tcp_timewait.c revision 108265
1/*
2 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 *    must display the following acknowledgement:
15 *	This product includes software developed by the University of
16 *	California, Berkeley and its contributors.
17 * 4. Neither the name of the University nor the names of its contributors
18 *    may be used to endorse or promote products derived from this software
19 *    without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
32 *
33 *	@(#)tcp_subr.c	8.2 (Berkeley) 5/24/95
34 * $FreeBSD: head/sys/netinet/tcp_timewait.c 108265 2002-12-24 21:00:31Z hsu $
35 */
36
37#include "opt_compat.h"
38#include "opt_inet6.h"
39#include "opt_ipsec.h"
40#include "opt_mac.h"
41#include "opt_tcpdebug.h"
42
43#include <sys/param.h>
44#include <sys/systm.h>
45#include <sys/callout.h>
46#include <sys/kernel.h>
47#include <sys/sysctl.h>
48#include <sys/mac.h>
49#include <sys/malloc.h>
50#include <sys/mbuf.h>
51#ifdef INET6
52#include <sys/domain.h>
53#endif
54#include <sys/proc.h>
55#include <sys/socket.h>
56#include <sys/socketvar.h>
57#include <sys/protosw.h>
58#include <sys/random.h>
59
60#include <vm/uma.h>
61
62#include <net/route.h>
63#include <net/if.h>
64
65#include <netinet/in.h>
66#include <netinet/in_systm.h>
67#include <netinet/ip.h>
68#ifdef INET6
69#include <netinet/ip6.h>
70#endif
71#include <netinet/in_pcb.h>
72#ifdef INET6
73#include <netinet6/in6_pcb.h>
74#endif
75#include <netinet/in_var.h>
76#include <netinet/ip_var.h>
77#ifdef INET6
78#include <netinet6/ip6_var.h>
79#endif
80#include <netinet/tcp.h>
81#include <netinet/tcp_fsm.h>
82#include <netinet/tcp_seq.h>
83#include <netinet/tcp_timer.h>
84#include <netinet/tcp_var.h>
85#ifdef INET6
86#include <netinet6/tcp6_var.h>
87#endif
88#include <netinet/tcpip.h>
89#ifdef TCPDEBUG
90#include <netinet/tcp_debug.h>
91#endif
92#include <netinet6/ip6protosw.h>
93
94#ifdef IPSEC
95#include <netinet6/ipsec.h>
96#ifdef INET6
97#include <netinet6/ipsec6.h>
98#endif
99#endif /*IPSEC*/
100
101#ifdef FAST_IPSEC
102#include <netipsec/ipsec.h>
103#ifdef INET6
104#include <netipsec/ipsec6.h>
105#endif
106#define	IPSEC
107#endif /*FAST_IPSEC*/
108
109#include <machine/in_cksum.h>
110#include <sys/md5.h>
111
112int 	tcp_mssdflt = TCP_MSS;
113SYSCTL_INT(_net_inet_tcp, TCPCTL_MSSDFLT, mssdflt, CTLFLAG_RW,
114    &tcp_mssdflt , 0, "Default TCP Maximum Segment Size");
115
116#ifdef INET6
117int	tcp_v6mssdflt = TCP6_MSS;
118SYSCTL_INT(_net_inet_tcp, TCPCTL_V6MSSDFLT, v6mssdflt,
119	CTLFLAG_RW, &tcp_v6mssdflt , 0,
120	"Default TCP Maximum Segment Size for IPv6");
121#endif
122
123#if 0
124static int 	tcp_rttdflt = TCPTV_SRTTDFLT / PR_SLOWHZ;
125SYSCTL_INT(_net_inet_tcp, TCPCTL_RTTDFLT, rttdflt, CTLFLAG_RW,
126    &tcp_rttdflt , 0, "Default maximum TCP Round Trip Time");
127#endif
128
129int	tcp_do_rfc1323 = 1;
130SYSCTL_INT(_net_inet_tcp, TCPCTL_DO_RFC1323, rfc1323, CTLFLAG_RW,
131    &tcp_do_rfc1323 , 0, "Enable rfc1323 (high performance TCP) extensions");
132
133int	tcp_do_rfc1644 = 0;
134SYSCTL_INT(_net_inet_tcp, TCPCTL_DO_RFC1644, rfc1644, CTLFLAG_RW,
135    &tcp_do_rfc1644 , 0, "Enable rfc1644 (TTCP) extensions");
136
137static int	tcp_tcbhashsize = 0;
138SYSCTL_INT(_net_inet_tcp, OID_AUTO, tcbhashsize, CTLFLAG_RD,
139     &tcp_tcbhashsize, 0, "Size of TCP control-block hashtable");
140
141static int	do_tcpdrain = 1;
142SYSCTL_INT(_net_inet_tcp, OID_AUTO, do_tcpdrain, CTLFLAG_RW, &do_tcpdrain, 0,
143     "Enable tcp_drain routine for extra help when low on mbufs");
144
145SYSCTL_INT(_net_inet_tcp, OID_AUTO, pcbcount, CTLFLAG_RD,
146    &tcbinfo.ipi_count, 0, "Number of active PCBs");
147
148static int	icmp_may_rst = 1;
149SYSCTL_INT(_net_inet_tcp, OID_AUTO, icmp_may_rst, CTLFLAG_RW, &icmp_may_rst, 0,
150    "Certain ICMP unreachable messages may abort connections in SYN_SENT");
151
152static int	tcp_isn_reseed_interval = 0;
153SYSCTL_INT(_net_inet_tcp, OID_AUTO, isn_reseed_interval, CTLFLAG_RW,
154    &tcp_isn_reseed_interval, 0, "Seconds between reseeding of ISN secret");
155
156/*
157 * TCP bandwidth limiting sysctls.  Note that the default lower bound of
158 * 1024 exists only for debugging.  A good production default would be
159 * something like 6100.
160 */
161static int	tcp_inflight_enable = 0;
162SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_enable, CTLFLAG_RW,
163    &tcp_inflight_enable, 0, "Enable automatic TCP inflight data limiting");
164
165static int	tcp_inflight_debug = 0;
166SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_debug, CTLFLAG_RW,
167    &tcp_inflight_debug, 0, "Debug TCP inflight calculations");
168
169static int	tcp_inflight_min = 6144;
170SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_min, CTLFLAG_RW,
171    &tcp_inflight_min, 0, "Lower-bound for TCP inflight window");
172
173static int	tcp_inflight_max = TCP_MAXWIN << TCP_MAX_WINSHIFT;
174SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_max, CTLFLAG_RW,
175    &tcp_inflight_max, 0, "Upper-bound for TCP inflight window");
176static int	tcp_inflight_stab = 20;
177SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_stab, CTLFLAG_RW,
178    &tcp_inflight_stab, 0, "Inflight Algorithm Stabilization 20 = 2 packets");
179
180static void	tcp_cleartaocache(void);
181static struct inpcb *tcp_notify(struct inpcb *, int);
182
183/*
184 * Target size of TCP PCB hash tables. Must be a power of two.
185 *
186 * Note that this can be overridden by the kernel environment
187 * variable net.inet.tcp.tcbhashsize
188 */
189#ifndef TCBHASHSIZE
190#define TCBHASHSIZE	512
191#endif
192
193/*
194 * This is the actual shape of what we allocate using the zone
195 * allocator.  Doing it this way allows us to protect both structures
196 * using the same generation count, and also eliminates the overhead
197 * of allocating tcpcbs separately.  By hiding the structure here,
198 * we avoid changing most of the rest of the code (although it needs
199 * to be changed, eventually, for greater efficiency).
