tcp_timewait.c revision 100831
1/*
2 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 *    must display the following acknowledgement:
15 *	This product includes software developed by the University of
16 *	California, Berkeley and its contributors.
17 * 4. Neither the name of the University nor the names of its contributors
18 *    may be used to endorse or promote products derived from this software
19 *    without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
32 *
33 *	@(#)tcp_subr.c	8.2 (Berkeley) 5/24/95
34 * $FreeBSD: head/sys/netinet/tcp_timewait.c 100831 2002-07-28 19:59:31Z truckman $
35 */
36
37#include "opt_compat.h"
38#include "opt_inet6.h"
39#include "opt_ipsec.h"
40#include "opt_tcpdebug.h"
41
42#include <sys/param.h>
43#include <sys/systm.h>
44#include <sys/callout.h>
45#include <sys/kernel.h>
46#include <sys/sysctl.h>
47#include <sys/malloc.h>
48#include <sys/mbuf.h>
49#ifdef INET6
50#include <sys/domain.h>
51#endif
52#include <sys/proc.h>
53#include <sys/socket.h>
54#include <sys/socketvar.h>
55#include <sys/protosw.h>
56#include <sys/random.h>
57
58#include <vm/uma.h>
59
60#include <net/route.h>
61#include <net/if.h>
62
63#define _IP_VHL
64#include <netinet/in.h>
65#include <netinet/in_systm.h>
66#include <netinet/ip.h>
67#ifdef INET6
68#include <netinet/ip6.h>
69#endif
70#include <netinet/in_pcb.h>
71#ifdef INET6
72#include <netinet6/in6_pcb.h>
73#endif
74#include <netinet/in_var.h>
75#include <netinet/ip_var.h>
76#ifdef INET6
77#include <netinet6/ip6_var.h>
78#endif
79#include <netinet/tcp.h>
80#include <netinet/tcp_fsm.h>
81#include <netinet/tcp_seq.h>
82#include <netinet/tcp_timer.h>
83#include <netinet/tcp_var.h>
84#ifdef INET6
85#include <netinet6/tcp6_var.h>
86#endif
87#include <netinet/tcpip.h>
88#ifdef TCPDEBUG
89#include <netinet/tcp_debug.h>
90#endif
91#include <netinet6/ip6protosw.h>
92
93#ifdef IPSEC
94#include <netinet6/ipsec.h>
95#ifdef INET6
96#include <netinet6/ipsec6.h>
97#endif
98#endif /*IPSEC*/
99
100#include <machine/in_cksum.h>
101#include <sys/md5.h>
102
103int 	tcp_mssdflt = TCP_MSS;
104SYSCTL_INT(_net_inet_tcp, TCPCTL_MSSDFLT, mssdflt, CTLFLAG_RW,
105    &tcp_mssdflt , 0, "Default TCP Maximum Segment Size");
106
107#ifdef INET6
108int	tcp_v6mssdflt = TCP6_MSS;
109SYSCTL_INT(_net_inet_tcp, TCPCTL_V6MSSDFLT, v6mssdflt,
110	CTLFLAG_RW, &tcp_v6mssdflt , 0,
111	"Default TCP Maximum Segment Size for IPv6");
112#endif
113
114#if 0
115static int 	tcp_rttdflt = TCPTV_SRTTDFLT / PR_SLOWHZ;
116SYSCTL_INT(_net_inet_tcp, TCPCTL_RTTDFLT, rttdflt, CTLFLAG_RW,
117    &tcp_rttdflt , 0, "Default maximum TCP Round Trip Time");
118#endif
119
120int	tcp_do_rfc1323 = 1;
121SYSCTL_INT(_net_inet_tcp, TCPCTL_DO_RFC1323, rfc1323, CTLFLAG_RW,
122    &tcp_do_rfc1323 , 0, "Enable rfc1323 (high performance TCP) extensions");
123
124int	tcp_do_rfc1644 = 0;
125SYSCTL_INT(_net_inet_tcp, TCPCTL_DO_RFC1644, rfc1644, CTLFLAG_RW,
126    &tcp_do_rfc1644 , 0, "Enable rfc1644 (TTCP) extensions");
127
128static int	tcp_tcbhashsize = 0;
129SYSCTL_INT(_net_inet_tcp, OID_AUTO, tcbhashsize, CTLFLAG_RD,
130     &tcp_tcbhashsize, 0, "Size of TCP control-block hashtable");
131
132static int	do_tcpdrain = 1;
133SYSCTL_INT(_net_inet_tcp, OID_AUTO, do_tcpdrain, CTLFLAG_RW, &do_tcpdrain, 0,
134     "Enable tcp_drain routine for extra help when low on mbufs");
135
136SYSCTL_INT(_net_inet_tcp, OID_AUTO, pcbcount, CTLFLAG_RD,
137    &tcbinfo.ipi_count, 0, "Number of active PCBs");
138
139static int	icmp_may_rst = 1;
140SYSCTL_INT(_net_inet_tcp, OID_AUTO, icmp_may_rst, CTLFLAG_RW, &icmp_may_rst, 0,
141    "Certain ICMP unreachable messages may abort connections in SYN_SENT");
142
143static int	tcp_isn_reseed_interval = 0;
144SYSCTL_INT(_net_inet_tcp, OID_AUTO, isn_reseed_interval, CTLFLAG_RW,
145    &tcp_isn_reseed_interval, 0, "Seconds between reseeding of ISN secret");
146
147static void	tcp_cleartaocache(void);
148static struct inpcb *tcp_notify(struct inpcb *, int);
149
150/*
151 * Target size of TCP PCB hash tables. Must be a power of two.
152 *
153 * Note that this can be overridden by the kernel environment
154 * variable net.inet.tcp.tcbhashsize
155 */
156#ifndef TCBHASHSIZE
157#define TCBHASHSIZE	512
158#endif
159
160/*
161 * This is the actual shape of what we allocate using the zone
162 * allocator.  Doing it this way allows us to protect both structures
163 * using the same generation count, and also eliminates the overhead
164 * of allocating tcpcbs separately.  By hiding the structure here,
165 * we avoid changing most of the rest of the code (although it needs
166 * to be changed, eventually, for greater efficiency).
