tcp_timewait.c revision 128905
1/*
2 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 4. Neither the name of the University nor the names of its contributors
14 *    may be used to endorse or promote products derived from this software
15 *    without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 *
29 *	@(#)tcp_subr.c	8.2 (Berkeley) 5/24/95
30 * $FreeBSD: head/sys/netinet/tcp_timewait.c 128905 2004-05-04 02:11:47Z rwatson $
31 */
32
33#include "opt_compat.h"
34#include "opt_inet.h"
35#include "opt_inet6.h"
36#include "opt_ipsec.h"
37#include "opt_mac.h"
38#include "opt_tcpdebug.h"
39
40#include <sys/param.h>
41#include <sys/systm.h>
42#include <sys/callout.h>
43#include <sys/kernel.h>
44#include <sys/sysctl.h>
45#include <sys/mac.h>
46#include <sys/malloc.h>
47#include <sys/mbuf.h>
48#ifdef INET6
49#include <sys/domain.h>
50#endif
51#include <sys/proc.h>
52#include <sys/socket.h>
53#include <sys/socketvar.h>
54#include <sys/protosw.h>
55#include <sys/random.h>
56
57#include <vm/uma.h>
58
59#include <net/route.h>
60#include <net/if.h>
61
62#include <netinet/in.h>
63#include <netinet/in_systm.h>
64#include <netinet/ip.h>
65#ifdef INET6
66#include <netinet/ip6.h>
67#endif
68#include <netinet/in_pcb.h>
69#ifdef INET6
70#include <netinet6/in6_pcb.h>
71#endif
72#include <netinet/in_var.h>
73#include <netinet/ip_var.h>
74#ifdef INET6
75#include <netinet6/ip6_var.h>
76#include <netinet6/nd6.h>
77#endif
78#include <netinet/tcp.h>
79#include <netinet/tcp_fsm.h>
80#include <netinet/tcp_seq.h>
81#include <netinet/tcp_timer.h>
82#include <netinet/tcp_var.h>
83#ifdef INET6
84#include <netinet6/tcp6_var.h>
85#endif
86#include <netinet/tcpip.h>
87#ifdef TCPDEBUG
88#include <netinet/tcp_debug.h>
89#endif
90#include <netinet6/ip6protosw.h>
91
92#ifdef IPSEC
93#include <netinet6/ipsec.h>
94#ifdef INET6
95#include <netinet6/ipsec6.h>
96#endif
97#endif /*IPSEC*/
98
99#ifdef FAST_IPSEC
100#include <netipsec/ipsec.h>
101#include <netipsec/xform.h>
102#ifdef INET6
103#include <netipsec/ipsec6.h>
104#endif
105#include <netipsec/key.h>
106#define	IPSEC
107#endif /*FAST_IPSEC*/
108
109#include <machine/in_cksum.h>
110#include <sys/md5.h>
111
112int 	tcp_mssdflt = TCP_MSS;
113SYSCTL_INT(_net_inet_tcp, TCPCTL_MSSDFLT, mssdflt, CTLFLAG_RW,
114    &tcp_mssdflt , 0, "Default TCP Maximum Segment Size");
115
116#ifdef INET6
117int	tcp_v6mssdflt = TCP6_MSS;
118SYSCTL_INT(_net_inet_tcp, TCPCTL_V6MSSDFLT, v6mssdflt,
119	CTLFLAG_RW, &tcp_v6mssdflt , 0,
120	"Default TCP Maximum Segment Size for IPv6");
121#endif
122
123/*
124 * Minimum MSS we accept and use. This prevents DoS attacks where
125 * we are forced to a ridiculous low MSS like 20 and send hundreds
126 * of packets instead of one. The effect scales with the available
127 * bandwidth and quickly saturates the CPU and network interface
128 * with packet generation and sending. Set to zero to disable MINMSS
129 * checking. This setting prevents us from sending too small packets.
130 */
131int	tcp_minmss = TCP_MINMSS;
132SYSCTL_INT(_net_inet_tcp, OID_AUTO, minmss, CTLFLAG_RW,
133    &tcp_minmss , 0, "Minmum TCP Maximum Segment Size");
134/*
135 * Number of TCP segments per second we accept from remote host
136 * before we start to calculate average segment size. If average
137 * segment size drops below the minimum TCP MSS we assume a DoS
138 * attack and reset+drop the connection. Care has to be taken not to
139 * set this value too small to not kill interactive type connections
140 * (telnet, SSH) which send many small packets.
141 */
142int     tcp_minmssoverload = TCP_MINMSSOVERLOAD;
143SYSCTL_INT(_net_inet_tcp, OID_AUTO, minmssoverload, CTLFLAG_RW,
144    &tcp_minmssoverload , 0, "Number of TCP Segments per Second allowed to"
145    "be under the MINMSS Size");
146
147#if 0
148static int 	tcp_rttdflt = TCPTV_SRTTDFLT / PR_SLOWHZ;
149SYSCTL_INT(_net_inet_tcp, TCPCTL_RTTDFLT, rttdflt, CTLFLAG_RW,
150    &tcp_rttdflt , 0, "Default maximum TCP Round Trip Time");
151#endif
152
153int	tcp_do_rfc1323 = 1;
154SYSCTL_INT(_net_inet_tcp, TCPCTL_DO_RFC1323, rfc1323, CTLFLAG_RW,
155    &tcp_do_rfc1323 , 0, "Enable rfc1323 (high performance TCP) extensions");
156
157int	tcp_do_rfc1644 = 0;
158SYSCTL_INT(_net_inet_tcp, TCPCTL_DO_RFC1644, rfc1644, CTLFLAG_RW,
159    &tcp_do_rfc1644 , 0, "Enable rfc1644 (TTCP) extensions");
160
161static int	tcp_tcbhashsize = 0;
162SYSCTL_INT(_net_inet_tcp, OID_AUTO, tcbhashsize, CTLFLAG_RDTUN,
163     &tcp_tcbhashsize, 0, "Size of TCP control-block hashtable");
164
165static int	do_tcpdrain = 1;
166SYSCTL_INT(_net_inet_tcp, OID_AUTO, do_tcpdrain, CTLFLAG_RW, &do_tcpdrain, 0,
167     "Enable tcp_drain routine for extra help when low on mbufs");
168
169SYSCTL_INT(_net_inet_tcp, OID_AUTO, pcbcount, CTLFLAG_RD,
170    &tcbinfo.ipi_count, 0, "Number of active PCBs");
171
172static int	icmp_may_rst = 1;
173SYSCTL_INT(_net_inet_tcp, OID_AUTO, icmp_may_rst, CTLFLAG_RW, &icmp_may_rst, 0,
174    "Certain ICMP unreachable messages may abort connections in SYN_SENT");
175
176static int	tcp_isn_reseed_interval = 0;
177SYSCTL_INT(_net_inet_tcp, OID_AUTO, isn_reseed_interval, CTLFLAG_RW,
178    &tcp_isn_reseed_interval, 0, "Seconds between reseeding of ISN secret");
179
180/*
181 * TCP bandwidth limiting sysctls.  Note that the default lower bound of
182 * 1024 exists only for debugging.  A good production default would be
183 * something like 6100.
184 */
185static int	tcp_inflight_enable = 1;
186SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_enable, CTLFLAG_RW,
187    &tcp_inflight_enable, 0, "Enable automatic TCP inflight data limiting");
188
189static int	tcp_inflight_debug = 0;
190SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_debug, CTLFLAG_RW,
191    &tcp_inflight_debug, 0, "Debug TCP inflight calculations");
192
193static int	tcp_inflight_min = 6144;
194SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_min, CTLFLAG_RW,
195    &tcp_inflight_min, 0, "Lower-bound for TCP inflight window");
196
197static int	tcp_inflight_max = TCP_MAXWIN << TCP_MAX_WINSHIFT;
198SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_max, CTLFLAG_RW,
199    &tcp_inflight_max, 0, "Upper-bound for TCP inflight window");
200static int	tcp_inflight_stab = 20;
201SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_stab, CTLFLAG_RW,
202    &tcp_inflight_stab, 0, "Inflight Algorithm Stabilization 20 = 2 packets");
203
204static struct inpcb *tcp_notify(struct inpcb *, int);
205static void	tcp_discardcb(struct tcpcb *);
206static void	tcp_isn_tick(void *);
207
208/*
209 * Target size of TCP PCB hash tables. Must be a power of two.
210 *
211 * Note that this can be overridden by the kernel environment
212 * variable net.inet.tcp.tcbhashsize
213 */
214#ifndef TCBHASHSIZE
215#define TCBHASHSIZE	512
216#endif
217
218/*
219 * XXX
220 * Callouts should be moved into struct tcp directly.  They are currently
221 * separate because the tcpcb structure is exported to userland for sysctl
222 * parsing purposes, which do not know about callouts.
223 */
224struct	tcpcb_mem {
225	struct	tcpcb tcb;
226	struct	callout tcpcb_mem_rexmt, tcpcb_mem_persist, tcpcb_mem_keep;
227	struct	callout tcpcb_mem_2msl, tcpcb_mem_delack;
228};
229
230static uma_zone_t tcpcb_zone;
231static uma_zone_t tcptw_zone;
232struct callout isn_callout;
233
234/*
235 * Tcp initialization
236 */
237void
238tcp_init()
239{
240	int hashsize = TCBHASHSIZE;
241
242	tcp_ccgen = 1;
243
244	tcp_delacktime = TCPTV_DELACK;
245	tcp_keepinit = TCPTV_KEEP_INIT;
246	tcp_keepidle = TCPTV_KEEP_IDLE;
247	tcp_keepintvl = TCPTV_KEEPINTVL;
248	tcp_maxpersistidle = TCPTV_KEEP_IDLE;
249	tcp_msl = TCPTV_MSL;
250	tcp_rexmit_min = TCPTV_MIN;
251	tcp_rexmit_slop = TCPTV_CPU_VAR;
252
253	INP_INFO_LOCK_INIT(&tcbinfo, "tcp");
254	LIST_INIT(&tcb);
255	tcbinfo.listhead = &tcb;
256	TUNABLE_INT_FETCH("net.inet.tcp.tcbhashsize", &hashsize);
257	if (!powerof2(hashsize)) {
258		printf("WARNING: TCB hash size not a power of 2\n");
259		hashsize = 512; /* safe default */
260	}
261	tcp_tcbhashsize = hashsize;
262	tcbinfo.hashbase = hashinit(hashsize, M_PCB, &tcbinfo.hashmask);
263	tcbinfo.porthashbase = hashinit(hashsize, M_PCB,
264					&tcbinfo.porthashmask);
265	tcbinfo.ipi_zone = uma_zcreate("inpcb", sizeof(struct inpcb),
266	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
267	uma_zone_set_max(tcbinfo.ipi_zone, maxsockets);
268#ifdef INET6
269#define TCP_MINPROTOHDR (sizeof(struct ip6_hdr) + sizeof(struct tcphdr))
270#else /* INET6 */
271#define TCP_MINPROTOHDR (sizeof(struct tcpiphdr))
272#endif /* INET6 */
273	if (max_protohdr < TCP_MINPROTOHDR)
274		max_protohdr = TCP_MINPROTOHDR;
275	if (max_linkhdr + TCP_MINPROTOHDR > MHLEN)
276		panic("tcp_init");
277#undef TCP_MINPROTOHDR
278	/*
279	 * These have to be type stable for the benefit of the timers.
