = &tm->tcpcb_mem_keep, callout_flag);
612	callout_init(tp->tt_2msl = &tm->tcpcb_mem_2msl, callout_flag);
613	callout_init(tp->tt_delack = &tm->tcpcb_mem_delack, callout_flag);
614
615	if (tcp_do_rfc1323)
616		tp->t_flags = (TF_REQ_SCALE|TF_REQ_TSTMP);
617	if (tcp_do_rfc1644)
618		tp->t_flags |= TF_REQ_CC;
619	tp->sack_enable = tcp_do_sack;
620	tp->t_inpcb = inp;	/* XXX */
621	/*
622	 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
623	 * rtt estimate.  Set rttvar so that srtt + 4 * rttvar gives
624	 * reasonable initial retransmit time.
625	 */
626	tp->t_srtt = TCPTV_SRTTBASE;
627	tp->t_rttvar = ((TCPTV_RTOBASE - TCPTV_SRTTBASE) << TCP_RTTVAR_SHIFT) / 4;
628	tp->t_rttmin = tcp_rexmit_min;
629	tp->t_rxtcur = TCPTV_RTOBASE;
630	tp->snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
631	tp->snd_bwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
632	tp->snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT;
633	tp->t_rcvtime = ticks;
634	tp->t_bw_rtttime = ticks;
635        /*
636	 * IPv4 TTL initialization is necessary for an IPv6 socket as well,
637	 * because the socket may be bound to an IPv6 wildcard address,
638	 * which may match an IPv4-mapped IPv6 address.
639	 */
640	inp->inp_ip_ttl = ip_defttl;
641	inp->inp_ppcb = (caddr_t)tp;
642	return (tp);		/* XXX */
643}
644
645/*
646 * Drop a TCP connection, reporting
647 * the specified error.  If connection is synchronized,
648 * then send a RST to peer.
649 */
650struct tcpcb *
651tcp_drop(tp, errno)
652	register struct tcpcb *tp;
653	int errno;
654{
655	struct socket *so = tp->t_inpcb->inp_socket;
656
657	if (TCPS_HAVERCVDSYN(tp->t_state)) {
658		tp->t_state = TCPS_CLOSED;
659		(void) tcp_output(tp);
660		tcpstat.tcps_drops++;
661	} else
662		tcpstat.tcps_conndrops++;
663	if (errno == ETIMEDOUT && tp->t_softerror)
664		errno = tp->t_softerror;
665	so->so_error = errno;
666	return (tcp_close(tp));
667}
668
669static void
670tcp_discardcb(tp)
671	struct tcpcb *tp;
672{
673	struct tseg_qent *q;
674	struct inpcb *inp = tp->t_inpcb;
675	struct socket *so = inp->inp_socket;
676#ifdef INET6
677	int isipv6 = (inp->inp_vflag & INP_IPV6) != 0;
678#endif /* INET6 */
679
680	/*
681	 * Make sure that all of our timers are stopped before we
682	 * delete the PCB.
683	 */
684	callout_stop(tp->tt_rexmt);
685	callout_stop(tp->tt_persist);
686	callout_stop(tp->tt_keep);
687	callout_stop(tp->tt_2msl);
688	callout_stop(tp->tt_delack);
689
690	/*
691	 * If we got enough samples through the srtt filter,
692	 * save the rtt and rttvar in the routing entry.
693	 * 'Enough' is arbitrarily defined as 4 rtt samples.
694	 * 4 samples is enough for the srtt filter to converge
695	 * to within enough % of the correct value; fewer samples
696	 * and we could save a bogus rtt. The danger is not high
697	 * as tcp quickly recovers from everything.
698	 * XXX: Works very well but needs some more statistics!
699	 */
700	if (tp->t_rttupdated >= 4) {
701		struct hc_metrics_lite metrics;
702		u_long ssthresh;
703
704		bzero(&metrics, sizeof(metrics));
705		/*
706		 * Update the ssthresh always when the conditions below
707		 * are satisfied. This gives us better new start value
708		 * for the congestion avoidance for new connections.
709		 * ssthresh is only set if packet loss occured on a session.
710		 */
711		ssthresh = tp->snd_ssthresh;
712		if (ssthresh != 0 && ssthresh < so->so_snd.sb_hiwat / 2) {
713			/*
714			 * convert the limit from user data bytes to
715			 * packets then to packet data bytes.
716			 */
717			ssthresh = (ssthresh + tp->t_maxseg / 2) / tp->t_maxseg;
718			if (ssthresh < 2)
719				ssthresh = 2;
720			ssthresh *= (u_long)(tp->t_maxseg +
721#ifdef INET6
722				      (isipv6 ? sizeof (struct ip6_hdr) +
723					       sizeof (struct tcphdr) :
724#endif
725				       sizeof (struct tcpiphdr)
726#ifdef INET6
727				       )
728#endif
729				      );
730		} else
731			ssthresh = 0;
732		metrics.rmx_ssthresh = ssthresh;
733
734		metrics.rmx_rtt = tp->t_srtt;
735		metrics.rmx_rttvar = tp->t_rttvar;
736		/* XXX: This wraps if the pipe is more than 4 Gbit per second */
737		metrics.rmx_bandwidth = tp->snd_bandwidth;
738		metrics.rmx_cwnd = tp->snd_cwnd;
739		metrics.rmx_sendpipe = 0;
740		metrics.rmx_recvpipe = 0;
741
742		tcp_hc_update(&inp->inp_inc, &metrics);
743	}
744
745	/* free the reassembly queue, if any */
746	while ((q = LIST_FIRST(&tp->t_segq)) != NULL) {
747		LIST_REMOVE(q, tqe_q);
748		m_freem(q->tqe_m);
749		uma_zfree(tcp_reass_zone, q);
750		tp->t_segqlen--;
751		tcp_reass_qsize--;
752	}
753	tcp_free_sackholes(tp);
754	inp->inp_ppcb = NULL;
755	tp->t_inpcb = NULL;
756	uma_zfree(tcpcb_zone, tp);
757	soisdisconnected(so);
758}
759
760/*
761 * Close a TCP control block:
762 *    discard all space held by the tcp
763 *    discard internet protocol block
764 *    wake up any sleepers
765 */
766struct tcpcb *
767tcp_close(tp)
768	struct tcpcb *tp;
769{
770	struct inpcb *inp = tp->t_inpcb;
771#ifdef INET6
772	struct socket *so = inp->inp_socket;
773#endif
774
775	tcp_discardcb(tp);
776#ifdef INET6
777	if (INP_CHECK_SOCKAF(so, AF_INET6))
778		in6_pcbdetach(inp);
779	else
780#endif
781		in_pcbdetach(inp);
782	tcpstat.tcps_closed++;
783	return (NULL);
784}
785
786void
787tcp_drain()
788{
789	if (do_tcpdrain)
790	{
791		struct inpcb *inpb;
792		struct tcpcb *tcpb;
793		struct tseg_qent *te;
794
795	/*
796	 * Walk the tcpbs, if existing, and flush the reassembly queue,
797	 * if there is one...
798	 * XXX: The "Net/3" implementation doesn't imply that the TCP
799	 *      reassembly queue should be flushed, but in a situation
800	 * 	where we're really low on mbufs, this is potentially
801	 *  	usefull.
