siftr.c revision 213162
1/*-
2 * Copyright (c) 2007-2009, Centre for Advanced Internet Architectures
3 * Swinburne University of Technology, Melbourne, Australia
4 * (CRICOS number 00111D).
5 * Copyright (c) 2009-2010, The FreeBSD Foundation
6 * All rights reserved.
7 *
8 * Portions of this software were developed at the Centre for Advanced
9 * Internet Architectures, Swinburne University of Technology, Melbourne,
10 * Australia by Lawrence Stewart under sponsorship from the FreeBSD Foundation.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 *    notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 *    notice, this list of conditions and the following disclaimer in the
19 *    documentation and/or other materials provided with the distribution.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
32 */
33
34/******************************************************
35 * Statistical Information For TCP Research (SIFTR)
36 *
37 * A FreeBSD kernel module that adds very basic intrumentation to the
38 * TCP stack, allowing internal stats to be recorded to a log file
39 * for experimental, debugging and performance analysis purposes.
40 *
41 * SIFTR was first released in 2007 by James Healy and Lawrence Stewart whilst
42 * working on the NewTCP research project at Swinburne University's Centre for
43 * Advanced Internet Architectures, Melbourne, Australia, which was made
44 * possible in part by a grant from the Cisco University Research Program Fund
45 * at Community Foundation Silicon Valley. More details are available at:
46 *   http://caia.swin.edu.au/urp/newtcp/
47 *
48 * Work on SIFTR v1.2.x was sponsored by the FreeBSD Foundation as part of
49 * the "Enhancing the FreeBSD TCP Implementation" project 2008-2009.
50 * More details are available at:
51 *   http://www.freebsdfoundation.org/
52 *   http://caia.swin.edu.au/freebsd/etcp09/
53 *
54 * Lawrence Stewart is the current maintainer, and all contact regarding
55 * SIFTR should be directed to him via email: lastewart@swin.edu.au
56 *
57 * Initial release date: June 2007
58 * Most recent update: September 2010
59 ******************************************************/
60
61#include <sys/cdefs.h>
62__FBSDID("$FreeBSD: head/sys/netinet/siftr.c 213162 2010-09-25 09:16:46Z lstewart $");
63
64#include <sys/param.h>
65#include <sys/alq.h>
66#include <sys/errno.h>
67#include <sys/hash.h>
68#include <sys/kernel.h>
69#include <sys/kthread.h>
70#include <sys/lock.h>
71#include <sys/mbuf.h>
72#include <sys/module.h>
73#include <sys/mutex.h>
74#include <sys/pcpu.h>
75#include <sys/proc.h>
76#include <sys/sbuf.h>
77#include <sys/smp.h>
78#include <sys/socket.h>
79#include <sys/socketvar.h>
80#include <sys/sysctl.h>
81#include <sys/unistd.h>
82
83#include <net/if.h>
84#include <net/pfil.h>
85
86#include <netinet/in.h>
87#include <netinet/in_pcb.h>
88#include <netinet/in_systm.h>
89#include <netinet/in_var.h>
90#include <netinet/ip.h>
91#include <netinet/tcp_var.h>
92
93#ifdef SIFTR_IPV6
94#include <netinet/ip6.h>
95#include <netinet6/in6_pcb.h>
96#endif /* SIFTR_IPV6 */
97
98#include <machine/in_cksum.h>
99
100/*
101 * Three digit version number refers to X.Y.Z where:
102 * X is the major version number
103 * Y is bumped to mark backwards incompatible changes
104 * Z is bumped to mark backwards compatible changes
105 */
106#define V_MAJOR		1
107#define V_BACKBREAK	2
108#define V_BACKCOMPAT	4
109#define MODVERSION	__CONCAT(V_MAJOR, __CONCAT(V_BACKBREAK, V_BACKCOMPAT))
110#define MODVERSION_STR	__XSTRING(V_MAJOR) "." __XSTRING(V_BACKBREAK) "." \
111    __XSTRING(V_BACKCOMPAT)
112
113#define HOOK 0
114#define UNHOOK 1
115#define SIFTR_EXPECTED_MAX_TCP_FLOWS 65536
116#define SYS_NAME "FreeBSD"
117#define PACKET_TAG_SIFTR 100
118#define PACKET_COOKIE_SIFTR 21749576
119#define SIFTR_LOG_FILE_MODE 0644
120#define SIFTR_DISABLE 0
121#define SIFTR_ENABLE 1
122
123/*
124 * Hard upper limit on the length of log messages. Bump this up if you add new
125 * data fields such that the line length could exceed the below value.