280	 */
281	tcpcb_zone = uma_zcreate("tcpcb", sizeof(struct tcpcb_mem),
282	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
283	uma_zone_set_max(tcpcb_zone, maxsockets);
284	tcptw_zone = uma_zcreate("tcptw", sizeof(struct tcptw),
285	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
286	uma_zone_set_max(tcptw_zone, maxsockets / 5);
287	tcp_timer_init();
288	syncache_init();
289	tcp_hc_init();
290	tcp_reass_init();
291	callout_init(&isn_callout, CALLOUT_MPSAFE);
292	tcp_isn_tick(NULL);
293	EVENTHANDLER_REGISTER(shutdown_pre_sync, tcp_fini, NULL,
294		SHUTDOWN_PRI_DEFAULT);
295}
296
297void
298tcp_fini(xtp)
299	void *xtp;
300{
301	callout_stop(&isn_callout);
302
303}
304
305/*
306 * Fill in the IP and TCP headers for an outgoing packet, given the tcpcb.
307 * tcp_template used to store this data in mbufs, but we now recopy it out
308 * of the tcpcb each time to conserve mbufs.
309 */
310void
311tcpip_fillheaders(inp, ip_ptr, tcp_ptr)
312	struct inpcb *inp;
313	void *ip_ptr;
314	void *tcp_ptr;
315{
316	struct tcphdr *th = (struct tcphdr *)tcp_ptr;
317
318#ifdef INET6
319	if ((inp->inp_vflag & INP_IPV6) != 0) {
320		struct ip6_hdr *ip6;
321
322		ip6 = (struct ip6_hdr *)ip_ptr;
323		ip6->ip6_flow = (ip6->ip6_flow & ~IPV6_FLOWINFO_MASK) |
324			(inp->in6p_flowinfo & IPV6_FLOWINFO_MASK);
325		ip6->ip6_vfc = (ip6->ip6_vfc & ~IPV6_VERSION_MASK) |
326			(IPV6_VERSION & IPV6_VERSION_MASK);
327		ip6->ip6_nxt = IPPROTO_TCP;
328		ip6->ip6_plen = sizeof(struct tcphdr);
329		ip6->ip6_src = inp->in6p_laddr;
330		ip6->ip6_dst = inp->in6p_faddr;
331	} else
332#endif
333	{
334		struct ip *ip;
335
336		ip = (struct ip *)ip_ptr;
337		ip->ip_v = IPVERSION;
338		ip->ip_hl = 5;
339		ip->ip_tos = inp->inp_ip_tos;
340		ip->ip_len = 0;
341		ip->ip_id = 0;
342		ip->ip_off = 0;
343		ip->ip_ttl = inp->inp_ip_ttl;
344		ip->ip_sum = 0;
345		ip->ip_p = IPPROTO_TCP;
346		ip->ip_src = inp->inp_laddr;
347		ip->ip_dst = inp->inp_faddr;
348	}
349	th->th_sport = inp->inp_lport;
350	th->th_dport = inp->inp_fport;
351	th->th_seq = 0;
352	th->th_ack = 0;
353	th->th_x2 = 0;
354	th->th_off = 5;
355	th->th_flags = 0;
356	th->th_win = 0;
357	th->th_urp = 0;
358	th->th_sum = 0;		/* in_pseudo() is called later for ipv4 */
359}
360
361/*
362 * Create template to be used to send tcp packets on a connection.
363 * Allocates an mbuf and fills in a skeletal tcp/ip header.  The only
364 * use for this function is in keepalives, which use tcp_respond.
365 */
366struct tcptemp *
367tcpip_maketemplate(inp)
368	struct inpcb *inp;
369{
370	struct mbuf *m;
371	struct tcptemp *n;
372
373	m = m_get(M_DONTWAIT, MT_HEADER);
374	if (m == NULL)
375		return (0);
376	m->m_len = sizeof(struct tcptemp);
377	n = mtod(m, struct tcptemp *);
378
379	tcpip_fillheaders(inp, (void *)&n->tt_ipgen, (void *)&n->tt_t);
380	return (n);
381}
382
383/*
384 * Send a single message to the TCP at address specified by
385 * the given TCP/IP header.  If m == NULL, then we make a copy
386 * of the tcpiphdr at ti and send directly to the addressed host.
387 * This is used to force keep alive messages out using the TCP
388 * template for a connection.  If flags are given then we send
389 * a message back to the TCP which originated the * segment ti,
390 * and discard the mbuf containing it and any other attached mbufs.
391 *
392 * In any case the ack and sequence number of the transmitted
393 * segment are as specified by the parameters.
394 *
395 * NOTE: If m != NULL, then ti must point to *inside* the mbuf.
396 */
397void
398tcp_respond(tp, ipgen, th, m, ack, seq, flags)
399	struct tcpcb *tp;
400	void *ipgen;
401	register struct tcphdr *th;
402	register struct mbuf *m;
403	tcp_seq ack, seq;
404	int flags;
405{
406	register int tlen;
407	int win = 0;
408	struct ip *ip;
409	struct tcphdr *nth;
410#ifdef INET6
411	struct ip6_hdr *ip6;
412	int isipv6;
413#endif /* INET6 */
414	int ipflags = 0;
415	struct inpcb *inp;
416
417	KASSERT(tp != NULL || m != NULL, ("tcp_respond: tp and m both NULL"));
418
419#ifdef INET6
420	isipv6 = ((struct ip *)ipgen)->ip_v == 6;
421	ip6 = ipgen;
422#endif /* INET6 */
423	ip = ipgen;
424
425	if (tp != NULL) {
426		inp = tp->t_inpcb;
427		KASSERT(inp != NULL, ("tcp control block w/o inpcb"));
428		INP_INFO_WLOCK_ASSERT(&tcbinfo);
429		INP_LOCK_ASSERT(inp);
430	} else
431		inp = NULL;
432
433	if (tp != NULL) {
434		if (!(flags & TH_RST)) {
435			win = sbspace(&inp->inp_socket->so_rcv);
436			if (win > (long)TCP_MAXWIN << tp->rcv_scale)
437				win = (long)TCP_MAXWIN << tp->rcv_scale;
438		}
439	}
440	if (m == NULL) {
441		m = m_gethdr(M_DONTWAIT, MT_HEADER);
442		if (m == NULL)
443			return;
444		tlen = 0;
445		m->m_data += max_linkhdr;
446#ifdef INET6
447		if (isipv6) {
448			bcopy((caddr_t)ip6, mtod(m, caddr_t),
449			      sizeof(struct ip6_hdr));
450			ip6 = mtod(m, struct ip6_hdr *);
451			nth = (struct tcphdr *)(ip6 + 1);
452		} else
453#endif /* INET6 */
454	      {
455		bcopy((caddr_t)ip, mtod(m, caddr_t), sizeof(struct ip));
456		ip = mtod(m, struct ip *);
457		nth = (struct tcphdr *)(ip + 1);
458	      }
459		bcopy((caddr_t)th, (caddr_t)nth, sizeof(struct tcphdr));
460		flags = TH_ACK;
461	} else {
462		m_freem(m->m_next);
463		m->m_next = NULL;
464		m->m_data = (caddr_t)ipgen;
465		/* m_len is set later */
466		tlen = 0;
467#define xchg(a,b,type) { type t; t=a; a=b; b=t; }
468#ifdef INET6
469		if (isipv6) {
470			xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr);
471			nth = (struct tcphdr *)(ip6 + 1);
472		} else
473#endif /* INET6 */
474	      {
475		xchg(ip->ip_dst.s_addr, ip->ip_src.s_addr, n_long);
476		nth = (struct tcphdr *)(ip + 1);
477	      }
478		if (th != nth) {
479			/*
480			 * this is usually a case when an extension header
481			 * exists between the IPv6 header and the
482			 * TCP header.
483			 */
484			nth->th_sport = th->th_sport;
485			nth->th_dport = th->th_dport;
486		}
487		xchg(nth->th_dport, nth->th_sport, n_short);
488#undef xchg
489	}
490#ifdef INET6
491	if (isipv6) {
492		ip6->ip6_flow = 0;
493		ip6->ip6_vfc = IPV6_VERSION;
494		ip6->ip6_nxt = IPPROTO_TCP;
495		ip6->ip6_plen = htons((u_short)(sizeof (struct tcphdr) +
496						tlen));
497		tlen += sizeof (struct ip6_hdr) + sizeof (struct tcphdr);
498	} else
499#endif
500      {
501	tlen += sizeof (struct tcpiphdr);
502	ip->ip_len = tlen;
503	ip->ip_ttl = ip_defttl;
504	if (path_mtu_discovery)
505		ip->ip_off |= IP_DF;
506      }
507	m->m_len = tlen;
508	m->m_pkthdr.len = tlen;
509	m->m_pkthdr.rcvif = NULL;
510#ifdef MAC
511	if (inp != NULL) {
512		/*
513		 * Packet is associated with a socket, so allow the
514		 * label of the response to reflect the socket label.
515		 */
516		INP_LOCK_ASSERT(inp);
517		mac_create_mbuf_from_inpcb(inp, m);
518	} else {
519		/*
520		 * Packet is not associated with a socket, so possibly
521		 * update the label in place.