200 */
201#define	ALIGNMENT	32
202#define	ALIGNM1		(ALIGNMENT - 1)
203struct	inp_tp {
204	union {
205		struct	inpcb inp;
206		char	align[(sizeof(struct inpcb) + ALIGNM1) & ~ALIGNM1];
207	} inp_tp_u;
208	struct	tcpcb tcb;
209	struct	callout inp_tp_rexmt, inp_tp_persist, inp_tp_keep, inp_tp_2msl;
210	struct	callout inp_tp_delack;
211};
212#undef ALIGNMENT
213#undef ALIGNM1
214
215/*
216 * Tcp initialization
217 */
218void
219tcp_init()
220{
221	int hashsize = TCBHASHSIZE;
222
223	tcp_ccgen = 1;
224	tcp_cleartaocache();
225
226	tcp_delacktime = TCPTV_DELACK;
227	tcp_keepinit = TCPTV_KEEP_INIT;
228	tcp_keepidle = TCPTV_KEEP_IDLE;
229	tcp_keepintvl = TCPTV_KEEPINTVL;
230	tcp_maxpersistidle = TCPTV_KEEP_IDLE;
231	tcp_msl = TCPTV_MSL;
232	tcp_rexmit_min = TCPTV_MIN;
233	tcp_rexmit_slop = TCPTV_CPU_VAR;
234
235	INP_INFO_LOCK_INIT(&tcbinfo, "tcp");
236	LIST_INIT(&tcb);
237	tcbinfo.listhead = &tcb;
238	TUNABLE_INT_FETCH("net.inet.tcp.tcbhashsize", &hashsize);
239	if (!powerof2(hashsize)) {
240		printf("WARNING: TCB hash size not a power of 2\n");
241		hashsize = 512; /* safe default */
242	}
243	tcp_tcbhashsize = hashsize;
244	tcbinfo.hashbase = hashinit(hashsize, M_PCB, &tcbinfo.hashmask);
245	tcbinfo.porthashbase = hashinit(hashsize, M_PCB,
246					&tcbinfo.porthashmask);
247	tcbinfo.ipi_zone = uma_zcreate("tcpcb", sizeof(struct inp_tp),
248	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
249	uma_zone_set_max(tcbinfo.ipi_zone, maxsockets);
250#ifdef INET6
251#define TCP_MINPROTOHDR (sizeof(struct ip6_hdr) + sizeof(struct tcphdr))
252#else /* INET6 */
253#define TCP_MINPROTOHDR (sizeof(struct tcpiphdr))
254#endif /* INET6 */
255	if (max_protohdr < TCP_MINPROTOHDR)
256		max_protohdr = TCP_MINPROTOHDR;
257	if (max_linkhdr + TCP_MINPROTOHDR > MHLEN)
258		panic("tcp_init");
259#undef TCP_MINPROTOHDR
260
261	syncache_init();
262}
263
264/*
265 * Fill in the IP and TCP headers for an outgoing packet, given the tcpcb.
266 * tcp_template used to store this data in mbufs, but we now recopy it out
267 * of the tcpcb each time to conserve mbufs.
268 */
269void
270tcp_fillheaders(tp, ip_ptr, tcp_ptr)
271	struct tcpcb *tp;
272	void *ip_ptr;
273	void *tcp_ptr;
274{
275	struct inpcb *inp = tp->t_inpcb;
276	struct tcphdr *tcp_hdr = (struct tcphdr *)tcp_ptr;
277
278#ifdef INET6
279	if ((inp->inp_vflag & INP_IPV6) != 0) {
280		struct ip6_hdr *ip6;
281
282		ip6 = (struct ip6_hdr *)ip_ptr;
283		ip6->ip6_flow = (ip6->ip6_flow & ~IPV6_FLOWINFO_MASK) |
284			(inp->in6p_flowinfo & IPV6_FLOWINFO_MASK);
285		ip6->ip6_vfc = (ip6->ip6_vfc & ~IPV6_VERSION_MASK) |
286			(IPV6_VERSION & IPV6_VERSION_MASK);
287		ip6->ip6_nxt = IPPROTO_TCP;
288		ip6->ip6_plen = sizeof(struct tcphdr);
289		ip6->ip6_src = inp->in6p_laddr;
290		ip6->ip6_dst = inp->in6p_faddr;
291		tcp_hdr->th_sum = 0;
292	} else
293#endif
294	{
295	struct ip *ip = (struct ip *) ip_ptr;
296
297	ip->ip_v = IPVERSION;
298	ip->ip_hl = 5;
299	ip->ip_tos = 0;
300	ip->ip_len = 0;
301	ip->ip_id = 0;
302	ip->ip_off = 0;
303	ip->ip_ttl = 0;
304	ip->ip_sum = 0;
305	ip->ip_p = IPPROTO_TCP;
306	ip->ip_src = inp->inp_laddr;
307	ip->ip_dst = inp->inp_faddr;
308	tcp_hdr->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
309		htons(sizeof(struct tcphdr) + IPPROTO_TCP));
310	}
311
312	tcp_hdr->th_sport = inp->inp_lport;
313	tcp_hdr->th_dport = inp->inp_fport;
314	tcp_hdr->th_seq = 0;
315	tcp_hdr->th_ack = 0;
316	tcp_hdr->th_x2 = 0;
317	tcp_hdr->th_off = 5;
318	tcp_hdr->th_flags = 0;
319	tcp_hdr->th_win = 0;
320	tcp_hdr->th_urp = 0;
321}
322
323/*
324 * Create template to be used to send tcp packets on a connection.
325 * Allocates an mbuf and fills in a skeletal tcp/ip header.  The only
326 * use for this function is in keepalives, which use tcp_respond.
327 */
328struct tcptemp *
329tcp_maketemplate(tp)
330	struct tcpcb *tp;
331{
332	struct mbuf *m;
333	struct tcptemp *n;
334
335	m = m_get(M_DONTWAIT, MT_HEADER);
336	if (m == NULL)
337		return (0);
338	m->m_len = sizeof(struct tcptemp);
339	n = mtod(m, struct tcptemp *);
340
341	tcp_fillheaders(tp, (void *)&n->tt_ipgen, (void *)&n->tt_t);
342	return (n);
343}
344
345/*
346 * Send a single message to the TCP at address specified by
347 * the given TCP/IP header.  If m == 0, then we make a copy
348 * of the tcpiphdr at ti and send directly to the addressed host.
349 * This is used to force keep alive messages out using the TCP
350 * template for a connection.  If flags are given then we send
351 * a message back to the TCP which originated the * segment ti,
352 * and discard the mbuf containing it and any other attached mbufs.
353 *
354 * In any case the ack and sequence number of the transmitted
355 * segment are as specified by the parameters.
356 *
357 * NOTE: If m != NULL, then ti must point to *inside* the mbuf.
358 */
359void
360tcp_respond(tp, ipgen, th, m, ack, seq, flags)
361	struct tcpcb *tp;
362	void *ipgen;
363	register struct tcphdr *th;
364	register struct mbuf *m;
365	tcp_seq ack, seq;
366	int flags;
367{
368	register int tlen;
369	int win = 0;
370	struct route *ro = 0;
371	struct route sro;
372	struct ip *ip;
373	struct tcphdr *nth;
374#ifdef INET6
375	struct route_in6 *ro6 = 0;
376	struct route_in6 sro6;
377	struct ip6_hdr *ip6;
378	int isipv6;
379#endif /* INET6 */
380	int ipflags = 0;
381
382	KASSERT(tp != NULL || m != NULL, ("tcp_respond: tp and m both NULL"));
383
384#ifdef INET6
385	isipv6 = ((struct ip *)ipgen)->ip_v == 6;
386	ip6 = ipgen;
387#endif /* INET6 */
388	ip = ipgen;
389
390	if (tp) {
391		if (!(flags & TH_RST)) {
392			win = sbspace(&tp->t_inpcb->inp_socket->so_rcv);
393			if (win > (long)TCP_MAXWIN << tp->rcv_scale)
394				win = (long)TCP_MAXWIN << tp->rcv_scale;
395		}
396#ifdef INET6
397		if (isipv6)
398			ro6 = &tp->t_inpcb->in6p_route;
399		else
400#endif /* INET6 */
401		ro = &tp->t_inpcb->inp_route;
402	} else {
403#ifdef INET6
404		if (isipv6) {
405			ro6 = &sro6;
406			bzero(ro6, sizeof *ro6);
407		} else
408#endif /* INET6 */
409	      {
410		ro = &sro;
411		bzero(ro, sizeof *ro);
412	      }
413	}
414	if (m == 0) {
415		m = m_gethdr(M_DONTWAIT, MT_HEADER);
416		if (m == NULL)
417			return;
418		tlen = 0;
419		m->m_data += max_linkhdr;
420#ifdef INET6
421		if (isipv6) {
422			bcopy((caddr_t)ip6, mtod(m, caddr_t),
423			      sizeof(struct ip6_hdr));
424			ip6 = mtod(m, struct ip6_hdr *);
425			nth = (struct tcphdr *)(ip6 + 1);
426		} else
427#endif /* INET6 */
428	      {
429		bcopy((caddr_t)ip, mtod(m, caddr_t), sizeof(struct ip));
430		ip = mtod(m, struct ip *);
431		nth = (struct tcphdr *)(ip + 1);
432	      }
433		bcopy((caddr_t)th, (caddr_t)nth, sizeof(struct tcphdr));
434		flags = TH_ACK;
435	} else {
436		m_freem(m->m_next);
437		m->m_next = 0;
438		m->m_data = (caddr_t)ipgen;
439		/* m_len is set later */
440		tlen = 0;
441#define xchg(a,b,type) { type t; t=a; a=b; b=t; }
442#ifdef INET6
443		if (isipv6) {
444			xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr);
445			nth = (struct tcphdr *)(ip6 + 1);
446		} else
447#endif /* INET6 */
448	      {
449		xchg(ip->ip_dst.s_addr, ip->ip_src.s_addr, n_long);
450		nth = (struct tcphdr *)(ip + 1);
451	      }
452		if (th != nth) {
453			/*
454			 * this is usually a case when an extension header
455			 * exists between the IPv6 header and the
456			 * TCP header.