126 */
127#define MAX_LOG_MSG_LEN 200
128/* XXX: Make this a sysctl tunable. */
129#define SIFTR_ALQ_BUFLEN (1000*MAX_LOG_MSG_LEN)
130
131/*
132 * 1 byte for IP version
133 * IPv4: src/dst IP (4+4) + src/dst port (2+2) = 12 bytes
134 * IPv6: src/dst IP (16+16) + src/dst port (2+2) = 36 bytes
135 */
136#ifdef SIFTR_IPV6
137#define FLOW_KEY_LEN 37
138#else
139#define FLOW_KEY_LEN 13
140#endif
141
142#ifdef SIFTR_IPV6
143#define SIFTR_IPMODE 6
144#else
145#define SIFTR_IPMODE 4
146#endif
147
148/* useful macros */
149#define CAST_PTR_INT(X) (*((int*)(X)))
150
151#define UPPER_SHORT(X)	(((X) & 0xFFFF0000) >> 16)
152#define LOWER_SHORT(X)	((X) & 0x0000FFFF)
153
154#define FIRST_OCTET(X)	(((X) & 0xFF000000) >> 24)
155#define SECOND_OCTET(X)	(((X) & 0x00FF0000) >> 16)
156#define THIRD_OCTET(X)	(((X) & 0x0000FF00) >> 8)
157#define FOURTH_OCTET(X)	((X) & 0x000000FF)
158
159MALLOC_DECLARE(M_SIFTR);
160MALLOC_DEFINE(M_SIFTR, "siftr", "dynamic memory used by SIFTR");
161
162MALLOC_DECLARE(M_SIFTR_PKTNODE);
163MALLOC_DEFINE(M_SIFTR_PKTNODE, "siftr_pktnode", "SIFTR pkt_node struct");
164
165MALLOC_DECLARE(M_SIFTR_HASHNODE);
166MALLOC_DEFINE(M_SIFTR_HASHNODE, "siftr_hashnode", "SIFTR flow_hash_node struct");
167
168/* Used as links in the pkt manager queue. */
169struct pkt_node {
170	/* Timestamp of pkt as noted in the pfil hook. */
171	struct timeval		tval;
172	/* Direction pkt is travelling; either PFIL_IN or PFIL_OUT. */
173	uint8_t			direction;
174	/* IP version pkt_node relates to; either INP_IPV4 or INP_IPV6. */
175	uint8_t			ipver;
176	/* Hash of the pkt which triggered the log message. */
177	uint32_t		hash;
178	/* Local/foreign IP address. */
179#ifdef SIFTR_IPV6
180	uint32_t		ip_laddr[4];
181	uint32_t		ip_faddr[4];
182#else
183	uint8_t			ip_laddr[4];
184	uint8_t			ip_faddr[4];
185#endif
186	/* Local TCP port. */
187	uint16_t		tcp_localport;
188	/* Foreign TCP port. */
189	uint16_t		tcp_foreignport;
190	/* Congestion Window (bytes). */
191	u_long			snd_cwnd;
192	/* Sending Window (bytes). */
193	u_long			snd_wnd;
194	/* Receive Window (bytes). */
195	u_long			rcv_wnd;
196	/* Unused (was: Bandwidth Controlled Window (bytes)). */
197	u_long			snd_bwnd;
198	/* Slow Start Threshold (bytes). */
199	u_long			snd_ssthresh;
200	/* Current state of the TCP FSM. */
201	int			conn_state;
202	/* Max Segment Size (bytes). */
203	u_int			max_seg_size;
204	/*
205	 * Smoothed RTT stored as found in the TCP control block
206	 * in units of (TCP_RTT_SCALE*hz).
207	 */
208	int			smoothed_rtt;
209	/* Is SACK enabled? */
210	u_char			sack_enabled;
211	/* Window scaling for snd window. */
212	u_char			snd_scale;
213	/* Window scaling for recv window. */
214	u_char			rcv_scale;
215	/* TCP control block flags. */
216	u_int			flags;
217	/* Retransmit timeout length. */
218	int			rxt_length;
219	/* Size of the TCP send buffer in bytes. */
220	u_int			snd_buf_hiwater;
221	/* Current num bytes in the send socket buffer. */
222	u_int			snd_buf_cc;
223	/* Size of the TCP receive buffer in bytes. */
224	u_int			rcv_buf_hiwater;
225	/* Current num bytes in the receive socket buffer. */
226	u_int			rcv_buf_cc;
227	/* Number of bytes inflight that we are waiting on ACKs for. */
228	u_int			sent_inflight_bytes;
229	/* Number of segments currently in the reassembly queue. */
230	int			t_segqlen;
231	/* Link to next pkt_node in the list. */
232	STAILQ_ENTRY(pkt_node)	nodes;
233};
234
235struct flow_hash_node
236{
237	uint16_t counter;
238	uint8_t key[FLOW_KEY_LEN];
239	LIST_ENTRY(flow_hash_node) nodes;
240};
241
242struct siftr_stats
243{
244	/* # TCP pkts seen by the SIFTR PFIL hooks, including any skipped. */
245	uint64_t n_in;
246	uint64_t n_out;
247	/* # pkts skipped due to failed malloc calls. */
248	uint32_t nskip_in_malloc;
249	uint32_t nskip_out_malloc;
250	/* # pkts skipped due to failed mtx acquisition. */
251	uint32_t nskip_in_mtx;
252	uint32_t nskip_out_mtx;
253	/* # pkts skipped due to failed inpcb lookups. */
254	uint32_t nskip_in_inpcb;
255	uint32_t nskip_out_inpcb;
256	/* # pkts skipped due to failed tcpcb lookups. */
257	uint32_t nskip_in_tcpcb;
258	uint32_t nskip_out_tcpcb;
259	/* # pkts skipped due to stack reinjection. */
260	uint32_t nskip_in_dejavu;
261	uint32_t nskip_out_dejavu;
262};
263
264static DPCPU_DEFINE(struct siftr_stats, ss);
265
266static volatile unsigned int siftr_exit_pkt_manager_thread = 0;
267static unsigned int siftr_enabled = 0;
268static unsigned int siftr_pkts_per_log = 1;
269static unsigned int siftr_generate_hashes = 0;
270/* static unsigned int siftr_binary_log = 0; */
271static char siftr_logfile[PATH_MAX] = "/var/log/siftr.log";
272static u_long siftr_hashmask;
273STAILQ_HEAD(pkthead, pkt_node) pkt_queue = STAILQ_HEAD_INITIALIZER(pkt_queue);
274LIST_HEAD(listhead, flow_hash_node) *counter_hash;
275static int wait_for_pkt;
276static struct alq *siftr_alq = NULL;
277static struct mtx siftr_pkt_queue_mtx;
278static struct mtx siftr_pkt_mgr_mtx;
279static struct thread *siftr_pkt_manager_thr = NULL;
280/*
281 * pfil.h defines PFIL_IN as 1 and PFIL_OUT as 2,
282 * which we use as an index into this array.