167 */
168#define	ALIGNMENT	32
169#define	ALIGNM1		(ALIGNMENT - 1)
170struct	inp_tp {
171	union {
172		struct	inpcb inp;
173		char	align[(sizeof(struct inpcb) + ALIGNM1) & ~ALIGNM1];
174	} inp_tp_u;
175	struct	tcpcb tcb;
176	struct	callout inp_tp_rexmt, inp_tp_persist, inp_tp_keep, inp_tp_2msl;
177	struct	callout inp_tp_delack;
178};
179#undef ALIGNMENT
180#undef ALIGNM1
181
182/*
183 * Tcp initialization
184 */
185void
186tcp_init()
187{
188	int hashsize = TCBHASHSIZE;
189
190	tcp_ccgen = 1;
191	tcp_cleartaocache();
192
193	tcp_delacktime = TCPTV_DELACK;
194	tcp_keepinit = TCPTV_KEEP_INIT;
195	tcp_keepidle = TCPTV_KEEP_IDLE;
196	tcp_keepintvl = TCPTV_KEEPINTVL;
197	tcp_maxpersistidle = TCPTV_KEEP_IDLE;
198	tcp_msl = TCPTV_MSL;
199	tcp_rexmit_min = TCPTV_MIN;
200	tcp_rexmit_slop = TCPTV_CPU_VAR;
201
202	INP_INFO_LOCK_INIT(&tcbinfo, "tcp");
203	LIST_INIT(&tcb);
204	tcbinfo.listhead = &tcb;
205	TUNABLE_INT_FETCH("net.inet.tcp.tcbhashsize", &hashsize);
206	if (!powerof2(hashsize)) {
207		printf("WARNING: TCB hash size not a power of 2\n");
208		hashsize = 512; /* safe default */
209	}
210	tcp_tcbhashsize = hashsize;
211	tcbinfo.hashbase = hashinit(hashsize, M_PCB, &tcbinfo.hashmask);
212	tcbinfo.porthashbase = hashinit(hashsize, M_PCB,
213					&tcbinfo.porthashmask);
214	tcbinfo.ipi_zone = uma_zcreate("tcpcb", sizeof(struct inp_tp),
215	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
216	uma_zone_set_max(tcbinfo.ipi_zone, maxsockets);
217#ifdef INET6
218#define TCP_MINPROTOHDR (sizeof(struct ip6_hdr) + sizeof(struct tcphdr))
219#else /* INET6 */
220#define TCP_MINPROTOHDR (sizeof(struct tcpiphdr))
221#endif /* INET6 */
222	if (max_protohdr < TCP_MINPROTOHDR)
223		max_protohdr = TCP_MINPROTOHDR;
224	if (max_linkhdr + TCP_MINPROTOHDR > MHLEN)
225		panic("tcp_init");
226#undef TCP_MINPROTOHDR
227
228	syncache_init();
229}
230
231/*
232 * Fill in the IP and TCP headers for an outgoing packet, given the tcpcb.
233 * tcp_template used to store this data in mbufs, but we now recopy it out
234 * of the tcpcb each time to conserve mbufs.
235 */
236void
237tcp_fillheaders(tp, ip_ptr, tcp_ptr)
238	struct tcpcb *tp;
239	void *ip_ptr;
240	void *tcp_ptr;
241{
242	struct inpcb *inp = tp->t_inpcb;
243	struct tcphdr *tcp_hdr = (struct tcphdr *)tcp_ptr;
244
245#ifdef INET6
246	if ((inp->inp_vflag & INP_IPV6) != 0) {
247		struct ip6_hdr *ip6;
248
249		ip6 = (struct ip6_hdr *)ip_ptr;
250		ip6->ip6_flow = (ip6->ip6_flow & ~IPV6_FLOWINFO_MASK) |
251			(inp->in6p_flowinfo & IPV6_FLOWINFO_MASK);
252		ip6->ip6_vfc = (ip6->ip6_vfc & ~IPV6_VERSION_MASK) |
253			(IPV6_VERSION & IPV6_VERSION_MASK);
254		ip6->ip6_nxt = IPPROTO_TCP;
255		ip6->ip6_plen = sizeof(struct tcphdr);
256		ip6->ip6_src = inp->in6p_laddr;
257		ip6->ip6_dst = inp->in6p_faddr;
258		tcp_hdr->th_sum = 0;
259	} else
260#endif
261	{
262	struct ip *ip = (struct ip *) ip_ptr;
263
264	ip->ip_vhl = IP_VHL_BORING;
265	ip->ip_tos = 0;
266	ip->ip_len = 0;
267	ip->ip_id = 0;
268	ip->ip_off = 0;
269	ip->ip_ttl = 0;
270	ip->ip_sum = 0;
271	ip->ip_p = IPPROTO_TCP;
272	ip->ip_src = inp->inp_laddr;
273	ip->ip_dst = inp->inp_faddr;
274	tcp_hdr->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
275		htons(sizeof(struct tcphdr) + IPPROTO_TCP));
276	}
277
278	tcp_hdr->th_sport = inp->inp_lport;
279	tcp_hdr->th_dport = inp->inp_fport;
280	tcp_hdr->th_seq = 0;
281	tcp_hdr->th_ack = 0;
282	tcp_hdr->th_x2 = 0;
283	tcp_hdr->th_off = 5;
284	tcp_hdr->th_flags = 0;
285	tcp_hdr->th_win = 0;
286	tcp_hdr->th_urp = 0;
287}
288
289/*
290 * Create template to be used to send tcp packets on a connection.
291 * Allocates an mbuf and fills in a skeletal tcp/ip header.  The only
292 * use for this function is in keepalives, which use tcp_respond.
293 */
294struct tcptemp *
295tcp_maketemplate(tp)
296	struct tcpcb *tp;
297{
298	struct mbuf *m;
299	struct tcptemp *n;
300
301	m = m_get(M_DONTWAIT, MT_HEADER);
302	if (m == NULL)
303		return (0);
304	m->m_len = sizeof(struct tcptemp);
305	n = mtod(m, struct tcptemp *);
306
307	tcp_fillheaders(tp, (void *)&n->tt_ipgen, (void *)&n->tt_t);
308	return (n);
309}
310
311/*
312 * Send a single message to the TCP at address specified by
313 * the given TCP/IP header.  If m == 0, then we make a copy
314 * of the tcpiphdr at ti and send directly to the addressed host.
315 * This is used to force keep alive messages out using the TCP
316 * template for a connection.  If flags are given then we send
317 * a message back to the TCP which originated the * segment ti,
318 * and discard the mbuf containing it and any other attached mbufs.
319 *
320 * In any case the ack and sequence number of the transmitted
321 * segment are as specified by the parameters.
322 *
323 * NOTE: If m != NULL, then ti must point to *inside* the mbuf.
324 */
325void
326tcp_respond(tp, ipgen, th, m, ack, seq, flags)
327	struct tcpcb *tp;
328	void *ipgen;
329	register struct tcphdr *th;
330	register struct mbuf *m;
331	tcp_seq ack, seq;
332	int flags;
333{
334	register int tlen;
335	int win = 0;
336	struct route *ro = 0;
337	struct route sro;
338	struct ip *ip;
339	struct tcphdr *nth;
340#ifdef INET6
341	struct route_in6 *ro6 = 0;
342	struct route_in6 sro6;
343	struct ip6_hdr *ip6;
344	int isipv6;
345#endif /* INET6 */
346	int ipflags = 0;
347
348#ifdef INET6
349	isipv6 = IP_VHL_V(((struct ip *)ipgen)->ip_vhl) == 6;
350	ip6 = ipgen;
351#endif /* INET6 */
352	ip = ipgen;
353
354	if (tp) {
355		if (!(flags & TH_RST)) {
356			win = sbspace(&tp->t_inpcb->inp_socket->so_rcv);
357			if (win > (long)TCP_MAXWIN << tp->rcv_scale)
358				win = (long)TCP_MAXWIN << tp->rcv_scale;
359		}
360#ifdef INET6
361		if (isipv6)
362			ro6 = &tp->t_inpcb->in6p_route;
363		else
364#endif /* INET6 */
365		ro = &tp->t_inpcb->inp_route;
366	} else {
367#ifdef INET6
368		if (isipv6) {
369			ro6 = &sro6;
370			bzero(ro6, sizeof *ro6);
371		} else
372#endif /* INET6 */
373	      {
374		ro = &sro;
375		bzero(ro, sizeof *ro);
376	      }
377	}
378	if (m == 0) {
379		m = m_gethdr(M_DONTWAIT, MT_HEADER);
380		if (m == NULL)
381			return;
382		tlen = 0;
383		m->m_data += max_linkhdr;
384#ifdef INET6
385		if (isipv6) {
386			bcopy((caddr_t)ip6, mtod(m, caddr_t),
387			      sizeof(struct ip6_hdr));
388			ip6 = mtod(m, struct ip6_hdr *);
389			nth = (struct tcphdr *)(ip6 + 1);
390		} else
391#endif /* INET6 */
392	      {
393		bcopy((caddr_t)ip, mtod(m, caddr_t), sizeof(struct ip));
394		ip = mtod(m, struct ip *);
395		nth = (struct tcphdr *)(ip + 1);
396	      }
397		bcopy((caddr_t)th, (caddr_t)nth, sizeof(struct tcphdr));
398		flags = TH_ACK;
399	} else {
400		m_freem(m->m_next);
401		m->m_next = 0;
402		m->m_data = (caddr_t)ipgen;
403		/* m_len is set later */
404		tlen = 0;
405#define xchg(a,b,type) { type t; t=a; a=b; b=t; }
406#ifdef INET6
407		if (isipv6) {
408			xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr);
409			nth = (struct tcphdr *)(ip6 + 1);
410		} else
411#endif /* INET6 */
412	      {
413		xchg(ip->ip_dst.s_addr, ip->ip_src.s_addr, n_long);
414		nth = (struct tcphdr *)(ip + 1);
415	      }
416		if (th != nth) {
417			/*
418			 * this is usually a case when an extension header
419			 * exists between the IPv6 header and the
420			 * TCP header.