522		 */
523		mac_reflect_mbuf_tcp(m);
524	}
525#endif
526	nth->th_seq = htonl(seq);
527	nth->th_ack = htonl(ack);
528	nth->th_x2 = 0;
529	nth->th_off = sizeof (struct tcphdr) >> 2;
530	nth->th_flags = flags;
531	if (tp != NULL)
532		nth->th_win = htons((u_short) (win >> tp->rcv_scale));
533	else
534		nth->th_win = htons((u_short)win);
535	nth->th_urp = 0;
536#ifdef INET6
537	if (isipv6) {
538		nth->th_sum = 0;
539		nth->th_sum = in6_cksum(m, IPPROTO_TCP,
540					sizeof(struct ip6_hdr),
541					tlen - sizeof(struct ip6_hdr));
542		ip6->ip6_hlim = in6_selecthlim(tp != NULL ? tp->t_inpcb :
543		    NULL, NULL);
544	} else
545#endif /* INET6 */
546      {
547        nth->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
548	    htons((u_short)(tlen - sizeof(struct ip) + ip->ip_p)));
549        m->m_pkthdr.csum_flags = CSUM_TCP;
550        m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
551      }
552#ifdef TCPDEBUG
553	if (tp == NULL || (inp->inp_socket->so_options & SO_DEBUG))
554		tcp_trace(TA_OUTPUT, 0, tp, mtod(m, void *), th, 0);
555#endif
556#ifdef INET6
557	if (isipv6)
558		(void) ip6_output(m, NULL, NULL, ipflags, NULL, NULL, inp);
559	else
560#endif /* INET6 */
561	(void) ip_output(m, NULL, NULL, ipflags, NULL, inp);
562}
563
564/*
565 * Create a new TCP control block, making an
566 * empty reassembly queue and hooking it to the argument
567 * protocol control block.  The `inp' parameter must have
568 * come from the zone allocator set up in tcp_init().
569 */
570struct tcpcb *
571tcp_newtcpcb(inp)
572	struct inpcb *inp;
573{
574	struct tcpcb_mem *tm;
575	struct tcpcb *tp;
576#ifdef INET6
577	int isipv6 = (inp->inp_vflag & INP_IPV6) != 0;
578#endif /* INET6 */
579
580	tm = uma_zalloc(tcpcb_zone, M_NOWAIT | M_ZERO);
581	if (tm == NULL)
582		return (NULL);
583	tp = &tm->tcb;
584	/*	LIST_INIT(&tp->t_segq); */	/* XXX covered by M_ZERO */
585	tp->t_maxseg = tp->t_maxopd =
586#ifdef INET6
587		isipv6 ? tcp_v6mssdflt :
588#endif /* INET6 */
589		tcp_mssdflt;
590
591	/* Set up our timeouts. */
592	callout_init(tp->tt_rexmt = &tm->tcpcb_mem_rexmt, 0);
593	callout_init(tp->tt_persist = &tm->tcpcb_mem_persist, 0);
594	callout_init(tp->tt_keep = &tm->tcpcb_mem_keep, 0);
595	callout_init(tp->tt_2msl = &tm->tcpcb_mem_2msl, 0);
596	callout_init(tp->tt_delack = &tm->tcpcb_mem_delack, 0);
597
598	if (tcp_do_rfc1323)
599		tp->t_flags = (TF_REQ_SCALE|TF_REQ_TSTMP);
600	if (tcp_do_rfc1644)
601		tp->t_flags |= TF_REQ_CC;
602	tp->t_inpcb = inp;	/* XXX */
603	/*
604	 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
605	 * rtt estimate.  Set rttvar so that srtt + 4 * rttvar gives
606	 * reasonable initial retransmit time.
607	 */
608	tp->t_srtt = TCPTV_SRTTBASE;
609	tp->t_rttvar = ((TCPTV_RTOBASE - TCPTV_SRTTBASE) << TCP_RTTVAR_SHIFT) / 4;
610	tp->t_rttmin = tcp_rexmit_min;
611	tp->t_rxtcur = TCPTV_RTOBASE;
612	tp->snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
613	tp->snd_bwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
614	tp->snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT;
615	tp->t_rcvtime = ticks;
616	tp->t_bw_rtttime = ticks;
617        /*
618	 * IPv4 TTL initialization is necessary for an IPv6 socket as well,
619	 * because the socket may be bound to an IPv6 wildcard address,
620	 * which may match an IPv4-mapped IPv6 address.
621	 */
622	inp->inp_ip_ttl = ip_defttl;
623	inp->inp_ppcb = (caddr_t)tp;
624	return (tp);		/* XXX */
625}
626
627/*
628 * Drop a TCP connection, reporting
629 * the specified error.  If connection is synchronized,
630 * then send a RST to peer.
631 */
632struct tcpcb *
633tcp_drop(tp, errno)
634	register struct tcpcb *tp;
635	int errno;
636{
637	struct socket *so = tp->t_inpcb->inp_socket;
638
639	if (TCPS_HAVERCVDSYN(tp->t_state)) {
640		tp->t_state = TCPS_CLOSED;
641		(void) tcp_output(tp);
642		tcpstat.tcps_drops++;
643	} else
644		tcpstat.tcps_conndrops++;
645	if (errno == ETIMEDOUT && tp->t_softerror)
646		errno = tp->t_softerror;
647	so->so_error = errno;
648	return (tcp_close(tp));
649}
650
651static void
652tcp_discardcb(tp)
653	struct tcpcb *tp;
654{
655	struct tseg_qent *q;
656	struct inpcb *inp = tp->t_inpcb;
657	struct socket *so = inp->inp_socket;
658#ifdef INET6
659	int isipv6 = (inp->inp_vflag & INP_IPV6) != 0;
660#endif /* INET6 */
661
662	/*
663	 * Make sure that all of our timers are stopped before we
664	 * delete the PCB.
665	 */
666	callout_stop(tp->tt_rexmt);
667	callout_stop(tp->tt_persist);
668	callout_stop(tp->tt_keep);
669	callout_stop(tp->tt_2msl);
670	callout_stop(tp->tt_delack);
671
672	/*
673	 * If we got enough samples through the srtt filter,
674	 * save the rtt and rttvar in the routing entry.
675	 * 'Enough' is arbitrarily defined as 4 rtt samples.
676	 * 4 samples is enough for the srtt filter to converge
677	 * to within enough % of the correct value; fewer samples
678	 * and we could save a bogus rtt. The danger is not high
679	 * as tcp quickly recovers from everything.
680	 * XXX: Works very well but needs some more statistics!
681	 */
682	if (tp->t_rttupdated >= 4) {
683		struct hc_metrics_lite metrics;
684		u_long ssthresh;
685
686		bzero(&metrics, sizeof(metrics));
687		/*
688		 * Update the ssthresh always when the conditions below
689		 * are satisfied. This gives us better new start value
690		 * for the congestion avoidance for new connections.
691		 * ssthresh is only set if packet loss occured on a session.
692		 */
693		ssthresh = tp->snd_ssthresh;
694		if (ssthresh != 0 && ssthresh < so->so_snd.sb_hiwat / 2) {
695			/*
696			 * convert the limit from user data bytes to
697			 * packets then to packet data bytes.
698			 */
699			ssthresh = (ssthresh + tp->t_maxseg / 2) / tp->t_maxseg;
700			if (ssthresh < 2)
701				ssthresh = 2;
702			ssthresh *= (u_long)(tp->t_maxseg +
703#ifdef INET6
704				      (isipv6 ? sizeof (struct ip6_hdr) +
705					       sizeof (struct tcphdr) :
706#endif
707				       sizeof (struct tcpiphdr)
708#ifdef INET6
709				       )
710#endif
711				      );
712		} else
713			ssthresh = 0;
714		metrics.rmx_ssthresh = ssthresh;
715
716		metrics.rmx_rtt = tp->t_srtt;
717		metrics.rmx_rttvar = tp->t_rttvar;
718		/* XXX: This wraps if the pipe is more than 4 Gbit per second */
719		metrics.rmx_bandwidth = tp->snd_bandwidth;
720		metrics.rmx_cwnd = tp->snd_cwnd;
721		metrics.rmx_sendpipe = 0;
722		metrics.rmx_recvpipe = 0;
723
724		tcp_hc_update(&inp->inp_inc, &metrics);
725	}
726
727	/* free the reassembly queue, if any */
728	while ((q = LIST_FIRST(&tp->t_segq)) != NULL) {
729		LIST_REMOVE(q, tqe_q);
730		m_freem(q->tqe_m);
731		uma_zfree(tcp_reass_zone, q);
732		tp->t_segqlen--;
733		tcp_reass_qsize--;
734	}
735	inp->inp_ppcb = NULL;
736	tp->t_inpcb = NULL;
737	uma_zfree(tcpcb_zone, tp);
738	soisdisconnected(so);
739}
740
741/*
742 * Close a TCP control block:
743 *    discard all space held by the tcp
744 *    discard internet protocol block
745 *    wake up any sleepers
746 */
747struct tcpcb *
748tcp_close(tp)
749	struct tcpcb *tp;
750{
751	struct inpcb *inp = tp->t_inpcb;
752#ifdef INET6
753	struct socket *so = inp->inp_socket;
754#endif
755
756	tcp_discardcb(tp);
757#ifdef INET6
758	if (INP_CHECK_SOCKAF(so, AF_INET6))
759		in6_pcbdetach(inp);
760	else
761#endif
762		in_pcbdetach(inp);
763	tcpstat.tcps_closed++;
764	return (NULL);
765}
766
767void
768tcp_drain()
769{
770	if (do_tcpdrain)
771	{
772		struct inpcb *inpb;
773		struct tcpcb *tcpb;
774		struct tseg_qent *te;
775
776	/*
777	 * Walk the tcpbs, if existing, and flush the reassembly queue,
778	 * if there is one...
779	 * XXX: The "Net/3" implementation doesn't imply that the TCP
780	 *      reassembly queue should be flushed, but in a situation
781	 * 	where we're really low on mbufs, this is potentially
782	 *  	usefull.
783	 */
784		INP_INFO_RLOCK(&tcbinfo);
785		LIST_FOREACH(inpb, tcbinfo.listhead, inp_list) {
786			if (inpb->inp_vflag & INP_TIMEWAIT)
787				continue;
788			INP_LOCK(inpb);
789			if ((tcpb = intotcpcb(inpb)) != NULL) {
790				while ((te = LIST_FIRST(&tcpb->t_segq))
791			            != NULL) {
792					LIST_REMOVE(te, tqe_q);
793					m_freem(te->tqe_m);
794					uma_zfree(tcp_reass_zone, te);
795					tcpb->t_segqlen--;
796					tcp_reass_qsize--;
797				}
798			}
799			INP_UNLOCK(inpb);
800		}
801		INP_INFO_RUNLOCK(&tcbinfo);
802	}
803}
804
805/*
806 * Notify a tcp user of an asynchronous error;
807 * store error as soft error, but wake up user
808 * (for now, won't do anything until can select for soft error).
809 *
810 * Do not wake up user since there currently is no mechanism for
811 * reporting soft errors (yet - a kqueue filter may be added).