283 */
284static char direction[3] = {'\0', 'i','o'};
285
286/* Required function prototypes. */
287static int siftr_sysctl_enabled_handler(SYSCTL_HANDLER_ARGS);
288static int siftr_sysctl_logfile_name_handler(SYSCTL_HANDLER_ARGS);
289
290
291/* Declare the net.inet.siftr sysctl tree and populate it. */
292
293SYSCTL_DECL(_net_inet_siftr);
294
295SYSCTL_NODE(_net_inet, OID_AUTO, siftr, CTLFLAG_RW, NULL,
296    "siftr related settings");
297
298SYSCTL_PROC(_net_inet_siftr, OID_AUTO, enabled, CTLTYPE_UINT|CTLFLAG_RW,
299    &siftr_enabled, 0, &siftr_sysctl_enabled_handler, "IU",
300    "switch siftr module operations on/off");
301
302SYSCTL_PROC(_net_inet_siftr, OID_AUTO, logfile, CTLTYPE_STRING|CTLFLAG_RW,
303    &siftr_logfile, sizeof(siftr_logfile), &siftr_sysctl_logfile_name_handler,
304    "A", "file to save siftr log messages to");
305
306SYSCTL_UINT(_net_inet_siftr, OID_AUTO, ppl, CTLFLAG_RW,
307    &siftr_pkts_per_log, 1,
308    "number of packets between generating a log message");
309
310SYSCTL_UINT(_net_inet_siftr, OID_AUTO, genhashes, CTLFLAG_RW,
311    &siftr_generate_hashes, 0,
312    "enable packet hash generation");
313
314/* XXX: TODO
315SYSCTL_UINT(_net_inet_siftr, OID_AUTO, binary, CTLFLAG_RW,
316    &siftr_binary_log, 0,
317    "write log files in binary instead of ascii");
318*/
319
320
321/* Begin functions. */
322
323static void
324siftr_process_pkt(struct pkt_node * pkt_node)
325{
326	struct flow_hash_node *hash_node;
327	struct listhead *counter_list;
328	struct siftr_stats *ss;
329	struct ale *log_buf;
330	uint8_t key[FLOW_KEY_LEN];
331	uint8_t found_match, key_offset;
332
333	hash_node = NULL;
334	ss = DPCPU_PTR(ss);
335	found_match = 0;
336	key_offset = 1;
337
338	/*
339	 * Create the key that will be used to create a hash index
340	 * into our hash table. Our key consists of:
341	 * ipversion, localip, localport, foreignip, foreignport
342	 */
343	key[0] = pkt_node->ipver;
344	memcpy(key + key_offset, &pkt_node->ip_laddr,
345	    sizeof(pkt_node->ip_laddr));
346	key_offset += sizeof(pkt_node->ip_laddr);
347	memcpy(key + key_offset, &pkt_node->tcp_localport,
348	    sizeof(pkt_node->tcp_localport));
349	key_offset += sizeof(pkt_node->tcp_localport);
350	memcpy(key + key_offset, &pkt_node->ip_faddr,
351	    sizeof(pkt_node->ip_faddr));
352	key_offset += sizeof(pkt_node->ip_faddr);
353	memcpy(key + key_offset, &pkt_node->tcp_foreignport,
354	    sizeof(pkt_node->tcp_foreignport));
355
356	counter_list = counter_hash +
357	    (hash32_buf(key, sizeof(key), 0) & siftr_hashmask);
358
359	/*
360	 * If the list is not empty i.e. the hash index has
361	 * been used by another flow previously.
362	 */
363	if (LIST_FIRST(counter_list) != NULL) {
364		/*
365		 * Loop through the hash nodes in the list.
366		 * There should normally only be 1 hash node in the list,
367		 * except if there have been collisions at the hash index
368		 * computed by hash32_buf().
369		 */
370		LIST_FOREACH(hash_node, counter_list, nodes) {
371			/*
372			 * Check if the key for the pkt we are currently
373			 * processing is the same as the key stored in the
374			 * hash node we are currently processing.
375			 * If they are the same, then we've found the
376			 * hash node that stores the counter for the flow
377			 * the pkt belongs to.