802	 */
803		INP_INFO_RLOCK(&tcbinfo);
804		LIST_FOREACH(inpb, tcbinfo.listhead, inp_list) {
805			if (inpb->inp_vflag & INP_TIMEWAIT)
806				continue;
807			INP_LOCK(inpb);
808			if ((tcpb = intotcpcb(inpb)) != NULL) {
809				while ((te = LIST_FIRST(&tcpb->t_segq))
810			            != NULL) {
811					LIST_REMOVE(te, tqe_q);
812					m_freem(te->tqe_m);
813					uma_zfree(tcp_reass_zone, te);
814					tcpb->t_segqlen--;
815					tcp_reass_qsize--;
816				}
817			}
818			INP_UNLOCK(inpb);
819		}
820		INP_INFO_RUNLOCK(&tcbinfo);
821	}
822}
823
824/*
825 * Notify a tcp user of an asynchronous error;
826 * store error as soft error, but wake up user
827 * (for now, won't do anything until can select for soft error).
828 *
829 * Do not wake up user since there currently is no mechanism for
830 * reporting soft errors (yet - a kqueue filter may be added).
831 */
832static struct inpcb *
833tcp_notify(inp, error)
834	struct inpcb *inp;
835	int error;
836{
837	struct tcpcb *tp = (struct tcpcb *)inp->inp_ppcb;
838
839	/*
840	 * Ignore some errors if we are hooked up.
841	 * If connection hasn't completed, has retransmitted several times,
842	 * and receives a second error, give up now.  This is better
843	 * than waiting a long time to establish a connection that
844	 * can never complete.
845	 */
846	if (tp->t_state == TCPS_ESTABLISHED &&
847	    (error == EHOSTUNREACH || error == ENETUNREACH ||
848	     error == EHOSTDOWN)) {
849		return inp;
850	} else if (tp->t_state < TCPS_ESTABLISHED && tp->t_rxtshift > 3 &&
851	    tp->t_softerror) {
852		tcp_drop(tp, error);
853		return (struct inpcb *)0;
854	} else {
855		tp->t_softerror = error;
856		return inp;
857	}
858#if 0
859	wakeup( &so->so_timeo);
860	sorwakeup(so);
861	sowwakeup(so);
862#endif
863}
864
865static int
866tcp_pcblist(SYSCTL_HANDLER_ARGS)
867{
868	int error, i, n, s;
869	struct inpcb *inp, **inp_list;
870	inp_gen_t gencnt;
871	struct xinpgen xig;
872
873	/*
874	 * The process of preparing the TCB list is too time-consuming and
875	 * resource-intensive to repeat twice on every request.
876	 */
877	if (req->oldptr == NULL) {
878		n = tcbinfo.ipi_count;
879		req->oldidx = 2 * (sizeof xig)
880			+ (n + n/8) * sizeof(struct xtcpcb);
881		return 0;
882	}
883
884	if (req->newptr != NULL)
885		return EPERM;
886
887	/*
888	 * OK, now we're committed to doing something.
889	 */
890	s = splnet();
891	INP_INFO_RLOCK(&tcbinfo);
892	gencnt = tcbinfo.ipi_gencnt;
893	n = tcbinfo.ipi_count;
894	INP_INFO_RUNLOCK(&tcbinfo);
895	splx(s);
896
897	error = sysctl_wire_old_buffer(req, 2 * (sizeof xig)
898		+ n * sizeof(struct xtcpcb));
899	if (error != 0)
900		return (error);
901
902	xig.xig_len = sizeof xig;
903	xig.xig_count = n;
904	xig.xig_gen = gencnt;
905	xig.xig_sogen = so_gencnt;
906	error = SYSCTL_OUT(req, &xig, sizeof xig);
907	if (error)
908		return error;
909
910	inp_list = malloc(n * sizeof *inp_list, M_TEMP, M_WAITOK);
911	if (inp_list == NULL)
912		return ENOMEM;
913
914	s = splnet();
915	INP_INFO_RLOCK(&tcbinfo);
916	for (inp = LIST_FIRST(tcbinfo.listhead), i = 0; inp != NULL && i < n;
917	     inp = LIST_NEXT(inp, inp_list)) {
918		INP_LOCK(inp);
919		if (inp->inp_gencnt <= gencnt) {
920			/*
921			 * XXX: This use of cr_cansee(), introduced with
922			 * TCP state changes, is not quite right, but for
923			 * now, better than nothing.
924			 */
925			if (inp->inp_vflag & INP_TIMEWAIT)
926				error = cr_cansee(req->td->td_ucred,
927				    intotw(inp)->tw_cred);
928			else
929				error = cr_canseesocket(req->td->td_ucred,
930				    inp->inp_socket);
931			if (error == 0)
932				inp_list[i++] = inp;
933		}
934		INP_UNLOCK(inp);
935	}
936	INP_INFO_RUNLOCK(&tcbinfo);
937	splx(s);
938	n = i;
939
940	error = 0;
941	for (i = 0; i < n; i++) {
942		inp = inp_list[i];
943		if (inp->inp_gencnt <= gencnt) {
944			struct xtcpcb xt;
945			caddr_t inp_ppcb;
946			xt.xt_len = sizeof xt;
947			/* XXX should avoid extra copy */
948			bcopy(inp, &xt.xt_inp, sizeof *inp);
949			inp_ppcb = inp->inp_ppcb;
950			if (inp_ppcb == NULL)
951				bzero((char *) &xt.xt_tp, sizeof xt.xt_tp);
952			else if (inp->inp_vflag & INP_TIMEWAIT) {
953				bzero((char *) &xt.xt_tp, sizeof xt.xt_tp);
954				xt.xt_tp.t_state = TCPS_TIME_WAIT;
955			} else
956				bcopy(inp_ppcb, &xt.xt_tp, sizeof xt.xt_tp);
957			if (inp->inp_socket != NULL)
958				sotoxsocket(inp->inp_socket, &xt.xt_socket);
959			else {
960				bzero(&xt.xt_socket, sizeof xt.xt_socket);
961				xt.xt_socket.xso_protocol = IPPROTO_TCP;
962			}
963			xt.xt_inp.inp_gencnt = inp->inp_gencnt;
964			error = SYSCTL_OUT(req, &xt, sizeof xt);
965		}
966	}
967	if (!error) {
968		/*
969		 * Give the user an updated idea of our state.
970		 * If the generation differs from what we told
971		 * her before, she knows that something happened
972		 * while we were processing this request, and it
973		 * might be necessary to retry.