457			 */
458			nth->th_sport = th->th_sport;
459			nth->th_dport = th->th_dport;
460		}
461		xchg(nth->th_dport, nth->th_sport, n_short);
462#undef xchg
463	}
464#ifdef INET6
465	if (isipv6) {
466		ip6->ip6_flow = 0;
467		ip6->ip6_vfc = IPV6_VERSION;
468		ip6->ip6_nxt = IPPROTO_TCP;
469		ip6->ip6_plen = htons((u_short)(sizeof (struct tcphdr) +
470						tlen));
471		tlen += sizeof (struct ip6_hdr) + sizeof (struct tcphdr);
472	} else
473#endif
474      {
475	tlen += sizeof (struct tcpiphdr);
476	ip->ip_len = tlen;
477	ip->ip_ttl = ip_defttl;
478      }
479	m->m_len = tlen;
480	m->m_pkthdr.len = tlen;
481	m->m_pkthdr.rcvif = (struct ifnet *) 0;
482#ifdef MAC
483	if (tp != NULL) {
484		/*
485		 * Packet is associated with a socket, so allow the
486		 * label of the response to reflect the socket label.
487		 */
488		mac_create_mbuf_from_socket(tp->t_inpcb->inp_socket, m);
489	} else {
490		/*
491		 * XXXMAC: This will need to call a mac function that
492		 * modifies the mbuf label in place for TCP datagrams
493		 * not associated with a PCB.
494		 */
495	}
496#endif
497	nth->th_seq = htonl(seq);
498	nth->th_ack = htonl(ack);
499	nth->th_x2 = 0;
500	nth->th_off = sizeof (struct tcphdr) >> 2;
501	nth->th_flags = flags;
502	if (tp)
503		nth->th_win = htons((u_short) (win >> tp->rcv_scale));
504	else
505		nth->th_win = htons((u_short)win);
506	nth->th_urp = 0;
507#ifdef INET6
508	if (isipv6) {
509		nth->th_sum = 0;
510		nth->th_sum = in6_cksum(m, IPPROTO_TCP,
511					sizeof(struct ip6_hdr),
512					tlen - sizeof(struct ip6_hdr));
513		ip6->ip6_hlim = in6_selecthlim(tp ? tp->t_inpcb : NULL,
514					       ro6 && ro6->ro_rt ?
515					       ro6->ro_rt->rt_ifp :
516					       NULL);
517	} else
518#endif /* INET6 */
519      {
520        nth->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
521	    htons((u_short)(tlen - sizeof(struct ip) + ip->ip_p)));
522        m->m_pkthdr.csum_flags = CSUM_TCP;
523        m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
524      }
525#ifdef TCPDEBUG
526	if (tp == NULL || (tp->t_inpcb->inp_socket->so_options & SO_DEBUG))
527		tcp_trace(TA_OUTPUT, 0, tp, mtod(m, void *), th, 0);
528#endif
529#ifdef INET6
530	if (isipv6) {
531		(void)ip6_output(m, NULL, ro6, ipflags, NULL, NULL,
532			tp ? tp->t_inpcb : NULL);
533		if (ro6 == &sro6 && ro6->ro_rt) {
534			RTFREE(ro6->ro_rt);
535			ro6->ro_rt = NULL;
536		}
537	} else
538#endif /* INET6 */
539      {
540	(void) ip_output(m, NULL, ro, ipflags, NULL, tp ? tp->t_inpcb : NULL);
541	if (ro == &sro && ro->ro_rt) {
542		RTFREE(ro->ro_rt);
543		ro->ro_rt = NULL;
544	}
545      }
546}
547
548/*
549 * Create a new TCP control block, making an
550 * empty reassembly queue and hooking it to the argument
551 * protocol control block.  The `inp' parameter must have
552 * come from the zone allocator set up in tcp_init().
553 */
554struct tcpcb *
555tcp_newtcpcb(inp)
556	struct inpcb *inp;
557{
558	struct inp_tp *it;
559	register struct tcpcb *tp;
560#ifdef INET6
561	int isipv6 = (inp->inp_vflag & INP_IPV6) != 0;
562#endif /* INET6 */
563
564	it = (struct inp_tp *)inp;
565	tp = &it->tcb;
566	bzero((char *) tp, sizeof(struct tcpcb));
567	LIST_INIT(&tp->t_segq);
568	tp->t_maxseg = tp->t_maxopd =
569#ifdef INET6
570		isipv6 ? tcp_v6mssdflt :
571#endif /* INET6 */
572		tcp_mssdflt;
573
574	/* Set up our timeouts. */
575	callout_init(tp->tt_rexmt = &it->inp_tp_rexmt, 0);
576	callout_init(tp->tt_persist = &it->inp_tp_persist, 0);
577	callout_init(tp->tt_keep = &it->inp_tp_keep, 0);
578	callout_init(tp->tt_2msl = &it->inp_tp_2msl, 0);
579	callout_init(tp->tt_delack = &it->inp_tp_delack, 0);
580
581	if (tcp_do_rfc1323)
582		tp->t_flags = (TF_REQ_SCALE|TF_REQ_TSTMP);
583	if (tcp_do_rfc1644)
584		tp->t_flags |= TF_REQ_CC;
585	tp->t_inpcb = inp;	/* XXX */
586	/*
587	 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
588	 * rtt estimate.  Set rttvar so that srtt + 4 * rttvar gives
589	 * reasonable initial retransmit time.
590	 */
591	tp->t_srtt = TCPTV_SRTTBASE;
592	tp->t_rttvar = ((TCPTV_RTOBASE - TCPTV_SRTTBASE) << TCP_RTTVAR_SHIFT) / 4;
593	tp->t_rttmin = tcp_rexmit_min;
594	tp->t_rxtcur = TCPTV_RTOBASE;
595	tp->snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
596	tp->snd_bwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
597	tp->snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT;
598	tp->t_rcvtime = ticks;
599	tp->t_bw_rtttime = ticks;
600        /*
601	 * IPv4 TTL initialization is necessary for an IPv6 socket as well,
602	 * because the socket may be bound to an IPv6 wildcard address,
603	 * which may match an IPv4-mapped IPv6 address.
604	 */
605	inp->inp_ip_ttl = ip_defttl;
606	inp->inp_ppcb = (caddr_t)tp;
607	return (tp);		/* XXX */
608}
609
610/*
611 * Drop a TCP connection, reporting
612 * the specified error.  If connection is synchronized,
613 * then send a RST to peer.
614 */
615struct tcpcb *
616tcp_drop(tp, errno)
617	register struct tcpcb *tp;
618	int errno;
619{
620	struct socket *so = tp->t_inpcb->inp_socket;
621
622	if (TCPS_HAVERCVDSYN(tp->t_state)) {
623		tp->t_state = TCPS_CLOSED;
624		(void) tcp_output(tp);
625		tcpstat.tcps_drops++;
626	} else
627		tcpstat.tcps_conndrops++;
628	if (errno == ETIMEDOUT && tp->t_softerror)
629		errno = tp->t_softerror;
630	so->so_error = errno;
631	return (tcp_close(tp));
632}
633
634/*
635 * Close a TCP control block:
636 *	discard all space held by the tcp
637 *	discard internet protocol block
638 *	wake up any sleepers
639 */
640struct tcpcb *
641tcp_close(tp)
642	register struct tcpcb *tp;
643{
644	register struct tseg_qent *q;
645	struct inpcb *inp = tp->t_inpcb;
646	struct socket *so = inp->inp_socket;
647#ifdef INET6
648	int isipv6 = (inp->inp_vflag & INP_IPV6) != 0;
649#endif /* INET6 */
650	register struct rtentry *rt;
651	int dosavessthresh;
652
653	/*
654	 * Make sure that all of our timers are stopped before we
655	 * delete the PCB.