378			 */
379			if (memcmp(hash_node->key, key, sizeof(key)) == 0) {
380				found_match = 1;
381				break;
382			}
383		}
384	}
385
386	/* If this flow hash hasn't been seen before or we have a collision. */
387	if (hash_node == NULL || !found_match) {
388		/* Create a new hash node to store the flow's counter. */
389		hash_node = malloc(sizeof(struct flow_hash_node),
390		    M_SIFTR_HASHNODE, M_WAITOK);
391
392		if (hash_node != NULL) {
393			/* Initialise our new hash node list entry. */
394			hash_node->counter = 0;
395			memcpy(hash_node->key, key, sizeof(key));
396			LIST_INSERT_HEAD(counter_list, hash_node, nodes);
397		} else {
398			/* Malloc failed. */
399			if (pkt_node->direction == PFIL_IN)
400				ss->nskip_in_malloc++;
401			else
402				ss->nskip_out_malloc++;
403
404			return;
405		}
406	} else if (siftr_pkts_per_log > 1) {
407		/*
408		 * Taking the remainder of the counter divided
409		 * by the current value of siftr_pkts_per_log
410		 * and storing that in counter provides a neat
411		 * way to modulate the frequency of log
412		 * messages being written to the log file.
413		 */
414		hash_node->counter = (hash_node->counter + 1) %
415		    siftr_pkts_per_log;
416
417		/*
418		 * If we have not seen enough packets since the last time
419		 * we wrote a log message for this connection, return.
420		 */
421		if (hash_node->counter > 0)
422			return;
423	}
424
425	log_buf = alq_getn(siftr_alq, MAX_LOG_MSG_LEN, ALQ_WAITOK);
426
427	if (log_buf == NULL)
428		return; /* Should only happen if the ALQ is shutting down. */
429
430#ifdef SIFTR_IPV6
431	pkt_node->ip_laddr[3] = ntohl(pkt_node->ip_laddr[3]);
432	pkt_node->ip_faddr[3] = ntohl(pkt_node->ip_faddr[3]);
433
434	if (pkt_node->ipver == INP_IPV6) { /* IPv6 packet */
435		pkt_node->ip_laddr[0] = ntohl(pkt_node->ip_laddr[0]);
436		pkt_node->ip_laddr[1] = ntohl(pkt_node->ip_laddr[1]);
437		pkt_node->ip_laddr[2] = ntohl(pkt_node->ip_laddr[2]);
438		pkt_node->ip_faddr[0] = ntohl(pkt_node->ip_faddr[0]);
439		pkt_node->ip_faddr[1] = ntohl(pkt_node->ip_faddr[1]);
440		pkt_node->ip_faddr[2] = ntohl(pkt_node->ip_faddr[2]);
441
442		/* Construct an IPv6 log message. */
443		log_buf->ae_bytesused = snprintf(log_buf->ae_data,
444		    MAX_LOG_MSG_LEN,
445		    "%c,0x%08x,%zd.%06ld,%x:%x:%x:%x:%x:%x:%x:%x,%u,%x:%x:%x:"
446		    "%x:%x:%x:%x:%x,%u,%ld,%ld,%ld,%ld,%ld,%u,%u,%u,%u,%u,%u,"
447		    "%u,%d,%u,%u,%u,%u,%u,%u\n",
448		    direction[pkt_node->direction],
449		    pkt_node->hash,
450		    pkt_node->tval.tv_sec,
451		    pkt_node->tval.tv_usec,
452		    UPPER_SHORT(pkt_node->ip_laddr[0]),
453		    LOWER_SHORT(pkt_node->ip_laddr[0]),
454		    UPPER_SHORT(pkt_node->ip_laddr[1]),
455		    LOWER_SHORT(pkt_node->ip_laddr[1]),
456		    UPPER_SHORT(pkt_node->ip_laddr[2]),
457		    LOWER_SHORT(pkt_node->ip_laddr[2]),
458		    UPPER_SHORT(pkt_node->ip_laddr[3]),
459		    LOWER_SHORT(pkt_node->ip_laddr[3]),
460		    ntohs(pkt_node->tcp_localport),
461		    UPPER_SHORT(pkt_node->ip_faddr[0]),
462		    LOWER_SHORT(pkt_node->ip_faddr[0]),
463		    UPPER_SHORT(pkt_node->ip_faddr[1]),
464		    LOWER_SHORT(pkt_node->ip_faddr[1]),
465		    UPPER_SHORT(pkt_node->ip_faddr[2]),
466		    LOWER_SHORT(pkt_node->ip_faddr[2]),
467		    UPPER_SHORT(pkt_node->ip_faddr[3]),
468		    LOWER_SHORT(pkt_node->ip_faddr[3]),
469		    ntohs(pkt_node->tcp_foreignport),
470		    pkt_node->snd_ssthresh,
471		    pkt_node->snd_cwnd,
472		    pkt_node->snd_bwnd,
473		    pkt_node->snd_wnd,
474		    pkt_node->rcv_wnd,
475		    pkt_node->snd_scale,
476		    pkt_node->rcv_scale,
477		    pkt_node->conn_state,
478		    pkt_node->max_seg_size,
479		    pkt_node->smoothed_rtt,
480		    pkt_node->sack_enabled,
481		    pkt_node->flags,
482		    pkt_node->rxt_length,
483		    pkt_node->snd_buf_hiwater,
484		    pkt_node->snd_buf_cc,
485		    pkt_node->rcv_buf_hiwater,
486		    pkt_node->rcv_buf_cc,
487		    pkt_node->sent_inflight_bytes,