421			 */
422			nth->th_sport = th->th_sport;
423			nth->th_dport = th->th_dport;
424		}
425		xchg(nth->th_dport, nth->th_sport, n_short);
426#undef xchg
427	}
428#ifdef INET6
429	if (isipv6) {
430		ip6->ip6_flow = 0;
431		ip6->ip6_vfc = IPV6_VERSION;
432		ip6->ip6_nxt = IPPROTO_TCP;
433		ip6->ip6_plen = htons((u_short)(sizeof (struct tcphdr) +
434						tlen));
435		tlen += sizeof (struct ip6_hdr) + sizeof (struct tcphdr);
436	} else
437#endif
438      {
439	tlen += sizeof (struct tcpiphdr);
440	ip->ip_len = tlen;
441	ip->ip_ttl = ip_defttl;
442      }
443	m->m_len = tlen;
444	m->m_pkthdr.len = tlen;
445	m->m_pkthdr.rcvif = (struct ifnet *) 0;
446	nth->th_seq = htonl(seq);
447	nth->th_ack = htonl(ack);
448	nth->th_x2 = 0;
449	nth->th_off = sizeof (struct tcphdr) >> 2;
450	nth->th_flags = flags;
451	if (tp)
452		nth->th_win = htons((u_short) (win >> tp->rcv_scale));
453	else
454		nth->th_win = htons((u_short)win);
455	nth->th_urp = 0;
456#ifdef INET6
457	if (isipv6) {
458		nth->th_sum = 0;
459		nth->th_sum = in6_cksum(m, IPPROTO_TCP,
460					sizeof(struct ip6_hdr),
461					tlen - sizeof(struct ip6_hdr));
462		ip6->ip6_hlim = in6_selecthlim(tp ? tp->t_inpcb : NULL,
463					       ro6 && ro6->ro_rt ?
464					       ro6->ro_rt->rt_ifp :
465					       NULL);
466	} else
467#endif /* INET6 */
468      {
469        nth->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
470	    htons((u_short)(tlen - sizeof(struct ip) + ip->ip_p)));
471        m->m_pkthdr.csum_flags = CSUM_TCP;
472        m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
473      }
474#ifdef TCPDEBUG
475	if (tp == NULL || (tp->t_inpcb->inp_socket->so_options & SO_DEBUG))
476		tcp_trace(TA_OUTPUT, 0, tp, mtod(m, void *), th, 0);
477#endif
478#ifdef IPSEC
479	if (ipsec_setsocket(m, tp ? tp->t_inpcb->inp_socket : NULL) != 0) {
480		m_freem(m);
481		return;
482	}
483#endif
484#ifdef INET6
485	if (isipv6) {
486		(void)ip6_output(m, NULL, ro6, ipflags, NULL, NULL);
487		if (ro6 == &sro6 && ro6->ro_rt) {
488			RTFREE(ro6->ro_rt);
489			ro6->ro_rt = NULL;
490		}
491	} else
492#endif /* INET6 */
493      {
494	(void) ip_output(m, NULL, ro, ipflags, NULL);
495	if (ro == &sro && ro->ro_rt) {
496		RTFREE(ro->ro_rt);
497		ro->ro_rt = NULL;
498	}
499      }
500}
501
502/*
503 * Create a new TCP control block, making an
504 * empty reassembly queue and hooking it to the argument
505 * protocol control block.  The `inp' parameter must have
506 * come from the zone allocator set up in tcp_init().
507 */
508struct tcpcb *
509tcp_newtcpcb(inp)
510	struct inpcb *inp;
511{
512	struct inp_tp *it;
513	register struct tcpcb *tp;
514#ifdef INET6
515	int isipv6 = (inp->inp_vflag & INP_IPV6) != 0;
516#endif /* INET6 */
517
518	it = (struct inp_tp *)inp;
519	tp = &it->tcb;
520	bzero((char *) tp, sizeof(struct tcpcb));
521	LIST_INIT(&tp->t_segq);
522	tp->t_maxseg = tp->t_maxopd =
523#ifdef INET6
524		isipv6 ? tcp_v6mssdflt :
525#endif /* INET6 */
526		tcp_mssdflt;
527
528	/* Set up our timeouts. */
529	callout_init(tp->tt_rexmt = &it->inp_tp_rexmt, 0);
530	callout_init(tp->tt_persist = &it->inp_tp_persist, 0);
531	callout_init(tp->tt_keep = &it->inp_tp_keep, 0);
532	callout_init(tp->tt_2msl = &it->inp_tp_2msl, 0);
533	callout_init(tp->tt_delack = &it->inp_tp_delack, 0);
534
535	if (tcp_do_rfc1323)
536		tp->t_flags = (TF_REQ_SCALE|TF_REQ_TSTMP);
537	if (tcp_do_rfc1644)
538		tp->t_flags |= TF_REQ_CC;
539	tp->t_inpcb = inp;	/* XXX */
540	/*
541	 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
542	 * rtt estimate.  Set rttvar so that srtt + 4 * rttvar gives
543	 * reasonable initial retransmit time.
544	 */
545	tp->t_srtt = TCPTV_SRTTBASE;
546	tp->t_rttvar = ((TCPTV_RTOBASE - TCPTV_SRTTBASE) << TCP_RTTVAR_SHIFT) / 4;
547	tp->t_rttmin = tcp_rexmit_min;
548	tp->t_rxtcur = TCPTV_RTOBASE;
549	tp->snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
550	tp->snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT;
551	tp->t_rcvtime = ticks;
552        /*
553	 * IPv4 TTL initialization is necessary for an IPv6 socket as well,
554	 * because the socket may be bound to an IPv6 wildcard address,
555	 * which may match an IPv4-mapped IPv6 address.