656	 */
657	callout_stop(tp->tt_rexmt);
658	callout_stop(tp->tt_persist);
659	callout_stop(tp->tt_keep);
660	callout_stop(tp->tt_2msl);
661	callout_stop(tp->tt_delack);
662
663	/*
664	 * If we got enough samples through the srtt filter,
665	 * save the rtt and rttvar in the routing entry.
666	 * 'Enough' is arbitrarily defined as the 16 samples.
667	 * 16 samples is enough for the srtt filter to converge
668	 * to within 5% of the correct value; fewer samples and
669	 * we could save a very bogus rtt.
670	 *
671	 * Don't update the default route's characteristics and don't
672	 * update anything that the user "locked".
673	 */
674	if (tp->t_rttupdated >= 16) {
675		register u_long i = 0;
676#ifdef INET6
677		if (isipv6) {
678			struct sockaddr_in6 *sin6;
679
680			if ((rt = inp->in6p_route.ro_rt) == NULL)
681				goto no_valid_rt;
682			sin6 = (struct sockaddr_in6 *)rt_key(rt);
683			if (IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr))
684				goto no_valid_rt;
685		}
686		else
687#endif /* INET6 */
688		if ((rt = inp->inp_route.ro_rt) == NULL ||
689		    ((struct sockaddr_in *)rt_key(rt))->sin_addr.s_addr
690		    == INADDR_ANY)
691			goto no_valid_rt;
692
693		if ((rt->rt_rmx.rmx_locks & RTV_RTT) == 0) {
694			i = tp->t_srtt *
695			    (RTM_RTTUNIT / (hz * TCP_RTT_SCALE));
696			if (rt->rt_rmx.rmx_rtt && i)
697				/*
698				 * filter this update to half the old & half
699				 * the new values, converting scale.
700				 * See route.h and tcp_var.h for a
701				 * description of the scaling constants.
702				 */
703				rt->rt_rmx.rmx_rtt =
704				    (rt->rt_rmx.rmx_rtt + i) / 2;
705			else
706				rt->rt_rmx.rmx_rtt = i;
707			tcpstat.tcps_cachedrtt++;
708		}
709		if ((rt->rt_rmx.rmx_locks & RTV_RTTVAR) == 0) {
710			i = tp->t_rttvar *
711			    (RTM_RTTUNIT / (hz * TCP_RTTVAR_SCALE));
712			if (rt->rt_rmx.rmx_rttvar && i)
713				rt->rt_rmx.rmx_rttvar =
714				    (rt->rt_rmx.rmx_rttvar + i) / 2;
715			else
716				rt->rt_rmx.rmx_rttvar = i;
717			tcpstat.tcps_cachedrttvar++;
718		}
719		/*
720		 * The old comment here said:
721		 * update the pipelimit (ssthresh) if it has been updated
722		 * already or if a pipesize was specified & the threshhold
723		 * got below half the pipesize.  I.e., wait for bad news
724		 * before we start updating, then update on both good
725		 * and bad news.
726		 *
727		 * But we want to save the ssthresh even if no pipesize is
728		 * specified explicitly in the route, because such
729		 * connections still have an implicit pipesize specified
730		 * by the global tcp_sendspace.  In the absence of a reliable
731		 * way to calculate the pipesize, it will have to do.
732		 */
733		i = tp->snd_ssthresh;
734		if (rt->rt_rmx.rmx_sendpipe != 0)
735			dosavessthresh = (i < rt->rt_rmx.rmx_sendpipe / 2);
736		else
737			dosavessthresh = (i < so->so_snd.sb_hiwat / 2);
738		if (((rt->rt_rmx.rmx_locks & RTV_SSTHRESH) == 0 &&
739		     i != 0 && rt->rt_rmx.rmx_ssthresh != 0)
740		    || dosavessthresh) {
741			/*
742			 * convert the limit from user data bytes to
743			 * packets then to packet data bytes.
744			 */
745			i = (i + tp->t_maxseg / 2) / tp->t_maxseg;
746			if (i < 2)
747				i = 2;
748			i *= (u_long)(tp->t_maxseg +
749#ifdef INET6
750				      (isipv6 ? sizeof (struct ip6_hdr) +
751					       sizeof (struct tcphdr) :
752#endif
753				       sizeof (struct tcpiphdr)
754#ifdef INET6
755				       )
756#endif
757				      );
758			if (rt->rt_rmx.rmx_ssthresh)
759				rt->rt_rmx.rmx_ssthresh =
760				    (rt->rt_rmx.rmx_ssthresh + i) / 2;
761			else
762				rt->rt_rmx.rmx_ssthresh = i;
763			tcpstat.tcps_cachedssthresh++;
764		}
765	}
766    no_valid_rt:
767	/* free the reassembly queue, if any */
768	while((q = LIST_FIRST(&tp->t_segq)) != NULL) {
769		LIST_REMOVE(q, tqe_q);
770		m_freem(q->tqe_m);
771		FREE(q, M_TSEGQ);
772	}
773	inp->inp_ppcb = NULL;
774	tp->t_inpcb = NULL;
775	soisdisconnected(so);
776#ifdef INET6
777	if (INP_CHECK_SOCKAF(so, AF_INET6))
778		in6_pcbdetach(inp);
779	else
780#endif /* INET6 */
781	in_pcbdetach(inp);
782	tcpstat.tcps_closed++;
783	return ((struct tcpcb *)0);
784}
785
786void
787tcp_drain()
788{
789	if (do_tcpdrain)
790	{
791		struct inpcb *inpb;
792		struct tcpcb *tcpb;
793		struct tseg_qent *te;
794
795	/*
796	 * Walk the tcpbs, if existing, and flush the reassembly queue,
797	 * if there is one...
798	 * XXX: The "Net/3" implementation doesn't imply that the TCP
799	 *      reassembly queue should be flushed, but in a situation
800	 * 	where we're really low on mbufs, this is potentially
801	 *  	usefull.
802	 */
803		INP_INFO_RLOCK(&tcbinfo);
804		LIST_FOREACH(inpb, tcbinfo.listhead, inp_list) {
805			INP_LOCK(inpb);
806			if ((tcpb = intotcpcb(inpb))) {
807				while ((te = LIST_FIRST(&tcpb->t_segq))
808			            != NULL) {
809					LIST_REMOVE(te, tqe_q);
810					m_freem(te->tqe_m);
811					FREE(te, M_TSEGQ);
812				}
813			}
814			INP_UNLOCK(inpb);
815		}
816		INP_INFO_RUNLOCK(&tcbinfo);
817	}
818}
819
820/*
821 * Notify a tcp user of an asynchronous error;
822 * store error as soft error, but wake up user
823 * (for now, won't do anything until can select for soft error).
824 *
825 * Do not wake up user since there currently is no mechanism for
826 * reporting soft errors (yet - a kqueue filter may be added).
827 */
828static struct inpcb *
829tcp_notify(inp, error)
830	struct inpcb *inp;
831	int error;
832{
833	struct tcpcb *tp = (struct tcpcb *)inp->inp_ppcb;
834
835	/*
836	 * Ignore some errors if we are hooked up.
837	 * If connection hasn't completed, has retransmitted several times,
838	 * and receives a second error, give up now.  This is better
839	 * than waiting a long time to establish a connection that
840	 * can never complete.
841	 */
842	if (tp->t_state == TCPS_ESTABLISHED &&
843	     (error == EHOSTUNREACH || error == ENETUNREACH ||
844	      error == EHOSTDOWN)) {
845		return inp;
846	} else if (tp->t_state < TCPS_ESTABLISHED && tp->t_rxtshift > 3 &&
847	    tp->t_softerror) {
848		tcp_drop(tp, error);
849		return (struct inpcb *)0;
850	} else {
851		tp->t_softerror = error;
852		return inp;
853	}
854#if 0
855	wakeup((caddr_t) &so->so_timeo);
856	sorwakeup(so);
857	sowwakeup(so);
858#endif
859}
860
861static int
862tcp_pcblist(SYSCTL_HANDLER_ARGS)
863{
864	int error, i, n, s;
865	struct inpcb *inp, **inp_list;
866	inp_gen_t gencnt;
867	struct xinpgen xig;
868
869	/*
870	 * The process of preparing the TCB list is too time-consuming and
871	 * resource-intensive to repeat twice on every request.
