tcp_timewait.c revision 121850
1/*
2 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 *    must display the following acknowledgement:
15 *	This product includes software developed by the University of
16 *	California, Berkeley and its contributors.
17 * 4. Neither the name of the University nor the names of its contributors
18 *    may be used to endorse or promote products derived from this software
19 *    without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
32 *
33 *	@(#)tcp_subr.c	8.2 (Berkeley) 5/24/95
34 * $FreeBSD: head/sys/netinet/tcp_timewait.c 121850 2003-11-01 07:30:08Z silby $
35 */
36
37#include "opt_compat.h"
38#include "opt_inet6.h"
39#include "opt_ipsec.h"
40#include "opt_mac.h"
41#include "opt_tcpdebug.h"
42
43#include <sys/param.h>
44#include <sys/systm.h>
45#include <sys/callout.h>
46#include <sys/kernel.h>
47#include <sys/sysctl.h>
48#include <sys/mac.h>
49#include <sys/malloc.h>
50#include <sys/mbuf.h>
51#ifdef INET6
52#include <sys/domain.h>
53#endif
54#include <sys/proc.h>
55#include <sys/socket.h>
56#include <sys/socketvar.h>
57#include <sys/protosw.h>
58#include <sys/random.h>
59
60#include <vm/uma.h>
61
62#include <net/route.h>
63#include <net/if.h>
64
65#include <netinet/in.h>
66#include <netinet/in_systm.h>
67#include <netinet/ip.h>
68#ifdef INET6
69#include <netinet/ip6.h>
70#endif
71#include <netinet/in_pcb.h>
72#ifdef INET6
73#include <netinet6/in6_pcb.h>
74#endif
75#include <netinet/in_var.h>
76#include <netinet/ip_var.h>
77#ifdef INET6
78#include <netinet6/ip6_var.h>
79#endif
80#include <netinet/tcp.h>
81#include <netinet/tcp_fsm.h>
82#include <netinet/tcp_seq.h>
83#include <netinet/tcp_timer.h>
84#include <netinet/tcp_var.h>
85#ifdef INET6
86#include <netinet6/tcp6_var.h>
87#endif
88#include <netinet/tcpip.h>
89#ifdef TCPDEBUG
90#include <netinet/tcp_debug.h>
91#endif
92#include <netinet6/ip6protosw.h>
93
94#ifdef IPSEC
95#include <netinet6/ipsec.h>
96#ifdef INET6
97#include <netinet6/ipsec6.h>
98#endif
99#endif /*IPSEC*/
100
101#ifdef FAST_IPSEC
102#include <netipsec/ipsec.h>
103#ifdef INET6
104#include <netipsec/ipsec6.h>
105#endif
106#define	IPSEC
107#endif /*FAST_IPSEC*/
108
109#include <machine/in_cksum.h>
110#include <sys/md5.h>
111
112int 	tcp_mssdflt = TCP_MSS;
113SYSCTL_INT(_net_inet_tcp, TCPCTL_MSSDFLT, mssdflt, CTLFLAG_RW,
114    &tcp_mssdflt , 0, "Default TCP Maximum Segment Size");
115
116#ifdef INET6
117int	tcp_v6mssdflt = TCP6_MSS;
118SYSCTL_INT(_net_inet_tcp, TCPCTL_V6MSSDFLT, v6mssdflt,
119	CTLFLAG_RW, &tcp_v6mssdflt , 0,
120	"Default TCP Maximum Segment Size for IPv6");
121#endif
122
123#if 0
124static int 	tcp_rttdflt = TCPTV_SRTTDFLT / PR_SLOWHZ;
125SYSCTL_INT(_net_inet_tcp, TCPCTL_RTTDFLT, rttdflt, CTLFLAG_RW,
126    &tcp_rttdflt , 0, "Default maximum TCP Round Trip Time");
127#endif
128
129int	tcp_do_rfc1323 = 1;
130SYSCTL_INT(_net_inet_tcp, TCPCTL_DO_RFC1323, rfc1323, CTLFLAG_RW,
131    &tcp_do_rfc1323 , 0, "Enable rfc1323 (high performance TCP) extensions");
132
133int	tcp_do_rfc1644 = 0;
134SYSCTL_INT(_net_inet_tcp, TCPCTL_DO_RFC1644, rfc1644, CTLFLAG_RW,
135    &tcp_do_rfc1644 , 0, "Enable rfc1644 (TTCP) extensions");
136
137static int	tcp_tcbhashsize = 0;
138SYSCTL_INT(_net_inet_tcp, OID_AUTO, tcbhashsize, CTLFLAG_RDTUN,
139     &tcp_tcbhashsize, 0, "Size of TCP control-block hashtable");
140
141static int	do_tcpdrain = 1;
142SYSCTL_INT(_net_inet_tcp, OID_AUTO, do_tcpdrain, CTLFLAG_RW, &do_tcpdrain, 0,
143     "Enable tcp_drain routine for extra help when low on mbufs");
144
145SYSCTL_INT(_net_inet_tcp, OID_AUTO, pcbcount, CTLFLAG_RD,
146    &tcbinfo.ipi_count, 0, "Number of active PCBs");
147
148static int	icmp_may_rst = 1;
149SYSCTL_INT(_net_inet_tcp, OID_AUTO, icmp_may_rst, CTLFLAG_RW, &icmp_may_rst, 0,
150    "Certain ICMP unreachable messages may abort connections in SYN_SENT");
151
152static int	tcp_isn_reseed_interval = 0;
153SYSCTL_INT(_net_inet_tcp, OID_AUTO, isn_reseed_interval, CTLFLAG_RW,
154    &tcp_isn_reseed_interval, 0, "Seconds between reseeding of ISN secret");
155
156/*
157 * TCP bandwidth limiting sysctls.  Note that the default lower bound of
158 * 1024 exists only for debugging.  A good production default would be
159 * something like 6100.
160 */
161static int	tcp_inflight_enable = 0;
162SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_enable, CTLFLAG_RW,
163    &tcp_inflight_enable, 0, "Enable automatic TCP inflight data limiting");
164
165static int	tcp_inflight_debug = 0;
166SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_debug, CTLFLAG_RW,
167    &tcp_inflight_debug, 0, "Debug TCP inflight calculations");
168
169static int	tcp_inflight_min = 6144;
170SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_min, CTLFLAG_RW,
171    &tcp_inflight_min, 0, "Lower-bound for TCP inflight window");
172
173static int	tcp_inflight_max = TCP_MAXWIN << TCP_MAX_WINSHIFT;
174SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_max, CTLFLAG_RW,
175    &tcp_inflight_max, 0, "Upper-bound for TCP inflight window");
176static int	tcp_inflight_stab = 20;
177SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_stab, CTLFLAG_RW,
178    &tcp_inflight_stab, 0, "Inflight Algorithm Stabilization 20 = 2 packets");
179
180static void	tcp_cleartaocache(void);
181static struct inpcb *tcp_notify(struct inpcb *, int);
182static void	tcp_discardcb(struct tcpcb *);
183
184/*
185 * Target size of TCP PCB hash tables. Must be a power of two.
186 *
187 * Note that this can be overridden by the kernel environment
188 * variable net.inet.tcp.tcbhashsize
189 */
190#ifndef TCBHASHSIZE
191#define TCBHASHSIZE	512
192#endif
193
194/*
195 * XXX
196 * Callouts should be moved into struct tcp directly.  They are currently
197 * separate becuase the tcpcb structure is exported to userland for sysctl
198 * parsing purposes, which do not know about callouts.
199 */
200struct	tcpcb_mem {
201	struct	tcpcb tcb;
202	struct	callout tcpcb_mem_rexmt, tcpcb_mem_persist, tcpcb_mem_keep;
203	struct	callout tcpcb_mem_2msl, tcpcb_mem_delack;
204};
205
206static uma_zone_t tcpcb_zone;
207static uma_zone_t tcptw_zone;
208
209/*
210 * Tcp initialization
211 */
212void
213tcp_init()
214{
215	int hashsize = TCBHASHSIZE;
216
217	tcp_ccgen = 1;
218	tcp_cleartaocache();
219
220	tcp_delacktime = TCPTV_DELACK;
221	tcp_keepinit = TCPTV_KEEP_INIT;
222	tcp_keepidle = TCPTV_KEEP_IDLE;
223	tcp_keepintvl = TCPTV_KEEPINTVL;
224	tcp_maxpersistidle = TCPTV_KEEP_IDLE;
225	tcp_msl = TCPTV_MSL;
226	tcp_rexmit_min = TCPTV_MIN;
227	tcp_rexmit_slop = TCPTV_CPU_VAR;
228
229	INP_INFO_LOCK_INIT(&tcbinfo, "tcp");
230	LIST_INIT(&tcb);
231	tcbinfo.listhead = &tcb;
232	TUNABLE_INT_FETCH("net.inet.tcp.tcbhashsize", &hashsize);
233	if (!powerof2(hashsize)) {
234		printf("WARNING: TCB hash size not a power of 2\n");
235		hashsize = 512; /* safe default */
236	}
237	tcp_tcbhashsize = hashsize;
238	tcbinfo.hashbase = hashinit(hashsize, M_PCB, &tcbinfo.hashmask);
239	tcbinfo.porthashbase = hashinit(hashsize, M_PCB,
240					&tcbinfo.porthashmask);
241	tcbinfo.ipi_zone = uma_zcreate("inpcb", sizeof(struct inpcb),
242	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
243	uma_zone_set_max(tcbinfo.ipi_zone, maxsockets);
244#ifdef INET6
245#define TCP_MINPROTOHDR (sizeof(struct ip6_hdr) + sizeof(struct tcphdr))
246#else /* INET6 */
247#define TCP_MINPROTOHDR (sizeof(struct tcpiphdr))
248#endif /* INET6 */
249	if (max_protohdr < TCP_MINPROTOHDR)
250		max_protohdr = TCP_MINPROTOHDR;
251	if (max_linkhdr + TCP_MINPROTOHDR > MHLEN)
252		panic("tcp_init");
253#undef TCP_MINPROTOHDR
254	/*
255	 * These have to be type stable for the benefit of the timers.