488		    pkt_node->t_segqlen);
489	} else { /* IPv4 packet */
490		pkt_node->ip_laddr[0] = FIRST_OCTET(pkt_node->ip_laddr[3]);
491		pkt_node->ip_laddr[1] = SECOND_OCTET(pkt_node->ip_laddr[3]);
492		pkt_node->ip_laddr[2] = THIRD_OCTET(pkt_node->ip_laddr[3]);
493		pkt_node->ip_laddr[3] = FOURTH_OCTET(pkt_node->ip_laddr[3]);
494		pkt_node->ip_faddr[0] = FIRST_OCTET(pkt_node->ip_faddr[3]);
495		pkt_node->ip_faddr[1] = SECOND_OCTET(pkt_node->ip_faddr[3]);
496		pkt_node->ip_faddr[2] = THIRD_OCTET(pkt_node->ip_faddr[3]);
497		pkt_node->ip_faddr[3] = FOURTH_OCTET(pkt_node->ip_faddr[3]);
498#endif /* SIFTR_IPV6 */
499
500		/* Construct an IPv4 log message. */
501		log_buf->ae_bytesused = snprintf(log_buf->ae_data,
502		    MAX_LOG_MSG_LEN,
503		    "%c,0x%08x,%jd.%06ld,%u.%u.%u.%u,%u,%u.%u.%u.%u,%u,%ld,%ld,"
504		    "%ld,%ld,%ld,%u,%u,%u,%u,%u,%u,%u,%d,%u,%u,%u,%u,%u,%u\n",
505		    direction[pkt_node->direction],
506		    pkt_node->hash,
507		    (intmax_t)pkt_node->tval.tv_sec,
508		    pkt_node->tval.tv_usec,
509		    pkt_node->ip_laddr[0],
510		    pkt_node->ip_laddr[1],
511		    pkt_node->ip_laddr[2],
512		    pkt_node->ip_laddr[3],
513		    ntohs(pkt_node->tcp_localport),
514		    pkt_node->ip_faddr[0],
515		    pkt_node->ip_faddr[1],
516		    pkt_node->ip_faddr[2],
517		    pkt_node->ip_faddr[3],
518		    ntohs(pkt_node->tcp_foreignport),
519		    pkt_node->snd_ssthresh,
520		    pkt_node->snd_cwnd,
521		    pkt_node->snd_bwnd,
522		    pkt_node->snd_wnd,
523		    pkt_node->rcv_wnd,
524		    pkt_node->snd_scale,
525		    pkt_node->rcv_scale,
526		    pkt_node->conn_state,
527		    pkt_node->max_seg_size,
528		    pkt_node->smoothed_rtt,
529		    pkt_node->sack_enabled,
530		    pkt_node->flags,
531		    pkt_node->rxt_length,
532		    pkt_node->snd_buf_hiwater,
533		    pkt_node->snd_buf_cc,
534		    pkt_node->rcv_buf_hiwater,
535		    pkt_node->rcv_buf_cc,
536		    pkt_node->sent_inflight_bytes,
537		    pkt_node->t_segqlen);
538#ifdef SIFTR_IPV6
539	}
540#endif
541
542	alq_post_flags(siftr_alq, log_buf, 0);
543}
544
545
546static void
547siftr_pkt_manager_thread(void *arg)
548{
549	STAILQ_HEAD(pkthead, pkt_node) tmp_pkt_queue =
550	    STAILQ_HEAD_INITIALIZER(tmp_pkt_queue);
551	struct pkt_node *pkt_node, *pkt_node_temp;
552	uint8_t draining;
553
554	draining = 2;
555
556	mtx_lock(&siftr_pkt_mgr_mtx);
557
558	/* draining == 0 when queue has been flushed and it's safe to exit. */
559	while (draining) {
560		/*
561		 * Sleep until we are signalled to wake because thread has
562		 * been told to exit or until 1 tick has passed.
563		 */
564		mtx_sleep(&wait_for_pkt, &siftr_pkt_mgr_mtx, PWAIT, "pktwait",
565		    1);
566
567		/* Gain exclusive access to the pkt_node queue. */
568		mtx_lock(&siftr_pkt_queue_mtx);
569
570		/*
571		 * Move pkt_queue to tmp_pkt_queue, which leaves
572		 * pkt_queue empty and ready to receive more pkt_nodes.
573		 */
574		STAILQ_CONCAT(&tmp_pkt_queue, &pkt_queue);
575
576		/*
577		 * We've finished making changes to the list. Unlock it
578		 * so the pfil hooks can continue queuing pkt_nodes.
579		 */
580		mtx_unlock(&siftr_pkt_queue_mtx);
581
582		/*
583		 * We can't hold a mutex whilst calling siftr_process_pkt
584		 * because ALQ might sleep waiting for buffer space.
585		 */
586		mtx_unlock(&siftr_pkt_mgr_mtx);
587
588		/* Flush all pkt_nodes to the log file. */
589		STAILQ_FOREACH_SAFE(pkt_node, &tmp_pkt_queue, nodes,
590		    pkt_node_temp) {
591			siftr_process_pkt(pkt_node);
592			STAILQ_REMOVE_HEAD(&tmp_pkt_queue, nodes);
593			free(pkt_node, M_SIFTR_PKTNODE);
594		}
595
596		KASSERT(STAILQ_EMPTY(&tmp_pkt_queue),
597		    ("SIFTR tmp_pkt_queue not empty after flush"));
598
599		mtx_lock(&siftr_pkt_mgr_mtx);
600
601		/*
602		 * If siftr_exit_pkt_manager_thread gets set during the window
603		 * where we are draining the tmp_pkt_queue above, there might
604		 * still be pkts in pkt_queue that need to be drained.