812 */
813static struct inpcb *
814tcp_notify(inp, error)
815	struct inpcb *inp;
816	int error;
817{
818	struct tcpcb *tp = (struct tcpcb *)inp->inp_ppcb;
819
820	/*
821	 * Ignore some errors if we are hooked up.
822	 * If connection hasn't completed, has retransmitted several times,
823	 * and receives a second error, give up now.  This is better
824	 * than waiting a long time to establish a connection that
825	 * can never complete.
826	 */
827	if (tp->t_state == TCPS_ESTABLISHED &&
828	    (error == EHOSTUNREACH || error == ENETUNREACH ||
829	     error == EHOSTDOWN)) {
830		return inp;
831	} else if (tp->t_state < TCPS_ESTABLISHED && tp->t_rxtshift > 3 &&
832	    tp->t_softerror) {
833		tcp_drop(tp, error);
834		return (struct inpcb *)0;
835	} else {
836		tp->t_softerror = error;
837		return inp;
838	}
839#if 0
840	wakeup( &so->so_timeo);
841	sorwakeup(so);
842	sowwakeup(so);
843#endif
844}
845
846static int
847tcp_pcblist(SYSCTL_HANDLER_ARGS)
848{
849	int error, i, n, s;
850	struct inpcb *inp, **inp_list;
851	inp_gen_t gencnt;
852	struct xinpgen xig;
853
854	/*
855	 * The process of preparing the TCB list is too time-consuming and
856	 * resource-intensive to repeat twice on every request.
857	 */
858	if (req->oldptr == NULL) {
859		n = tcbinfo.ipi_count;
860		req->oldidx = 2 * (sizeof xig)
861			+ (n + n/8) * sizeof(struct xtcpcb);
862		return 0;
863	}
864
865	if (req->newptr != NULL)
866		return EPERM;
867
868	/*
869	 * OK, now we're committed to doing something.
870	 */
871	s = splnet();
872	INP_INFO_RLOCK(&tcbinfo);
873	gencnt = tcbinfo.ipi_gencnt;
874	n = tcbinfo.ipi_count;
875	INP_INFO_RUNLOCK(&tcbinfo);
876	splx(s);
877
878	error = sysctl_wire_old_buffer(req, 2 * (sizeof xig)
879		+ n * sizeof(struct xtcpcb));
880	if (error != 0)
881		return (error);
882
883	xig.xig_len = sizeof xig;
884	xig.xig_count = n;
885	xig.xig_gen = gencnt;
886	xig.xig_sogen = so_gencnt;
887	error = SYSCTL_OUT(req, &xig, sizeof xig);
888	if (error)
889		return error;
890
891	inp_list = malloc(n * sizeof *inp_list, M_TEMP, M_WAITOK);
892	if (inp_list == NULL)
893		return ENOMEM;
894
895	s = splnet();
896	INP_INFO_RLOCK(&tcbinfo);
897	for (inp = LIST_FIRST(tcbinfo.listhead), i = 0; inp != NULL && i < n;
898	     inp = LIST_NEXT(inp, inp_list)) {
899		INP_LOCK(inp);
900		if (inp->inp_gencnt <= gencnt) {
901			/*
902			 * XXX: This use of cr_cansee(), introduced with
903			 * TCP state changes, is not quite right, but for
904			 * now, better than nothing.
905			 */
906			if (inp->inp_vflag & INP_TIMEWAIT)
907				error = cr_cansee(req->td->td_ucred,
908				    intotw(inp)->tw_cred);
909			else
910				error = cr_canseesocket(req->td->td_ucred,
911				    inp->inp_socket);
912			if (error == 0)
913				inp_list[i++] = inp;
914		}
915		INP_UNLOCK(inp);
916	}
917	INP_INFO_RUNLOCK(&tcbinfo);
918	splx(s);
919	n = i;
920
921	error = 0;
922	for (i = 0; i < n; i++) {
923		inp = inp_list[i];
924		if (inp->inp_gencnt <= gencnt) {
925			struct xtcpcb xt;
926			caddr_t inp_ppcb;
927			xt.xt_len = sizeof xt;
928			/* XXX should avoid extra copy */
929			bcopy(inp, &xt.xt_inp, sizeof *inp);
930			inp_ppcb = inp->inp_ppcb;
931			if (inp_ppcb == NULL)
932				bzero((char *) &xt.xt_tp, sizeof xt.xt_tp);
933			else if (inp->inp_vflag & INP_TIMEWAIT) {
934				bzero((char *) &xt.xt_tp, sizeof xt.xt_tp);
935				xt.xt_tp.t_state = TCPS_TIME_WAIT;
936			} else
937				bcopy(inp_ppcb, &xt.xt_tp, sizeof xt.xt_tp);
938			if (inp->inp_socket != NULL)
939				sotoxsocket(inp->inp_socket, &xt.xt_socket);
940			else {
941				bzero(&xt.xt_socket, sizeof xt.xt_socket);
942				xt.xt_socket.xso_protocol = IPPROTO_TCP;
943			}
944			xt.xt_inp.inp_gencnt = inp->inp_gencnt;
945			error = SYSCTL_OUT(req, &xt, sizeof xt);
946		}
947	}
948	if (!error) {
949		/*
950		 * Give the user an updated idea of our state.
951		 * If the generation differs from what we told
952		 * her before, she knows that something happened
953		 * while we were processing this request, and it
954		 * might be necessary to retry.
955		 */
956		s = splnet();
957		INP_INFO_RLOCK(&tcbinfo);
958		xig.xig_gen = tcbinfo.ipi_gencnt;
959		xig.xig_sogen = so_gencnt;
960		xig.xig_count = tcbinfo.ipi_count;
961		INP_INFO_RUNLOCK(&tcbinfo);
962		splx(s);
963		error = SYSCTL_OUT(req, &xig, sizeof xig);
964	}
965	free(inp_list, M_TEMP);
966	return error;
967}
968
969SYSCTL_PROC(_net_inet_tcp, TCPCTL_PCBLIST, pcblist, CTLFLAG_RD, 0, 0,
970	    tcp_pcblist, "S,xtcpcb", "List of active TCP connections");
971
972static int
973tcp_getcred(SYSCTL_HANDLER_ARGS)
974{
975	struct xucred xuc;
976	struct sockaddr_in addrs[2];
977	struct inpcb *inp;
978	int error, s;
979
980	error = suser_cred(req->td->td_ucred, PRISON_ROOT);
981	if (error)
982		return (error);
983	error = SYSCTL_IN(req, addrs, sizeof(addrs));
984	if (error)
985		return (error);
986	s = splnet();
987	INP_INFO_RLOCK(&tcbinfo);
988	inp = in_pcblookup_hash(&tcbinfo, addrs[1].sin_addr, addrs[1].sin_port,
989	    addrs[0].sin_addr, addrs[0].sin_port, 0, NULL);
990	if (inp == NULL) {
991		error = ENOENT;
992		goto outunlocked;
993	}
994	INP_LOCK(inp);
995	if (inp->inp_socket == NULL) {
996		error = ENOENT;
997		goto out;
998	}
999	error = cr_canseesocket(req->td->td_ucred, inp->inp_socket);
1000	if (error)
1001		goto out;
1002	cru2x(inp->inp_socket->so_cred, &xuc);
1003out:
1004	INP_UNLOCK(inp);
1005outunlocked:
1006	INP_INFO_RUNLOCK(&tcbinfo);
1007	splx(s);
1008	if (error == 0)
1009		error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred));
1010	return (error);
1011}
1012
1013SYSCTL_PROC(_net_inet_tcp, OID_AUTO, getcred,
1014    CTLTYPE_OPAQUE|CTLFLAG_RW|CTLFLAG_PRISON, 0, 0,
1015    tcp_getcred, "S,xucred", "Get the xucred of a TCP connection");
1016
1017#ifdef INET6
1018static int
1019tcp6_getcred(SYSCTL_HANDLER_ARGS)
1020{
1021	struct xucred xuc;
1022	struct sockaddr_in6 addrs[2];
1023	struct inpcb *inp;
1024	int error, s, mapped = 0;
1025
1026	error = suser_cred(req->td->td_ucred, PRISON_ROOT);
1027	if (error)
1028		return (error);
1029	error = SYSCTL_IN(req, addrs, sizeof(addrs));
1030	if (error)
1031		return (error);
1032	if (IN6_IS_ADDR_V4MAPPED(&addrs[0].sin6_addr)) {
1033		if (IN6_IS_ADDR_V4MAPPED(&addrs[1].sin6_addr))
1034			mapped = 1;
1035		else
1036			return (EINVAL);
1037	}
1038	s = splnet();
1039	INP_INFO_RLOCK(&tcbinfo);
1040	if (mapped == 1)
1041		inp = in_pcblookup_hash(&tcbinfo,
1042			*(struct in_addr *)&addrs[1].sin6_addr.s6_addr[12],
1043			addrs[1].sin6_port,
1044			*(struct in_addr *)&addrs[0].sin6_addr.s6_addr[12],
1045			addrs[0].sin6_port,
1046			0, NULL);
1047	else
1048		inp = in6_pcblookup_hash(&tcbinfo, &addrs[1].sin6_addr,
1049				 addrs[1].sin6_port,
1050				 &addrs[0].sin6_addr, addrs[0].sin6_port,
1051				 0, NULL);
1052	if (inp == NULL) {
1053		error = ENOENT;
1054		goto outunlocked;
1055	}
1056	INP_LOCK(inp);
1057	if (inp->inp_socket == NULL) {
1058		error = ENOENT;
1059		goto out;
1060	}
1061	error = cr_canseesocket(req->td->td_ucred, inp->inp_socket);
1062	if (error)
1063		goto out;
1064	cru2x(inp->inp_socket->so_cred, &xuc);
1065out:
1066	INP_UNLOCK(inp);
1067outunlocked:
1068	INP_INFO_RUNLOCK(&tcbinfo);
1069	splx(s);
1070	if (error == 0)
1071		error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred));
1072	return (error);
1073}
1074
1075SYSCTL_PROC(_net_inet6_tcp6, OID_AUTO, getcred,
1076    CTLTYPE_OPAQUE|CTLFLAG_RW|CTLFLAG_PRISON, 0, 0,
1077    tcp6_getcred, "S,xucred", "Get the xucred of a TCP6 connection");
1078#endif
1079
1080
1081void
1082tcp_ctlinput(cmd, sa, vip)
1083	int cmd;
1084	struct sockaddr *sa;
1085	void *vip;
1086{
1087	struct ip *ip = vip;
1088	struct tcphdr *th;
1089	struct in_addr faddr;
1090	struct inpcb *inp;
1091	struct tcpcb *tp;
1092	struct inpcb *(*notify)(struct inpcb *, int) = tcp_notify;
1093	tcp_seq icmp_seq;
1094	int s;
1095
1096	faddr = ((struct sockaddr_in *)sa)->sin_addr;
1097	if (sa->sa_family != AF_INET || faddr.s_addr == INADDR_ANY)
1098		return;
1099
1100	if (cmd == PRC_QUENCH)
1101		notify = tcp_quench;
1102	else if (icmp_may_rst && (cmd == PRC_UNREACH_ADMIN_PROHIB ||
1103		cmd == PRC_UNREACH_PORT || cmd == PRC_TIMXCEED_INTRANS) && ip)
1104		notify = tcp_drop_syn_sent;
1105	else if (cmd == PRC_MSGSIZE)
1106		notify = tcp_mtudisc;
1107	/*
1108	 * Redirects don't need to be handled up here.