256	 */
257	tcpcb_zone = uma_zcreate("tcpcb", sizeof(struct tcpcb_mem),
258	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
259	uma_zone_set_max(tcpcb_zone, maxsockets);
260	tcptw_zone = uma_zcreate("tcptw", sizeof(struct tcptw),
261	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
262	uma_zone_set_max(tcptw_zone, maxsockets / 5);
263	tcp_timer_init();
264	syncache_init();
265}
266
267/*
268 * Fill in the IP and TCP headers for an outgoing packet, given the tcpcb.
269 * tcp_template used to store this data in mbufs, but we now recopy it out
270 * of the tcpcb each time to conserve mbufs.
271 */
272void
273tcpip_fillheaders(inp, ip_ptr, tcp_ptr)
274	struct inpcb *inp;
275	void *ip_ptr;
276	void *tcp_ptr;
277{
278	struct tcphdr *th = (struct tcphdr *)tcp_ptr;
279
280#ifdef INET6
281	if ((inp->inp_vflag & INP_IPV6) != 0) {
282		struct ip6_hdr *ip6;
283
284		ip6 = (struct ip6_hdr *)ip_ptr;
285		ip6->ip6_flow = (ip6->ip6_flow & ~IPV6_FLOWINFO_MASK) |
286			(inp->in6p_flowinfo & IPV6_FLOWINFO_MASK);
287		ip6->ip6_vfc = (ip6->ip6_vfc & ~IPV6_VERSION_MASK) |
288			(IPV6_VERSION & IPV6_VERSION_MASK);
289		ip6->ip6_nxt = IPPROTO_TCP;
290		ip6->ip6_plen = sizeof(struct tcphdr);
291		ip6->ip6_src = inp->in6p_laddr;
292		ip6->ip6_dst = inp->in6p_faddr;
293	} else
294#endif
295	{
296		struct ip *ip;
297
298		ip = (struct ip *)ip_ptr;
299		ip->ip_v = IPVERSION;
300		ip->ip_hl = 5;
301		ip->ip_tos = inp->inp_ip_tos;
302		ip->ip_len = 0;
303		ip->ip_id = 0;
304		ip->ip_off = 0;
305		ip->ip_ttl = inp->inp_ip_ttl;
306		ip->ip_sum = 0;
307		ip->ip_p = IPPROTO_TCP;
308		ip->ip_src = inp->inp_laddr;
309		ip->ip_dst = inp->inp_faddr;
310	}
311	th->th_sport = inp->inp_lport;
312	th->th_dport = inp->inp_fport;
313	th->th_seq = 0;
314	th->th_ack = 0;
315	th->th_x2 = 0;
316	th->th_off = 5;
317	th->th_flags = 0;
318	th->th_win = 0;
319	th->th_urp = 0;
320	th->th_sum = 0;		/* in_pseudo() is called later for ipv4 */
321}
322
323/*
324 * Create template to be used to send tcp packets on a connection.
325 * Allocates an mbuf and fills in a skeletal tcp/ip header.  The only
326 * use for this function is in keepalives, which use tcp_respond.
327 */
328struct tcptemp *
329tcpip_maketemplate(inp)
330	struct inpcb *inp;
331{
332	struct mbuf *m;
333	struct tcptemp *n;
334
335	m = m_get(M_DONTWAIT, MT_HEADER);
336	if (m == NULL)
337		return (0);
338	m->m_len = sizeof(struct tcptemp);
339	n = mtod(m, struct tcptemp *);
340
341	tcpip_fillheaders(inp, (void *)&n->tt_ipgen, (void *)&n->tt_t);
342	return (n);
343}
344
345/*
346 * Send a single message to the TCP at address specified by
347 * the given TCP/IP header.  If m == 0, then we make a copy
348 * of the tcpiphdr at ti and send directly to the addressed host.
349 * This is used to force keep alive messages out using the TCP
350 * template for a connection.  If flags are given then we send
351 * a message back to the TCP which originated the * segment ti,
352 * and discard the mbuf containing it and any other attached mbufs.
353 *
354 * In any case the ack and sequence number of the transmitted
355 * segment are as specified by the parameters.
356 *
357 * NOTE: If m != NULL, then ti must point to *inside* the mbuf.
358 */
359void
360tcp_respond(tp, ipgen, th, m, ack, seq, flags)
361	struct tcpcb *tp;
362	void *ipgen;
363	register struct tcphdr *th;
364	register struct mbuf *m;
365	tcp_seq ack, seq;
366	int flags;
367{
368	register int tlen;
369	int win = 0;
370	struct route *ro = 0;
371	struct route sro;
372	struct ip *ip;
373	struct tcphdr *nth;
374#ifdef INET6
375	struct route_in6 *ro6 = 0;
376	struct route_in6 sro6;
377	struct ip6_hdr *ip6;
378	int isipv6;
379#endif /* INET6 */
380	int ipflags = 0;
381
382	KASSERT(tp != NULL || m != NULL, ("tcp_respond: tp and m both NULL"));
383
384#ifdef INET6
385	isipv6 = ((struct ip *)ipgen)->ip_v == 6;
386	ip6 = ipgen;
387#endif /* INET6 */
388	ip = ipgen;
389
390	if (tp) {
391		if (!(flags & TH_RST)) {
392			win = sbspace(&tp->t_inpcb->inp_socket->so_rcv);
393			if (win > (long)TCP_MAXWIN << tp->rcv_scale)
394				win = (long)TCP_MAXWIN << tp->rcv_scale;
395		}
396#ifdef INET6
397		if (isipv6)
398			ro6 = &tp->t_inpcb->in6p_route;
399		else
400#endif /* INET6 */
401		ro = &tp->t_inpcb->inp_route;
402	} else {
403#ifdef INET6
404		if (isipv6) {
405			ro6 = &sro6;
406			bzero(ro6, sizeof *ro6);
407		} else
408#endif /* INET6 */
409	      {
410		ro = &sro;
411		bzero(ro, sizeof *ro);
412	      }
413	}
414	if (m == 0) {
415		m = m_gethdr(M_DONTWAIT, MT_HEADER);
416		if (m == NULL)
417			return;
418		tlen = 0;
419		m->m_data += max_linkhdr;
420#ifdef INET6
421		if (isipv6) {
422			bcopy((caddr_t)ip6, mtod(m, caddr_t),
423			      sizeof(struct ip6_hdr));
424			ip6 = mtod(m, struct ip6_hdr *);
425			nth = (struct tcphdr *)(ip6 + 1);
426		} else
427#endif /* INET6 */
428	      {
429		bcopy((caddr_t)ip, mtod(m, caddr_t), sizeof(struct ip));
430		ip = mtod(m, struct ip *);
431		nth = (struct tcphdr *)(ip + 1);
432	      }
433		bcopy((caddr_t)th, (caddr_t)nth, sizeof(struct tcphdr));
434		flags = TH_ACK;
435	} else {
436		m_freem(m->m_next);
437		m->m_next = 0;
438		m->m_data = (caddr_t)ipgen;
439		/* m_len is set later */
440		tlen = 0;
441#define xchg(a,b,type) { type t; t=a; a=b; b=t; }
442#ifdef INET6
443		if (isipv6) {
444			xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr);
445			nth = (struct tcphdr *)(ip6 + 1);
446		} else
447#endif /* INET6 */
448	      {
449		xchg(ip->ip_dst.s_addr, ip->ip_src.s_addr, n_long);
450		nth = (struct tcphdr *)(ip + 1);
451	      }
452		if (th != nth) {
453			/*
454			 * this is usually a case when an extension header
455			 * exists between the IPv6 header and the
456			 * TCP header.
457			 */
458			nth->th_sport = th->th_sport;
459			nth->th_dport = th->th_dport;
460		}
461		xchg(nth->th_dport, nth->th_sport, n_short);
462#undef xchg
463	}
464#ifdef INET6
465	if (isipv6) {
466		ip6->ip6_flow = 0;
467		ip6->ip6_vfc = IPV6_VERSION;
468		ip6->ip6_nxt = IPPROTO_TCP;
469		ip6->ip6_plen = htons((u_short)(sizeof (struct tcphdr) +
470						tlen));
471		tlen += sizeof (struct ip6_hdr) + sizeof (struct tcphdr);
472	} else
473#endif
474      {
475	tlen += sizeof (struct tcpiphdr);
476	ip->ip_len = tlen;
477	ip->ip_ttl = ip_defttl;
478      }
479	m->m_len = tlen;
480	m->m_pkthdr.len = tlen;
481	m->m_pkthdr.rcvif = (struct ifnet *) 0;
482#ifdef MAC
483	if (tp != NULL && tp->t_inpcb != NULL) {
484		/*
485		 * Packet is associated with a socket, so allow the
486		 * label of the response to reflect the socket label.
487		 */
488		mac_create_mbuf_from_socket(tp->t_inpcb->inp_socket, m);
489	} else {
490		/*
491		 * Packet is not associated with a socket, so possibly
492		 * update the label in place.
493		 */
494		mac_reflect_mbuf_tcp(m);
495	}
496#endif
497	nth->th_seq = htonl(seq);
498	nth->th_ack = htonl(ack);
499	nth->th_x2 = 0;
500	nth->th_off = sizeof (struct tcphdr) >> 2;
501	nth->th_flags = flags;
502	if (tp)
503		nth->th_win = htons((u_short) (win >> tp->rcv_scale));
504	else
505		nth->th_win = htons((u_short)win);
506	nth->th_urp = 0;
507#ifdef INET6
508	if (isipv6) {
509		nth->th_sum = 0;
510		nth->th_sum = in6_cksum(m, IPPROTO_TCP,
511					sizeof(struct ip6_hdr),
512					tlen - sizeof(struct ip6_hdr));
513		ip6->ip6_hlim = in6_selecthlim(tp ? tp->t_inpcb : NULL,
514					       ro6 && ro6->ro_rt ?