872	 */
873	if (req->oldptr == 0) {
874		n = tcbinfo.ipi_count;
875		req->oldidx = 2 * (sizeof xig)
876			+ (n + n/8) * sizeof(struct xtcpcb);
877		return 0;
878	}
879
880	if (req->newptr != 0)
881		return EPERM;
882
883	/*
884	 * OK, now we're committed to doing something.
885	 */
886	s = splnet();
887	INP_INFO_RLOCK(&tcbinfo);
888	gencnt = tcbinfo.ipi_gencnt;
889	n = tcbinfo.ipi_count;
890	INP_INFO_RUNLOCK(&tcbinfo);
891	splx(s);
892
893	sysctl_wire_old_buffer(req, 2 * (sizeof xig)
894		+ n * sizeof(struct xtcpcb));
895
896	xig.xig_len = sizeof xig;
897	xig.xig_count = n;
898	xig.xig_gen = gencnt;
899	xig.xig_sogen = so_gencnt;
900	error = SYSCTL_OUT(req, &xig, sizeof xig);
901	if (error)
902		return error;
903
904	inp_list = malloc(n * sizeof *inp_list, M_TEMP, M_WAITOK);
905	if (inp_list == 0)
906		return ENOMEM;
907
908	s = splnet();
909	INP_INFO_RLOCK(&tcbinfo);
910	for (inp = LIST_FIRST(tcbinfo.listhead), i = 0; inp && i < n;
911	     inp = LIST_NEXT(inp, inp_list)) {
912		INP_LOCK(inp);
913		if (inp->inp_gencnt <= gencnt &&
914		    cr_canseesocket(req->td->td_ucred, inp->inp_socket) == 0)
915			inp_list[i++] = inp;
916		INP_UNLOCK(inp);
917	}
918	INP_INFO_RUNLOCK(&tcbinfo);
919	splx(s);
920	n = i;
921
922	error = 0;
923	for (i = 0; i < n; i++) {
924		inp = inp_list[i];
925		INP_LOCK(inp);
926		if (inp->inp_gencnt <= gencnt) {
927			struct xtcpcb xt;
928			caddr_t inp_ppcb;
929			xt.xt_len = sizeof xt;
930			/* XXX should avoid extra copy */
931			bcopy(inp, &xt.xt_inp, sizeof *inp);
932			inp_ppcb = inp->inp_ppcb;
933			if (inp_ppcb != NULL)
934				bcopy(inp_ppcb, &xt.xt_tp, sizeof xt.xt_tp);
935			else
936				bzero((char *) &xt.xt_tp, sizeof xt.xt_tp);
937			if (inp->inp_socket)
938				sotoxsocket(inp->inp_socket, &xt.xt_socket);
939			error = SYSCTL_OUT(req, &xt, sizeof xt);
940		}
941		INP_UNLOCK(inp);
942	}
943	if (!error) {
944		/*
945		 * Give the user an updated idea of our state.
946		 * If the generation differs from what we told
947		 * her before, she knows that something happened
948		 * while we were processing this request, and it
949		 * might be necessary to retry.
950		 */
951		s = splnet();
952		INP_INFO_RLOCK(&tcbinfo);
953		xig.xig_gen = tcbinfo.ipi_gencnt;
954		xig.xig_sogen = so_gencnt;
955		xig.xig_count = tcbinfo.ipi_count;
956		INP_INFO_RUNLOCK(&tcbinfo);
957		splx(s);
958		error = SYSCTL_OUT(req, &xig, sizeof xig);
959	}
960	free(inp_list, M_TEMP);
961	return error;
962}
963
964SYSCTL_PROC(_net_inet_tcp, TCPCTL_PCBLIST, pcblist, CTLFLAG_RD, 0, 0,
965	    tcp_pcblist, "S,xtcpcb", "List of active TCP connections");
966
967static int
968tcp_getcred(SYSCTL_HANDLER_ARGS)
969{
970	struct xucred xuc;
971	struct sockaddr_in addrs[2];
972	struct inpcb *inp;
973	int error, s;
974
975	error = suser_cred(req->td->td_ucred, PRISON_ROOT);
976	if (error)
977		return (error);
978	error = SYSCTL_IN(req, addrs, sizeof(addrs));
979	if (error)
980		return (error);
981	s = splnet();
982	INP_INFO_RLOCK(&tcbinfo);
983	inp = in_pcblookup_hash(&tcbinfo, addrs[1].sin_addr, addrs[1].sin_port,
984	    addrs[0].sin_addr, addrs[0].sin_port, 0, NULL);
985	if (inp == NULL) {
986		error = ENOENT;
987		goto outunlocked;
988	}
989	INP_LOCK(inp);
990	if (inp->inp_socket == NULL) {
991		error = ENOENT;
992		goto out;
993	}
994	error = cr_canseesocket(req->td->td_ucred, inp->inp_socket);
995	if (error)
996		goto out;
997	cru2x(inp->inp_socket->so_cred, &xuc);
998out:
999	INP_UNLOCK(inp);
1000outunlocked:
1001	INP_INFO_RUNLOCK(&tcbinfo);
1002	splx(s);
1003	if (error == 0)
1004		error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred));
1005	return (error);
1006}
1007
1008SYSCTL_PROC(_net_inet_tcp, OID_AUTO, getcred,
1009    CTLTYPE_OPAQUE|CTLFLAG_RW|CTLFLAG_PRISON, 0, 0,
1010    tcp_getcred, "S,xucred", "Get the xucred of a TCP connection");
1011
1012#ifdef INET6
1013static int
1014tcp6_getcred(SYSCTL_HANDLER_ARGS)
1015{
1016	struct xucred xuc;
1017	struct sockaddr_in6 addrs[2];
1018	struct inpcb *inp;
1019	int error, s, mapped = 0;
1020
1021	error = suser_cred(req->td->td_ucred, PRISON_ROOT);
1022	if (error)
1023		return (error);
1024	error = SYSCTL_IN(req, addrs, sizeof(addrs));
1025	if (error)
1026		return (error);
1027	if (IN6_IS_ADDR_V4MAPPED(&addrs[0].sin6_addr)) {
1028		if (IN6_IS_ADDR_V4MAPPED(&addrs[1].sin6_addr))
1029			mapped = 1;
1030		else
1031			return (EINVAL);
1032	}
1033	s = splnet();
1034	INP_INFO_RLOCK(&tcbinfo);
1035	if (mapped == 1)
1036		inp = in_pcblookup_hash(&tcbinfo,
1037			*(struct in_addr *)&addrs[1].sin6_addr.s6_addr[12],
1038			addrs[1].sin6_port,
1039			*(struct in_addr *)&addrs[0].sin6_addr.s6_addr[12],
1040			addrs[0].sin6_port,
1041			0, NULL);
1042	else
1043		inp = in6_pcblookup_hash(&tcbinfo, &addrs[1].sin6_addr,
1044				 addrs[1].sin6_port,
1045				 &addrs[0].sin6_addr, addrs[0].sin6_port,
1046				 0, NULL);
1047	if (inp == NULL) {
1048		error = ENOENT;
1049		goto outunlocked;
1050	}
1051	INP_LOCK(inp);
1052	if (inp->inp_socket == NULL) {
1053		error = ENOENT;
1054		goto out;
1055	}
1056	error = cr_canseesocket(req->td->td_ucred, inp->inp_socket);
1057	if (error)
1058		goto out;
1059	cru2x(inp->inp_socket->so_cred, &xuc);
1060out:
1061	INP_UNLOCK(inp);
1062outunlocked:
1063	INP_INFO_RUNLOCK(&tcbinfo);
1064	splx(s);
1065	if (error == 0)
1066		error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred));
1067	return (error);
1068}
1069
1070SYSCTL_PROC(_net_inet6_tcp6, OID_AUTO, getcred,
1071    CTLTYPE_OPAQUE|CTLFLAG_RW|CTLFLAG_PRISON, 0, 0,
1072    tcp6_getcred, "S,xucred", "Get the xucred of a TCP6 connection");
1073#endif
1074
1075
1076void
1077tcp_ctlinput(cmd, sa, vip)
1078	int cmd;
1079	struct sockaddr *sa;
1080	void *vip;
1081{
1082	struct ip *ip = vip;
1083	struct tcphdr *th;
1084	struct in_addr faddr;
1085	struct inpcb *inp;
1086	struct tcpcb *tp;
1087	struct inpcb *(*notify)(struct inpcb *, int) = tcp_notify;
1088	tcp_seq icmp_seq;
1089	int s;
1090
1091	faddr = ((struct sockaddr_in *)sa)->sin_addr;
1092	if (sa->sa_family != AF_INET || faddr.s_addr == INADDR_ANY)
1093		return;
1094
1095	if (cmd == PRC_QUENCH)
1096		notify = tcp_quench;
1097	else if (icmp_may_rst && (cmd == PRC_UNREACH_ADMIN_PROHIB ||
1098		cmd == PRC_UNREACH_PORT || cmd == PRC_TIMXCEED_INTRANS) && ip)