605		 * Allow one further iteration to occur after
606		 * siftr_exit_pkt_manager_thread has been set to ensure
607		 * pkt_queue is completely empty before we kill the thread.
608		 *
609		 * siftr_exit_pkt_manager_thread is set only after the pfil
610		 * hooks have been removed, so only 1 extra iteration
611		 * is needed to drain the queue.
612		 */
613		if (siftr_exit_pkt_manager_thread)
614			draining--;
615	}
616
617	mtx_unlock(&siftr_pkt_mgr_mtx);
618
619	/* Calls wakeup on this thread's struct thread ptr. */
620	kthread_exit();
621}
622
623
624static uint32_t
625hash_pkt(struct mbuf *m, uint32_t offset)
626{
627	uint32_t hash;
628
629	hash = 0;
630
631	while (m != NULL && offset > m->m_len) {
632		/*
633		 * The IP packet payload does not start in this mbuf, so
634		 * need to figure out which mbuf it starts in and what offset
635		 * into the mbuf's data region the payload starts at.
636		 */
637		offset -= m->m_len;
638		m = m->m_next;
639	}
640
641	while (m != NULL) {
642		/* Ensure there is data in the mbuf */
643		if ((m->m_len - offset) > 0)
644			hash = hash32_buf(m->m_data + offset,
645			    m->m_len - offset, hash);
646
647		m = m->m_next;
648		offset = 0;
649        }
650
651	return (hash);
652}
653
654
655/*
656 * Check if a given mbuf has the SIFTR mbuf tag. If it does, log the fact that
657 * it's a reinjected packet and return. If it doesn't, tag the mbuf and return.
658 * Return value >0 means the caller should skip processing this mbuf.
659 */
660static inline int
661siftr_chkreinject(struct mbuf *m, int dir, struct siftr_stats *ss)
662{
663	if (m_tag_locate(m, PACKET_COOKIE_SIFTR, PACKET_TAG_SIFTR, NULL)
664	    != NULL) {
665		if (dir == PFIL_IN)
666			ss->nskip_in_dejavu++;
667		else
668			ss->nskip_out_dejavu++;
669
670		return (1);
671	} else {
672		struct m_tag *tag = m_tag_alloc(PACKET_COOKIE_SIFTR,
673		    PACKET_TAG_SIFTR, 0, M_NOWAIT);
674		if (tag == NULL) {
675			if (dir == PFIL_IN)
676				ss->nskip_in_malloc++;
677			else
678				ss->nskip_out_malloc++;
679
680			return (1);
681		}
682
683		m_tag_prepend(m, tag);
684	}
685
686	return (0);
687}
688
689
690/*
691 * Look up an inpcb for a packet. Return the inpcb pointer if found, or NULL
692 * otherwise.
693 */
694static inline struct inpcb *
695siftr_findinpcb(int ipver, struct ip *ip, struct mbuf *m, uint16_t sport,
696    uint16_t dport, int dir, struct siftr_stats *ss)
697{
698	struct inpcb *inp;
699
700	/* We need the tcbinfo lock. */
701	INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
702	INP_INFO_RLOCK(&V_tcbinfo);
703
704	if (dir == PFIL_IN)
705		inp = (ipver == INP_IPV4 ?
706		    in_pcblookup_hash(&V_tcbinfo, ip->ip_src, sport, ip->ip_dst,
707		    dport, 0, m->m_pkthdr.rcvif)
708		    :
709#ifdef SIFTR_IPV6
710		    in6_pcblookup_hash(&V_tcbinfo,
711		    &((struct ip6_hdr *)ip)->ip6_src, sport,
712		    &((struct ip6_hdr *)ip)->ip6_dst, dport, 0,
713		    m->m_pkthdr.rcvif)
714#else
715		    NULL
716#endif
717		    );
718
719	else
720		inp = (ipver == INP_IPV4 ?