515					       ro6->ro_rt->rt_ifp :
516					       NULL);
517	} else
518#endif /* INET6 */
519      {
520        nth->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
521	    htons((u_short)(tlen - sizeof(struct ip) + ip->ip_p)));
522        m->m_pkthdr.csum_flags = CSUM_TCP;
523        m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
524      }
525#ifdef TCPDEBUG
526	if (tp == NULL || (tp->t_inpcb->inp_socket->so_options & SO_DEBUG))
527		tcp_trace(TA_OUTPUT, 0, tp, mtod(m, void *), th, 0);
528#endif
529#ifdef INET6
530	if (isipv6) {
531		(void)ip6_output(m, NULL, ro6, ipflags, NULL, NULL,
532			tp ? tp->t_inpcb : NULL);
533		if (ro6 == &sro6 && ro6->ro_rt) {
534			RTFREE(ro6->ro_rt);
535			ro6->ro_rt = NULL;
536		}
537	} else
538#endif /* INET6 */
539      {
540	(void) ip_output(m, NULL, ro, ipflags, NULL, tp ? tp->t_inpcb : NULL);
541	if (ro == &sro && ro->ro_rt) {
542		RTFREE(ro->ro_rt);
543		ro->ro_rt = NULL;
544	}
545      }
546}
547
548/*
549 * Create a new TCP control block, making an
550 * empty reassembly queue and hooking it to the argument
551 * protocol control block.  The `inp' parameter must have
552 * come from the zone allocator set up in tcp_init().
553 */
554struct tcpcb *
555tcp_newtcpcb(inp)
556	struct inpcb *inp;
557{
558	struct tcpcb_mem *tm;
559	struct tcpcb *tp;
560#ifdef INET6
561	int isipv6 = (inp->inp_vflag & INP_IPV6) != 0;
562#endif /* INET6 */
563
564	tm = uma_zalloc(tcpcb_zone, M_NOWAIT | M_ZERO);
565	if (tm == NULL)
566		return (NULL);
567	tp = &tm->tcb;
568	/*	LIST_INIT(&tp->t_segq); */	/* XXX covered by M_ZERO */
569	tp->t_maxseg = tp->t_maxopd =
570#ifdef INET6
571		isipv6 ? tcp_v6mssdflt :
572#endif /* INET6 */
573		tcp_mssdflt;
574
575	/* Set up our timeouts. */
576	callout_init(tp->tt_rexmt = &tm->tcpcb_mem_rexmt, 0);
577	callout_init(tp->tt_persist = &tm->tcpcb_mem_persist, 0);
578	callout_init(tp->tt_keep = &tm->tcpcb_mem_keep, 0);
579	callout_init(tp->tt_2msl = &tm->tcpcb_mem_2msl, 0);
580	callout_init(tp->tt_delack = &tm->tcpcb_mem_delack, 0);
581
582	if (tcp_do_rfc1323)
583		tp->t_flags = (TF_REQ_SCALE|TF_REQ_TSTMP);
584	if (tcp_do_rfc1644)
585		tp->t_flags |= TF_REQ_CC;
586	tp->t_inpcb = inp;	/* XXX */
587	/*
588	 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
589	 * rtt estimate.  Set rttvar so that srtt + 4 * rttvar gives
590	 * reasonable initial retransmit time.
591	 */
592	tp->t_srtt = TCPTV_SRTTBASE;
593	tp->t_rttvar = ((TCPTV_RTOBASE - TCPTV_SRTTBASE) << TCP_RTTVAR_SHIFT) / 4;
594	tp->t_rttmin = tcp_rexmit_min;
595	tp->t_rxtcur = TCPTV_RTOBASE;
596	tp->snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
597	tp->snd_bwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
598	tp->snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT;
599	tp->t_rcvtime = ticks;
600	tp->t_bw_rtttime = ticks;
601        /*
602	 * IPv4 TTL initialization is necessary for an IPv6 socket as well,
603	 * because the socket may be bound to an IPv6 wildcard address,
604	 * which may match an IPv4-mapped IPv6 address.
605	 */
606	inp->inp_ip_ttl = ip_defttl;
607	inp->inp_ppcb = (caddr_t)tp;
608	return (tp);		/* XXX */
609}
610
611/*
612 * Drop a TCP connection, reporting
613 * the specified error.  If connection is synchronized,
614 * then send a RST to peer.
615 */
616struct tcpcb *
617tcp_drop(tp, errno)
618	register struct tcpcb *tp;
619	int errno;
620{
621	struct socket *so = tp->t_inpcb->inp_socket;
622
623	if (TCPS_HAVERCVDSYN(tp->t_state)) {
624		tp->t_state = TCPS_CLOSED;
625		(void) tcp_output(tp);
626		tcpstat.tcps_drops++;
627	} else
628		tcpstat.tcps_conndrops++;
629	if (errno == ETIMEDOUT && tp->t_softerror)
630		errno = tp->t_softerror;
631	so->so_error = errno;
632	return (tcp_close(tp));
633}
634
635static void
636tcp_discardcb(tp)
637	struct tcpcb *tp;
638{
639	struct tseg_qent *q;
640	struct inpcb *inp = tp->t_inpcb;
641	struct socket *so = inp->inp_socket;
642#ifdef INET6
643	int isipv6 = (inp->inp_vflag & INP_IPV6) != 0;
644#endif /* INET6 */
645	struct rtentry *rt;
646	int dosavessthresh;
647
648	/*
649	 * Make sure that all of our timers are stopped before we
650	 * delete the PCB.
651	 */
652	callout_stop(tp->tt_rexmt);
653	callout_stop(tp->tt_persist);
654	callout_stop(tp->tt_keep);
655	callout_stop(tp->tt_2msl);
656	callout_stop(tp->tt_delack);
657
658	/*
659	 * If we got enough samples through the srtt filter,
660	 * save the rtt and rttvar in the routing entry.
661	 * 'Enough' is arbitrarily defined as the 16 samples.
662	 * 16 samples is enough for the srtt filter to converge
663	 * to within 5% of the correct value; fewer samples and
664	 * we could save a very bogus rtt.
665	 *
666	 * Don't update the default route's characteristics and don't
667	 * update anything that the user "locked".
668	 */
669	if (tp->t_rttupdated >= 16) {
670		register u_long i = 0;
671#ifdef INET6
672		if (isipv6) {
673			struct sockaddr_in6 *sin6;
674
675			if ((rt = inp->in6p_route.ro_rt) == NULL)
676				goto no_valid_rt;
677			sin6 = (struct sockaddr_in6 *)rt_key(rt);
678			if (IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr))
679				goto no_valid_rt;
680		}
681		else
682#endif /* INET6 */
683		if ((rt = inp->inp_route.ro_rt) == NULL ||
684		    ((struct sockaddr_in *)rt_key(rt))->sin_addr.s_addr
685		    == INADDR_ANY)
686			goto no_valid_rt;
687
688		if ((rt->rt_rmx.rmx_locks & RTV_RTT) == 0) {
689			i = tp->t_srtt *
690			    (RTM_RTTUNIT / (hz * TCP_RTT_SCALE));
691			if (rt->rt_rmx.rmx_rtt && i)
692				/*
693				 * filter this update to half the old & half
694				 * the new values, converting scale.
695				 * See route.h and tcp_var.h for a
696				 * description of the scaling constants.
697				 */
698				rt->rt_rmx.rmx_rtt =
699				    (rt->rt_rmx.rmx_rtt + i) / 2;
700			else
701				rt->rt_rmx.rmx_rtt = i;
702			tcpstat.tcps_cachedrtt++;
703		}
704		if ((rt->rt_rmx.rmx_locks & RTV_RTTVAR) == 0) {
705			i = tp->t_rttvar *
706			    (RTM_RTTUNIT / (hz * TCP_RTTVAR_SCALE));
707			if (rt->rt_rmx.rmx_rttvar && i)
708				rt->rt_rmx.rmx_rttvar =
709				    (rt->rt_rmx.rmx_rttvar + i) / 2;
710			else
711				rt->rt_rmx.rmx_rttvar = i;
712			tcpstat.tcps_cachedrttvar++;
713		}
714		/*
715		 * The old comment here said:
716		 * update the pipelimit (ssthresh) if it has been updated
717		 * already or if a pipesize was specified & the threshhold
718		 * got below half the pipesize.  I.e., wait for bad news
719		 * before we start updating, then update on both good
720		 * and bad news.
721		 *
722		 * But we want to save the ssthresh even if no pipesize is
723		 * specified explicitly in the route, because such
724		 * connections still have an implicit pipesize specified
725		 * by the global tcp_sendspace.  In the absence of a reliable
726		 * way to calculate the pipesize, it will have to do.
727		 */
728		i = tp->snd_ssthresh;
729		if (rt->rt_rmx.rmx_sendpipe != 0)
730			dosavessthresh = (i < rt->rt_rmx.rmx_sendpipe / 2);
731		else
732			dosavessthresh = (i < so->so_snd.sb_hiwat / 2);
733		if (((rt->rt_rmx.rmx_locks & RTV_SSTHRESH) == 0 &&
734		     i != 0 && rt->rt_rmx.rmx_ssthresh != 0)
735		    || dosavessthresh) {
736			/*
737			 * convert the limit from user data bytes to
738			 * packets then to packet data bytes.