974		 */
975		s = splnet();
976		INP_INFO_RLOCK(&tcbinfo);
977		xig.xig_gen = tcbinfo.ipi_gencnt;
978		xig.xig_sogen = so_gencnt;
979		xig.xig_count = tcbinfo.ipi_count;
980		INP_INFO_RUNLOCK(&tcbinfo);
981		splx(s);
982		error = SYSCTL_OUT(req, &xig, sizeof xig);
983	}
984	free(inp_list, M_TEMP);
985	return error;
986}
987
988SYSCTL_PROC(_net_inet_tcp, TCPCTL_PCBLIST, pcblist, CTLFLAG_RD, 0, 0,
989	    tcp_pcblist, "S,xtcpcb", "List of active TCP connections");
990
991static int
992tcp_getcred(SYSCTL_HANDLER_ARGS)
993{
994	struct xucred xuc;
995	struct sockaddr_in addrs[2];
996	struct inpcb *inp;
997	int error, s;
998
999	error = suser_cred(req->td->td_ucred, SUSER_ALLOWJAIL);
1000	if (error)
1001		return (error);
1002	error = SYSCTL_IN(req, addrs, sizeof(addrs));
1003	if (error)
1004		return (error);
1005	s = splnet();
1006	INP_INFO_RLOCK(&tcbinfo);
1007	inp = in_pcblookup_hash(&tcbinfo, addrs[1].sin_addr, addrs[1].sin_port,
1008	    addrs[0].sin_addr, addrs[0].sin_port, 0, NULL);
1009	if (inp == NULL) {
1010		error = ENOENT;
1011		goto outunlocked;
1012	}
1013	INP_LOCK(inp);
1014	if (inp->inp_socket == NULL) {
1015		error = ENOENT;
1016		goto out;
1017	}
1018	error = cr_canseesocket(req->td->td_ucred, inp->inp_socket);
1019	if (error)
1020		goto out;
1021	cru2x(inp->inp_socket->so_cred, &xuc);
1022out:
1023	INP_UNLOCK(inp);
1024outunlocked:
1025	INP_INFO_RUNLOCK(&tcbinfo);
1026	splx(s);
1027	if (error == 0)
1028		error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred));
1029	return (error);
1030}
1031
1032SYSCTL_PROC(_net_inet_tcp, OID_AUTO, getcred,
1033    CTLTYPE_OPAQUE|CTLFLAG_RW|CTLFLAG_PRISON, 0, 0,
1034    tcp_getcred, "S,xucred", "Get the xucred of a TCP connection");
1035
1036#ifdef INET6
1037static int
1038tcp6_getcred(SYSCTL_HANDLER_ARGS)
1039{
1040	struct xucred xuc;
1041	struct sockaddr_in6 addrs[2];
1042	struct inpcb *inp;
1043	int error, s, mapped = 0;
1044
1045	error = suser_cred(req->td->td_ucred, SUSER_ALLOWJAIL);
1046	if (error)
1047		return (error);
1048	error = SYSCTL_IN(req, addrs, sizeof(addrs));
1049	if (error)
1050		return (error);
1051	if (IN6_IS_ADDR_V4MAPPED(&addrs[0].sin6_addr)) {
1052		if (IN6_IS_ADDR_V4MAPPED(&addrs[1].sin6_addr))
1053			mapped = 1;
1054		else
1055			return (EINVAL);
1056	}
1057	s = splnet();
1058	INP_INFO_RLOCK(&tcbinfo);
1059	if (mapped == 1)
1060		inp = in_pcblookup_hash(&tcbinfo,
1061			*(struct in_addr *)&addrs[1].sin6_addr.s6_addr[12],
1062			addrs[1].sin6_port,
1063			*(struct in_addr *)&addrs[0].sin6_addr.s6_addr[12],
1064			addrs[0].sin6_port,
1065			0, NULL);
1066	else
1067		inp = in6_pcblookup_hash(&tcbinfo, &addrs[1].sin6_addr,
1068				 addrs[1].sin6_port,
1069				 &addrs[0].sin6_addr, addrs[0].sin6_port,
1070				 0, NULL);
1071	if (inp == NULL) {
1072		error = ENOENT;
1073		goto outunlocked;
1074	}
1075	INP_LOCK(inp);
1076	if (inp->inp_socket == NULL) {
1077		error = ENOENT;
1078		goto out;
1079	}
1080	error = cr_canseesocket(req->td->td_ucred, inp->inp_socket);
1081	if (error)
1082		goto out;
1083	cru2x(inp->inp_socket->so_cred, &xuc);
1084out:
1085	INP_UNLOCK(inp);
1086outunlocked:
1087	INP_INFO_RUNLOCK(&tcbinfo);
1088	splx(s);
1089	if (error == 0)
1090		error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred));
1091	return (error);
1092}
1093
1094SYSCTL_PROC(_net_inet6_tcp6, OID_AUTO, getcred,
1095    CTLTYPE_OPAQUE|CTLFLAG_RW|CTLFLAG_PRISON, 0, 0,
1096    tcp6_getcred, "S,xucred", "Get the xucred of a TCP6 connection");
1097#endif
1098
1099
1100void
1101tcp_ctlinput(cmd, sa, vip)
1102	int cmd;
1103	struct sockaddr *sa;
1104	void *vip;
1105{
1106	struct ip *ip = vip;
1107	struct tcphdr *th;
1108	struct in_addr faddr;
1109	struct inpcb *inp;
1110	struct tcpcb *tp;
1111	struct inpcb *(*notify)(struct inpcb *, int) = tcp_notify;
1112	tcp_seq icmp_seq;
1113	int s;
1114
1115	faddr = ((struct sockaddr_in *)sa)->sin_addr;
1116	if (sa->sa_family != AF_INET || faddr.s_addr == INADDR_ANY)
1117		return;
1118
1119	if (cmd == PRC_QUENCH)
1120		notify = tcp_quench;
1121	else if (icmp_may_rst && (cmd == PRC_UNREACH_ADMIN_PROHIB ||
1122		cmd == PRC_UNREACH_PORT || cmd == PRC_TIMXCEED_INTRANS) && ip)
1123		notify = tcp_drop_syn_sent;
1124	else if (cmd == PRC_MSGSIZE)
1125		notify = tcp_mtudisc;
1126	/*
1127	 * Redirects don't need to be handled up here.
1128	 */
1129	else if (PRC_IS_REDIRECT(cmd))
1130		return;
1131	/*
1132	 * Hostdead is ugly because it goes linearly through all PCBs.
1133	 * XXX: We never get this from ICMP, otherwise it makes an
1134	 * excellent DoS attack on machines with many connections.
1135	 */
1136	else if (cmd == PRC_HOSTDEAD)
1137		ip = NULL;
1138	else if ((unsigned)cmd >= PRC_NCMDS || inetctlerrmap[cmd] == 0)
1139		return;
1140	if (ip != NULL) {
1141		s = splnet();
1142		th = (struct tcphdr *)((caddr_t)ip
1143				       + (ip->ip_hl << 2));
1144		INP_INFO_WLOCK(&tcbinfo);
1145		inp = in_pcblookup_hash(&tcbinfo, faddr, th->th_dport,
1146		    ip->ip_src, th->th_sport, 0, NULL);
1147		if (inp != NULL)  {
1148			INP_LOCK(inp);
1149			if (inp->inp_socket != NULL) {
1150				icmp_seq = htonl(th->th_seq);
1151				tp = intotcpcb(inp);
1152				if (SEQ_GEQ(icmp_seq, tp->snd_una) &&
1153			    		SEQ_LT(icmp_seq, tp->snd_max))
1154					inp = (*notify)(inp, inetctlerrmap[cmd]);
1155			}
1156			if (inp != NULL)
1157				INP_UNLOCK(inp);
1158		} else {
1159			struct in_conninfo inc;
1160
1161			inc.inc_fport = th->th_dport;
1162			inc.inc_lport = th->th_sport;
1163			inc.inc_faddr = faddr;
1164			inc.inc_laddr = ip->ip_src;
1165#ifdef INET6
1166			inc.inc_isipv6 = 0;
1167#endif
1168			syncache_unreach(&inc, th);
1169		}
1170		INP_INFO_WUNLOCK(&tcbinfo);
1171		splx(s);
1172	} else
1173		in_pcbnotifyall(&tcbinfo, faddr, inetctlerrmap[cmd], notify);
1174}
1175
1176#ifdef INET6
1177void
1178tcp6_ctlinput(cmd, sa, d)
1179	int cmd;
1180	struct sockaddr *sa;
1181	void *d;
1182{
1183	struct tcphdr th;
1184	struct inpcb *(*notify)(struct inpcb *, int) = tcp_notify;
1185	struct ip6_hdr *ip6;
1186	struct mbuf *m;
1187	struct ip6ctlparam *ip6cp = NULL;
1188	const struct sockaddr_in6 *sa6_src = NULL;
1189	int off;
1190	struct tcp_portonly {
1191		u_int16_t th_sport;
1192		u_int16_t th_dport;
1193	} *thp;
1194
1195	if (sa->sa_family != AF_INET6 ||
1196	    sa->sa_len != sizeof(struct sockaddr_in6))
1197		return;
1198
1199	if (cmd == PRC_QUENCH)
1200		notify = tcp_quench;
1201	else if (cmd == PRC_MSGSIZE)
1202		notify = tcp_mtudisc;
1203	else if (!PRC_IS_REDIRECT(cmd) &&
1204		 ((unsigned)cmd >= PRC_NCMDS || inet6ctlerrmap[cmd] == 0))
1205		return;
1206
1207	/* if the parameter is from icmp6, decode it. */
1208	if (d != NULL) {
1209		ip6cp = (struct ip6ctlparam *)d;
1210		m = ip6cp->ip6c_m;
1211		ip6 = ip6cp->ip6c_ip6;
1212		off = ip6cp->ip6c_off;
1213		sa6_src = ip6cp->ip6c_src;
1214	} else {
1215		m = NULL;
1216		ip6 = NULL;
1217		off = 0;	/* fool gcc */
1218		sa6_src = &sa6_any;
1219	}
1220
1221	if (ip6 != NULL) {
1222		struct in_conninfo inc;
1223		/*
1224		 * XXX: We assume that when IPV6 is non NULL,
1225		 * M and OFF are valid.