1109	 */
1110	else if (PRC_IS_REDIRECT(cmd))
1111		return;
1112	/*
1113	 * Hostdead is ugly because it goes linearly through all PCBs.
1114	 * XXX: We never get this from ICMP, otherwise it makes an
1115	 * excellent DoS attack on machines with many connections.
1116	 */
1117	else if (cmd == PRC_HOSTDEAD)
1118		ip = NULL;
1119	else if ((unsigned)cmd >= PRC_NCMDS || inetctlerrmap[cmd] == 0)
1120		return;
1121	if (ip != NULL) {
1122		s = splnet();
1123		th = (struct tcphdr *)((caddr_t)ip
1124				       + (ip->ip_hl << 2));
1125		INP_INFO_WLOCK(&tcbinfo);
1126		inp = in_pcblookup_hash(&tcbinfo, faddr, th->th_dport,
1127		    ip->ip_src, th->th_sport, 0, NULL);
1128		if (inp != NULL)  {
1129			INP_LOCK(inp);
1130			if (inp->inp_socket != NULL) {
1131				icmp_seq = htonl(th->th_seq);
1132				tp = intotcpcb(inp);
1133				if (SEQ_GEQ(icmp_seq, tp->snd_una) &&
1134			    		SEQ_LT(icmp_seq, tp->snd_max))
1135					inp = (*notify)(inp, inetctlerrmap[cmd]);
1136			}
1137			if (inp != NULL)
1138				INP_UNLOCK(inp);
1139		} else {
1140			struct in_conninfo inc;
1141
1142			inc.inc_fport = th->th_dport;
1143			inc.inc_lport = th->th_sport;
1144			inc.inc_faddr = faddr;
1145			inc.inc_laddr = ip->ip_src;
1146#ifdef INET6
1147			inc.inc_isipv6 = 0;
1148#endif
1149			syncache_unreach(&inc, th);
1150		}
1151		INP_INFO_WUNLOCK(&tcbinfo);
1152		splx(s);
1153	} else
1154		in_pcbnotifyall(&tcbinfo, faddr, inetctlerrmap[cmd], notify);
1155}
1156
1157#ifdef INET6
1158void
1159tcp6_ctlinput(cmd, sa, d)
1160	int cmd;
1161	struct sockaddr *sa;
1162	void *d;
1163{
1164	struct tcphdr th;
1165	struct inpcb *(*notify)(struct inpcb *, int) = tcp_notify;
1166	struct ip6_hdr *ip6;
1167	struct mbuf *m;
1168	struct ip6ctlparam *ip6cp = NULL;
1169	const struct sockaddr_in6 *sa6_src = NULL;
1170	int off;
1171	struct tcp_portonly {
1172		u_int16_t th_sport;
1173		u_int16_t th_dport;
1174	} *thp;
1175
1176	if (sa->sa_family != AF_INET6 ||
1177	    sa->sa_len != sizeof(struct sockaddr_in6))
1178		return;
1179
1180	if (cmd == PRC_QUENCH)
1181		notify = tcp_quench;
1182	else if (cmd == PRC_MSGSIZE)
1183		notify = tcp_mtudisc;
1184	else if (!PRC_IS_REDIRECT(cmd) &&
1185		 ((unsigned)cmd >= PRC_NCMDS || inet6ctlerrmap[cmd] == 0))
1186		return;
1187
1188	/* if the parameter is from icmp6, decode it. */
1189	if (d != NULL) {
1190		ip6cp = (struct ip6ctlparam *)d;
1191		m = ip6cp->ip6c_m;
1192		ip6 = ip6cp->ip6c_ip6;
1193		off = ip6cp->ip6c_off;
1194		sa6_src = ip6cp->ip6c_src;
1195	} else {
1196		m = NULL;
1197		ip6 = NULL;
1198		off = 0;	/* fool gcc */
1199		sa6_src = &sa6_any;
1200	}
1201
1202	if (ip6 != NULL) {
1203		struct in_conninfo inc;
1204		/*
1205		 * XXX: We assume that when IPV6 is non NULL,
1206		 * M and OFF are valid.
1207		 */
1208
1209		/* check if we can safely examine src and dst ports */
1210		if (m->m_pkthdr.len < off + sizeof(*thp))
1211			return;
1212
1213		bzero(&th, sizeof(th));
1214		m_copydata(m, off, sizeof(*thp), (caddr_t)&th);
1215
1216		in6_pcbnotify(&tcb, sa, th.th_dport,
1217		    (struct sockaddr *)ip6cp->ip6c_src,
1218		    th.th_sport, cmd, NULL, notify);
1219
1220		inc.inc_fport = th.th_dport;
1221		inc.inc_lport = th.th_sport;
1222		inc.inc6_faddr = ((struct sockaddr_in6 *)sa)->sin6_addr;
1223		inc.inc6_laddr = ip6cp->ip6c_src->sin6_addr;
1224		inc.inc_isipv6 = 1;
1225		syncache_unreach(&inc, &th);
1226	} else
1227		in6_pcbnotify(&tcb, sa, 0, (const struct sockaddr *)sa6_src,
1228			      0, cmd, NULL, notify);
1229}
1230#endif /* INET6 */
1231
1232
1233/*
1234 * Following is where TCP initial sequence number generation occurs.
1235 *
1236 * There are two places where we must use initial sequence numbers:
1237 * 1.  In SYN-ACK packets.
1238 * 2.  In SYN packets.
1239 *
1240 * All ISNs for SYN-ACK packets are generated by the syncache.  See
1241 * tcp_syncache.c for details.
1242 *
1243 * The ISNs in SYN packets must be monotonic; TIME_WAIT recycling
1244 * depends on this property.  In addition, these ISNs should be
1245 * unguessable so as to prevent connection hijacking.  To satisfy
1246 * the requirements of this situation, the algorithm outlined in
1247 * RFC 1948 is used, with only small modifications.
1248 *
1249 * Implementation details:
1250 *
1251 * Time is based off the system timer, and is corrected so that it
1252 * increases by one megabyte per second.  This allows for proper
1253 * recycling on high speed LANs while still leaving over an hour
1254 * before rollover.
1255 *
1256 * As reading the *exact* system time is too expensive to be done
1257 * whenever setting up a TCP connection, we increment the time
1258 * offset in two ways.  First, a small random positive increment
1259 * is added to isn_offset for each connection that is set up.
1260 * Second, the function tcp_isn_tick fires once per clock tick
1261 * and increments isn_offset as necessary so that sequence numbers
1262 * are incremented at approximately ISN_BYTES_PER_SECOND.  The
1263 * random positive increments serve only to ensure that the same
1264 * exact sequence number is never sent out twice (as could otherwise
1265 * happen when a port is recycled in less than the system tick
1266 * interval.)
1267 *
1268 * net.inet.tcp.isn_reseed_interval controls the number of seconds
1269 * between seeding of isn_secret.  This is normally set to zero,
1270 * as reseeding should not be necessary.
1271 *
1272 */
1273
1274#define ISN_BYTES_PER_SECOND 1048576
1275#define ISN_STATIC_INCREMENT 4096
1276#define ISN_RANDOM_INCREMENT (4096 - 1)
1277
1278u_char isn_secret[32];
1279int isn_last_reseed;
1280u_int32_t isn_offset, isn_offset_old;
1281MD5_CTX isn_ctx;
1282
1283tcp_seq
1284tcp_new_isn(tp)
1285	struct tcpcb *tp;
1286{
1287	u_int32_t md5_buffer[4];
1288	tcp_seq new_isn;
1289
1290	/* Seed if this is the first use, reseed if requested. */
1291	if ((isn_last_reseed == 0) || ((tcp_isn_reseed_interval > 0) &&
1292	     (((u_int)isn_last_reseed + (u_int)tcp_isn_reseed_interval*hz)
1293		< (u_int)ticks))) {
1294		read_random(&isn_secret, sizeof(isn_secret));
1295		isn_last_reseed = ticks;
1296	}
1297
1298	/* Compute the md5 hash and return the ISN. */
1299	MD5Init(&isn_ctx);
1300	MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_fport, sizeof(u_short));
1301	MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_lport, sizeof(u_short));
1302#ifdef INET6
1303	if ((tp->t_inpcb->inp_vflag & INP_IPV6) != 0) {
1304		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_faddr,
1305			  sizeof(struct in6_addr));
1306		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_laddr,
1307			  sizeof(struct in6_addr));
1308	} else
1309#endif
1310	{
1311		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_faddr,
1312			  sizeof(struct in_addr));
1313		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_laddr,
1314			  sizeof(struct in_addr));
1315	}
1316	MD5Update(&isn_ctx, (u_char *) &isn_secret, sizeof(isn_secret));
1317	MD5Final((u_char *) &md5_buffer, &isn_ctx);
1318	new_isn = (tcp_seq) md5_buffer[0];
1319	isn_offset += ISN_STATIC_INCREMENT +
1320		(arc4random() & ISN_RANDOM_INCREMENT);
1321	new_isn += isn_offset;
1322	return new_isn;
1323}
1324
1325/*
1326 * Increment the offset to the next ISN_BYTES_PER_SECOND / hz boundary
1327 * to keep time flowing at a relatively constant rate.  If the random
1328 * increments have already pushed us past the projected offset, do nothing.
1329 */
1330static void
1331tcp_isn_tick(xtp)
1332	void *xtp;
1333{
1334	u_int32_t projected_offset;
1335
1336	projected_offset = isn_offset_old + ISN_BYTES_PER_SECOND / hz;
1337
1338	if (projected_offset > isn_offset)
1339		isn_offset = projected_offset;
1340
1341	isn_offset_old = isn_offset;
1342	callout_reset(&isn_callout, 1, tcp_isn_tick, NULL);
1343}
1344
1345/*
1346 * When a source quench is received, close congestion window
1347 * to one segment.  We will gradually open it again as we proceed.