739			 */
740			i = (i + tp->t_maxseg / 2) / tp->t_maxseg;
741			if (i < 2)
742				i = 2;
743			i *= (u_long)(tp->t_maxseg +
744#ifdef INET6
745				      (isipv6 ? sizeof (struct ip6_hdr) +
746					       sizeof (struct tcphdr) :
747#endif
748				       sizeof (struct tcpiphdr)
749#ifdef INET6
750				       )
751#endif
752				      );
753			if (rt->rt_rmx.rmx_ssthresh)
754				rt->rt_rmx.rmx_ssthresh =
755				    (rt->rt_rmx.rmx_ssthresh + i) / 2;
756			else
757				rt->rt_rmx.rmx_ssthresh = i;
758			tcpstat.tcps_cachedssthresh++;
759		}
760	}
761    no_valid_rt:
762	/* free the reassembly queue, if any */
763	while ((q = LIST_FIRST(&tp->t_segq)) != NULL) {
764		LIST_REMOVE(q, tqe_q);
765		m_freem(q->tqe_m);
766		FREE(q, M_TSEGQ);
767	}
768	inp->inp_ppcb = NULL;
769	tp->t_inpcb = NULL;
770	uma_zfree(tcpcb_zone, tp);
771	soisdisconnected(so);
772}
773
774/*
775 * Close a TCP control block:
776 *    discard all space held by the tcp
777 *    discard internet protocol block
778 *    wake up any sleepers
779 */
780struct tcpcb *
781tcp_close(tp)
782	struct tcpcb *tp;
783{
784	struct inpcb *inp = tp->t_inpcb;
785#ifdef INET6
786	struct socket *so = inp->inp_socket;
787#endif
788
789	tcp_discardcb(tp);
790#ifdef INET6
791	if (INP_CHECK_SOCKAF(so, AF_INET6))
792		in6_pcbdetach(inp);
793	else
794#endif
795		in_pcbdetach(inp);
796	tcpstat.tcps_closed++;
797	return ((struct tcpcb *)0);
798}
799
800void
801tcp_drain()
802{
803	if (do_tcpdrain)
804	{
805		struct inpcb *inpb;
806		struct tcpcb *tcpb;
807		struct tseg_qent *te;
808
809	/*
810	 * Walk the tcpbs, if existing, and flush the reassembly queue,
811	 * if there is one...
812	 * XXX: The "Net/3" implementation doesn't imply that the TCP
813	 *      reassembly queue should be flushed, but in a situation
814	 * 	where we're really low on mbufs, this is potentially
815	 *  	usefull.
816	 */
817		INP_INFO_RLOCK(&tcbinfo);
818		LIST_FOREACH(inpb, tcbinfo.listhead, inp_list) {
819			if (inpb->inp_vflag & INP_TIMEWAIT)
820				continue;
821			INP_LOCK(inpb);
822			if ((tcpb = intotcpcb(inpb))) {
823				while ((te = LIST_FIRST(&tcpb->t_segq))
824			            != NULL) {
825					LIST_REMOVE(te, tqe_q);
826					m_freem(te->tqe_m);
827					FREE(te, M_TSEGQ);
828				}
829			}
830			INP_UNLOCK(inpb);
831		}
832		INP_INFO_RUNLOCK(&tcbinfo);
833	}
834}
835
836/*
837 * Notify a tcp user of an asynchronous error;
838 * store error as soft error, but wake up user
839 * (for now, won't do anything until can select for soft error).
840 *
841 * Do not wake up user since there currently is no mechanism for
842 * reporting soft errors (yet - a kqueue filter may be added).
843 */
844static struct inpcb *
845tcp_notify(inp, error)
846	struct inpcb *inp;
847	int error;
848{
849	struct tcpcb *tp = (struct tcpcb *)inp->inp_ppcb;
850
851	/*
852	 * Ignore some errors if we are hooked up.
853	 * If connection hasn't completed, has retransmitted several times,
854	 * and receives a second error, give up now.  This is better
855	 * than waiting a long time to establish a connection that
856	 * can never complete.
857	 */
858	if (tp->t_state == TCPS_ESTABLISHED &&
859	    (error == EHOSTUNREACH || error == ENETUNREACH ||
860	     error == EHOSTDOWN)) {
861		return inp;
862	} else if (tp->t_state < TCPS_ESTABLISHED && tp->t_rxtshift > 3 &&
863	    tp->t_softerror) {
864		tcp_drop(tp, error);
865		return (struct inpcb *)0;
866	} else {
867		tp->t_softerror = error;
868		return inp;
869	}
870#if 0
871	wakeup( &so->so_timeo);
872	sorwakeup(so);
873	sowwakeup(so);
874#endif
875}
876
877static int
878tcp_pcblist(SYSCTL_HANDLER_ARGS)
879{
880	int error, i, n, s;
881	struct inpcb *inp, **inp_list;
882	inp_gen_t gencnt;
883	struct xinpgen xig;
884
885	/*
886	 * The process of preparing the TCB list is too time-consuming and
887	 * resource-intensive to repeat twice on every request.
888	 */
889	if (req->oldptr == 0) {
890		n = tcbinfo.ipi_count;
891		req->oldidx = 2 * (sizeof xig)
892			+ (n + n/8) * sizeof(struct xtcpcb);
893		return 0;
894	}
895
896	if (req->newptr != 0)
897		return EPERM;
898
899	/*
900	 * OK, now we're committed to doing something.
901	 */
902	s = splnet();
903	INP_INFO_RLOCK(&tcbinfo);
904	gencnt = tcbinfo.ipi_gencnt;
905	n = tcbinfo.ipi_count;
906	INP_INFO_RUNLOCK(&tcbinfo);
907	splx(s);
908
909	sysctl_wire_old_buffer(req, 2 * (sizeof xig)
910		+ n * sizeof(struct xtcpcb));
911
912	xig.xig_len = sizeof xig;
913	xig.xig_count = n;
914	xig.xig_gen = gencnt;
915	xig.xig_sogen = so_gencnt;
916	error = SYSCTL_OUT(req, &xig, sizeof xig);
917	if (error)
918		return error;
919
920	inp_list = malloc(n * sizeof *inp_list, M_TEMP, M_WAITOK);
921	if (inp_list == 0)
922		return ENOMEM;
923
924	s = splnet();
925	INP_INFO_RLOCK(&tcbinfo);
926	for (inp = LIST_FIRST(tcbinfo.listhead), i = 0; inp && i < n;
927	     inp = LIST_NEXT(inp, inp_list)) {
928		INP_LOCK(inp);
929		if (inp->inp_gencnt <= gencnt) {
930			/*
931			 * XXX: This use of cr_cansee(), introduced with
932			 * TCP state changes, is not quite right, but for
933			 * now, better than nothing.
934			 */
935			if (inp->inp_vflag & INP_TIMEWAIT)
936				error = cr_cansee(req->td->td_ucred,
937				    intotw(inp)->tw_cred);
938			else
939				error = cr_canseesocket(req->td->td_ucred,
940				    inp->inp_socket);
941			if (error == 0)
942				inp_list[i++] = inp;
943		}
944		INP_UNLOCK(inp);
945	}
946	INP_INFO_RUNLOCK(&tcbinfo);
947	splx(s);
948	n = i;
949
950	error = 0;
951	for (i = 0; i < n; i++) {
952		inp = inp_list[i];
953		if (inp->inp_gencnt <= gencnt) {
954			struct xtcpcb xt;
955			caddr_t inp_ppcb;
956			xt.xt_len = sizeof xt;
957			/* XXX should avoid extra copy */
958			bcopy(inp, &xt.xt_inp, sizeof *inp);
959			inp_ppcb = inp->inp_ppcb;
960			if (inp_ppcb == NULL)
961				bzero((char *) &xt.xt_tp, sizeof xt.xt_tp);
962			else if (inp->inp_vflag & INP_TIMEWAIT) {
963				bzero((char *) &xt.xt_tp, sizeof xt.xt_tp);
964				xt.xt_tp.t_state = TCPS_TIME_WAIT;
965			} else
966				bcopy(inp_ppcb, &xt.xt_tp, sizeof xt.xt_tp);
967			if (inp->inp_socket)
968				sotoxsocket(inp->inp_socket, &xt.xt_socket);
969			else {
970				bzero(&xt.xt_socket, sizeof xt.xt_socket);
971				xt.xt_socket.xso_protocol = IPPROTO_TCP;
972			}
973			xt.xt_inp.inp_gencnt = inp->inp_gencnt;
974			error = SYSCTL_OUT(req, &xt, sizeof xt);
975		}
976	}
977	if (!error) {
978		/*
979		 * Give the user an updated idea of our state.
980		 * If the generation differs from what we told
981		 * her before, she knows that something happened
982		 * while we were processing this request, and it
983		 * might be necessary to retry.