556	 */
557	inp->inp_ip_ttl = ip_defttl;
558	inp->inp_ppcb = (caddr_t)tp;
559	return (tp);		/* XXX */
560}
561
562/*
563 * Drop a TCP connection, reporting
564 * the specified error.  If connection is synchronized,
565 * then send a RST to peer.
566 */
567struct tcpcb *
568tcp_drop(tp, errno)
569	register struct tcpcb *tp;
570	int errno;
571{
572	struct socket *so = tp->t_inpcb->inp_socket;
573
574	if (TCPS_HAVERCVDSYN(tp->t_state)) {
575		tp->t_state = TCPS_CLOSED;
576		(void) tcp_output(tp);
577		tcpstat.tcps_drops++;
578	} else
579		tcpstat.tcps_conndrops++;
580	if (errno == ETIMEDOUT && tp->t_softerror)
581		errno = tp->t_softerror;
582	so->so_error = errno;
583	return (tcp_close(tp));
584}
585
586/*
587 * Close a TCP control block:
588 *	discard all space held by the tcp
589 *	discard internet protocol block
590 *	wake up any sleepers
591 */
592struct tcpcb *
593tcp_close(tp)
594	register struct tcpcb *tp;
595{
596	register struct tseg_qent *q;
597	struct inpcb *inp = tp->t_inpcb;
598	struct socket *so = inp->inp_socket;
599#ifdef INET6
600	int isipv6 = (inp->inp_vflag & INP_IPV6) != 0;
601#endif /* INET6 */
602	register struct rtentry *rt;
603	int dosavessthresh;
604
605	/*
606	 * Make sure that all of our timers are stopped before we
607	 * delete the PCB.
608	 */
609	callout_stop(tp->tt_rexmt);
610	callout_stop(tp->tt_persist);
611	callout_stop(tp->tt_keep);
612	callout_stop(tp->tt_2msl);
613	callout_stop(tp->tt_delack);
614
615	/*
616	 * If we got enough samples through the srtt filter,
617	 * save the rtt and rttvar in the routing entry.
618	 * 'Enough' is arbitrarily defined as the 16 samples.
619	 * 16 samples is enough for the srtt filter to converge
620	 * to within 5% of the correct value; fewer samples and
621	 * we could save a very bogus rtt.
622	 *
623	 * Don't update the default route's characteristics and don't
624	 * update anything that the user "locked".
625	 */
626	if (tp->t_rttupdated >= 16) {
627		register u_long i = 0;
628#ifdef INET6
629		if (isipv6) {
630			struct sockaddr_in6 *sin6;
631
632			if ((rt = inp->in6p_route.ro_rt) == NULL)
633				goto no_valid_rt;
634			sin6 = (struct sockaddr_in6 *)rt_key(rt);
635			if (IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr))
636				goto no_valid_rt;
637		}
638		else
639#endif /* INET6 */
640		if ((rt = inp->inp_route.ro_rt) == NULL ||
641		    ((struct sockaddr_in *)rt_key(rt))->sin_addr.s_addr
642		    == INADDR_ANY)
643			goto no_valid_rt;
644
645		if ((rt->rt_rmx.rmx_locks & RTV_RTT) == 0) {
646			i = tp->t_srtt *
647			    (RTM_RTTUNIT / (hz * TCP_RTT_SCALE));
648			if (rt->rt_rmx.rmx_rtt && i)
649				/*
650				 * filter this update to half the old & half
651				 * the new values, converting scale.
652				 * See route.h and tcp_var.h for a
653				 * description of the scaling constants.
654				 */
655				rt->rt_rmx.rmx_rtt =
656				    (rt->rt_rmx.rmx_rtt + i) / 2;
657			else
658				rt->rt_rmx.rmx_rtt = i;
659			tcpstat.tcps_cachedrtt++;
660		}
661		if ((rt->rt_rmx.rmx_locks & RTV_RTTVAR) == 0) {
662			i = tp->t_rttvar *
663			    (RTM_RTTUNIT / (hz * TCP_RTTVAR_SCALE));
664			if (rt->rt_rmx.rmx_rttvar && i)
665				rt->rt_rmx.rmx_rttvar =
666				    (rt->rt_rmx.rmx_rttvar + i) / 2;
667			else
668				rt->rt_rmx.rmx_rttvar = i;
669			tcpstat.tcps_cachedrttvar++;
670		}
671		/*
672		 * The old comment here said:
673		 * update the pipelimit (ssthresh) if it has been updated
674		 * already or if a pipesize was specified & the threshhold
675		 * got below half the pipesize.  I.e., wait for bad news
676		 * before we start updating, then update on both good
677		 * and bad news.
678		 *
679		 * But we want to save the ssthresh even if no pipesize is
680		 * specified explicitly in the route, because such
681		 * connections still have an implicit pipesize specified
682		 * by the global tcp_sendspace.  In the absence of a reliable
683		 * way to calculate the pipesize, it will have to do.
684		 */
685		i = tp->snd_ssthresh;
686		if (rt->rt_rmx.rmx_sendpipe != 0)
687			dosavessthresh = (i < rt->rt_rmx.rmx_sendpipe / 2);
688		else
689			dosavessthresh = (i < so->so_snd.sb_hiwat / 2);
690		if (((rt->rt_rmx.rmx_locks & RTV_SSTHRESH) == 0 &&
691		     i != 0 && rt->rt_rmx.rmx_ssthresh != 0)
692		    || dosavessthresh) {
693			/*
694			 * convert the limit from user data bytes to
695			 * packets then to packet data bytes.
696			 */
697			i = (i + tp->t_maxseg / 2) / tp->t_maxseg;
698			if (i < 2)
699				i = 2;
700			i *= (u_long)(tp->t_maxseg +
701#ifdef INET6
702				      (isipv6 ? sizeof (struct ip6_hdr) +
703					       sizeof (struct tcphdr) :
704#endif
705				       sizeof (struct tcpiphdr)
706#ifdef INET6
707				       )
708#endif
709				      );
710			if (rt->rt_rmx.rmx_ssthresh)
711				rt->rt_rmx.rmx_ssthresh =
712				    (rt->rt_rmx.rmx_ssthresh + i) / 2;
713			else
714				rt->rt_rmx.rmx_ssthresh = i;
715			tcpstat.tcps_cachedssthresh++;
716		}
717	}
718    no_valid_rt:
719	/* free the reassembly queue, if any */
720	while((q = LIST_FIRST(&tp->t_segq)) != NULL) {
721		LIST_REMOVE(q, tqe_q);
722		m_freem(q->tqe_m);
723		FREE(q, M_TSEGQ);
724	}
725	inp->inp_ppcb = NULL;
726	soisdisconnected(so);
727#ifdef INET6
728	if (INP_CHECK_SOCKAF(so, AF_INET6))
729		in6_pcbdetach(inp);
730	else
731#endif /* INET6 */
732	in_pcbdetach(inp);
733	tcpstat.tcps_closed++;
734	return ((struct tcpcb *)0);
735}
736
737void
738tcp_drain()
739{
740	if (do_tcpdrain)
741	{
742		struct inpcb *inpb;
743		struct tcpcb *tcpb;
744		struct tseg_qent *te;
745
746	/*
747	 * Walk the tcpbs, if existing, and flush the reassembly queue,
748	 * if there is one...
749	 * XXX: The "Net/3" implementation doesn't imply that the TCP
750	 *      reassembly queue should be flushed, but in a situation
751	 * 	where we're really low on mbufs, this is potentially
752	 *  	usefull.