1226		 */
1227
1228		/* check if we can safely examine src and dst ports */
1229		if (m->m_pkthdr.len < off + sizeof(*thp))
1230			return;
1231
1232		bzero(&th, sizeof(th));
1233		m_copydata(m, off, sizeof(*thp), (caddr_t)&th);
1234
1235		in6_pcbnotify(&tcb, sa, th.th_dport,
1236		    (struct sockaddr *)ip6cp->ip6c_src,
1237		    th.th_sport, cmd, NULL, notify);
1238
1239		inc.inc_fport = th.th_dport;
1240		inc.inc_lport = th.th_sport;
1241		inc.inc6_faddr = ((struct sockaddr_in6 *)sa)->sin6_addr;
1242		inc.inc6_laddr = ip6cp->ip6c_src->sin6_addr;
1243		inc.inc_isipv6 = 1;
1244		syncache_unreach(&inc, &th);
1245	} else
1246		in6_pcbnotify(&tcb, sa, 0, (const struct sockaddr *)sa6_src,
1247			      0, cmd, NULL, notify);
1248}
1249#endif /* INET6 */
1250
1251
1252/*
1253 * Following is where TCP initial sequence number generation occurs.
1254 *
1255 * There are two places where we must use initial sequence numbers:
1256 * 1.  In SYN-ACK packets.
1257 * 2.  In SYN packets.
1258 *
1259 * All ISNs for SYN-ACK packets are generated by the syncache.  See
1260 * tcp_syncache.c for details.
1261 *
1262 * The ISNs in SYN packets must be monotonic; TIME_WAIT recycling
1263 * depends on this property.  In addition, these ISNs should be
1264 * unguessable so as to prevent connection hijacking.  To satisfy
1265 * the requirements of this situation, the algorithm outlined in
1266 * RFC 1948 is used, with only small modifications.
1267 *
1268 * Implementation details:
1269 *
1270 * Time is based off the system timer, and is corrected so that it
1271 * increases by one megabyte per second.  This allows for proper
1272 * recycling on high speed LANs while still leaving over an hour
1273 * before rollover.
1274 *
1275 * As reading the *exact* system time is too expensive to be done
1276 * whenever setting up a TCP connection, we increment the time
1277 * offset in two ways.  First, a small random positive increment
1278 * is added to isn_offset for each connection that is set up.
1279 * Second, the function tcp_isn_tick fires once per clock tick
1280 * and increments isn_offset as necessary so that sequence numbers
1281 * are incremented at approximately ISN_BYTES_PER_SECOND.  The
1282 * random positive increments serve only to ensure that the same
1283 * exact sequence number is never sent out twice (as could otherwise
1284 * happen when a port is recycled in less than the system tick
1285 * interval.)
1286 *
1287 * net.inet.tcp.isn_reseed_interval controls the number of seconds
1288 * between seeding of isn_secret.  This is normally set to zero,
1289 * as reseeding should not be necessary.
1290 *
1291 */
1292
1293#define ISN_BYTES_PER_SECOND 1048576
1294#define ISN_STATIC_INCREMENT 4096
1295#define ISN_RANDOM_INCREMENT (4096 - 1)
1296
1297u_char isn_secret[32];
1298int isn_last_reseed;
1299u_int32_t isn_offset, isn_offset_old;
1300MD5_CTX isn_ctx;
1301
1302tcp_seq
1303tcp_new_isn(tp)
1304	struct tcpcb *tp;
1305{
1306	u_int32_t md5_buffer[4];
1307	tcp_seq new_isn;
1308
1309	/* Seed if this is the first use, reseed if requested. */
1310	if ((isn_last_reseed == 0) || ((tcp_isn_reseed_interval > 0) &&
1311	     (((u_int)isn_last_reseed + (u_int)tcp_isn_reseed_interval*hz)
1312		< (u_int)ticks))) {
1313		read_random(&isn_secret, sizeof(isn_secret));
1314		isn_last_reseed = ticks;
1315	}
1316
1317	/* Compute the md5 hash and return the ISN. */
1318	MD5Init(&isn_ctx);
1319	MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_fport, sizeof(u_short));
1320	MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_lport, sizeof(u_short));
1321#ifdef INET6
1322	if ((tp->t_inpcb->inp_vflag & INP_IPV6) != 0) {
1323		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_faddr,
1324			  sizeof(struct in6_addr));
1325		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_laddr,
1326			  sizeof(struct in6_addr));
1327	} else
1328#endif
1329	{
1330		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_faddr,
1331			  sizeof(struct in_addr));
1332		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_laddr,
1333			  sizeof(struct in_addr));
1334	}
1335	MD5Update(&isn_ctx, (u_char *) &isn_secret, sizeof(isn_secret));
1336	MD5Final((u_char *) &md5_buffer, &isn_ctx);
1337	new_isn = (tcp_seq) md5_buffer[0];
1338	isn_offset += ISN_STATIC_INCREMENT +
1339		(arc4random() & ISN_RANDOM_INCREMENT);
1340	new_isn += isn_offset;
1341	return new_isn;
1342}
1343
1344/*
1345 * Increment the offset to the next ISN_BYTES_PER_SECOND / hz boundary
1346 * to keep time flowing at a relatively constant rate.  If the random
1347 * increments have already pushed us past the projected offset, do nothing.
1348 */
1349static void
1350tcp_isn_tick(xtp)
1351	void *xtp;
1352{
1353	u_int32_t projected_offset;
1354
1355	projected_offset = isn_offset_old + ISN_BYTES_PER_SECOND / hz;
1356
1357	if (projected_offset > isn_offset)
1358		isn_offset = projected_offset;
1359
1360	isn_offset_old = isn_offset;
1361	callout_reset(&isn_callout, 1, tcp_isn_tick, NULL);
1362}
1363
1364/*
1365 * When a source quench is received, close congestion window
1366 * to one segment.  We will gradually open it again as we proceed.
1367 */
1368struct inpcb *
1369tcp_quench(inp, errno)
1370	struct inpcb *inp;
1371	int errno;
1372{
1373	struct tcpcb *tp = intotcpcb(inp);
1374
1375	if (tp != NULL)
1376		tp->snd_cwnd = tp->t_maxseg;
1377	return (inp);
1378}
1379
1380/*
1381 * When a specific ICMP unreachable message is received and the
1382 * connection state is SYN-SENT, drop the connection.  This behavior
1383 * is controlled by the icmp_may_rst sysctl.
1384 */
1385struct inpcb *
1386tcp_drop_syn_sent(inp, errno)
1387	struct inpcb *inp;
1388	int errno;
1389{
1390	struct tcpcb *tp = intotcpcb(inp);
1391
1392	if (tp != NULL && tp->t_state == TCPS_SYN_SENT) {
1393		tcp_drop(tp, errno);
1394		return (struct inpcb *)0;
1395	}
1396	return inp;
1397}
1398
1399/*
1400 * When `need fragmentation' ICMP is received, update our idea of the MSS
1401 * based on the new value in the route.  Also nudge TCP to send something,
1402 * since we know the packet we just sent was dropped.