984		 */
985		s = splnet();
986		INP_INFO_RLOCK(&tcbinfo);
987		xig.xig_gen = tcbinfo.ipi_gencnt;
988		xig.xig_sogen = so_gencnt;
989		xig.xig_count = tcbinfo.ipi_count;
990		INP_INFO_RUNLOCK(&tcbinfo);
991		splx(s);
992		error = SYSCTL_OUT(req, &xig, sizeof xig);
993	}
994	free(inp_list, M_TEMP);
995	return error;
996}
997
998SYSCTL_PROC(_net_inet_tcp, TCPCTL_PCBLIST, pcblist, CTLFLAG_RD, 0, 0,
999	    tcp_pcblist, "S,xtcpcb", "List of active TCP connections");
1000
1001static int
1002tcp_getcred(SYSCTL_HANDLER_ARGS)
1003{
1004	struct xucred xuc;
1005	struct sockaddr_in addrs[2];
1006	struct inpcb *inp;
1007	int error, s;
1008
1009	error = suser_cred(req->td->td_ucred, PRISON_ROOT);
1010	if (error)
1011		return (error);
1012	error = SYSCTL_IN(req, addrs, sizeof(addrs));
1013	if (error)
1014		return (error);
1015	s = splnet();
1016	INP_INFO_RLOCK(&tcbinfo);
1017	inp = in_pcblookup_hash(&tcbinfo, addrs[1].sin_addr, addrs[1].sin_port,
1018	    addrs[0].sin_addr, addrs[0].sin_port, 0, NULL);
1019	if (inp == NULL) {
1020		error = ENOENT;
1021		goto outunlocked;
1022	}
1023	INP_LOCK(inp);
1024	if (inp->inp_socket == NULL) {
1025		error = ENOENT;
1026		goto out;
1027	}
1028	error = cr_canseesocket(req->td->td_ucred, inp->inp_socket);
1029	if (error)
1030		goto out;
1031	cru2x(inp->inp_socket->so_cred, &xuc);
1032out:
1033	INP_UNLOCK(inp);
1034outunlocked:
1035	INP_INFO_RUNLOCK(&tcbinfo);
1036	splx(s);
1037	if (error == 0)
1038		error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred));
1039	return (error);
1040}
1041
1042SYSCTL_PROC(_net_inet_tcp, OID_AUTO, getcred,
1043    CTLTYPE_OPAQUE|CTLFLAG_RW|CTLFLAG_PRISON, 0, 0,
1044    tcp_getcred, "S,xucred", "Get the xucred of a TCP connection");
1045
1046#ifdef INET6
1047static int
1048tcp6_getcred(SYSCTL_HANDLER_ARGS)
1049{
1050	struct xucred xuc;
1051	struct sockaddr_in6 addrs[2];
1052	struct inpcb *inp;
1053	int error, s, mapped = 0;
1054
1055	error = suser_cred(req->td->td_ucred, PRISON_ROOT);
1056	if (error)
1057		return (error);
1058	error = SYSCTL_IN(req, addrs, sizeof(addrs));
1059	if (error)
1060		return (error);
1061	if (IN6_IS_ADDR_V4MAPPED(&addrs[0].sin6_addr)) {
1062		if (IN6_IS_ADDR_V4MAPPED(&addrs[1].sin6_addr))
1063			mapped = 1;
1064		else
1065			return (EINVAL);
1066	}
1067	s = splnet();
1068	INP_INFO_RLOCK(&tcbinfo);
1069	if (mapped == 1)
1070		inp = in_pcblookup_hash(&tcbinfo,
1071			*(struct in_addr *)&addrs[1].sin6_addr.s6_addr[12],
1072			addrs[1].sin6_port,
1073			*(struct in_addr *)&addrs[0].sin6_addr.s6_addr[12],
1074			addrs[0].sin6_port,
1075			0, NULL);
1076	else
1077		inp = in6_pcblookup_hash(&tcbinfo, &addrs[1].sin6_addr,
1078				 addrs[1].sin6_port,
1079				 &addrs[0].sin6_addr, addrs[0].sin6_port,
1080				 0, NULL);
1081	if (inp == NULL) {
1082		error = ENOENT;
1083		goto outunlocked;
1084	}
1085	INP_LOCK(inp);
1086	if (inp->inp_socket == NULL) {
1087		error = ENOENT;
1088		goto out;
1089	}
1090	error = cr_canseesocket(req->td->td_ucred, inp->inp_socket);
1091	if (error)
1092		goto out;
1093	cru2x(inp->inp_socket->so_cred, &xuc);
1094out:
1095	INP_UNLOCK(inp);
1096outunlocked:
1097	INP_INFO_RUNLOCK(&tcbinfo);
1098	splx(s);
1099	if (error == 0)
1100		error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred));
1101	return (error);
1102}
1103
1104SYSCTL_PROC(_net_inet6_tcp6, OID_AUTO, getcred,
1105    CTLTYPE_OPAQUE|CTLFLAG_RW|CTLFLAG_PRISON, 0, 0,
1106    tcp6_getcred, "S,xucred", "Get the xucred of a TCP6 connection");
1107#endif
1108
1109
1110void
1111tcp_ctlinput(cmd, sa, vip)
1112	int cmd;
1113	struct sockaddr *sa;
1114	void *vip;
1115{
1116	struct ip *ip = vip;
1117	struct tcphdr *th;
1118	struct in_addr faddr;
1119	struct inpcb *inp;
1120	struct tcpcb *tp;
1121	struct inpcb *(*notify)(struct inpcb *, int) = tcp_notify;
1122	tcp_seq icmp_seq;
1123	int s;
1124
1125	faddr = ((struct sockaddr_in *)sa)->sin_addr;
1126	if (sa->sa_family != AF_INET || faddr.s_addr == INADDR_ANY)
1127		return;
1128
1129	if (cmd == PRC_QUENCH)
1130		notify = tcp_quench;
1131	else if (icmp_may_rst && (cmd == PRC_UNREACH_ADMIN_PROHIB ||
1132		cmd == PRC_UNREACH_PORT || cmd == PRC_TIMXCEED_INTRANS) && ip)
1133		notify = tcp_drop_syn_sent;
1134	else if (cmd == PRC_MSGSIZE)
1135		notify = tcp_mtudisc;
1136	else if (PRC_IS_REDIRECT(cmd)) {
1137		ip = 0;
1138		notify = in_rtchange;
1139	} else if (cmd == PRC_HOSTDEAD)
1140		ip = 0;
1141	else if ((unsigned)cmd >= PRC_NCMDS || inetctlerrmap[cmd] == 0)
1142		return;
1143	if (ip) {
1144		s = splnet();
1145		th = (struct tcphdr *)((caddr_t)ip
1146				       + (ip->ip_hl << 2));
1147		INP_INFO_WLOCK(&tcbinfo);
1148		inp = in_pcblookup_hash(&tcbinfo, faddr, th->th_dport,
1149		    ip->ip_src, th->th_sport, 0, NULL);
1150		if (inp != NULL)  {
1151			INP_LOCK(inp);
1152			if (inp->inp_socket != NULL) {
1153				icmp_seq = htonl(th->th_seq);
1154				tp = intotcpcb(inp);
1155				if (SEQ_GEQ(icmp_seq, tp->snd_una) &&
1156			    		SEQ_LT(icmp_seq, tp->snd_max))
1157					inp = (*notify)(inp, inetctlerrmap[cmd]);
1158			}
1159			if (inp)
1160				INP_UNLOCK(inp);
1161		} else {
1162			struct in_conninfo inc;
1163
1164			inc.inc_fport = th->th_dport;
1165			inc.inc_lport = th->th_sport;
1166			inc.inc_faddr = faddr;
1167			inc.inc_laddr = ip->ip_src;
1168#ifdef INET6
1169			inc.inc_isipv6 = 0;
1170#endif
1171			syncache_unreach(&inc, th);
1172		}
1173		INP_INFO_WUNLOCK(&tcbinfo);
1174		splx(s);
1175	} else
1176		in_pcbnotifyall(&tcbinfo, faddr, inetctlerrmap[cmd], notify);
1177}
1178
1179#ifdef INET6
1180void
1181tcp6_ctlinput(cmd, sa, d)
1182	int cmd;
1183	struct sockaddr *sa;
1184	void *d;
1185{
1186	struct tcphdr th;
1187	struct inpcb *(*notify)(struct inpcb *, int) = tcp_notify;
1188	struct ip6_hdr *ip6;
1189	struct mbuf *m;
1190	struct ip6ctlparam *ip6cp = NULL;
1191	const struct sockaddr_in6 *sa6_src = NULL;
1192	int off;
1193	struct tcp_portonly {
1194		u_int16_t th_sport;
1195		u_int16_t th_dport;
1196	} *thp;
1197
1198	if (sa->sa_family != AF_INET6 ||
1199	    sa->sa_len != sizeof(struct sockaddr_in6))
1200		return;
1201
1202	if (cmd == PRC_QUENCH)
1203		notify = tcp_quench;
1204	else if (cmd == PRC_MSGSIZE)
1205		notify = tcp_mtudisc;
1206	else if (!PRC_IS_REDIRECT(cmd) &&
1207		 ((unsigned)cmd >= PRC_NCMDS || inet6ctlerrmap[cmd] == 0))
1208		return;
1209
1210	/* if the parameter is from icmp6, decode it. */
1211	if (d != NULL) {
1212		ip6cp = (struct ip6ctlparam *)d;
1213		m = ip6cp->ip6c_m;
1214		ip6 = ip6cp->ip6c_ip6;
1215		off = ip6cp->ip6c_off;
1216		sa6_src = ip6cp->ip6c_src;
1217	} else {
1218		m = NULL;
1219		ip6 = NULL;
1220		off = 0;	/* fool gcc */
1221		sa6_src = &sa6_any;
1222	}
1223
1224	if (ip6) {
1225		struct in_conninfo inc;
1226		/*
1227		 * XXX: We assume that when IPV6 is non NULL,
1228		 * M and OFF are valid.
1229		 */
1230
1231		/* check if we can safely examine src and dst ports */
1232		if (m->m_pkthdr.len < off + sizeof(*thp))
1233			return;
1234
1235		bzero(&th, sizeof(th));
1236		m_copydata(m, off, sizeof(*thp), (caddr_t)&th);
1237
1238		in6_pcbnotify(&tcb, sa, th.th_dport,
1239		    (struct sockaddr *)ip6cp->ip6c_src,
1240		    th.th_sport, cmd, notify);
1241
1242		inc.inc_fport = th.th_dport;
1243		inc.inc_lport = th.th_sport;
1244		inc.inc6_faddr = ((struct sockaddr_in6 *)sa)->sin6_addr;
1245		inc.inc6_laddr = ip6cp->ip6c_src->sin6_addr;
1246		inc.inc_isipv6 = 1;
1247		syncache_unreach(&inc, &th);
1248	} else
1249		in6_pcbnotify(&tcb, sa, 0, (const struct sockaddr *)sa6_src,
1250			      0, cmd, notify);
1251}
1252#endif /* INET6 */
1253
1254
1255/*
1256 * Following is where TCP initial sequence number generation occurs.