753	 */
754		INP_INFO_RLOCK(&tcbinfo);
755		LIST_FOREACH(inpb, tcbinfo.listhead, inp_list) {
756			INP_LOCK(inpb);
757			if ((tcpb = intotcpcb(inpb))) {
758				while ((te = LIST_FIRST(&tcpb->t_segq))
759			            != NULL) {
760					LIST_REMOVE(te, tqe_q);
761					m_freem(te->tqe_m);
762					FREE(te, M_TSEGQ);
763				}
764			}
765			INP_UNLOCK(inpb);
766		}
767		INP_INFO_RUNLOCK(&tcbinfo);
768	}
769}
770
771/*
772 * Notify a tcp user of an asynchronous error;
773 * store error as soft error, but wake up user
774 * (for now, won't do anything until can select for soft error).
775 *
776 * Do not wake up user since there currently is no mechanism for
777 * reporting soft errors (yet - a kqueue filter may be added).
778 */
779static struct inpcb *
780tcp_notify(inp, error)
781	struct inpcb *inp;
782	int error;
783{
784	struct tcpcb *tp = (struct tcpcb *)inp->inp_ppcb;
785
786	/*
787	 * Ignore some errors if we are hooked up.
788	 * If connection hasn't completed, has retransmitted several times,
789	 * and receives a second error, give up now.  This is better
790	 * than waiting a long time to establish a connection that
791	 * can never complete.
792	 */
793	if (tp->t_state == TCPS_ESTABLISHED &&
794	     (error == EHOSTUNREACH || error == ENETUNREACH ||
795	      error == EHOSTDOWN)) {
796		return inp;
797	} else if (tp->t_state < TCPS_ESTABLISHED && tp->t_rxtshift > 3 &&
798	    tp->t_softerror) {
799		tcp_drop(tp, error);
800		return (struct inpcb *)0;
801	} else {
802		tp->t_softerror = error;
803		return inp;
804	}
805#if 0
806	wakeup((caddr_t) &so->so_timeo);
807	sorwakeup(so);
808	sowwakeup(so);
809#endif
810}
811
812static int
813tcp_pcblist(SYSCTL_HANDLER_ARGS)
814{
815	int error, i, n, s;
816	struct inpcb *inp, **inp_list;
817	inp_gen_t gencnt;
818	struct xinpgen xig;
819
820	/*
821	 * The process of preparing the TCB list is too time-consuming and
822	 * resource-intensive to repeat twice on every request.
823	 */
824	if (req->oldptr == 0) {
825		n = tcbinfo.ipi_count;
826		req->oldidx = 2 * (sizeof xig)
827			+ (n + n/8) * sizeof(struct xtcpcb);
828		return 0;
829	}
830
831	if (req->newptr != 0)
832		return EPERM;
833
834	/*
835	 * OK, now we're committed to doing something.
836	 */
837	s = splnet();
838	INP_INFO_RLOCK(&tcbinfo);
839	gencnt = tcbinfo.ipi_gencnt;
840	n = tcbinfo.ipi_count;
841	INP_INFO_RUNLOCK(&tcbinfo);
842	splx(s);
843
844	sysctl_wire_old_buffer(req, 2 * (sizeof xig)
845		+ n * sizeof(struct xtcpcb));
846
847	xig.xig_len = sizeof xig;
848	xig.xig_count = n;
849	xig.xig_gen = gencnt;
850	xig.xig_sogen = so_gencnt;
851	error = SYSCTL_OUT(req, &xig, sizeof xig);
852	if (error)
853		return error;
854
855	inp_list = malloc(n * sizeof *inp_list, M_TEMP, M_WAITOK);
856	if (inp_list == 0)
857		return ENOMEM;
858
859	s = splnet();
860	INP_INFO_RLOCK(&tcbinfo);
861	for (inp = LIST_FIRST(tcbinfo.listhead), i = 0; inp && i < n;
862	     inp = LIST_NEXT(inp, inp_list)) {
863		INP_LOCK(inp);
864		if (inp->inp_gencnt <= gencnt &&
865		    cr_canseesocket(req->td->td_ucred, inp->inp_socket) == 0)
866			inp_list[i++] = inp;
867		INP_UNLOCK(inp);
868	}
869	INP_INFO_RUNLOCK(&tcbinfo);
870	splx(s);
871	n = i;
872
873	error = 0;
874	for (i = 0; i < n; i++) {
875		inp = inp_list[i];
876		INP_LOCK(inp);
877		if (inp->inp_gencnt <= gencnt) {
878			struct xtcpcb xt;
879			caddr_t inp_ppcb;
880			xt.xt_len = sizeof xt;
881			/* XXX should avoid extra copy */
882			bcopy(inp, &xt.xt_inp, sizeof *inp);
883			inp_ppcb = inp->inp_ppcb;
884			if (inp_ppcb != NULL)
885				bcopy(inp_ppcb, &xt.xt_tp, sizeof xt.xt_tp);
886			else
887				bzero((char *) &xt.xt_tp, sizeof xt.xt_tp);
888			if (inp->inp_socket)
889				sotoxsocket(inp->inp_socket, &xt.xt_socket);
890			error = SYSCTL_OUT(req, &xt, sizeof xt);
891		}
892		INP_UNLOCK(inp);
893	}
894	if (!error) {
895		/*
896		 * Give the user an updated idea of our state.
897		 * If the generation differs from what we told
898		 * her before, she knows that something happened
899		 * while we were processing this request, and it
900		 * might be necessary to retry.