1348 */
1349struct inpcb *
1350tcp_quench(inp, errno)
1351	struct inpcb *inp;
1352	int errno;
1353{
1354	struct tcpcb *tp = intotcpcb(inp);
1355
1356	if (tp != NULL)
1357		tp->snd_cwnd = tp->t_maxseg;
1358	return (inp);
1359}
1360
1361/*
1362 * When a specific ICMP unreachable message is received and the
1363 * connection state is SYN-SENT, drop the connection.  This behavior
1364 * is controlled by the icmp_may_rst sysctl.
1365 */
1366struct inpcb *
1367tcp_drop_syn_sent(inp, errno)
1368	struct inpcb *inp;
1369	int errno;
1370{
1371	struct tcpcb *tp = intotcpcb(inp);
1372
1373	if (tp != NULL && tp->t_state == TCPS_SYN_SENT) {
1374		tcp_drop(tp, errno);
1375		return (struct inpcb *)0;
1376	}
1377	return inp;
1378}
1379
1380/*
1381 * When `need fragmentation' ICMP is received, update our idea of the MSS
1382 * based on the new value in the route.  Also nudge TCP to send something,
1383 * since we know the packet we just sent was dropped.
1384 * This duplicates some code in the tcp_mss() function in tcp_input.c.
1385 */
1386struct inpcb *
1387tcp_mtudisc(inp, errno)
1388	struct inpcb *inp;
1389	int errno;
1390{
1391	struct tcpcb *tp = intotcpcb(inp);
1392	struct rmxp_tao tao;
1393	struct socket *so = inp->inp_socket;
1394	u_int maxmtu;
1395	u_int romtu;
1396	int mss;
1397#ifdef INET6
1398	int isipv6 = (tp->t_inpcb->inp_vflag & INP_IPV6) != 0;
1399#endif /* INET6 */
1400	bzero(&tao, sizeof(tao));
1401
1402	if (tp != NULL) {
1403		maxmtu = tcp_hc_getmtu(&inp->inp_inc); /* IPv4 and IPv6 */
1404		romtu =
1405#ifdef INET6
1406		    isipv6 ? tcp_maxmtu6(&inp->inp_inc) :
1407#endif /* INET6 */
1408		    tcp_maxmtu(&inp->inp_inc);
1409		if (!maxmtu)
1410			maxmtu = romtu;
1411		else
1412			maxmtu = min(maxmtu, romtu);
1413		if (!maxmtu) {
1414			tp->t_maxopd = tp->t_maxseg =
1415#ifdef INET6
1416				isipv6 ? tcp_v6mssdflt :
1417#endif /* INET6 */
1418				tcp_mssdflt;
1419			return inp;
1420		}
1421		mss = maxmtu -
1422#ifdef INET6
1423			(isipv6 ?
1424			 sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
1425#endif /* INET6 */
1426			 sizeof(struct tcpiphdr)
1427#ifdef INET6
1428			 )
1429#endif /* INET6 */
1430			;
1431
1432		if (tcp_do_rfc1644) {
1433			tcp_hc_gettao(&inp->inp_inc, &tao);
1434			if (tao.tao_mssopt)
1435				mss = min(mss, tao.tao_mssopt);
1436		}
1437		/*
1438		 * XXX - The above conditional probably violates the TCP
1439		 * spec.  The problem is that, since we don't know the
1440		 * other end's MSS, we are supposed to use a conservative
1441		 * default.  But, if we do that, then MTU discovery will
1442		 * never actually take place, because the conservative
1443		 * default is much less than the MTUs typically seen
1444		 * on the Internet today.  For the moment, we'll sweep
1445		 * this under the carpet.
1446		 *
1447		 * The conservative default might not actually be a problem
1448		 * if the only case this occurs is when sending an initial
1449		 * SYN with options and data to a host we've never talked
1450		 * to before.  Then, they will reply with an MSS value which
1451		 * will get recorded and the new parameters should get
1452		 * recomputed.  For Further Study.
1453		 */
1454		if (tp->t_maxopd <= mss)
1455			return inp;
1456		tp->t_maxopd = mss;
1457
1458		if ((tp->t_flags & (TF_REQ_TSTMP|TF_NOOPT)) == TF_REQ_TSTMP &&
1459		    (tp->t_flags & TF_RCVD_TSTMP) == TF_RCVD_TSTMP)
1460			mss -= TCPOLEN_TSTAMP_APPA;
1461		if ((tp->t_flags & (TF_REQ_CC|TF_NOOPT)) == TF_REQ_CC &&
1462		    (tp->t_flags & TF_RCVD_CC) == TF_RCVD_CC)
1463			mss -= TCPOLEN_CC_APPA;
1464#if	(MCLBYTES & (MCLBYTES - 1)) == 0
1465		if (mss > MCLBYTES)
1466			mss &= ~(MCLBYTES-1);
1467#else
1468		if (mss > MCLBYTES)
1469			mss = mss / MCLBYTES * MCLBYTES;
1470#endif
1471		if (so->so_snd.sb_hiwat < mss)
1472			mss = so->so_snd.sb_hiwat;
1473
1474		tp->t_maxseg = mss;
1475
1476		tcpstat.tcps_mturesent++;
1477		tp->t_rtttime = 0;
1478		tp->snd_nxt = tp->snd_una;
1479		tcp_output(tp);
1480	}
1481	return inp;
1482}
1483
1484/*
1485 * Look-up the routing entry to the peer of this inpcb.  If no route
1486 * is found and it cannot be allocated, then return NULL.  This routine
1487 * is called by TCP routines that access the rmx structure and by tcp_mss
1488 * to get the interface MTU.
1489 */
1490u_long
1491tcp_maxmtu(inc)
1492	struct in_conninfo *inc;
1493{
1494	struct route sro;
1495	struct sockaddr_in *dst;
1496	struct ifnet *ifp;
1497	u_long maxmtu = 0;
1498
1499	KASSERT(inc != NULL, ("tcp_maxmtu with NULL in_conninfo pointer"));
1500
1501	bzero(&sro, sizeof(sro));
1502	if (inc->inc_faddr.s_addr != INADDR_ANY) {
1503	        dst = (struct sockaddr_in *)&sro.ro_dst;
1504		dst->sin_family = AF_INET;
1505		dst->sin_len = sizeof(*dst);
1506		dst->sin_addr = inc->inc_faddr;
1507		rtalloc_ign(&sro, RTF_CLONING);
1508	}
1509	if (sro.ro_rt != NULL) {
1510		ifp = sro.ro_rt->rt_ifp;
1511		if (sro.ro_rt->rt_rmx.rmx_mtu == 0)
1512			maxmtu = ifp->if_mtu;
1513		else
1514			maxmtu = min(sro.ro_rt->rt_rmx.rmx_mtu, ifp->if_mtu);
1515		RTFREE(sro.ro_rt);
1516	}
1517	return (maxmtu);
1518}
1519
1520#ifdef INET6
1521u_long
1522tcp_maxmtu6(inc)
1523	struct in_conninfo *inc;
1524{
1525	struct route_in6 sro6;
1526	struct ifnet *ifp;
1527	u_long maxmtu = 0;
1528
1529	KASSERT(inc != NULL, ("tcp_maxmtu6 with NULL in_conninfo pointer"));
1530
1531	bzero(&sro6, sizeof(sro6));
1532	if (!IN6_IS_ADDR_UNSPECIFIED(&inc->inc6_faddr)) {
1533		sro6.ro_dst.sin6_family = AF_INET6;
1534		sro6.ro_dst.sin6_len = sizeof(struct sockaddr_in6);
1535		sro6.ro_dst.sin6_addr = inc->inc6_faddr;
1536		rtalloc_ign((struct route *)&sro6, RTF_CLONING);
1537	}
1538	if (sro6.ro_rt != NULL) {
1539		ifp = sro6.ro_rt->rt_ifp;
1540		if (sro6.ro_rt->rt_rmx.rmx_mtu == 0)
1541			maxmtu = IN6_LINKMTU(sro6.ro_rt->rt_ifp);
1542		else
1543			maxmtu = min(sro6.ro_rt->rt_rmx.rmx_mtu,
1544				     IN6_LINKMTU(sro6.ro_rt->rt_ifp));
1545		RTFREE(sro6.ro_rt);
1546	}
1547
1548	return (maxmtu);
1549}
1550#endif /* INET6 */
1551
1552#ifdef IPSEC
1553/* compute ESP/AH header size for TCP, including outer IP header. */
1554size_t
1555ipsec_hdrsiz_tcp(tp)
1556	struct tcpcb *tp;
1557{
1558	struct inpcb *inp;
1559	struct mbuf *m;
1560	size_t hdrsiz;
1561	struct ip *ip;
1562#ifdef INET6
1563	struct ip6_hdr *ip6;
1564#endif
1565	struct tcphdr *th;
1566
1567	if ((tp == NULL) || ((inp = tp->t_inpcb) == NULL))
1568		return 0;
1569	MGETHDR(m, M_DONTWAIT, MT_DATA);
1570	if (!m)
1571		return 0;
1572
1573#ifdef INET6
1574	if ((inp->inp_vflag & INP_IPV6) != 0) {
1575		ip6 = mtod(m, struct ip6_hdr *);
1576		th = (struct tcphdr *)(ip6 + 1);
1577		m->m_pkthdr.len = m->m_len =
1578			sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
1579		tcpip_fillheaders(inp, ip6, th);
1580		hdrsiz = ipsec6_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
1581	} else
1582#endif /* INET6 */
1583      {
1584	ip = mtod(m, struct ip *);
1585	th = (struct tcphdr *)(ip + 1);
1586	m->m_pkthdr.len = m->m_len = sizeof(struct tcpiphdr);
1587	tcpip_fillheaders(inp, ip, th);
1588	hdrsiz = ipsec4_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
1589      }
1590
1591	m_free(m);
1592	return hdrsiz;
1593}
1594#endif /*IPSEC*/
1595
1596/*
1597 * Move a TCP connection into TIME_WAIT state.
1598 *    tcbinfo is unlocked.
1599 *    inp is locked, and is unlocked before returning.
1600 */
1601void
1602tcp_twstart(tp)
1603	struct tcpcb *tp;
1604{
1605	struct tcptw *tw;
1606	struct inpcb *inp;
1607	int tw_time, acknow;
1608	struct socket *so;
1609
1610	tw = uma_zalloc(tcptw_zone, M_NOWAIT);
1611	if (tw == NULL) {
1612		tw = tcp_timer_2msl_tw(1);
1613		if (tw == NULL) {
1614			tcp_close(tp);
1615			return;
1616		}
1617	}
1618	inp = tp->t_inpcb;
1619	tw->tw_inpcb = inp;
1620
1621	/*
1622	 * Recover last window size sent.