1257 *
1258 * There are two places where we must use initial sequence numbers:
1259 * 1.  In SYN-ACK packets.
1260 * 2.  In SYN packets.
1261 *
1262 * All ISNs for SYN-ACK packets are generated by the syncache.  See
1263 * tcp_syncache.c for details.
1264 *
1265 * The ISNs in SYN packets must be monotonic; TIME_WAIT recycling
1266 * depends on this property.  In addition, these ISNs should be
1267 * unguessable so as to prevent connection hijacking.  To satisfy
1268 * the requirements of this situation, the algorithm outlined in
1269 * RFC 1948 is used to generate sequence numbers.
1270 *
1271 * Implementation details:
1272 *
1273 * Time is based off the system timer, and is corrected so that it
1274 * increases by one megabyte per second.  This allows for proper
1275 * recycling on high speed LANs while still leaving over an hour
1276 * before rollover.
1277 *
1278 * net.inet.tcp.isn_reseed_interval controls the number of seconds
1279 * between seeding of isn_secret.  This is normally set to zero,
1280 * as reseeding should not be necessary.
1281 *
1282 */
1283
1284#define ISN_BYTES_PER_SECOND 1048576
1285
1286u_char isn_secret[32];
1287int isn_last_reseed;
1288MD5_CTX isn_ctx;
1289
1290tcp_seq
1291tcp_new_isn(tp)
1292	struct tcpcb *tp;
1293{
1294	u_int32_t md5_buffer[4];
1295	tcp_seq new_isn;
1296
1297	/* Seed if this is the first use, reseed if requested. */
1298	if ((isn_last_reseed == 0) || ((tcp_isn_reseed_interval > 0) &&
1299	     (((u_int)isn_last_reseed + (u_int)tcp_isn_reseed_interval*hz)
1300		< (u_int)ticks))) {
1301		read_random(&isn_secret, sizeof(isn_secret));
1302		isn_last_reseed = ticks;
1303	}
1304
1305	/* Compute the md5 hash and return the ISN. */
1306	MD5Init(&isn_ctx);
1307	MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_fport, sizeof(u_short));
1308	MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_lport, sizeof(u_short));
1309#ifdef INET6
1310	if ((tp->t_inpcb->inp_vflag & INP_IPV6) != 0) {
1311		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_faddr,
1312			  sizeof(struct in6_addr));
1313		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_laddr,
1314			  sizeof(struct in6_addr));
1315	} else
1316#endif
1317	{
1318		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_faddr,
1319			  sizeof(struct in_addr));
1320		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_laddr,
1321			  sizeof(struct in_addr));
1322	}
1323	MD5Update(&isn_ctx, (u_char *) &isn_secret, sizeof(isn_secret));
1324	MD5Final((u_char *) &md5_buffer, &isn_ctx);
1325	new_isn = (tcp_seq) md5_buffer[0];
1326	new_isn += ticks * (ISN_BYTES_PER_SECOND / hz);
1327	return new_isn;
1328}
1329
1330/*
1331 * When a source quench is received, close congestion window
1332 * to one segment.  We will gradually open it again as we proceed.
1333 */
1334struct inpcb *
1335tcp_quench(inp, errno)
1336	struct inpcb *inp;
1337	int errno;
1338{
1339	struct tcpcb *tp = intotcpcb(inp);
1340
1341	if (tp)
1342		tp->snd_cwnd = tp->t_maxseg;
1343	return (inp);
1344}
1345
1346/*
1347 * When a specific ICMP unreachable message is received and the
1348 * connection state is SYN-SENT, drop the connection.  This behavior
1349 * is controlled by the icmp_may_rst sysctl.
1350 */
1351struct inpcb *
1352tcp_drop_syn_sent(inp, errno)
1353	struct inpcb *inp;
1354	int errno;
1355{
1356	struct tcpcb *tp = intotcpcb(inp);
1357
1358	if (tp && tp->t_state == TCPS_SYN_SENT) {
1359		tcp_drop(tp, errno);
1360		return (struct inpcb *)0;
1361	}
1362	return inp;
1363}
1364
1365/*
1366 * When `need fragmentation' ICMP is received, update our idea of the MSS
1367 * based on the new value in the route.  Also nudge TCP to send something,
1368 * since we know the packet we just sent was dropped.
1369 * This duplicates some code in the tcp_mss() function in tcp_input.c.
1370 */
1371struct inpcb *
1372tcp_mtudisc(inp, errno)
1373	struct inpcb *inp;
1374	int errno;
1375{
1376	struct tcpcb *tp = intotcpcb(inp);
1377	struct rtentry *rt;
1378	struct rmxp_tao *taop;
1379	struct socket *so = inp->inp_socket;
1380	int offered;
1381	int mss;
1382#ifdef INET6
1383	int isipv6 = (tp->t_inpcb->inp_vflag & INP_IPV6) != 0;
1384#endif /* INET6 */
1385
1386	if (tp) {
1387#ifdef INET6
1388		if (isipv6)
1389			rt = tcp_rtlookup6(&inp->inp_inc);
1390		else
1391#endif /* INET6 */
1392		rt = tcp_rtlookup(&inp->inp_inc);
1393		if (!rt || !rt->rt_rmx.rmx_mtu) {
1394			tp->t_maxopd = tp->t_maxseg =
1395#ifdef INET6
1396				isipv6 ? tcp_v6mssdflt :
1397#endif /* INET6 */
1398				tcp_mssdflt;
1399			return inp;
1400		}
1401		taop = rmx_taop(rt->rt_rmx);
1402		offered = taop->tao_mssopt;
1403		mss = rt->rt_rmx.rmx_mtu -
1404#ifdef INET6
1405			(isipv6 ?
1406			 sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
1407#endif /* INET6 */
1408			 sizeof(struct tcpiphdr)
1409#ifdef INET6
1410			 )
1411#endif /* INET6 */
1412			;
1413
1414		if (offered)
1415			mss = min(mss, offered);
1416		/*
1417		 * XXX - The above conditional probably violates the TCP
1418		 * spec.  The problem is that, since we don't know the
1419		 * other end's MSS, we are supposed to use a conservative
1420		 * default.  But, if we do that, then MTU discovery will
1421		 * never actually take place, because the conservative
1422		 * default is much less than the MTUs typically seen
1423		 * on the Internet today.  For the moment, we'll sweep
1424		 * this under the carpet.
1425		 *
1426		 * The conservative default might not actually be a problem
1427		 * if the only case this occurs is when sending an initial
1428		 * SYN with options and data to a host we've never talked
1429		 * to before.  Then, they will reply with an MSS value which
1430		 * will get recorded and the new parameters should get
1431		 * recomputed.  For Further Study.
1432		 */
1433		if (tp->t_maxopd <= mss)
1434			return inp;
1435		tp->t_maxopd = mss;
1436
1437		if ((tp->t_flags & (TF_REQ_TSTMP|TF_NOOPT)) == TF_REQ_TSTMP &&
1438		    (tp->t_flags & TF_RCVD_TSTMP) == TF_RCVD_TSTMP)
1439			mss -= TCPOLEN_TSTAMP_APPA;
1440		if ((tp->t_flags & (TF_REQ_CC|TF_NOOPT)) == TF_REQ_CC &&
1441		    (tp->t_flags & TF_RCVD_CC) == TF_RCVD_CC)
1442			mss -= TCPOLEN_CC_APPA;
1443#if	(MCLBYTES & (MCLBYTES - 1)) == 0
1444		if (mss > MCLBYTES)
1445			mss &= ~(MCLBYTES-1);
1446#else
1447		if (mss > MCLBYTES)
1448			mss = mss / MCLBYTES * MCLBYTES;
1449#endif
1450		if (so->so_snd.sb_hiwat < mss)
1451			mss = so->so_snd.sb_hiwat;
1452
1453		tp->t_maxseg = mss;
1454
1455		tcpstat.tcps_mturesent++;
1456		tp->t_rtttime = 0;
1457		tp->snd_nxt = tp->snd_una;
1458		tcp_output(tp);
1459	}
1460	return inp;
1461}
1462
1463/*
1464 * Look-up the routing entry to the peer of this inpcb.  If no route
1465 * is found and it cannot be allocated, then return NULL.  This routine
1466 * is called by TCP routines that access the rmx structure and by tcp_mss
1467 * to get the interface MTU.