721		    in_pcblookup_hash(&V_tcbinfo, ip->ip_dst, dport, ip->ip_src,
722		    sport, 0, m->m_pkthdr.rcvif)
723		    :
724#ifdef SIFTR_IPV6
725		    in6_pcblookup_hash(&V_tcbinfo,
726		    &((struct ip6_hdr *)ip)->ip6_dst, dport,
727		    &((struct ip6_hdr *)ip)->ip6_src, sport, 0,
728		    m->m_pkthdr.rcvif)
729#else
730		    NULL
731#endif
732		    );
733
734	/* If we can't find the inpcb, bail. */
735	if (inp == NULL) {
736		if (dir == PFIL_IN)
737			ss->nskip_in_inpcb++;
738		else
739			ss->nskip_out_inpcb++;
740
741		INP_INFO_RUNLOCK(&V_tcbinfo);
742	} else {
743		/* Acquire the inpcb lock. */
744		INP_UNLOCK_ASSERT(inp);
745		INP_RLOCK(inp);
746		INP_INFO_RUNLOCK(&V_tcbinfo);
747	}
748
749	return (inp);
750}
751
752
753static inline void
754siftr_siftdata(struct pkt_node *pn, struct inpcb *inp, struct tcpcb *tp,
755    int ipver, int dir, int inp_locally_locked)
756{
757#ifdef SIFTR_IPV6
758	if (ipver == INP_IPV4) {
759		pn->ip_laddr[3] = inp->inp_laddr.s_addr;
760		pn->ip_faddr[3] = inp->inp_faddr.s_addr;
761#else
762		*((uint32_t *)pn->ip_laddr) = inp->inp_laddr.s_addr;
763		*((uint32_t *)pn->ip_faddr) = inp->inp_faddr.s_addr;
764#endif
765#ifdef SIFTR_IPV6
766	} else {
767		pn->ip_laddr[0] = inp->in6p_laddr.s6_addr32[0];
768		pn->ip_laddr[1] = inp->in6p_laddr.s6_addr32[1];
769		pn->ip_laddr[2] = inp->in6p_laddr.s6_addr32[2];
770		pn->ip_laddr[3] = inp->in6p_laddr.s6_addr32[3];
771		pn->ip_faddr[0] = inp->in6p_faddr.s6_addr32[0];
772		pn->ip_faddr[1] = inp->in6p_faddr.s6_addr32[1];
773		pn->ip_faddr[2] = inp->in6p_faddr.s6_addr32[2];
774		pn->ip_faddr[3] = inp->in6p_faddr.s6_addr32[3];
775	}
776#endif
777	pn->tcp_localport = inp->inp_lport;
778	pn->tcp_foreignport = inp->inp_fport;
779	pn->snd_cwnd = tp->snd_cwnd;
780	pn->snd_wnd = tp->snd_wnd;
781	pn->rcv_wnd = tp->rcv_wnd;
782	pn->snd_bwnd = 0;		/* Unused, kept for compat. */
783	pn->snd_ssthresh = tp->snd_ssthresh;
784	pn->snd_scale = tp->snd_scale;
785	pn->rcv_scale = tp->rcv_scale;
786	pn->conn_state = tp->t_state;
787	pn->max_seg_size = tp->t_maxseg;
788	pn->smoothed_rtt = tp->t_srtt;
789	pn->sack_enabled = (tp->t_flags & TF_SACK_PERMIT) != 0;
790	pn->flags = tp->t_flags;
791	pn->rxt_length = tp->t_rxtcur;
792	pn->snd_buf_hiwater = inp->inp_socket->so_snd.sb_hiwat;
793	pn->snd_buf_cc = inp->inp_socket->so_snd.sb_cc;
794	pn->rcv_buf_hiwater = inp->inp_socket->so_rcv.sb_hiwat;
795	pn->rcv_buf_cc = inp->inp_socket->so_rcv.sb_cc;
796	pn->sent_inflight_bytes = tp->snd_max - tp->snd_una;
797	pn->t_segqlen = tp->t_segqlen;
798
799	/* We've finished accessing the tcb so release the lock. */
800	if (inp_locally_locked)
801		INP_RUNLOCK(inp);
802
803	pn->ipver = ipver;
804	pn->direction = dir;
805
806	/*
807	 * Significantly more accurate than using getmicrotime(), but slower!
808	 * Gives true microsecond resolution at the expense of a hit to
809	 * maximum pps throughput processing when SIFTR is loaded and enabled.
810	 */
811	microtime(&pn->tval);
812}
813
814
815/*
816 * pfil hook that is called for each IPv4 packet making its way through the
817 * stack in either direction.
818 * The pfil subsystem holds a non-sleepable mutex somewhere when
819 * calling our hook function, so we can't sleep at all.
820 * It's very important to use the M_NOWAIT flag with all function calls
821 * that support it so that they won't sleep, otherwise you get a panic.
822 */
823static int
824siftr_chkpkt(void *arg, struct mbuf **m, struct ifnet *ifp, int dir,
825    struct inpcb *inp)
826{
827	struct pkt_node *pn;
828	struct ip *ip;
829	struct tcphdr *th;
830	struct tcpcb *tp;
831	struct siftr_stats *ss;
832	unsigned int ip_hl;
833	int inp_locally_locked;
834
835	inp_locally_locked = 0;
836	ss = DPCPU_PTR(ss);
837
838	/*
839	 * m_pullup is not required here because ip_{input|output}
840	 * already do the heavy lifting for us.
841	 */
842
843	ip = mtod(*m, struct ip *);
844
845	/* Only continue processing if the packet is TCP. */
846	if (ip->ip_p != IPPROTO_TCP)
847		goto ret;
848
849	/*
850	 * If a kernel subsystem reinjects packets into the stack, our pfil
851	 * hook will be called multiple times for the same packet.
852	 * Make sure we only process unique packets.
853	 */
854	if (siftr_chkreinject(*m, dir, ss))
855		goto ret;
856
857	if (dir == PFIL_IN)
858		ss->n_in++;
859	else
860		ss->n_out++;
861
862	/*
863	 * Create a tcphdr struct starting at the correct offset
864	 * in the IP packet. ip->ip_hl gives the ip header length
865	 * in 4-byte words, so multiply it to get the size in bytes.
866	 */
867	ip_hl = (ip->ip_hl << 2);
868	th = (struct tcphdr *)((caddr_t)ip + ip_hl);
869
870	/*
871	 * If the pfil hooks don't provide a pointer to the
872	 * inpcb, we need to find it ourselves and lock it.