1099		notify = tcp_drop_syn_sent;
1100	else if (cmd == PRC_MSGSIZE)
1101		notify = tcp_mtudisc;
1102	else if (PRC_IS_REDIRECT(cmd)) {
1103		ip = 0;
1104		notify = in_rtchange;
1105	} else if (cmd == PRC_HOSTDEAD)
1106		ip = 0;
1107	else if ((unsigned)cmd > PRC_NCMDS || inetctlerrmap[cmd] == 0)
1108		return;
1109	if (ip) {
1110		s = splnet();
1111		th = (struct tcphdr *)((caddr_t)ip
1112				       + (ip->ip_hl << 2));
1113		INP_INFO_WLOCK(&tcbinfo);
1114		inp = in_pcblookup_hash(&tcbinfo, faddr, th->th_dport,
1115		    ip->ip_src, th->th_sport, 0, NULL);
1116		if (inp != NULL)  {
1117			INP_LOCK(inp);
1118			if (inp->inp_socket != NULL) {
1119				icmp_seq = htonl(th->th_seq);
1120				tp = intotcpcb(inp);
1121				if (SEQ_GEQ(icmp_seq, tp->snd_una) &&
1122			    		SEQ_LT(icmp_seq, tp->snd_max))
1123					inp = (*notify)(inp, inetctlerrmap[cmd]);
1124			}
1125			if (inp)
1126				INP_UNLOCK(inp);
1127		} else {
1128			struct in_conninfo inc;
1129
1130			inc.inc_fport = th->th_dport;
1131			inc.inc_lport = th->th_sport;
1132			inc.inc_faddr = faddr;
1133			inc.inc_laddr = ip->ip_src;
1134#ifdef INET6
1135			inc.inc_isipv6 = 0;
1136#endif
1137			syncache_unreach(&inc, th);
1138		}
1139		INP_INFO_WUNLOCK(&tcbinfo);
1140		splx(s);
1141	} else
1142		in_pcbnotifyall(&tcbinfo, faddr, inetctlerrmap[cmd], notify);
1143}
1144
1145#ifdef INET6
1146void
1147tcp6_ctlinput(cmd, sa, d)
1148	int cmd;
1149	struct sockaddr *sa;
1150	void *d;
1151{
1152	struct tcphdr th;
1153	struct inpcb *(*notify)(struct inpcb *, int) = tcp_notify;
1154	struct ip6_hdr *ip6;
1155	struct mbuf *m;
1156	struct ip6ctlparam *ip6cp = NULL;
1157	const struct sockaddr_in6 *sa6_src = NULL;
1158	int off;
1159	struct tcp_portonly {
1160		u_int16_t th_sport;
1161		u_int16_t th_dport;
1162	} *thp;
1163
1164	if (sa->sa_family != AF_INET6 ||
1165	    sa->sa_len != sizeof(struct sockaddr_in6))
1166		return;
1167
1168	if (cmd == PRC_QUENCH)
1169		notify = tcp_quench;
1170	else if (cmd == PRC_MSGSIZE)
1171		notify = tcp_mtudisc;
1172	else if (!PRC_IS_REDIRECT(cmd) &&
1173		 ((unsigned)cmd > PRC_NCMDS || inet6ctlerrmap[cmd] == 0))
1174		return;
1175
1176	/* if the parameter is from icmp6, decode it. */
1177	if (d != NULL) {
1178		ip6cp = (struct ip6ctlparam *)d;
1179		m = ip6cp->ip6c_m;
1180		ip6 = ip6cp->ip6c_ip6;
1181		off = ip6cp->ip6c_off;
1182		sa6_src = ip6cp->ip6c_src;
1183	} else {
1184		m = NULL;
1185		ip6 = NULL;
1186		off = 0;	/* fool gcc */
1187		sa6_src = &sa6_any;
1188	}
1189
1190	if (ip6) {
1191		struct in_conninfo inc;
1192		/*
1193		 * XXX: We assume that when IPV6 is non NULL,
1194		 * M and OFF are valid.
1195		 */
1196
1197		/* check if we can safely examine src and dst ports */
1198		if (m->m_pkthdr.len < off + sizeof(*thp))
1199			return;
1200
1201		bzero(&th, sizeof(th));
1202		m_copydata(m, off, sizeof(*thp), (caddr_t)&th);
1203
1204		in6_pcbnotify(&tcb, sa, th.th_dport,
1205		    (struct sockaddr *)ip6cp->ip6c_src,
1206		    th.th_sport, cmd, notify);
1207
1208		inc.inc_fport = th.th_dport;
1209		inc.inc_lport = th.th_sport;
1210		inc.inc6_faddr = ((struct sockaddr_in6 *)sa)->sin6_addr;
1211		inc.inc6_laddr = ip6cp->ip6c_src->sin6_addr;
1212		inc.inc_isipv6 = 1;
1213		syncache_unreach(&inc, &th);
1214	} else
1215		in6_pcbnotify(&tcb, sa, 0, (const struct sockaddr *)sa6_src,
1216			      0, cmd, notify);
1217}
1218#endif /* INET6 */
1219
1220
1221/*
1222 * Following is where TCP initial sequence number generation occurs.
1223 *
1224 * There are two places where we must use initial sequence numbers:
1225 * 1.  In SYN-ACK packets.
1226 * 2.  In SYN packets.
1227 *
1228 * All ISNs for SYN-ACK packets are generated by the syncache.  See
1229 * tcp_syncache.c for details.
1230 *
1231 * The ISNs in SYN packets must be monotonic; TIME_WAIT recycling
1232 * depends on this property.  In addition, these ISNs should be
1233 * unguessable so as to prevent connection hijacking.  To satisfy
1234 * the requirements of this situation, the algorithm outlined in
1235 * RFC 1948 is used to generate sequence numbers.
1236 *
1237 * Implementation details:
1238 *
1239 * Time is based off the system timer, and is corrected so that it
1240 * increases by one megabyte per second.  This allows for proper
1241 * recycling on high speed LANs while still leaving over an hour
1242 * before rollover.
1243 *
1244 * net.inet.tcp.isn_reseed_interval controls the number of seconds
1245 * between seeding of isn_secret.  This is normally set to zero,
1246 * as reseeding should not be necessary.
1247 *
1248 */
1249
1250#define ISN_BYTES_PER_SECOND 1048576
1251
1252u_char isn_secret[32];
1253int isn_last_reseed;
1254MD5_CTX isn_ctx;
1255
1256tcp_seq
1257tcp_new_isn(tp)
1258	struct tcpcb *tp;
1259{
1260	u_int32_t md5_buffer[4];
1261	tcp_seq new_isn;
1262
1263	/* Seed if this is the first use, reseed if requested. */
1264	if ((isn_last_reseed == 0) || ((tcp_isn_reseed_interval > 0) &&
1265	     (((u_int)isn_last_reseed + (u_int)tcp_isn_reseed_interval*hz)
1266		< (u_int)ticks))) {
1267		read_random(&isn_secret, sizeof(isn_secret));
1268		isn_last_reseed = ticks;
1269	}
1270
1271	/* Compute the md5 hash and return the ISN. */
1272	MD5Init(&isn_ctx);
1273	MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_fport, sizeof(u_short));
1274	MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_lport, sizeof(u_short));
1275#ifdef INET6
1276	if ((tp->t_inpcb->inp_vflag & INP_IPV6) != 0) {
1277		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_faddr,
1278			  sizeof(struct in6_addr));
1279		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_laddr,
1280			  sizeof(struct in6_addr));
1281	} else
1282#endif
1283	{
1284		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_faddr,
1285			  sizeof(struct in_addr));
1286		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_laddr,
1287			  sizeof(struct in_addr));
1288	}
1289	MD5Update(&isn_ctx, (u_char *) &isn_secret, sizeof(isn_secret));
1290	MD5Final((u_char *) &md5_buffer, &isn_ctx);
1291	new_isn = (tcp_seq) md5_buffer[0];
1292	new_isn += ticks * (ISN_BYTES_PER_SECOND / hz);
1293	return new_isn;
1294}
1295
1296/*
1297 * When a source quench is received, close congestion window
1298 * to one segment.  We will gradually open it again as we proceed.