1403 * This duplicates some code in the tcp_mss() function in tcp_input.c.
1404 */
1405struct inpcb *
1406tcp_mtudisc(inp, errno)
1407	struct inpcb *inp;
1408	int errno;
1409{
1410	struct tcpcb *tp = intotcpcb(inp);
1411	struct rmxp_tao tao;
1412	struct socket *so = inp->inp_socket;
1413	u_int maxmtu;
1414	u_int romtu;
1415	int mss;
1416#ifdef INET6
1417	int isipv6 = (tp->t_inpcb->inp_vflag & INP_IPV6) != 0;
1418#endif /* INET6 */
1419	bzero(&tao, sizeof(tao));
1420
1421	if (tp != NULL) {
1422		maxmtu = tcp_hc_getmtu(&inp->inp_inc); /* IPv4 and IPv6 */
1423		romtu =
1424#ifdef INET6
1425		    isipv6 ? tcp_maxmtu6(&inp->inp_inc) :
1426#endif /* INET6 */
1427		    tcp_maxmtu(&inp->inp_inc);
1428		if (!maxmtu)
1429			maxmtu = romtu;
1430		else
1431			maxmtu = min(maxmtu, romtu);
1432		if (!maxmtu) {
1433			tp->t_maxopd = tp->t_maxseg =
1434#ifdef INET6
1435				isipv6 ? tcp_v6mssdflt :
1436#endif /* INET6 */
1437				tcp_mssdflt;
1438			return inp;
1439		}
1440		mss = maxmtu -
1441#ifdef INET6
1442			(isipv6 ?
1443			 sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
1444#endif /* INET6 */
1445			 sizeof(struct tcpiphdr)
1446#ifdef INET6
1447			 )
1448#endif /* INET6 */
1449			;
1450
1451		if (tcp_do_rfc1644) {
1452			tcp_hc_gettao(&inp->inp_inc, &tao);
1453			if (tao.tao_mssopt)
1454				mss = min(mss, tao.tao_mssopt);
1455		}
1456		/*
1457		 * XXX - The above conditional probably violates the TCP
1458		 * spec.  The problem is that, since we don't know the
1459		 * other end's MSS, we are supposed to use a conservative
1460		 * default.  But, if we do that, then MTU discovery will
1461		 * never actually take place, because the conservative
1462		 * default is much less than the MTUs typically seen
1463		 * on the Internet today.  For the moment, we'll sweep
1464		 * this under the carpet.
1465		 *
1466		 * The conservative default might not actually be a problem
1467		 * if the only case this occurs is when sending an initial
1468		 * SYN with options and data to a host we've never talked
1469		 * to before.  Then, they will reply with an MSS value which
1470		 * will get recorded and the new parameters should get
1471		 * recomputed.  For Further Study.
1472		 */
1473		if (tp->t_maxopd <= mss)
1474			return inp;
1475		tp->t_maxopd = mss;
1476
1477		if ((tp->t_flags & (TF_REQ_TSTMP|TF_NOOPT)) == TF_REQ_TSTMP &&
1478		    (tp->t_flags & TF_RCVD_TSTMP) == TF_RCVD_TSTMP)
1479			mss -= TCPOLEN_TSTAMP_APPA;
1480		if ((tp->t_flags & (TF_REQ_CC|TF_NOOPT)) == TF_REQ_CC &&
1481		    (tp->t_flags & TF_RCVD_CC) == TF_RCVD_CC)
1482			mss -= TCPOLEN_CC_APPA;
1483#if	(MCLBYTES & (MCLBYTES - 1)) == 0
1484		if (mss > MCLBYTES)
1485			mss &= ~(MCLBYTES-1);
1486#else
1487		if (mss > MCLBYTES)
1488			mss = mss / MCLBYTES * MCLBYTES;
1489#endif
1490		if (so->so_snd.sb_hiwat < mss)
1491			mss = so->so_snd.sb_hiwat;
1492
1493		tp->t_maxseg = mss;
1494
1495		tcpstat.tcps_mturesent++;
1496		tp->t_rtttime = 0;
1497		tp->snd_nxt = tp->snd_una;
1498		tcp_output(tp);
1499	}
1500	return inp;
1501}
1502
1503/*
1504 * Look-up the routing entry to the peer of this inpcb.  If no route
1505 * is found and it cannot be allocated, then return NULL.  This routine
1506 * is called by TCP routines that access the rmx structure and by tcp_mss
1507 * to get the interface MTU.
1508 */
1509u_long
1510tcp_maxmtu(inc)
1511	struct in_conninfo *inc;
1512{
1513	struct route sro;
1514	struct sockaddr_in *dst;
1515	struct ifnet *ifp;
1516	u_long maxmtu = 0;
1517
1518	KASSERT(inc != NULL, ("tcp_maxmtu with NULL in_conninfo pointer"));
1519
1520	bzero(&sro, sizeof(sro));
1521	if (inc->inc_faddr.s_addr != INADDR_ANY) {
1522	        dst = (struct sockaddr_in *)&sro.ro_dst;
1523		dst->sin_family = AF_INET;
1524		dst->sin_len = sizeof(*dst);
1525		dst->sin_addr = inc->inc_faddr;
1526		rtalloc_ign(&sro, RTF_CLONING);
1527	}
1528	if (sro.ro_rt != NULL) {
1529		ifp = sro.ro_rt->rt_ifp;
1530		if (sro.ro_rt->rt_rmx.rmx_mtu == 0)
1531			maxmtu = ifp->if_mtu;
1532		else
1533			maxmtu = min(sro.ro_rt->rt_rmx.rmx_mtu, ifp->if_mtu);
1534		RTFREE(sro.ro_rt);
1535	}
1536	return (maxmtu);
1537}
1538
1539#ifdef INET6
1540u_long
1541tcp_maxmtu6(inc)
1542	struct in_conninfo *inc;
1543{
1544	struct route_in6 sro6;
1545	struct ifnet *ifp;
1546	u_long maxmtu = 0;
1547
1548	KASSERT(inc != NULL, ("tcp_maxmtu6 with NULL in_conninfo pointer"));
1549
1550	bzero(&sro6, sizeof(sro6));
1551	if (!IN6_IS_ADDR_UNSPECIFIED(&inc->inc6_faddr)) {
1552		sro6.ro_dst.sin6_family = AF_INET6;
1553		sro6.ro_dst.sin6_len = sizeof(struct sockaddr_in6);
1554		sro6.ro_dst.sin6_addr = inc->inc6_faddr;
1555		rtalloc_ign((struct route *)&sro6, RTF_CLONING);
1556	}
1557	if (sro6.ro_rt != NULL) {
1558		ifp = sro6.ro_rt->rt_ifp;
1559		if (sro6.ro_rt->rt_rmx.rmx_mtu == 0)
1560			maxmtu = IN6_LINKMTU(sro6.ro_rt->rt_ifp);
1561		else
1562			maxmtu = min(sro6.ro_rt->rt_rmx.rmx_mtu,
1563				     IN6_LINKMTU(sro6.ro_rt->rt_ifp));
1564		RTFREE(sro6.ro_rt);
1565	}
1566
1567	return (maxmtu);
1568}
1569#endif /* INET6 */
1570
1571#ifdef IPSEC
1572/* compute ESP/AH header size for TCP, including outer IP header. */
1573size_t
1574ipsec_hdrsiz_tcp(tp)
1575	struct tcpcb *tp;
1576{
1577	struct inpcb *inp;
1578	struct mbuf *m;
1579	size_t hdrsiz;
1580	struct ip *ip;
1581#ifdef INET6
1582	struct ip6_hdr *ip6;
1583#endif
1584	struct tcphdr *th;
1585
1586	if ((tp == NULL) || ((inp = tp->t_inpcb) == NULL))
1587		return 0;
1588	MGETHDR(m, M_DONTWAIT, MT_DATA);
1589	if (!m)
1590		return 0;
1591
1592#ifdef INET6
1593	if ((inp->inp_vflag & INP_IPV6) != 0) {
1594		ip6 = mtod(m, struct ip6_hdr *);
1595		th = (struct tcphdr *)(ip6 + 1);
1596		m->m_pkthdr.len = m->m_len =
1597			sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
1598		tcpip_fillheaders(inp, ip6, th);
1599		hdrsiz = ipsec6_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
1600	} else
1601#endif /* INET6 */
1602      {
1603	ip = mtod(m, struct ip *);
1604	th = (struct tcphdr *)(ip + 1);
1605	m->m_pkthdr.len = m->m_len = sizeof(struct tcpiphdr);
1606	tcpip_fillheaders(inp, ip, th);
1607	hdrsiz = ipsec4_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
1608      }
1609
1610	m_free(m);
1611	return hdrsiz;
1612}
1613#endif /*IPSEC*/
1614
1615/*
1616 * Move a TCP connection into TIME_WAIT state.