1623	 */
1624	tw->last_win = (tp->rcv_adv - tp->rcv_nxt) >> tp->rcv_scale;
1625
1626	/*
1627	 * Set t_recent if timestamps are used on the connection.
1628	 */
1629        if ((tp->t_flags & (TF_REQ_TSTMP|TF_RCVD_TSTMP|TF_NOOPT)) ==
1630            (TF_REQ_TSTMP|TF_RCVD_TSTMP))
1631		tw->t_recent = tp->ts_recent;
1632	else
1633		tw->t_recent = 0;
1634
1635	tw->snd_nxt = tp->snd_nxt;
1636	tw->rcv_nxt = tp->rcv_nxt;
1637	tw->iss     = tp->iss;
1638	tw->irs     = tp->irs;
1639	tw->cc_recv = tp->cc_recv;
1640	tw->cc_send = tp->cc_send;
1641	tw->t_starttime = tp->t_starttime;
1642	tw->tw_time = 0;
1643
1644/* XXX
1645 * If this code will
1646 * be used for fin-wait-2 state also, then we may need
1647 * a ts_recent from the last segment.
1648 */
1649	/* Shorten TIME_WAIT [RFC-1644, p.28] */
1650	if (tp->cc_recv != 0 && (ticks - tp->t_starttime) < tcp_msl) {
1651		tw_time = tp->t_rxtcur * TCPTV_TWTRUNC;
1652		/* For T/TCP client, force ACK now. */
1653		acknow = 1;
1654	} else {
1655		tw_time = 2 * tcp_msl;
1656		acknow = tp->t_flags & TF_ACKNOW;
1657	}
1658	tcp_discardcb(tp);
1659	so = inp->inp_socket;
1660	so->so_pcb = NULL;
1661	tw->tw_cred = crhold(so->so_cred);
1662	tw->tw_so_options = so->so_options;
1663	if (acknow)
1664		tcp_twrespond(tw, TH_ACK);
1665	sotryfree(so);
1666	inp->inp_socket = NULL;
1667	inp->inp_ppcb = (caddr_t)tw;
1668	inp->inp_vflag |= INP_TIMEWAIT;
1669	tcp_timer_2msl_reset(tw, tw_time);
1670	INP_UNLOCK(inp);
1671}
1672
1673/*
1674 * The appromixate rate of ISN increase of Microsoft TCP stacks;
1675 * the actual rate is slightly higher due to the addition of
1676 * random positive increments.
1677 *
1678 * Most other new OSes use semi-randomized ISN values, so we
1679 * do not need to worry about them.
1680 */
1681#define MS_ISN_BYTES_PER_SECOND		250000
1682
1683/*
1684 * Determine if the ISN we will generate has advanced beyond the last
1685 * sequence number used by the previous connection.  If so, indicate
1686 * that it is safe to recycle this tw socket by returning 1.
1687 */
1688int
1689tcp_twrecycleable(struct tcptw *tw)
1690{
1691	tcp_seq new_iss = tw->iss;
1692	tcp_seq new_irs = tw->irs;
1693
1694	new_iss += (ticks - tw->t_starttime) * (ISN_BYTES_PER_SECOND / hz);
1695	new_irs += (ticks - tw->t_starttime) * (MS_ISN_BYTES_PER_SECOND / hz);
1696
1697	if (SEQ_GT(new_iss, tw->snd_nxt) && SEQ_GT(new_irs, tw->rcv_nxt))
1698		return 1;
1699	else
1700		return 0;
1701}
1702
1703struct tcptw *
1704tcp_twclose(struct tcptw *tw, int reuse)
1705{
1706	struct inpcb *inp;
1707
1708	inp = tw->tw_inpcb;
1709	tw->tw_inpcb = NULL;
1710	tcp_timer_2msl_stop(tw);
1711	inp->inp_ppcb = NULL;
1712#ifdef INET6
1713	if (inp->inp_vflag & INP_IPV6PROTO)
1714		in6_pcbdetach(inp);
1715	else
1716#endif
1717		in_pcbdetach(inp);
1718	tcpstat.tcps_closed++;
1719	crfree(tw->tw_cred);
1720	tw->tw_cred = NULL;
1721	if (reuse)
1722		return (tw);
1723	uma_zfree(tcptw_zone, tw);
1724	return (NULL);
1725}
1726
1727int
1728tcp_twrespond(struct tcptw *tw, int flags)
1729{
1730	struct inpcb *inp = tw->tw_inpcb;
1731	struct tcphdr *th;
1732	struct mbuf *m;
1733	struct ip *ip = NULL;
1734	u_int8_t *optp;
1735	u_int hdrlen, optlen;
1736	int error;
1737#ifdef INET6
1738	struct ip6_hdr *ip6 = NULL;
1739	int isipv6 = inp->inp_inc.inc_isipv6;
1740#endif
1741
1742	m = m_gethdr(M_DONTWAIT, MT_HEADER);
1743	if (m == NULL)
1744		return (ENOBUFS);
1745	m->m_data += max_linkhdr;
1746
1747#ifdef MAC
1748	mac_create_mbuf_from_inpcb(inp, m);
1749#endif
1750
1751#ifdef INET6
1752	if (isipv6) {
1753		hdrlen = sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
1754		ip6 = mtod(m, struct ip6_hdr *);
1755		th = (struct tcphdr *)(ip6 + 1);
1756		tcpip_fillheaders(inp, ip6, th);
1757	} else
1758#endif
1759	{
1760		hdrlen = sizeof(struct tcpiphdr);
1761		ip = mtod(m, struct ip *);
1762		th = (struct tcphdr *)(ip + 1);
1763		tcpip_fillheaders(inp, ip, th);
1764	}
1765	optp = (u_int8_t *)(th + 1);
1766
1767 	/*
1768	 * Send a timestamp and echo-reply if both our side and our peer
1769	 * have sent timestamps in our SYN's and this is not a RST.
1770 	 */
1771	if (tw->t_recent && flags == TH_ACK) {
1772		u_int32_t *lp = (u_int32_t *)optp;
1773
1774 		/* Form timestamp option as shown in appendix A of RFC 1323. */
1775 		*lp++ = htonl(TCPOPT_TSTAMP_HDR);
1776 		*lp++ = htonl(ticks);
1777 		*lp   = htonl(tw->t_recent);
1778 		optp += TCPOLEN_TSTAMP_APPA;
1779 	}
1780
1781 	/*
1782	 * Send `CC-family' options if needed, and it's not a RST.
1783 	 */
1784	if (tw->cc_recv != 0 && flags == TH_ACK) {
1785		u_int32_t *lp = (u_int32_t *)optp;
1786
1787		*lp++ = htonl(TCPOPT_CC_HDR(TCPOPT_CC));
1788		*lp   = htonl(tw->cc_send);
1789		optp += TCPOLEN_CC_APPA;
1790 	}
1791	optlen = optp - (u_int8_t *)(th + 1);
1792
1793	m->m_len = hdrlen + optlen;
1794	m->m_pkthdr.len = m->m_len;
1795
1796	KASSERT(max_linkhdr + m->m_len <= MHLEN, ("tcptw: mbuf too small"));
1797
1798	th->th_seq = htonl(tw->snd_nxt);
1799	th->th_ack = htonl(tw->rcv_nxt);
1800	th->th_off = (sizeof(struct tcphdr) + optlen) >> 2;
1801	th->th_flags = flags;
1802	th->th_win = htons(tw->last_win);
1803
1804#ifdef INET6
1805	if (isipv6) {
1806		th->th_sum = in6_cksum(m, IPPROTO_TCP, sizeof(struct ip6_hdr),
1807		    sizeof(struct tcphdr) + optlen);
1808		ip6->ip6_hlim = in6_selecthlim(inp, NULL);
1809		error = ip6_output(m, inp->in6p_outputopts, NULL,
1810		    (tw->tw_so_options & SO_DONTROUTE), NULL, NULL, inp);
1811	} else
1812#endif
1813	{
1814		th->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
1815                    htons(sizeof(struct tcphdr) + optlen + IPPROTO_TCP));
1816		m->m_pkthdr.csum_flags = CSUM_TCP;
1817		m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
1818		ip->ip_len = m->m_pkthdr.len;
1819		if (path_mtu_discovery)
1820			ip->ip_off |= IP_DF;
1821		error = ip_output(m, inp->inp_options, NULL,
1822		    (tw->tw_so_options & SO_DONTROUTE), NULL, inp);
1823	}
1824	if (flags & TH_ACK)
1825		tcpstat.tcps_sndacks++;
1826	else
1827		tcpstat.tcps_sndctrl++;
1828	tcpstat.tcps_sndtotal++;
1829	return (error);
1830}
1831
1832/*
1833 * TCP BANDWIDTH DELAY PRODUCT WINDOW LIMITING
1834 *
1835 * This code attempts to calculate the bandwidth-delay product as a
1836 * means of determining the optimal window size to maximize bandwidth,
1837 * minimize RTT, and avoid the over-allocation of buffers on interfaces and
1838 * routers.  This code also does a fairly good job keeping RTTs in check
1839 * across slow links like modems.  We implement an algorithm which is very
1840 * similar (but not meant to be) TCP/Vegas.  The code operates on the
1841 * transmitter side of a TCP connection and so only effects the transmit
1842 * side of the connection.
1843 *
1844 * BACKGROUND:  TCP makes no provision for the management of buffer space
1845 * at the end points or at the intermediate routers and switches.  A TCP
1846 * stream, whether using NewReno or not, will eventually buffer as
1847 * many packets as it is able and the only reason this typically works is
1848 * due to the fairly small default buffers made available for a connection
1849 * (typicaly 16K or 32K).  As machines use larger windows and/or window
1850 * scaling it is now fairly easy for even a single TCP connection to blow-out
1851 * all available buffer space not only on the local interface, but on
1852 * intermediate routers and switches as well.  NewReno makes a misguided
1853 * attempt to 'solve' this problem by waiting for an actual failure to occur,
1854 * then backing off, then steadily increasing the window again until another
1855 * failure occurs, ad-infinitum.  This results in terrible oscillation that
1856 * is only made worse as network loads increase and the idea of intentionally
1857 * blowing out network buffers is, frankly, a terrible way to manage network
1858 * resources.