901		 */
902		s = splnet();
903		INP_INFO_RLOCK(&tcbinfo);
904		xig.xig_gen = tcbinfo.ipi_gencnt;
905		xig.xig_sogen = so_gencnt;
906		xig.xig_count = tcbinfo.ipi_count;
907		INP_INFO_RUNLOCK(&tcbinfo);
908		splx(s);
909		error = SYSCTL_OUT(req, &xig, sizeof xig);
910	}
911	free(inp_list, M_TEMP);
912	return error;
913}
914
915SYSCTL_PROC(_net_inet_tcp, TCPCTL_PCBLIST, pcblist, CTLFLAG_RD, 0, 0,
916	    tcp_pcblist, "S,xtcpcb", "List of active TCP connections");
917
918static int
919tcp_getcred(SYSCTL_HANDLER_ARGS)
920{
921	struct xucred xuc;
922	struct sockaddr_in addrs[2];
923	struct inpcb *inp;
924	int error, s;
925
926	error = suser_cred(req->td->td_ucred, PRISON_ROOT);
927	if (error)
928		return (error);
929	error = SYSCTL_IN(req, addrs, sizeof(addrs));
930	if (error)
931		return (error);
932	s = splnet();
933	INP_INFO_RLOCK(&tcbinfo);
934	inp = in_pcblookup_hash(&tcbinfo, addrs[1].sin_addr, addrs[1].sin_port,
935	    addrs[0].sin_addr, addrs[0].sin_port, 0, NULL);
936	if (inp == NULL) {
937		error = ENOENT;
938		goto outunlocked;
939	}
940	INP_LOCK(inp);
941	if (inp->inp_socket == NULL) {
942		error = ENOENT;
943		goto out;
944	}
945	error = cr_canseesocket(req->td->td_ucred, inp->inp_socket);
946	if (error)
947		goto out;
948	cru2x(inp->inp_socket->so_cred, &xuc);
949out:
950	INP_UNLOCK(inp);
951outunlocked:
952	INP_INFO_RUNLOCK(&tcbinfo);
953	splx(s);
954	if (error == 0)
955		error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred));
956	return (error);
957}
958
959SYSCTL_PROC(_net_inet_tcp, OID_AUTO, getcred,
960    CTLTYPE_OPAQUE|CTLFLAG_RW|CTLFLAG_PRISON, 0, 0,
961    tcp_getcred, "S,xucred", "Get the xucred of a TCP connection");
962
963#ifdef INET6
964static int
965tcp6_getcred(SYSCTL_HANDLER_ARGS)
966{
967	struct xucred xuc;
968	struct sockaddr_in6 addrs[2];
969	struct inpcb *inp;
970	int error, s, mapped = 0;
971
972	error = suser_cred(req->td->td_ucred, PRISON_ROOT);
973	if (error)
974		return (error);
975	error = SYSCTL_IN(req, addrs, sizeof(addrs));
976	if (error)
977		return (error);
978	if (IN6_IS_ADDR_V4MAPPED(&addrs[0].sin6_addr)) {
979		if (IN6_IS_ADDR_V4MAPPED(&addrs[1].sin6_addr))
980			mapped = 1;
981		else
982			return (EINVAL);
983	}
984	s = splnet();
985	INP_INFO_RLOCK(&tcbinfo);
986	if (mapped == 1)
987		inp = in_pcblookup_hash(&tcbinfo,
988			*(struct in_addr *)&addrs[1].sin6_addr.s6_addr[12],
989			addrs[1].sin6_port,
990			*(struct in_addr *)&addrs[0].sin6_addr.s6_addr[12],
991			addrs[0].sin6_port,
992			0, NULL);
993	else
994		inp = in6_pcblookup_hash(&tcbinfo, &addrs[1].sin6_addr,
995				 addrs[1].sin6_port,
996				 &addrs[0].sin6_addr, addrs[0].sin6_port,
997				 0, NULL);
998	if (inp == NULL) {
999		error = ENOENT;
1000		goto outunlocked;
1001	}
1002	INP_LOCK(inp);
1003	if (inp->inp_socket == NULL) {
1004		error = ENOENT;
1005		goto out;
1006	}
1007	error = cr_canseesocket(req->td->td_ucred, inp->inp_socket);
1008	if (error)
1009		goto out;
1010	cru2x(inp->inp_socket->so_cred, &xuc);
1011out:
1012	INP_UNLOCK(inp);
1013outunlocked:
1014	INP_INFO_RUNLOCK(&tcbinfo);
1015	splx(s);
1016	if (error == 0)
1017		error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred));
1018	return (error);
1019}
1020
1021SYSCTL_PROC(_net_inet6_tcp6, OID_AUTO, getcred,
1022    CTLTYPE_OPAQUE|CTLFLAG_RW|CTLFLAG_PRISON, 0, 0,
1023    tcp6_getcred, "S,xucred", "Get the xucred of a TCP6 connection");
1024#endif
1025
1026
1027void
1028tcp_ctlinput(cmd, sa, vip)
1029	int cmd;
1030	struct sockaddr *sa;
1031	void *vip;
1032{
1033	struct ip *ip = vip;
1034	struct tcphdr *th;
1035	struct in_addr faddr;
1036	struct inpcb *inp;
1037	struct tcpcb *tp;
1038	struct inpcb *(*notify)(struct inpcb *, int) = tcp_notify;
1039	tcp_seq icmp_seq;
1040	int s;
1041
1042	faddr = ((struct sockaddr_in *)sa)->sin_addr;
1043	if (sa->sa_family != AF_INET || faddr.s_addr == INADDR_ANY)
1044		return;
1045
1046	if (cmd == PRC_QUENCH)
1047		notify = tcp_quench;
1048	else if (icmp_may_rst && (cmd == PRC_UNREACH_ADMIN_PROHIB ||
1049		cmd == PRC_UNREACH_PORT || cmd == PRC_TIMXCEED_INTRANS) && ip)
1050		notify = tcp_drop_syn_sent;
1051	else if (cmd == PRC_MSGSIZE)
1052		notify = tcp_mtudisc;
1053	else if (PRC_IS_REDIRECT(cmd)) {
1054		ip = 0;
1055		notify = in_rtchange;
1056	} else if (cmd == PRC_HOSTDEAD)
1057		ip = 0;
1058	else if ((unsigned)cmd > PRC_NCMDS || inetctlerrmap[cmd] == 0)
1059		return;
1060	if (ip) {
1061		s = splnet();
1062		th = (struct tcphdr *)((caddr_t)ip
1063				       + (IP_VHL_HL(ip->ip_vhl) << 2));
1064		INP_INFO_WLOCK(&tcbinfo);
1065		inp = in_pcblookup_hash(&tcbinfo, faddr, th->th_dport,
1066		    ip->ip_src, th->th_sport, 0, NULL);
1067		if (inp != NULL)  {
1068			INP_LOCK(inp);
1069			if (inp->inp_socket != NULL) {
1070				icmp_seq = htonl(th->th_seq);
1071				tp = intotcpcb(inp);
1072				if (SEQ_GEQ(icmp_seq, tp->snd_una) &&
1073			    		SEQ_LT(icmp_seq, tp->snd_max))
1074					inp = (*notify)(inp, inetctlerrmap[cmd]);
1075			}
1076			if (inp)
1077				INP_UNLOCK(inp);
1078		} else {
1079			struct in_conninfo inc;
1080
1081			inc.inc_fport = th->th_dport;
1082			inc.inc_lport = th->th_sport;
1083			inc.inc_faddr = faddr;
1084			inc.inc_laddr = ip->ip_src;
1085#ifdef INET6
1086			inc.inc_isipv6 = 0;
1087#endif
1088			syncache_unreach(&inc, th);
1089		}
1090		INP_INFO_WUNLOCK(&tcbinfo);
1091		splx(s);
1092	} else
1093		in_pcbnotifyall(&tcbinfo, faddr, inetctlerrmap[cmd], notify);
1094}
1095
1096#ifdef INET6
1097void
1098tcp6_ctlinput(cmd, sa, d)
1099	int cmd;
1100	struct sockaddr *sa;
1101	void *d;
1102{
1103	struct tcphdr th;
1104	struct inpcb *(*notify)(struct inpcb *, int) = tcp_notify;
1105	struct ip6_hdr *ip6;
1106	struct mbuf *m;
1107	struct ip6ctlparam *ip6cp = NULL;
1108	const struct sockaddr_in6 *sa6_src = NULL;
1109	int off;
1110	struct tcp_portonly {
1111		u_int16_t th_sport;
1112		u_int16_t th_dport;
1113	} *thp;
1114
1115	if (sa->sa_family != AF_INET6 ||
1116	    sa->sa_len != sizeof(struct sockaddr_in6))
1117		return;
1118
1119	if (cmd == PRC_QUENCH)
1120		notify = tcp_quench;
1121	else if (cmd == PRC_MSGSIZE)
1122		notify = tcp_mtudisc;
1123	else if (!PRC_IS_REDIRECT(cmd) &&
1124		 ((unsigned)cmd > PRC_NCMDS || inet6ctlerrmap[cmd] == 0))
1125		return;
1126
1127	/* if the parameter is from icmp6, decode it. */
1128	if (d != NULL) {
1129		ip6cp = (struct ip6ctlparam *)d;
1130		m = ip6cp->ip6c_m;
1131		ip6 = ip6cp->ip6c_ip6;
1132		off = ip6cp->ip6c_off;
1133		sa6_src = ip6cp->ip6c_src;
1134	} else {
1135		m = NULL;
1136		ip6 = NULL;
1137		off = 0;	/* fool gcc */
1138		sa6_src = &sa6_any;
1139	}
1140
1141	if (ip6) {
1142		struct in_conninfo inc;
1143		/*
1144		 * XXX: We assume that when IPV6 is non NULL,
1145		 * M and OFF are valid.