1617 *    tcbinfo is unlocked.
1618 *    inp is locked, and is unlocked before returning.
1619 */
1620void
1621tcp_twstart(tp)
1622	struct tcpcb *tp;
1623{
1624	struct tcptw *tw;
1625	struct inpcb *inp;
1626	int tw_time, acknow;
1627	struct socket *so;
1628
1629	tw = uma_zalloc(tcptw_zone, M_NOWAIT);
1630	if (tw == NULL) {
1631		tw = tcp_timer_2msl_tw(1);
1632		if (tw == NULL) {
1633			tcp_close(tp);
1634			return;
1635		}
1636	}
1637	inp = tp->t_inpcb;
1638	tw->tw_inpcb = inp;
1639
1640	/*
1641	 * Recover last window size sent.
1642	 */
1643	tw->last_win = (tp->rcv_adv - tp->rcv_nxt) >> tp->rcv_scale;
1644
1645	/*
1646	 * Set t_recent if timestamps are used on the connection.
1647	 */
1648        if ((tp->t_flags & (TF_REQ_TSTMP|TF_RCVD_TSTMP|TF_NOOPT)) ==
1649            (TF_REQ_TSTMP|TF_RCVD_TSTMP))
1650		tw->t_recent = tp->ts_recent;
1651	else
1652		tw->t_recent = 0;
1653
1654	tw->snd_nxt = tp->snd_nxt;
1655	tw->rcv_nxt = tp->rcv_nxt;
1656	tw->iss     = tp->iss;
1657	tw->irs     = tp->irs;
1658	tw->cc_recv = tp->cc_recv;
1659	tw->cc_send = tp->cc_send;
1660	tw->t_starttime = tp->t_starttime;
1661	tw->tw_time = 0;
1662
1663/* XXX
1664 * If this code will
1665 * be used for fin-wait-2 state also, then we may need
1666 * a ts_recent from the last segment.
1667 */
1668	/* Shorten TIME_WAIT [RFC-1644, p.28] */
1669	if (tp->cc_recv != 0 && (ticks - tp->t_starttime) < tcp_msl) {
1670		tw_time = tp->t_rxtcur * TCPTV_TWTRUNC;
1671		/* For T/TCP client, force ACK now. */
1672		acknow = 1;
1673	} else {
1674		tw_time = 2 * tcp_msl;
1675		acknow = tp->t_flags & TF_ACKNOW;
1676	}
1677	tcp_discardcb(tp);
1678	so = inp->inp_socket;
1679	SOCK_LOCK(so);
1680	so->so_pcb = NULL;
1681	tw->tw_cred = crhold(so->so_cred);
1682	tw->tw_so_options = so->so_options;
1683	sotryfree(so);
1684	inp->inp_socket = NULL;
1685	if (acknow)
1686		tcp_twrespond(tw, TH_ACK);
1687	inp->inp_ppcb = (caddr_t)tw;
1688	inp->inp_vflag |= INP_TIMEWAIT;
1689	tcp_timer_2msl_reset(tw, tw_time);
1690	INP_UNLOCK(inp);
1691}
1692
1693/*
1694 * The appromixate rate of ISN increase of Microsoft TCP stacks;
1695 * the actual rate is slightly higher due to the addition of
1696 * random positive increments.
1697 *
1698 * Most other new OSes use semi-randomized ISN values, so we
1699 * do not need to worry about them.
1700 */
1701#define MS_ISN_BYTES_PER_SECOND		250000
1702
1703/*
1704 * Determine if the ISN we will generate has advanced beyond the last
1705 * sequence number used by the previous connection.  If so, indicate
1706 * that it is safe to recycle this tw socket by returning 1.
1707 */
1708int
1709tcp_twrecycleable(struct tcptw *tw)
1710{
1711	tcp_seq new_iss = tw->iss;
1712	tcp_seq new_irs = tw->irs;
1713
1714	new_iss += (ticks - tw->t_starttime) * (ISN_BYTES_PER_SECOND / hz);
1715	new_irs += (ticks - tw->t_starttime) * (MS_ISN_BYTES_PER_SECOND / hz);
1716
1717	if (SEQ_GT(new_iss, tw->snd_nxt) && SEQ_GT(new_irs, tw->rcv_nxt))
1718		return 1;
1719	else
1720		return 0;
1721}
1722
1723struct tcptw *
1724tcp_twclose(struct tcptw *tw, int reuse)
1725{
1726	struct inpcb *inp;
1727
1728	inp = tw->tw_inpcb;
1729	tw->tw_inpcb = NULL;
1730	tcp_timer_2msl_stop(tw);
1731	inp->inp_ppcb = NULL;
1732#ifdef INET6
1733	if (inp->inp_vflag & INP_IPV6PROTO)
1734		in6_pcbdetach(inp);
1735	else
1736#endif
1737		in_pcbdetach(inp);
1738	tcpstat.tcps_closed++;
1739	crfree(tw->tw_cred);
1740	tw->tw_cred = NULL;
1741	if (reuse)
1742		return (tw);
1743	uma_zfree(tcptw_zone, tw);
1744	return (NULL);
1745}
1746
1747int
1748tcp_twrespond(struct tcptw *tw, int flags)
1749{
1750	struct inpcb *inp = tw->tw_inpcb;
1751	struct tcphdr *th;
1752	struct mbuf *m;
1753	struct ip *ip = NULL;
1754	u_int8_t *optp;
1755	u_int hdrlen, optlen;
1756	int error;
1757#ifdef INET6
1758	struct ip6_hdr *ip6 = NULL;
1759	int isipv6 = inp->inp_inc.inc_isipv6;
1760#endif
1761
1762	m = m_gethdr(M_DONTWAIT, MT_HEADER);
1763	if (m == NULL)
1764		return (ENOBUFS);
1765	m->m_data += max_linkhdr;
1766
1767#ifdef MAC
1768	mac_create_mbuf_from_inpcb(inp, m);
1769#endif
1770
1771#ifdef INET6
1772	if (isipv6) {
1773		hdrlen = sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
1774		ip6 = mtod(m, struct ip6_hdr *);
1775		th = (struct tcphdr *)(ip6 + 1);
1776		tcpip_fillheaders(inp, ip6, th);
1777	} else
1778#endif
1779	{
1780		hdrlen = sizeof(struct tcpiphdr);
1781		ip = mtod(m, struct ip *);
1782		th = (struct tcphdr *)(ip + 1);
1783		tcpip_fillheaders(inp, ip, th);
1784	}
1785	optp = (u_int8_t *)(th + 1);
1786
1787 	/*
1788	 * Send a timestamp and echo-reply if both our side and our peer
1789	 * have sent timestamps in our SYN's and this is not a RST.