1859 *
1860 * It is far better to limit the transmit window prior to the failure
1861 * condition being achieved.  There are two general ways to do this:  First
1862 * you can 'scan' through different transmit window sizes and locate the
1863 * point where the RTT stops increasing, indicating that you have filled the
1864 * pipe, then scan backwards until you note that RTT stops decreasing, then
1865 * repeat ad-infinitum.  This method works in principle but has severe
1866 * implementation issues due to RTT variances, timer granularity, and
1867 * instability in the algorithm which can lead to many false positives and
1868 * create oscillations as well as interact badly with other TCP streams
1869 * implementing the same algorithm.
1870 *
1871 * The second method is to limit the window to the bandwidth delay product
1872 * of the link.  This is the method we implement.  RTT variances and our
1873 * own manipulation of the congestion window, bwnd, can potentially
1874 * destabilize the algorithm.  For this reason we have to stabilize the
1875 * elements used to calculate the window.  We do this by using the minimum
1876 * observed RTT, the long term average of the observed bandwidth, and
1877 * by adding two segments worth of slop.  It isn't perfect but it is able
1878 * to react to changing conditions and gives us a very stable basis on
1879 * which to extend the algorithm.
1880 */
1881void
1882tcp_xmit_bandwidth_limit(struct tcpcb *tp, tcp_seq ack_seq)
1883{
1884	u_long bw;
1885	u_long bwnd;
1886	int save_ticks;
1887
1888	/*
1889	 * If inflight_enable is disabled in the middle of a tcp connection,
1890	 * make sure snd_bwnd is effectively disabled.
1891	 */
1892	if (tcp_inflight_enable == 0) {
1893		tp->snd_bwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
1894		tp->snd_bandwidth = 0;
1895		return;
1896	}
1897
1898	/*
1899	 * Figure out the bandwidth.  Due to the tick granularity this
1900	 * is a very rough number and it MUST be averaged over a fairly
1901	 * long period of time.  XXX we need to take into account a link
1902	 * that is not using all available bandwidth, but for now our
1903	 * slop will ramp us up if this case occurs and the bandwidth later
1904	 * increases.
1905	 *
1906	 * Note: if ticks rollover 'bw' may wind up negative.  We must
1907	 * effectively reset t_bw_rtttime for this case.
1908	 */
1909	save_ticks = ticks;
1910	if ((u_int)(save_ticks - tp->t_bw_rtttime) < 1)
1911		return;
1912
1913	bw = (int64_t)(ack_seq - tp->t_bw_rtseq) * hz /
1914	    (save_ticks - tp->t_bw_rtttime);
1915	tp->t_bw_rtttime = save_ticks;
1916	tp->t_bw_rtseq = ack_seq;
1917	if (tp->t_bw_rtttime == 0 || (int)bw < 0)
1918		return;
1919	bw = ((int64_t)tp->snd_bandwidth * 15 + bw) >> 4;
1920
1921	tp->snd_bandwidth = bw;
1922
1923	/*
1924	 * Calculate the semi-static bandwidth delay product, plus two maximal
1925	 * segments.  The additional slop puts us squarely in the sweet
1926	 * spot and also handles the bandwidth run-up case and stabilization.
1927	 * Without the slop we could be locking ourselves into a lower
1928	 * bandwidth.
1929	 *
1930	 * Situations Handled:
1931	 *	(1) Prevents over-queueing of packets on LANs, especially on
1932	 *	    high speed LANs, allowing larger TCP buffers to be
1933	 *	    specified, and also does a good job preventing
1934	 *	    over-queueing of packets over choke points like modems
1935	 *	    (at least for the transmit side).
1936	 *
1937	 *	(2) Is able to handle changing network loads (bandwidth
1938	 *	    drops so bwnd drops, bandwidth increases so bwnd
1939	 *	    increases).
1940	 *
1941	 *	(3) Theoretically should stabilize in the face of multiple
1942	 *	    connections implementing the same algorithm (this may need
1943	 *	    a little work).
1944	 *
1945	 *	(4) Stability value (defaults to 20 = 2 maximal packets) can
1946	 *	    be adjusted with a sysctl but typically only needs to be
1947	 *	    on very slow connections.  A value no smaller then 5
1948	 *	    should be used, but only reduce this default if you have
1949	 *	    no other choice.
1950	 */
1951#define USERTT	((tp->t_srtt + tp->t_rttbest) / 2)
1952	bwnd = (int64_t)bw * USERTT / (hz << TCP_RTT_SHIFT) + tcp_inflight_stab * tp->t_maxseg / 10;
1953#undef USERTT
1954
1955	if (tcp_inflight_debug > 0) {
1956		static int ltime;
1957		if ((u_int)(ticks - ltime) >= hz / tcp_inflight_debug) {
1958			ltime = ticks;
1959			printf("%p bw %ld rttbest %d srtt %d bwnd %ld\n",
1960			    tp,
1961			    bw,
1962			    tp->t_rttbest,
1963			    tp->t_srtt,
1964			    bwnd
1965			);
1966		}
1967	}
1968	if ((long)bwnd < tcp_inflight_min)
1969		bwnd = tcp_inflight_min;
1970	if (bwnd > tcp_inflight_max)
1971		bwnd = tcp_inflight_max;
1972	if ((long)bwnd < tp->t_maxseg * 2)
1973		bwnd = tp->t_maxseg * 2;
1974	tp->snd_bwnd = bwnd;
1975}
1976
1977#ifdef TCP_SIGNATURE
1978/*
1979 * Callback function invoked by m_apply() to digest TCP segment data
1980 * contained within an mbuf chain.
1981 */
1982static int
1983tcp_signature_apply(void *fstate, void *data, u_int len)
1984{
1985
1986	MD5Update(fstate, (u_char *)data, len);
1987	return (0);
1988}
1989
1990/*
1991 * Compute TCP-MD5 hash of a TCPv4 segment. (RFC2385)
1992 *
1993 * Parameters:
1994 * m		pointer to head of mbuf chain
1995 * off0		offset to TCP header within the mbuf chain
1996 * len		length of TCP segment data, excluding options
1997 * optlen	length of TCP segment options
1998 * buf		pointer to storage for computed MD5 digest
1999 * direction	direction of flow (IPSEC_DIR_INBOUND or OUTBOUND)
2000 *
2001 * We do this over ip, tcphdr, segment data, and the key in the SADB.
2002 * When called from tcp_input(), we can be sure that th_sum has been
2003 * zeroed out and verified already.
2004 *
2005 * This function is for IPv4 use only. Calling this function with an
2006 * IPv6 packet in the mbuf chain will yield undefined results.
2007 *
2008 * Return 0 if successful, otherwise return -1.
2009 *
2010 * XXX The key is retrieved from the system's PF_KEY SADB, by keying a
2011 * search with the destination IP address, and a 'magic SPI' to be
2012 * determined by the application. This is hardcoded elsewhere to 1179
2013 * right now. Another branch of this code exists which uses the SPD to
2014 * specify per-application flows but it is unstable.
2015 */
2016int
2017tcp_signature_compute(struct mbuf *m, int off0, int len, int optlen,
2018    u_char *buf, u_int direction)
2019{
2020	union sockaddr_union dst;
2021	struct ippseudo ippseudo;
2022	MD5_CTX ctx;
2023	int doff;
2024	struct ip *ip;
2025	struct ipovly *ipovly;
2026	struct secasvar *sav;
2027	struct tcphdr *th;
2028	u_short savecsum;
2029
2030	KASSERT(m != NULL, ("NULL mbuf chain"));
2031	KASSERT(buf != NULL, ("NULL signature pointer"));
2032
2033	/* Extract the destination from the IP header in the mbuf. */
2034	ip = mtod(m, struct ip *);
2035	bzero(&dst, sizeof(union sockaddr_union));
2036	dst.sa.sa_len = sizeof(struct sockaddr_in);
2037	dst.sa.sa_family = AF_INET;
2038	dst.sin.sin_addr = (direction == IPSEC_DIR_INBOUND) ?
2039	    ip->ip_src : ip->ip_dst;
2040
2041	/* Look up an SADB entry which matches the address of the peer. */
2042	sav = KEY_ALLOCSA(&dst, IPPROTO_TCP, htonl(TCP_SIG_SPI));
2043	if (sav == NULL) {
2044		printf("%s: SADB lookup failed for %s\n", __func__,
2045		    inet_ntoa(dst.sin.sin_addr));
2046		return (EINVAL);
2047	}
2048
2049	MD5Init(&ctx);
2050	ipovly = (struct ipovly *)ip;
2051	th = (struct tcphdr *)((u_char *)ip + off0);
2052	doff = off0 + sizeof(struct tcphdr) + optlen;
2053
2054	/*
2055	 * Step 1: Update MD5 hash with IP pseudo-header.
2056	 *
2057	 * XXX The ippseudo header MUST be digested in network byte order,
2058	 * or else we'll fail the regression test. Assume all fields we've
2059	 * been doing arithmetic on have been in host byte order.
2060	 * XXX One cannot depend on ipovly->ih_len here. When called from
2061	 * tcp_output(), the underlying ip_len member has not yet been set.
2062	 */
2063	ippseudo.ippseudo_src = ipovly->ih_src;
2064	ippseudo.ippseudo_dst = ipovly->ih_dst;
2065	ippseudo.ippseudo_pad = 0;
2066	ippseudo.ippseudo_p = IPPROTO_TCP;
2067	ippseudo.ippseudo_len = htons(len + sizeof(struct tcphdr) + optlen);
2068	MD5Update(&ctx, (char *)&ippseudo, sizeof(struct ippseudo));
2069
2070	/*
2071	 * Step 2: Update MD5 hash with TCP header, excluding options.
2072	 * The TCP checksum must be set to zero.
2073	 */
2074	savecsum = th->th_sum;
2075	th->th_sum = 0;
2076	MD5Update(&ctx, (char *)th, sizeof(struct tcphdr));
2077	th->th_sum = savecsum;
2078
2079	/*
2080	 * Step 3: Update MD5 hash with TCP segment data.
2081	 *         Use m_apply() to avoid an early m_pullup().
2082	 */
2083	if (len > 0)
2084		m_apply(m, doff, len, tcp_signature_apply, &ctx);
2085
2086	/*
2087	 * Step 4: Update MD5 hash with shared secret.
2088	 */
2089	MD5Update(&ctx, _KEYBUF(sav->key_auth), _KEYLEN(sav->key_auth));
2090	MD5Final(buf, &ctx);
2091
2092	key_sa_recordxfer(sav, m);
2093	KEY_FREESAV(&sav);
2094	return (0);
2095}
2096#endif /* TCP_SIGNATURE */
2097