1299 */
1300struct inpcb *
1301tcp_quench(inp, errno)
1302	struct inpcb *inp;
1303	int errno;
1304{
1305	struct tcpcb *tp = intotcpcb(inp);
1306
1307	if (tp)
1308		tp->snd_cwnd = tp->t_maxseg;
1309	return (inp);
1310}
1311
1312/*
1313 * When a specific ICMP unreachable message is received and the
1314 * connection state is SYN-SENT, drop the connection.  This behavior
1315 * is controlled by the icmp_may_rst sysctl.
1316 */
1317struct inpcb *
1318tcp_drop_syn_sent(inp, errno)
1319	struct inpcb *inp;
1320	int errno;
1321{
1322	struct tcpcb *tp = intotcpcb(inp);
1323
1324	if (tp && tp->t_state == TCPS_SYN_SENT) {
1325		tcp_drop(tp, errno);
1326		return (struct inpcb *)0;
1327	}
1328	return inp;
1329}
1330
1331/*
1332 * When `need fragmentation' ICMP is received, update our idea of the MSS
1333 * based on the new value in the route.  Also nudge TCP to send something,
1334 * since we know the packet we just sent was dropped.
1335 * This duplicates some code in the tcp_mss() function in tcp_input.c.
1336 */
1337struct inpcb *
1338tcp_mtudisc(inp, errno)
1339	struct inpcb *inp;
1340	int errno;
1341{
1342	struct tcpcb *tp = intotcpcb(inp);
1343	struct rtentry *rt;
1344	struct rmxp_tao *taop;
1345	struct socket *so = inp->inp_socket;
1346	int offered;
1347	int mss;
1348#ifdef INET6
1349	int isipv6 = (tp->t_inpcb->inp_vflag & INP_IPV6) != 0;
1350#endif /* INET6 */
1351
1352	if (tp) {
1353#ifdef INET6
1354		if (isipv6)
1355			rt = tcp_rtlookup6(&inp->inp_inc);
1356		else
1357#endif /* INET6 */
1358		rt = tcp_rtlookup(&inp->inp_inc);
1359		if (!rt || !rt->rt_rmx.rmx_mtu) {
1360			tp->t_maxopd = tp->t_maxseg =
1361#ifdef INET6
1362				isipv6 ? tcp_v6mssdflt :
1363#endif /* INET6 */
1364				tcp_mssdflt;
1365			return inp;
1366		}
1367		taop = rmx_taop(rt->rt_rmx);
1368		offered = taop->tao_mssopt;
1369		mss = rt->rt_rmx.rmx_mtu -
1370#ifdef INET6
1371			(isipv6 ?
1372			 sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
1373#endif /* INET6 */
1374			 sizeof(struct tcpiphdr)
1375#ifdef INET6
1376			 )
1377#endif /* INET6 */
1378			;
1379
1380		if (offered)
1381			mss = min(mss, offered);
1382		/*
1383		 * XXX - The above conditional probably violates the TCP
1384		 * spec.  The problem is that, since we don't know the
1385		 * other end's MSS, we are supposed to use a conservative
1386		 * default.  But, if we do that, then MTU discovery will
1387		 * never actually take place, because the conservative
1388		 * default is much less than the MTUs typically seen
1389		 * on the Internet today.  For the moment, we'll sweep
1390		 * this under the carpet.
1391		 *
1392		 * The conservative default might not actually be a problem
1393		 * if the only case this occurs is when sending an initial
1394		 * SYN with options and data to a host we've never talked
1395		 * to before.  Then, they will reply with an MSS value which
1396		 * will get recorded and the new parameters should get
1397		 * recomputed.  For Further Study.
1398		 */
1399		if (tp->t_maxopd <= mss)
1400			return inp;
1401		tp->t_maxopd = mss;
1402
1403		if ((tp->t_flags & (TF_REQ_TSTMP|TF_NOOPT)) == TF_REQ_TSTMP &&
1404		    (tp->t_flags & TF_RCVD_TSTMP) == TF_RCVD_TSTMP)
1405			mss -= TCPOLEN_TSTAMP_APPA;
1406		if ((tp->t_flags & (TF_REQ_CC|TF_NOOPT)) == TF_REQ_CC &&
1407		    (tp->t_flags & TF_RCVD_CC) == TF_RCVD_CC)
1408			mss -= TCPOLEN_CC_APPA;
1409#if	(MCLBYTES & (MCLBYTES - 1)) == 0
1410		if (mss > MCLBYTES)
1411			mss &= ~(MCLBYTES-1);
1412#else
1413		if (mss > MCLBYTES)
1414			mss = mss / MCLBYTES * MCLBYTES;
1415#endif
1416		if (so->so_snd.sb_hiwat < mss)
1417			mss = so->so_snd.sb_hiwat;
1418
1419		tp->t_maxseg = mss;
1420
1421		tcpstat.tcps_mturesent++;
1422		tp->t_rtttime = 0;
1423		tp->snd_nxt = tp->snd_una;
1424		tcp_output(tp);
1425	}
1426	return inp;
1427}
1428
1429/*
1430 * Look-up the routing entry to the peer of this inpcb.  If no route
1431 * is found and it cannot be allocated, then return NULL.  This routine
1432 * is called by TCP routines that access the rmx structure and by tcp_mss
1433 * to get the interface MTU.
1434 */
1435struct rtentry *
1436tcp_rtlookup(inc)
1437	struct in_conninfo *inc;
1438{
1439	struct route *ro;
1440	struct rtentry *rt;
1441
1442	ro = &inc->inc_route;
1443	rt = ro->ro_rt;
1444	if (rt == NULL || !(rt->rt_flags & RTF_UP)) {
1445		/* No route yet, so try to acquire one */
1446		if (inc->inc_faddr.s_addr != INADDR_ANY) {
1447			ro->ro_dst.sa_family = AF_INET;
1448			ro->ro_dst.sa_len = sizeof(struct sockaddr_in);
1449			((struct sockaddr_in *) &ro->ro_dst)->sin_addr =
1450			    inc->inc_faddr;
1451			rtalloc(ro);
1452			rt = ro->ro_rt;
1453		}
1454	}
1455	return rt;
1456}
1457
1458#ifdef INET6
1459struct rtentry *
1460tcp_rtlookup6(inc)
1461	struct in_conninfo *inc;
1462{
1463	struct route_in6 *ro6;
1464	struct rtentry *rt;
1465
1466	ro6 = &inc->inc6_route;
1467	rt = ro6->ro_rt;
1468	if (rt == NULL || !(rt->rt_flags & RTF_UP)) {
1469		/* No route yet, so try to acquire one */
1470		if (!IN6_IS_ADDR_UNSPECIFIED(&inc->inc6_faddr)) {
1471			ro6->ro_dst.sin6_family = AF_INET6;
1472			ro6->ro_dst.sin6_len = sizeof(struct sockaddr_in6);
1473			ro6->ro_dst.sin6_addr = inc->inc6_faddr;
1474			rtalloc((struct route *)ro6);
1475			rt = ro6->ro_rt;
1476		}
1477	}
1478	return rt;
1479}
1480#endif /* INET6 */
1481
1482#ifdef IPSEC
1483/* compute ESP/AH header size for TCP, including outer IP header. */
1484size_t
1485ipsec_hdrsiz_tcp(tp)
1486	struct tcpcb *tp;
1487{
1488	struct inpcb *inp;
1489	struct mbuf *m;
1490	size_t hdrsiz;
1491	struct ip *ip;
1492#ifdef INET6
1493	struct ip6_hdr *ip6;
1494#endif /* INET6 */
1495	struct tcphdr *th;
1496
1497	if ((tp == NULL) || ((inp = tp->t_inpcb) == NULL))
1498		return 0;
1499	MGETHDR(m, M_DONTWAIT, MT_DATA);
1500	if (!m)
1501		return 0;
1502
1503#ifdef INET6
1504	if ((inp->inp_vflag & INP_IPV6) != 0) {
1505		ip6 = mtod(m, struct ip6_hdr *);
1506		th = (struct tcphdr *)(ip6 + 1);
1507		m->m_pkthdr.len = m->m_len =
1508			sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
1509		tcp_fillheaders(tp, ip6, th);
1510		hdrsiz = ipsec6_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
1511	} else
1512#endif /* INET6 */
1513      {
1514	ip = mtod(m, struct ip *);
1515	th = (struct tcphdr *)(ip + 1);
1516	m->m_pkthdr.len = m->m_len = sizeof(struct tcpiphdr);
1517	tcp_fillheaders(tp, ip, th);
1518	hdrsiz = ipsec4_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
1519      }
1520
1521	m_free(m);
1522	return hdrsiz;
1523}
1524#endif /*IPSEC*/
1525
1526/*
1527 * Return a pointer to the cached information about the remote host.