1790 	 */
1791	if (tw->t_recent && flags == TH_ACK) {
1792		u_int32_t *lp = (u_int32_t *)optp;
1793
1794 		/* Form timestamp option as shown in appendix A of RFC 1323. */
1795 		*lp++ = htonl(TCPOPT_TSTAMP_HDR);
1796 		*lp++ = htonl(ticks);
1797 		*lp   = htonl(tw->t_recent);
1798 		optp += TCPOLEN_TSTAMP_APPA;
1799 	}
1800
1801 	/*
1802	 * Send `CC-family' options if needed, and it's not a RST.
1803 	 */
1804	if (tw->cc_recv != 0 && flags == TH_ACK) {
1805		u_int32_t *lp = (u_int32_t *)optp;
1806
1807		*lp++ = htonl(TCPOPT_CC_HDR(TCPOPT_CC));
1808		*lp   = htonl(tw->cc_send);
1809		optp += TCPOLEN_CC_APPA;
1810 	}
1811	optlen = optp - (u_int8_t *)(th + 1);
1812
1813	m->m_len = hdrlen + optlen;
1814	m->m_pkthdr.len = m->m_len;
1815
1816	KASSERT(max_linkhdr + m->m_len <= MHLEN, ("tcptw: mbuf too small"));
1817
1818	th->th_seq = htonl(tw->snd_nxt);
1819	th->th_ack = htonl(tw->rcv_nxt);
1820	th->th_off = (sizeof(struct tcphdr) + optlen) >> 2;
1821	th->th_flags = flags;
1822	th->th_win = htons(tw->last_win);
1823
1824#ifdef INET6
1825	if (isipv6) {
1826		th->th_sum = in6_cksum(m, IPPROTO_TCP, sizeof(struct ip6_hdr),
1827		    sizeof(struct tcphdr) + optlen);
1828		ip6->ip6_hlim = in6_selecthlim(inp, NULL);
1829		error = ip6_output(m, inp->in6p_outputopts, NULL,
1830		    (tw->tw_so_options & SO_DONTROUTE), NULL, NULL, inp);
1831	} else
1832#endif
1833	{
1834		th->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
1835                    htons(sizeof(struct tcphdr) + optlen + IPPROTO_TCP));
1836		m->m_pkthdr.csum_flags = CSUM_TCP;
1837		m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
1838		ip->ip_len = m->m_pkthdr.len;
1839		if (path_mtu_discovery)
1840			ip->ip_off |= IP_DF;
1841		error = ip_output(m, inp->inp_options, NULL,
1842		    (tw->tw_so_options & SO_DONTROUTE), NULL, inp);
1843	}
1844	if (flags & TH_ACK)
1845		tcpstat.tcps_sndacks++;
1846	else
1847		tcpstat.tcps_sndctrl++;
1848	tcpstat.tcps_sndtotal++;
1849	return (error);
1850}
1851
1852/*
1853 * TCP BANDWIDTH DELAY PRODUCT WINDOW LIMITING
1854 *
1855 * This code attempts to calculate the bandwidth-delay product as a
1856 * means of determining the optimal window size to maximize bandwidth,
1857 * minimize RTT, and avoid the over-allocation of buffers on interfaces and
1858 * routers.  This code also does a fairly good job keeping RTTs in check
1859 * across slow links like modems.  We implement an algorithm which is very
1860 * similar (but not meant to be) TCP/Vegas.  The code operates on the
1861 * transmitter side of a TCP connection and so only effects the transmit
1862 * side of the connection.
1863 *
1864 * BACKGROUND:  TCP makes no provision for the management of buffer space
1865 * at the end points or at the intermediate routers and switches.  A TCP
1866 * stream, whether using NewReno or not, will eventually buffer as
1867 * many packets as it is able and the only reason this typically works is
1868 * due to the fairly small default buffers made available for a connection
1869 * (typicaly 16K or 32K).  As machines use larger windows and/or window
1870 * scaling it is now fairly easy for even a single TCP connection to blow-out
1871 * all available buffer space not only on the local interface, but on
1872 * intermediate routers and switches as well.  NewReno makes a misguided
1873 * attempt to 'solve' this problem by waiting for an actual failure to occur,
1874 * then backing off, then steadily increasing the window again until another
1875 * failure occurs, ad-infinitum.  This results in terrible oscillation that
1876 * is only made worse as network loads increase and the idea of intentionally
1877 * blowing out network buffers is, frankly, a terrible way to manage network
1878 * resources.
1879 *
1880 * It is far better to limit the transmit window prior to the failure
1881 * condition being achieved.  There are two general ways to do this:  First
1882 * you can 'scan' through different transmit window sizes and locate the
1883 * point where the RTT stops increasing, indicating that you have filled the
1884 * pipe, then scan backwards until you note that RTT stops decreasing, then
1885 * repeat ad-infinitum.  This method works in principle but has severe
1886 * implementation issues due to RTT variances, timer granularity, and
1887 * instability in the algorithm which can lead to many false positives and
1888 * create oscillations as well as interact badly with other TCP streams
1889 * implementing the same algorithm.
1890 *
1891 * The second method is to limit the window to the bandwidth delay product
1892 * of the link.  This is the method we implement.  RTT variances and our
1893 * own manipulation of the congestion window, bwnd, can potentially
1894 * destabilize the algorithm.  For this reason we have to stabilize the
1895 * elements used to calculate the window.  We do this by using the minimum
1896 * observed RTT, the long term average of the observed bandwidth, and
1897 * by adding two segments worth of slop.  It isn't perfect but it is able
1898 * to react to changing conditions and gives us a very stable basis on
1899 * which to extend the algorithm.
1900 */
1901void
1902tcp_xmit_bandwidth_limit(struct tcpcb *tp, tcp_seq ack_seq)
1903{
1904	u_long bw;
1905	u_long bwnd;
1906	int save_ticks;
1907
1908	/*
1909	 * If inflight_enable is disabled in the middle of a tcp connection,
1910	 * make sure snd_bwnd is effectively disabled.
1911	 */
1912	if (tcp_inflight_enable == 0) {
1913		tp->snd_bwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
1914		tp->snd_bandwidth = 0;
1915		return;
1916	}
1917
1918	/*
1919	 * Figure out the bandwidth.  Due to the tick granularity this
1920	 * is a very rough number and it MUST be averaged over a fairly
1921	 * long period of time.  XXX we need to take into account a link
1922	 * that is not using all available bandwidth, but for now our
1923	 * slop will ramp us up if this case occurs and the bandwidth later
1924	 * increases.
1925	 *
1926	 * Note: if ticks rollover 'bw' may wind up negative.  We must
1927	 * effectively reset t_bw_rtttime for this case.
1928	 */
1929	save_ticks = ticks;
1930	if ((u_int)(save_ticks - tp->t_bw_rtttime) < 1)
1931		return;
1932
1933	bw = (int64_t)(ack_seq - tp->t_bw_rtseq) * hz /
1934	    (save_ticks - tp->t_bw_rtttime);
1935	tp->t_bw_rtttime = save_ticks;
1936	tp->t_bw_rtseq = ack_seq;
1937	if (tp->t_bw_rtttime == 0 || (int)bw < 0)
1938		return;
1939	bw = ((int64_t)tp->snd_bandwidth * 15 + bw) >> 4;
1940
1941	tp->snd_bandwidth = bw;
1942
1943	/*
1944	 * Calculate the semi-static bandwidth delay product, plus two maximal
1945	 * segments.  The additional slop puts us squarely in the sweet
1946	 * spot and also handles the bandwidth run-up case and stabilization.