1146		 */
1147
1148		/* check if we can safely examine src and dst ports */
1149		if (m->m_pkthdr.len < off + sizeof(*thp))
1150			return;
1151
1152		bzero(&th, sizeof(th));
1153		m_copydata(m, off, sizeof(*thp), (caddr_t)&th);
1154
1155		in6_pcbnotify(&tcb, sa, th.th_dport,
1156		    (struct sockaddr *)ip6cp->ip6c_src,
1157		    th.th_sport, cmd, notify);
1158
1159		inc.inc_fport = th.th_dport;
1160		inc.inc_lport = th.th_sport;
1161		inc.inc6_faddr = ((struct sockaddr_in6 *)sa)->sin6_addr;
1162		inc.inc6_laddr = ip6cp->ip6c_src->sin6_addr;
1163		inc.inc_isipv6 = 1;
1164		syncache_unreach(&inc, &th);
1165	} else
1166		in6_pcbnotify(&tcb, sa, 0, (const struct sockaddr *)sa6_src,
1167			      0, cmd, notify);
1168}
1169#endif /* INET6 */
1170
1171
1172/*
1173 * Following is where TCP initial sequence number generation occurs.
1174 *
1175 * There are two places where we must use initial sequence numbers:
1176 * 1.  In SYN-ACK packets.
1177 * 2.  In SYN packets.
1178 *
1179 * All ISNs for SYN-ACK packets are generated by the syncache.  See
1180 * tcp_syncache.c for details.
1181 *
1182 * The ISNs in SYN packets must be monotonic; TIME_WAIT recycling
1183 * depends on this property.  In addition, these ISNs should be
1184 * unguessable so as to prevent connection hijacking.  To satisfy
1185 * the requirements of this situation, the algorithm outlined in
1186 * RFC 1948 is used to generate sequence numbers.
1187 *
1188 * Implementation details:
1189 *
1190 * Time is based off the system timer, and is corrected so that it
1191 * increases by one megabyte per second.  This allows for proper
1192 * recycling on high speed LANs while still leaving over an hour
1193 * before rollover.
1194 *
1195 * net.inet.tcp.isn_reseed_interval controls the number of seconds
1196 * between seeding of isn_secret.  This is normally set to zero,
1197 * as reseeding should not be necessary.
1198 *
1199 */
1200
1201#define ISN_BYTES_PER_SECOND 1048576
1202
1203u_char isn_secret[32];
1204int isn_last_reseed;
1205MD5_CTX isn_ctx;
1206
1207tcp_seq
1208tcp_new_isn(tp)
1209	struct tcpcb *tp;
1210{
1211	u_int32_t md5_buffer[4];
1212	tcp_seq new_isn;
1213
1214	/* Seed if this is the first use, reseed if requested. */
1215	if ((isn_last_reseed == 0) || ((tcp_isn_reseed_interval > 0) &&
1216	     (((u_int)isn_last_reseed + (u_int)tcp_isn_reseed_interval*hz)
1217		< (u_int)ticks))) {
1218		read_random(&isn_secret, sizeof(isn_secret));
1219		isn_last_reseed = ticks;
1220	}
1221
1222	/* Compute the md5 hash and return the ISN. */
1223	MD5Init(&isn_ctx);
1224	MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_fport, sizeof(u_short));
1225	MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_lport, sizeof(u_short));
1226#ifdef INET6
1227	if ((tp->t_inpcb->inp_vflag & INP_IPV6) != 0) {
1228		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_faddr,
1229			  sizeof(struct in6_addr));
1230		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_laddr,
1231			  sizeof(struct in6_addr));
1232	} else
1233#endif
1234	{
1235		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_faddr,
1236			  sizeof(struct in_addr));
1237		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_laddr,
1238			  sizeof(struct in_addr));
1239	}
1240	MD5Update(&isn_ctx, (u_char *) &isn_secret, sizeof(isn_secret));
1241	MD5Final((u_char *) &md5_buffer, &isn_ctx);
1242	new_isn = (tcp_seq) md5_buffer[0];
1243	new_isn += ticks * (ISN_BYTES_PER_SECOND / hz);
1244	return new_isn;
1245}
1246
1247/*
1248 * When a source quench is received, close congestion window
1249 * to one segment.  We will gradually open it again as we proceed.
1250 */
1251struct inpcb *
1252tcp_quench(inp, errno)
1253	struct inpcb *inp;
1254	int errno;
1255{
1256	struct tcpcb *tp = intotcpcb(inp);
1257
1258	if (tp)
1259		tp->snd_cwnd = tp->t_maxseg;
1260	return (inp);
1261}
1262
1263/*
1264 * When a specific ICMP unreachable message is received and the
1265 * connection state is SYN-SENT, drop the connection.  This behavior
1266 * is controlled by the icmp_may_rst sysctl.
1267 */
1268struct inpcb *
1269tcp_drop_syn_sent(inp, errno)
1270	struct inpcb *inp;
1271	int errno;
1272{
1273	struct tcpcb *tp = intotcpcb(inp);
1274
1275	if (tp && tp->t_state == TCPS_SYN_SENT) {
1276		tcp_drop(tp, errno);
1277		return (struct inpcb *)0;
1278	}
1279	return inp;
1280}
1281
1282/*
1283 * When `need fragmentation' ICMP is received, update our idea of the MSS
1284 * based on the new value in the route.  Also nudge TCP to send something,
1285 * since we know the packet we just sent was dropped.
1286 * This duplicates some code in the tcp_mss() function in tcp_input.c.
1287 */
1288struct inpcb *
1289tcp_mtudisc(inp, errno)
1290	struct inpcb *inp;
1291	int errno;
1292{
1293	struct tcpcb *tp = intotcpcb(inp);
1294	struct rtentry *rt;
1295	struct rmxp_tao *taop;
1296	struct socket *so = inp->inp_socket;
1297	int offered;
1298	int mss;
1299#ifdef INET6
1300	int isipv6 = (tp->t_inpcb->inp_vflag & INP_IPV6) != 0;
1301#endif /* INET6 */
1302
1303	if (tp) {
1304#ifdef INET6
1305		if (isipv6)
1306			rt = tcp_rtlookup6(&inp->inp_inc);
1307		else
1308#endif /* INET6 */
1309		rt = tcp_rtlookup(&inp->inp_inc);
1310		if (!rt || !rt->rt_rmx.rmx_mtu) {
1311			tp->t_maxopd = tp->t_maxseg =
1312#ifdef INET6
1313				isipv6 ? tcp_v6mssdflt :
1314#endif /* INET6 */
1315				tcp_mssdflt;
1316			return inp;
1317		}
1318		taop = rmx_taop(rt->rt_rmx);
1319		offered = taop->tao_mssopt;
1320		mss = rt->rt_rmx.rmx_mtu -
1321#ifdef INET6
1322			(isipv6 ?