1528 * The cached information is stored in the protocol specific part of
1529 * the route metrics.
1530 */
1531struct rmxp_tao *
1532tcp_gettaocache(inc)
1533	struct in_conninfo *inc;
1534{
1535	struct rtentry *rt;
1536
1537#ifdef INET6
1538	if (inc->inc_isipv6)
1539		rt = tcp_rtlookup6(inc);
1540	else
1541#endif /* INET6 */
1542	rt = tcp_rtlookup(inc);
1543
1544	/* Make sure this is a host route and is up. */
1545	if (rt == NULL ||
1546	    (rt->rt_flags & (RTF_UP|RTF_HOST)) != (RTF_UP|RTF_HOST))
1547		return NULL;
1548
1549	return rmx_taop(rt->rt_rmx);
1550}
1551
1552/*
1553 * Clear all the TAO cache entries, called from tcp_init.
1554 *
1555 * XXX
1556 * This routine is just an empty one, because we assume that the routing
1557 * routing tables are initialized at the same time when TCP, so there is
1558 * nothing in the cache left over.
1559 */
1560static void
1561tcp_cleartaocache()
1562{
1563}
1564
1565/*
1566 * TCP BANDWIDTH DELAY PRODUCT WINDOW LIMITING
1567 *
1568 * This code attempts to calculate the bandwidth-delay product as a
1569 * means of determining the optimal window size to maximize bandwidth,
1570 * minimize RTT, and avoid the over-allocation of buffers on interfaces and
1571 * routers.  This code also does a fairly good job keeping RTTs in check
1572 * across slow links like modems.  We implement an algorithm which is very
1573 * similar (but not meant to be) TCP/Vegas.  The code operates on the
1574 * transmitter side of a TCP connection and so only effects the transmit
1575 * side of the connection.
1576 *
1577 * BACKGROUND:  TCP makes no provision for the management of buffer space
1578 * at the end points or at the intermediate routers and switches.  A TCP
1579 * stream, whether using NewReno or not, will eventually buffer as
1580 * many packets as it is able and the only reason this typically works is
1581 * due to the fairly small default buffers made available for a connection
1582 * (typicaly 16K or 32K).  As machines use larger windows and/or window
1583 * scaling it is now fairly easy for even a single TCP connection to blow-out
1584 * all available buffer space not only on the local interface, but on
1585 * intermediate routers and switches as well.  NewReno makes a misguided
1586 * attempt to 'solve' this problem by waiting for an actual failure to occur,
1587 * then backing off, then steadily increasing the window again until another
1588 * failure occurs, ad-infinitum.  This results in terrible oscillation that
1589 * is only made worse as network loads increase and the idea of intentionally
1590 * blowing out network buffers is, frankly, a terrible way to manage network
1591 * resources.
1592 *
1593 * It is far better to limit the transmit window prior to the failure
1594 * condition being achieved.  There are two general ways to do this:  First
1595 * you can 'scan' through different transmit window sizes and locate the
1596 * point where the RTT stops increasing, indicating that you have filled the
1597 * pipe, then scan backwards until you note that RTT stops decreasing, then
1598 * repeat ad-infinitum.  This method works in principle but has severe
1599 * implementation issues due to RTT variances, timer granularity, and
1600 * instability in the algorithm which can lead to many false positives and
1601 * create oscillations as well as interact badly with other TCP streams
1602 * implementing the same algorithm.
1603 *
1604 * The second method is to limit the window to the bandwidth delay product
1605 * of the link.  This is the method we implement.  RTT variances and our
1606 * own manipulation of the congestion window, bwnd, can potentially
1607 * destabilize the algorithm.  For this reason we have to stabilize the
1608 * elements used to calculate the window.  We do this by using the minimum
1609 * observed RTT, the long term average of the observed bandwidth, and
1610 * by adding two segments worth of slop.  It isn't perfect but it is able
1611 * to react to changing conditions and gives us a very stable basis on
1612 * which to extend the algorithm.
1613 */
1614void
1615tcp_xmit_bandwidth_limit(struct tcpcb *tp, tcp_seq ack_seq)
1616{
1617	u_long bw;
1618	u_long bwnd;
1619	int save_ticks;
1620
1621	/*
1622	 * If inflight_enable is disabled in the middle of a tcp connection,
1623	 * make sure snd_bwnd is effectively disabled.
1624	 */
1625	if (tcp_inflight_enable == 0) {
1626		tp->snd_bwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
1627		tp->snd_bandwidth = 0;
1628		return;
1629	}
1630
1631	/*
1632	 * Figure out the bandwidth.  Due to the tick granularity this
1633	 * is a very rough number and it MUST be averaged over a fairly
1634	 * long period of time.  XXX we need to take into account a link
1635	 * that is not using all available bandwidth, but for now our
1636	 * slop will ramp us up if this case occurs and the bandwidth later
1637	 * increases.
1638	 *
1639	 * Note: if ticks rollover 'bw' may wind up negative.  We must
1640	 * effectively reset t_bw_rtttime for this case.
1641	 */
1642	save_ticks = ticks;
1643	if ((u_int)(save_ticks - tp->t_bw_rtttime) < 1)
1644		return;
1645
1646	bw = (int64_t)(ack_seq - tp->t_bw_rtseq) * hz /
1647	    (save_ticks - tp->t_bw_rtttime);
1648	tp->t_bw_rtttime = save_ticks;
1649	tp->t_bw_rtseq = ack_seq;
1650	if (tp->t_bw_rtttime == 0 || (int)bw < 0)
1651		return;
1652	bw = ((int64_t)tp->snd_bandwidth * 15 + bw) >> 4;
1653
1654	tp->snd_bandwidth = bw;
1655
1656	/*
1657	 * Calculate the semi-static bandwidth delay product, plus two maximal
1658	 * segments.  The additional slop puts us squarely in the sweet
1659	 * spot and also handles the bandwidth run-up case and stabilization.
1660	 * Without the slop we could be locking ourselves into a lower
1661	 * bandwidth.
1662	 *
1663	 * Situations Handled:
1664	 *	(1) Prevents over-queueing of packets on LANs, especially on
1665	 *	    high speed LANs, allowing larger TCP buffers to be
1666	 *	    specified, and also does a good job preventing
1667	 *	    over-queueing of packets over choke points like modems
1668	 *	    (at least for the transmit side).
1669	 *
1670	 *	(2) Is able to handle changing network loads (bandwidth
1671	 *	    drops so bwnd drops, bandwidth increases so bwnd
1672	 *	    increases).
1673	 *
1674	 *	(3) Theoretically should stabilize in the face of multiple
1675	 *	    connections implementing the same algorithm (this may need
1676	 *	    a little work).
1677	 *
1678	 *	(4) Stability value (defaults to 20 = 2 maximal packets) can
1679	 *	    be adjusted with a sysctl but typically only needs to be
1680	 *	    on very slow connections.  A value no smaller then 5
1681	 *	    should be used, but only reduce this default if you have
1682	 *	    no other choice.
1683	 */
1684#define USERTT	((tp->t_srtt + tp->t_rttbest) / 2)
1685	bwnd = (int64_t)bw * USERTT / (hz << TCP_RTT_SHIFT) + tcp_inflight_stab * tp->t_maxseg / 10;
1686#undef USERTT
1687
1688	if (tcp_inflight_debug > 0) {
1689		static int ltime;
1690		if ((u_int)(ticks - ltime) >= hz / tcp_inflight_debug) {
1691			ltime = ticks;
1692			printf("%p bw %ld rttbest %d srtt %d bwnd %ld\n",
1693			    tp,
1694			    bw,
1695			    tp->t_rttbest,
1696			    tp->t_srtt,
1697			    bwnd
1698			);
1699		}
1700	}
1701	if ((long)bwnd < tcp_inflight_min)
1702		bwnd = tcp_inflight_min;
1703	if (bwnd > tcp_inflight_max)
1704		bwnd = tcp_inflight_max;
1705	if ((long)bwnd < tp->t_maxseg * 2)
1706		bwnd = tp->t_maxseg * 2;
1707	tp->snd_bwnd = bwnd;
1708}
1709
1710