1947	 * Without the slop we could be locking ourselves into a lower
1948	 * bandwidth.
1949	 *
1950	 * Situations Handled:
1951	 *	(1) Prevents over-queueing of packets on LANs, especially on
1952	 *	    high speed LANs, allowing larger TCP buffers to be
1953	 *	    specified, and also does a good job preventing
1954	 *	    over-queueing of packets over choke points like modems
1955	 *	    (at least for the transmit side).
1956	 *
1957	 *	(2) Is able to handle changing network loads (bandwidth
1958	 *	    drops so bwnd drops, bandwidth increases so bwnd
1959	 *	    increases).
1960	 *
1961	 *	(3) Theoretically should stabilize in the face of multiple
1962	 *	    connections implementing the same algorithm (this may need
1963	 *	    a little work).
1964	 *
1965	 *	(4) Stability value (defaults to 20 = 2 maximal packets) can
1966	 *	    be adjusted with a sysctl but typically only needs to be
1967	 *	    on very slow connections.  A value no smaller then 5
1968	 *	    should be used, but only reduce this default if you have
1969	 *	    no other choice.
1970	 */
1971#define USERTT	((tp->t_srtt + tp->t_rttbest) / 2)
1972	bwnd = (int64_t)bw * USERTT / (hz << TCP_RTT_SHIFT) + tcp_inflight_stab * tp->t_maxseg / 10;
1973#undef USERTT
1974
1975	if (tcp_inflight_debug > 0) {
1976		static int ltime;
1977		if ((u_int)(ticks - ltime) >= hz / tcp_inflight_debug) {
1978			ltime = ticks;
1979			printf("%p bw %ld rttbest %d srtt %d bwnd %ld\n",
1980			    tp,
1981			    bw,
1982			    tp->t_rttbest,
1983			    tp->t_srtt,
1984			    bwnd
1985			);
1986		}
1987	}
1988	if ((long)bwnd < tcp_inflight_min)
1989		bwnd = tcp_inflight_min;
1990	if (bwnd > tcp_inflight_max)
1991		bwnd = tcp_inflight_max;
1992	if ((long)bwnd < tp->t_maxseg * 2)
1993		bwnd = tp->t_maxseg * 2;
1994	tp->snd_bwnd = bwnd;
1995}
1996
1997#ifdef TCP_SIGNATURE
1998/*
1999 * Callback function invoked by m_apply() to digest TCP segment data
2000 * contained within an mbuf chain.
2001 */
2002static int
2003tcp_signature_apply(void *fstate, void *data, u_int len)
2004{
2005
2006	MD5Update(fstate, (u_char *)data, len);
2007	return (0);
2008}
2009
2010/*
2011 * Compute TCP-MD5 hash of a TCPv4 segment. (RFC2385)
2012 *
2013 * Parameters:
2014 * m		pointer to head of mbuf chain
2015 * off0		offset to TCP header within the mbuf chain
2016 * len		length of TCP segment data, excluding options
2017 * optlen	length of TCP segment options
2018 * buf		pointer to storage for computed MD5 digest
2019 * direction	direction of flow (IPSEC_DIR_INBOUND or OUTBOUND)
2020 *
2021 * We do this over ip, tcphdr, segment data, and the key in the SADB.
2022 * When called from tcp_input(), we can be sure that th_sum has been
2023 * zeroed out and verified already.
2024 *
2025 * This function is for IPv4 use only. Calling this function with an
2026 * IPv6 packet in the mbuf chain will yield undefined results.
2027 *
2028 * Return 0 if successful, otherwise return -1.
2029 *
2030 * XXX The key is retrieved from the system's PF_KEY SADB, by keying a
2031 * search with the destination IP address, and a 'magic SPI' to be
2032 * determined by the application. This is hardcoded elsewhere to 1179
2033 * right now. Another branch of this code exists which uses the SPD to
2034 * specify per-application flows but it is unstable.
2035 */
2036int
2037tcp_signature_compute(struct mbuf *m, int off0, int len, int optlen,
2038    u_char *buf, u_int direction)
2039{
2040	union sockaddr_union dst;
2041	struct ippseudo ippseudo;
2042	MD5_CTX ctx;
2043	int doff;
2044	struct ip *ip;
2045	struct ipovly *ipovly;
2046	struct secasvar *sav;
2047	struct tcphdr *th;
2048	u_short savecsum;
2049
2050	KASSERT(m != NULL, ("NULL mbuf chain"));
2051	KASSERT(buf != NULL, ("NULL signature pointer"));
2052
2053	/* Extract the destination from the IP header in the mbuf. */
2054	ip = mtod(m, struct ip *);
2055	bzero(&dst, sizeof(union sockaddr_union));
2056	dst.sa.sa_len = sizeof(struct sockaddr_in);
2057	dst.sa.sa_family = AF_INET;
2058	dst.sin.sin_addr = (direction == IPSEC_DIR_INBOUND) ?
2059	    ip->ip_src : ip->ip_dst;
2060
2061	/* Look up an SADB entry which matches the address of the peer. */
2062	sav = KEY_ALLOCSA(&dst, IPPROTO_TCP, htonl(TCP_SIG_SPI));
2063	if (sav == NULL) {
2064		printf("%s: SADB lookup failed for %s\n", __func__,
2065		    inet_ntoa(dst.sin.sin_addr));
2066		return (EINVAL);
2067	}
2068
2069	MD5Init(&ctx);
2070	ipovly = (struct ipovly *)ip;
2071	th = (struct tcphdr *)((u_char *)ip + off0);
2072	doff = off0 + sizeof(struct tcphdr) + optlen;
2073
2074	/*
2075	 * Step 1: Update MD5 hash with IP pseudo-header.
2076	 *
2077	 * XXX The ippseudo header MUST be digested in network byte order,
2078	 * or else we'll fail the regression test. Assume all fields we've
2079	 * been doing arithmetic on have been in host byte order.
2080	 * XXX One cannot depend on ipovly->ih_len here. When called from
2081	 * tcp_output(), the underlying ip_len member has not yet been set.
2082	 */
2083	ippseudo.ippseudo_src = ipovly->ih_src;
2084	ippseudo.ippseudo_dst = ipovly->ih_dst;
2085	ippseudo.ippseudo_pad = 0;
2086	ippseudo.ippseudo_p = IPPROTO_TCP;
2087	ippseudo.ippseudo_len = htons(len + sizeof(struct tcphdr) + optlen);
2088	MD5Update(&ctx, (char *)&ippseudo, sizeof(struct ippseudo));
2089
2090	/*
2091	 * Step 2: Update MD5 hash with TCP header, excluding options.
2092	 * The TCP checksum must be set to zero.
2093	 */
2094	savecsum = th->th_sum;
2095	th->th_sum = 0;
2096	MD5Update(&ctx, (char *)th, sizeof(struct tcphdr));
2097	th->th_sum = savecsum;
2098
2099	/*
2100	 * Step 3: Update MD5 hash with TCP segment data.
2101	 *         Use m_apply() to avoid an early m_pullup().
2102	 */
2103	if (len > 0)
2104		m_apply(m, doff, len, tcp_signature_apply, &ctx);
2105
2106	/*
2107	 * Step 4: Update MD5 hash with shared secret.
2108	 */
2109	MD5Update(&ctx, _KEYBUF(sav->key_auth), _KEYLEN(sav->key_auth));
2110	MD5Final(buf, &ctx);
2111
2112	key_sa_recordxfer(sav, m);
2113	KEY_FREESAV(&sav);
2114	return (0);
2115}
2116#endif /* TCP_SIGNATURE */
2117