1468 */
1469struct rtentry *
1470tcp_rtlookup(inc)
1471	struct in_conninfo *inc;
1472{
1473	struct route *ro;
1474	struct rtentry *rt;
1475
1476	ro = &inc->inc_route;
1477	rt = ro->ro_rt;
1478	if (rt == NULL || !(rt->rt_flags & RTF_UP)) {
1479		/* No route yet, so try to acquire one */
1480		if (inc->inc_faddr.s_addr != INADDR_ANY) {
1481			ro->ro_dst.sa_family = AF_INET;
1482			ro->ro_dst.sa_len = sizeof(struct sockaddr_in);
1483			((struct sockaddr_in *) &ro->ro_dst)->sin_addr =
1484			    inc->inc_faddr;
1485			rtalloc(ro);
1486			rt = ro->ro_rt;
1487		}
1488	}
1489	return rt;
1490}
1491
1492#ifdef INET6
1493struct rtentry *
1494tcp_rtlookup6(inc)
1495	struct in_conninfo *inc;
1496{
1497	struct route_in6 *ro6;
1498	struct rtentry *rt;
1499
1500	ro6 = &inc->inc6_route;
1501	rt = ro6->ro_rt;
1502	if (rt == NULL || !(rt->rt_flags & RTF_UP)) {
1503		/* No route yet, so try to acquire one */
1504		if (!IN6_IS_ADDR_UNSPECIFIED(&inc->inc6_faddr)) {
1505			ro6->ro_dst.sin6_family = AF_INET6;
1506			ro6->ro_dst.sin6_len = sizeof(struct sockaddr_in6);
1507			ro6->ro_dst.sin6_addr = inc->inc6_faddr;
1508			rtalloc((struct route *)ro6);
1509			rt = ro6->ro_rt;
1510		}
1511	}
1512	return rt;
1513}
1514#endif /* INET6 */
1515
1516#ifdef IPSEC
1517/* compute ESP/AH header size for TCP, including outer IP header. */
1518size_t
1519ipsec_hdrsiz_tcp(tp)
1520	struct tcpcb *tp;
1521{
1522	struct inpcb *inp;
1523	struct mbuf *m;
1524	size_t hdrsiz;
1525	struct ip *ip;
1526#ifdef INET6
1527	struct ip6_hdr *ip6;
1528#endif
1529	struct tcphdr *th;
1530
1531	if ((tp == NULL) || ((inp = tp->t_inpcb) == NULL))
1532		return 0;
1533	MGETHDR(m, M_DONTWAIT, MT_DATA);
1534	if (!m)
1535		return 0;
1536
1537#ifdef INET6
1538	if ((inp->inp_vflag & INP_IPV6) != 0) {
1539		ip6 = mtod(m, struct ip6_hdr *);
1540		th = (struct tcphdr *)(ip6 + 1);
1541		m->m_pkthdr.len = m->m_len =
1542			sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
1543		tcpip_fillheaders(inp, ip6, th);
1544		hdrsiz = ipsec6_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
1545	} else
1546#endif /* INET6 */
1547      {
1548	ip = mtod(m, struct ip *);
1549	th = (struct tcphdr *)(ip + 1);
1550	m->m_pkthdr.len = m->m_len = sizeof(struct tcpiphdr);
1551	tcpip_fillheaders(inp, ip, th);
1552	hdrsiz = ipsec4_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
1553      }
1554
1555	m_free(m);
1556	return hdrsiz;
1557}
1558#endif /*IPSEC*/
1559
1560/*
1561 * Return a pointer to the cached information about the remote host.
1562 * The cached information is stored in the protocol specific part of
1563 * the route metrics.
1564 */
1565struct rmxp_tao *
1566tcp_gettaocache(inc)
1567	struct in_conninfo *inc;
1568{
1569	struct rtentry *rt;
1570
1571#ifdef INET6
1572	if (inc->inc_isipv6)
1573		rt = tcp_rtlookup6(inc);
1574	else
1575#endif /* INET6 */
1576	rt = tcp_rtlookup(inc);
1577
1578	/* Make sure this is a host route and is up. */
1579	if (rt == NULL ||
1580	    (rt->rt_flags & (RTF_UP|RTF_HOST)) != (RTF_UP|RTF_HOST))
1581		return NULL;
1582
1583	return rmx_taop(rt->rt_rmx);
1584}
1585
1586/*
1587 * Clear all the TAO cache entries, called from tcp_init.
1588 *
1589 * XXX
1590 * This routine is just an empty one, because we assume that the routing
1591 * routing tables are initialized at the same time when TCP, so there is
1592 * nothing in the cache left over.
1593 */
1594static void
1595tcp_cleartaocache()
1596{
1597}
1598
1599/*
1600 * Move a TCP connection into TIME_WAIT state.
1601 *    tcbinfo is unlocked.
1602 *    inp is locked, and is unlocked before returning.
1603 */
1604void
1605tcp_twstart(tp)
1606	struct tcpcb *tp;
1607{
1608	struct tcptw *tw;
1609	struct inpcb *inp;
1610	int tw_time, acknow;
1611	struct socket *so;
1612
1613	tw = uma_zalloc(tcptw_zone, M_NOWAIT);
1614	if (tw == NULL) {
1615		tw = tcp_timer_2msl_tw(1);
1616		if (tw == NULL) {
1617			tcp_close(tp);
1618			return;
1619		}
1620	}
1621	inp = tp->t_inpcb;
1622	tw->tw_inpcb = inp;
1623
1624	/*
1625	 * Recover last window size sent.
1626	 */
1627	tw->last_win = (tp->rcv_adv - tp->rcv_nxt) >> tp->rcv_scale;
1628
1629	/*
1630	 * Set t_recent if timestamps are used on the connection.
1631	 */
1632        if ((tp->t_flags & (TF_REQ_TSTMP|TF_RCVD_TSTMP|TF_NOOPT)) ==
1633            (TF_REQ_TSTMP|TF_RCVD_TSTMP))
1634		tw->t_recent = tp->ts_recent;
1635	else
1636		tw->t_recent = 0;
1637
1638	tw->snd_nxt = tp->snd_nxt;
1639	tw->rcv_nxt = tp->rcv_nxt;
1640	tw->iss     = tp->iss;
1641	tw->cc_recv = tp->cc_recv;
1642	tw->cc_send = tp->cc_send;
1643	tw->t_starttime = tp->t_starttime;
1644	tw->tw_time = 0;
1645
1646/* XXX
1647 * If this code will
1648 * be used for fin-wait-2 state also, then we may need
1649 * a ts_recent from the last segment.
1650 */
1651	/* Shorten TIME_WAIT [RFC-1644, p.28] */
1652	if (tp->cc_recv != 0 && (ticks - tp->t_starttime) < tcp_msl) {
1653		tw_time = tp->t_rxtcur * TCPTV_TWTRUNC;
1654		/* For T/TCP client, force ACK now. */
1655		acknow = 1;
1656	} else {
1657		tw_time = 2 * tcp_msl;
1658		acknow = tp->t_flags & TF_ACKNOW;
1659	}
1660	tcp_discardcb(tp);
1661	so = inp->inp_socket;
1662	so->so_pcb = NULL;
1663	tw->tw_cred = crhold(so->so_cred);
1664	tw->tw_so_options = so->so_options;
1665	if (acknow)
1666		tcp_twrespond(tw, so, NULL, TH_ACK);
1667	sotryfree(so);
1668	inp->inp_socket = NULL;
1669	inp->inp_ppcb = (caddr_t)tw;
1670	inp->inp_vflag |= INP_TIMEWAIT;
1671	tcp_timer_2msl_reset(tw, tw_time);
1672	INP_UNLOCK(inp);
1673}
1674
1675/*
1676 * Determine if the ISN we will generate has advanced beyond the last
1677 * sequence number used by the previous connection.  If so, indicate
1678 * that it is safe to recycle this tw socket by returning 1.
1679 */
1680int
1681tcp_twrecycleable(struct tcptw *tw)
1682{
1683	tcp_seq new_isn = tw->iss;
1684
1685	new_isn += (ticks - tw->t_starttime) * (ISN_BYTES_PER_SECOND / hz);
1686
1687	if (SEQ_GT(new_isn, tw->snd_nxt))
1688		return 1;
1689	else
1690		return 0;
1691}
1692
1693struct tcptw *
1694tcp_twclose(struct tcptw *tw, int reuse)
1695{
1696	struct inpcb *inp;
1697
1698	inp = tw->tw_inpcb;
1699	tw->tw_inpcb = NULL;
1700	tcp_timer_2msl_stop(tw);
1701	inp->inp_ppcb = NULL;
1702#ifdef INET6
1703	if (inp->inp_vflag & INP_IPV6PROTO)
1704		in6_pcbdetach(inp);
1705	else
1706#endif
1707		in_pcbdetach(inp);
1708	tcpstat.tcps_closed++;
1709	if (reuse)
1710		return (tw);
1711	uma_zfree(tcptw_zone, tw);
1712	return (NULL);
1713}
1714
1715/*
1716 * One of so and msrc must be non-NULL for use by the MAC Framework to
1717 * construct a label for ay resulting packet.
1718 */
1719int
1720tcp_twrespond(struct tcptw *tw, struct socket *so, struct mbuf *msrc,
1721    int flags)
1722{
1723	struct inpcb *inp = tw->tw_inpcb;
1724	struct tcphdr *th;
1725	struct mbuf *m;
1726	struct ip *ip = NULL;
1727	u_int8_t *optp;
1728	u_int hdrlen, optlen;
1729	int error;
1730#ifdef INET6
1731	struct ip6_hdr *ip6 = NULL;
1732	int isipv6 = inp->inp_inc.inc_isipv6;
1733#endif
1734
1735	KASSERT(so != NULL || msrc != NULL,
1736	    ("tcp_twrespond: so and msrc NULL"));
1737
1738	m = m_gethdr(M_DONTWAIT, MT_HEADER);
1739	if (m == NULL)
1740		return (ENOBUFS);
1741	m->m_data += max_linkhdr;
1742
1743#ifdef MAC
1744	if (so != NULL)
1745		mac_create_mbuf_from_socket(so, m);
1746	else
1747		mac_create_mbuf_netlayer(msrc, m);
1748#endif
1749
1750#ifdef INET6
1751	if (isipv6) {
1752		hdrlen = sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
1753		ip6 = mtod(m, struct ip6_hdr *);
1754		th = (struct tcphdr *)(ip6 + 1);
1755		tcpip_fillheaders(inp, ip6, th);
1756	} else
1757#endif
1758	{
1759		hdrlen = sizeof(struct tcpiphdr);
1760		ip = mtod(m, struct ip *);
1761		th = (struct tcphdr *)(ip + 1);
1762		tcpip_fillheaders(inp, ip, th);
1763	}
1764	optp = (u_int8_t *)(th + 1);
1765
1766 	/*
1767	 * Send a timestamp and echo-reply if both our side and our peer
1768	 * have sent timestamps in our SYN's and this is not a RST.