1323			 sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
1324#endif /* INET6 */
1325			 sizeof(struct tcpiphdr)
1326#ifdef INET6
1327			 )
1328#endif /* INET6 */
1329			;
1330
1331		if (offered)
1332			mss = min(mss, offered);
1333		/*
1334		 * XXX - The above conditional probably violates the TCP
1335		 * spec.  The problem is that, since we don't know the
1336		 * other end's MSS, we are supposed to use a conservative
1337		 * default.  But, if we do that, then MTU discovery will
1338		 * never actually take place, because the conservative
1339		 * default is much less than the MTUs typically seen
1340		 * on the Internet today.  For the moment, we'll sweep
1341		 * this under the carpet.
1342		 *
1343		 * The conservative default might not actually be a problem
1344		 * if the only case this occurs is when sending an initial
1345		 * SYN with options and data to a host we've never talked
1346		 * to before.  Then, they will reply with an MSS value which
1347		 * will get recorded and the new parameters should get
1348		 * recomputed.  For Further Study.
1349		 */
1350		if (tp->t_maxopd <= mss)
1351			return inp;
1352		tp->t_maxopd = mss;
1353
1354		if ((tp->t_flags & (TF_REQ_TSTMP|TF_NOOPT)) == TF_REQ_TSTMP &&
1355		    (tp->t_flags & TF_RCVD_TSTMP) == TF_RCVD_TSTMP)
1356			mss -= TCPOLEN_TSTAMP_APPA;
1357		if ((tp->t_flags & (TF_REQ_CC|TF_NOOPT)) == TF_REQ_CC &&
1358		    (tp->t_flags & TF_RCVD_CC) == TF_RCVD_CC)
1359			mss -= TCPOLEN_CC_APPA;
1360#if	(MCLBYTES & (MCLBYTES - 1)) == 0
1361		if (mss > MCLBYTES)
1362			mss &= ~(MCLBYTES-1);
1363#else
1364		if (mss > MCLBYTES)
1365			mss = mss / MCLBYTES * MCLBYTES;
1366#endif
1367		if (so->so_snd.sb_hiwat < mss)
1368			mss = so->so_snd.sb_hiwat;
1369
1370		tp->t_maxseg = mss;
1371
1372		tcpstat.tcps_mturesent++;
1373		tp->t_rtttime = 0;
1374		tp->snd_nxt = tp->snd_una;
1375		tcp_output(tp);
1376	}
1377	return inp;
1378}
1379
1380/*
1381 * Look-up the routing entry to the peer of this inpcb.  If no route
1382 * is found and it cannot be allocated the return NULL.  This routine
1383 * is called by TCP routines that access the rmx structure and by tcp_mss
1384 * to get the interface MTU.
1385 */
1386struct rtentry *
1387tcp_rtlookup(inc)
1388	struct in_conninfo *inc;
1389{
1390	struct route *ro;
1391	struct rtentry *rt;
1392
1393	ro = &inc->inc_route;
1394	rt = ro->ro_rt;
1395	if (rt == NULL || !(rt->rt_flags & RTF_UP)) {
1396		/* No route yet, so try to acquire one */
1397		if (inc->inc_faddr.s_addr != INADDR_ANY) {
1398			ro->ro_dst.sa_family = AF_INET;
1399			ro->ro_dst.sa_len = sizeof(struct sockaddr_in);
1400			((struct sockaddr_in *) &ro->ro_dst)->sin_addr =
1401			    inc->inc_faddr;
1402			rtalloc(ro);
1403			rt = ro->ro_rt;
1404		}
1405	}
1406	return rt;
1407}
1408
1409#ifdef INET6
1410struct rtentry *
1411tcp_rtlookup6(inc)
1412	struct in_conninfo *inc;
1413{
1414	struct route_in6 *ro6;
1415	struct rtentry *rt;
1416
1417	ro6 = &inc->inc6_route;
1418	rt = ro6->ro_rt;
1419	if (rt == NULL || !(rt->rt_flags & RTF_UP)) {
1420		/* No route yet, so try to acquire one */
1421		if (!IN6_IS_ADDR_UNSPECIFIED(&inc->inc6_faddr)) {
1422			ro6->ro_dst.sin6_family = AF_INET6;
1423			ro6->ro_dst.sin6_len = sizeof(struct sockaddr_in6);
1424			ro6->ro_dst.sin6_addr = inc->inc6_faddr;
1425			rtalloc((struct route *)ro6);
1426			rt = ro6->ro_rt;
1427		}
1428	}
1429	return rt;
1430}
1431#endif /* INET6 */
1432
1433#ifdef IPSEC
1434/* compute ESP/AH header size for TCP, including outer IP header. */
1435size_t
1436ipsec_hdrsiz_tcp(tp)
1437	struct tcpcb *tp;
1438{
1439	struct inpcb *inp;
1440	struct mbuf *m;
1441	size_t hdrsiz;
1442	struct ip *ip;
1443#ifdef INET6
1444	struct ip6_hdr *ip6;
1445#endif /* INET6 */
1446	struct tcphdr *th;
1447
1448	if ((tp == NULL) || ((inp = tp->t_inpcb) == NULL))
1449		return 0;
1450	MGETHDR(m, M_DONTWAIT, MT_DATA);
1451	if (!m)
1452		return 0;
1453
1454#ifdef INET6
1455	if ((inp->inp_vflag & INP_IPV6) != 0) {
1456		ip6 = mtod(m, struct ip6_hdr *);
1457		th = (struct tcphdr *)(ip6 + 1);
1458		m->m_pkthdr.len = m->m_len =
1459			sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
1460		tcp_fillheaders(tp, ip6, th);
1461		hdrsiz = ipsec6_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
1462	} else
1463#endif /* INET6 */
1464      {
1465	ip = mtod(m, struct ip *);
1466	th = (struct tcphdr *)(ip + 1);
1467	m->m_pkthdr.len = m->m_len = sizeof(struct tcpiphdr);
1468	tcp_fillheaders(tp, ip, th);
1469	hdrsiz = ipsec4_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
1470      }
1471
1472	m_free(m);
1473	return hdrsiz;
1474}
1475#endif /*IPSEC*/
1476
1477/*
1478 * Return a pointer to the cached information about the remote host.
1479 * The cached information is stored in the protocol specific part of
1480 * the route metrics.
1481 */
1482struct rmxp_tao *
1483tcp_gettaocache(inc)
1484	struct in_conninfo *inc;
1485{
1486	struct rtentry *rt;
1487
1488#ifdef INET6
1489	if (inc->inc_isipv6)
1490		rt = tcp_rtlookup6(inc);
1491	else
1492#endif /* INET6 */
1493	rt = tcp_rtlookup(inc);
1494
1495	/* Make sure this is a host route and is up. */
1496	if (rt == NULL ||
1497	    (rt->rt_flags & (RTF_UP|RTF_HOST)) != (RTF_UP|RTF_HOST))
1498		return NULL;
1499
1500	return rmx_taop(rt->rt_rmx);
1501}
1502
1503/*
1504 * Clear all the TAO cache entries, called from tcp_init.
1505 *
1506 * XXX
1507 * This routine is just an empty one, because we assume that the routing
1508 * routing tables are initialized at the same time when TCP, so there is
1509 * nothing in the cache left over.
1510 */
1511static void
1512tcp_cleartaocache()
1513{
1514}
1515