1769 	 */
1770	if (tw->t_recent && flags == TH_ACK) {
1771		u_int32_t *lp = (u_int32_t *)optp;
1772
1773 		/* Form timestamp option as shown in appendix A of RFC 1323. */
1774 		*lp++ = htonl(TCPOPT_TSTAMP_HDR);
1775 		*lp++ = htonl(ticks);
1776 		*lp   = htonl(tw->t_recent);
1777 		optp += TCPOLEN_TSTAMP_APPA;
1778 	}
1779
1780 	/*
1781	 * Send `CC-family' options if needed, and it's not a RST.
1782 	 */
1783	if (tw->cc_recv != 0 && flags == TH_ACK) {
1784		u_int32_t *lp = (u_int32_t *)optp;
1785
1786		*lp++ = htonl(TCPOPT_CC_HDR(TCPOPT_CC));
1787		*lp   = htonl(tw->cc_send);
1788		optp += TCPOLEN_CC_APPA;
1789 	}
1790	optlen = optp - (u_int8_t *)(th + 1);
1791
1792	m->m_len = hdrlen + optlen;
1793	m->m_pkthdr.len = m->m_len;
1794
1795	KASSERT(max_linkhdr + m->m_len <= MHLEN, ("tcptw: mbuf too small"));
1796
1797	th->th_seq = htonl(tw->snd_nxt);
1798	th->th_ack = htonl(tw->rcv_nxt);
1799	th->th_off = (sizeof(struct tcphdr) + optlen) >> 2;
1800	th->th_flags = flags;
1801	th->th_win = htons(tw->last_win);
1802
1803#ifdef INET6
1804	if (isipv6) {
1805		th->th_sum = in6_cksum(m, IPPROTO_TCP, sizeof(struct ip6_hdr),
1806		    sizeof(struct tcphdr) + optlen);
1807		ip6->ip6_hlim = in6_selecthlim(inp, inp->in6p_route.ro_rt ?
1808		    inp->in6p_route.ro_rt->rt_ifp : NULL);
1809		error = ip6_output(m, inp->in6p_outputopts, &inp->in6p_route,
1810		    (tw->tw_so_options & SO_DONTROUTE), NULL, NULL, inp);
1811	} else
1812#endif
1813	{
1814		th->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
1815                    htons(sizeof(struct tcphdr) + optlen + IPPROTO_TCP));
1816		m->m_pkthdr.csum_flags = CSUM_TCP;
1817		m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
1818		ip->ip_len = m->m_pkthdr.len;
1819		error = ip_output(m, inp->inp_options, &inp->inp_route,
1820		    (tw->tw_so_options & SO_DONTROUTE), NULL, inp);
1821	}
1822	if (flags & TH_ACK)
1823		tcpstat.tcps_sndacks++;
1824	else
1825		tcpstat.tcps_sndctrl++;
1826	tcpstat.tcps_sndtotal++;
1827	return (error);
1828}
1829
1830/*
1831 * TCP BANDWIDTH DELAY PRODUCT WINDOW LIMITING
1832 *
1833 * This code attempts to calculate the bandwidth-delay product as a
1834 * means of determining the optimal window size to maximize bandwidth,
1835 * minimize RTT, and avoid the over-allocation of buffers on interfaces and
1836 * routers.  This code also does a fairly good job keeping RTTs in check
1837 * across slow links like modems.  We implement an algorithm which is very
1838 * similar (but not meant to be) TCP/Vegas.  The code operates on the
1839 * transmitter side of a TCP connection and so only effects the transmit
1840 * side of the connection.
1841 *
1842 * BACKGROUND:  TCP makes no provision for the management of buffer space
1843 * at the end points or at the intermediate routers and switches.  A TCP
1844 * stream, whether using NewReno or not, will eventually buffer as
1845 * many packets as it is able and the only reason this typically works is
1846 * due to the fairly small default buffers made available for a connection
1847 * (typicaly 16K or 32K).  As machines use larger windows and/or window
1848 * scaling it is now fairly easy for even a single TCP connection to blow-out
1849 * all available buffer space not only on the local interface, but on
1850 * intermediate routers and switches as well.  NewReno makes a misguided
1851 * attempt to 'solve' this problem by waiting for an actual failure to occur,
1852 * then backing off, then steadily increasing the window again until another
1853 * failure occurs, ad-infinitum.  This results in terrible oscillation that
1854 * is only made worse as network loads increase and the idea of intentionally
1855 * blowing out network buffers is, frankly, a terrible way to manage network
1856 * resources.
1857 *
1858 * It is far better to limit the transmit window prior to the failure
1859 * condition being achieved.  There are two general ways to do this:  First
1860 * you can 'scan' through different transmit window sizes and locate the
1861 * point where the RTT stops increasing, indicating that you have filled the
1862 * pipe, then scan backwards until you note that RTT stops decreasing, then
1863 * repeat ad-infinitum.  This method works in principle but has severe
1864 * implementation issues due to RTT variances, timer granularity, and
1865 * instability in the algorithm which can lead to many false positives and
1866 * create oscillations as well as interact badly with other TCP streams
1867 * implementing the same algorithm.
1868 *
1869 * The second method is to limit the window to the bandwidth delay product
1870 * of the link.  This is the method we implement.  RTT variances and our
1871 * own manipulation of the congestion window, bwnd, can potentially
1872 * destabilize the algorithm.  For this reason we have to stabilize the
1873 * elements used to calculate the window.  We do this by using the minimum
1874 * observed RTT, the long term average of the observed bandwidth, and
1875 * by adding two segments worth of slop.  It isn't perfect but it is able
1876 * to react to changing conditions and gives us a very stable basis on
1877 * which to extend the algorithm.
1878 */
1879void
1880tcp_xmit_bandwidth_limit(struct tcpcb *tp, tcp_seq ack_seq)
1881{
1882	u_long bw;
1883	u_long bwnd;
1884	int save_ticks;
1885
1886	/*
1887	 * If inflight_enable is disabled in the middle of a tcp connection,
1888	 * make sure snd_bwnd is effectively disabled.
1889	 */
1890	if (tcp_inflight_enable == 0) {
1891		tp->snd_bwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
1892		tp->snd_bandwidth = 0;
1893		return;
1894	}
1895
1896	/*
1897	 * Figure out the bandwidth.  Due to the tick granularity this
1898	 * is a very rough number and it MUST be averaged over a fairly
1899	 * long period of time.  XXX we need to take into account a link
1900	 * that is not using all available bandwidth, but for now our
1901	 * slop will ramp us up if this case occurs and the bandwidth later
1902	 * increases.
1903	 *
1904	 * Note: if ticks rollover 'bw' may wind up negative.  We must
1905	 * effectively reset t_bw_rtttime for this case.
1906	 */
1907	save_ticks = ticks;
1908	if ((u_int)(save_ticks - tp->t_bw_rtttime) < 1)
1909		return;
1910
1911	bw = (int64_t)(ack_seq - tp->t_bw_rtseq) * hz /
1912	    (save_ticks - tp->t_bw_rtttime);
1913	tp->t_bw_rtttime = save_ticks;
1914	tp->t_bw_rtseq = ack_seq;
1915	if (tp->t_bw_rtttime == 0 || (int)bw < 0)
1916		return;
1917	bw = ((int64_t)tp->snd_bandwidth * 15 + bw) >> 4;
1918
1919	tp->snd_bandwidth = bw;
1920
1921	/*
1922	 * Calculate the semi-static bandwidth delay product, plus two maximal
1923	 * segments.  The additional slop puts us squarely in the sweet
1924	 * spot and also handles the bandwidth run-up case and stabilization.
1925	 * Without the slop we could be locking ourselves into a lower
1926	 * bandwidth.
1927	 *
1928	 * Situations Handled:
1929	 *	(1) Prevents over-queueing of packets on LANs, especially on
1930	 *	    high speed LANs, allowing larger TCP buffers to be
1931	 *	    specified, and also does a good job preventing
1932	 *	    over-queueing of packets over choke points like modems
1933	 *	    (at least for the transmit side).
1934	 *
1935	 *	(2) Is able to handle changing network loads (bandwidth
1936	 *	    drops so bwnd drops, bandwidth increases so bwnd
1937	 *	    increases).
1938	 *
1939	 *	(3) Theoretically should stabilize in the face of multiple
1940	 *	    connections implementing the same algorithm (this may need
1941	 *	    a little work).
1942	 *
1943	 *	(4) Stability value (defaults to 20 = 2 maximal packets) can
1944	 *	    be adjusted with a sysctl but typically only needs to be
1945	 *	    on very slow connections.  A value no smaller then 5
1946	 *	    should be used, but only reduce this default if you have
1947	 *	    no other choice.
1948	 */
1949#define USERTT	((tp->t_srtt + tp->t_rttbest) / 2)
1950	bwnd = (int64_t)bw * USERTT / (hz << TCP_RTT_SHIFT) + tcp_inflight_stab * tp->t_maxseg / 10;
1951#undef USERTT
1952
1953	if (tcp_inflight_debug > 0) {
1954		static int ltime;
1955		if ((u_int)(ticks - ltime) >= hz / tcp_inflight_debug) {
1956			ltime = ticks;
1957			printf("%p bw %ld rttbest %d srtt %d bwnd %ld\n",
1958			    tp,
1959			    bw,
1960			    tp->t_rttbest,
1961			    tp->t_srtt,
1962			    bwnd
1963			);
1964		}
1965	}
1966	if ((long)bwnd < tcp_inflight_min)
1967		bwnd = tcp_inflight_min;
1968	if (bwnd > tcp_inflight_max)
1969		bwnd = tcp_inflight_max;
1970	if ((long)bwnd < tp->t_maxseg * 2)
1971		bwnd = tp->t_maxseg * 2;
1972	tp->snd_bwnd = bwnd;
1973}
1974
1975