873	 */
874	if (!inp) {
875		/* Find the corresponding inpcb for this pkt. */
876		inp = siftr_findinpcb(INP_IPV4, ip, *m, th->th_sport,
877		    th->th_dport, dir, ss);
878
879		if (inp == NULL)
880			goto ret;
881		else
882			inp_locally_locked = 1;
883	}
884
885	INP_LOCK_ASSERT(inp);
886
887	/* Find the TCP control block that corresponds with this packet */
888	tp = intotcpcb(inp);
889
890	/*
891	 * If we can't find the TCP control block (happens occasionaly for a
892	 * packet sent during the shutdown phase of a TCP connection),
893	 * or we're in the timewait state, bail
894	 */
895	if (tp == NULL || inp->inp_flags & INP_TIMEWAIT) {
896		if (dir == PFIL_IN)
897			ss->nskip_in_tcpcb++;
898		else
899			ss->nskip_out_tcpcb++;
900
901		goto inp_unlock;
902	}
903
904	pn = malloc(sizeof(struct pkt_node), M_SIFTR_PKTNODE, M_NOWAIT|M_ZERO);
905
906	if (pn == NULL) {
907		if (dir == PFIL_IN)
908			ss->nskip_in_malloc++;
909		else
910			ss->nskip_out_malloc++;
911
912		goto inp_unlock;
913	}
914
915	siftr_siftdata(pn, inp, tp, INP_IPV4, dir, inp_locally_locked);
916
917	if (siftr_generate_hashes) {
918		if ((*m)->m_pkthdr.csum_flags & CSUM_TCP) {
919			/*
920			 * For outbound packets, the TCP checksum isn't
921			 * calculated yet. This is a problem for our packet
922			 * hashing as the receiver will calc a different hash
923			 * to ours if we don't include the correct TCP checksum
924			 * in the bytes being hashed. To work around this
925			 * problem, we manually calc the TCP checksum here in
926			 * software. We unset the CSUM_TCP flag so the lower
927			 * layers don't recalc it.
928			 */
929			(*m)->m_pkthdr.csum_flags &= ~CSUM_TCP;
930
931			/*
932			 * Calculate the TCP checksum in software and assign
933			 * to correct TCP header field, which will follow the
934			 * packet mbuf down the stack. The trick here is that
935			 * tcp_output() sets th->th_sum to the checksum of the
936			 * pseudo header for us already. Because of the nature
937			 * of the checksumming algorithm, we can sum over the
938			 * entire IP payload (i.e. TCP header and data), which
939			 * will include the already calculated pseduo header
940			 * checksum, thus giving us the complete TCP checksum.
941			 *
942			 * To put it in simple terms, if checksum(1,2,3,4)=10,
943			 * then checksum(1,2,3,4,5) == checksum(10,5).
944			 * This property is what allows us to "cheat" and
945			 * checksum only the IP payload which has the TCP
946			 * th_sum field populated with the pseudo header's
947			 * checksum, and not need to futz around checksumming
948			 * pseudo header bytes and TCP header/data in one hit.
949			 * Refer to RFC 1071 for more info.
950			 *
951			 * NB: in_cksum_skip(struct mbuf *m, int len, int skip)
952			 * in_cksum_skip 2nd argument is NOT the number of
953			 * bytes to read from the mbuf at "skip" bytes offset
954			 * from the start of the mbuf (very counter intuitive!).
955			 * The number of bytes to read is calculated internally
956			 * by the function as len-skip i.e. to sum over the IP
957			 * payload (TCP header + data) bytes, it is INCORRECT
958			 * to call the function like this:
959			 * in_cksum_skip(at, ip->ip_len - offset, offset)
960			 * Rather, it should be called like this:
961			 * in_cksum_skip(at, ip->ip_len, offset)
962			 * which means read "ip->ip_len - offset" bytes from
963			 * the mbuf cluster "at" at offset "offset" bytes from
964			 * the beginning of the "at" mbuf's data pointer.
965			 */
966			th->th_sum = in_cksum_skip(*m, ip->ip_len, ip_hl);
967		}
968
969		/*
970		 * XXX: Having to calculate the checksum in software and then
971		 * hash over all bytes is really inefficient. Would be nice to
972		 * find a way to create the hash and checksum in the same pass
973		 * over the bytes.
974		 */
975		pn->hash = hash_pkt(*m, ip_hl);
976	}
977
978	mtx_lock(&siftr_pkt_queue_mtx);
979	STAILQ_INSERT_TAIL(&pkt_queue, pn, nodes);
980	mtx_unlock(&siftr_pkt_queue_mtx);
981	goto ret;
982
983inp_unlock:
984	if (inp_locally_locked)
985		INP_RUNLOCK(inp);
986
987ret:
988	/* Returning 0 ensures pfil will not discard the pkt */
989	return (0);
990}
991
992
993#ifdef SIFTR_IPV6
994static int
995siftr_chkpkt6(void *arg, struct mbuf **m, struct ifnet *ifp, int dir,
996    struct inpcb *inp)
997{
998	struct pkt_node *pn;
999	struct ip6_hdr *ip6;
1000	struct tcphdr *th;
1001	struct tcpcb *tp;
1002	struct siftr_stats *ss;
1003	unsigned int ip6_hl;
1004	int inp_locally_locked;
1005
1006	inp_locally_locked = 0;
1007	ss = DPCPU_PTR(ss);
1008
1009	/*
1010	 * m_pullup is not required here because ip6_{input|output}
1011	 * already do the heavy lifting for us.
1012	 */
1013
1014	ip6 = mtod(*m, struct ip6_hdr *);
1015
1016	/*
1017	 * Only continue processing if the packet is TCP
1018	 * XXX: We should follow the next header fields
1019	 * as shown on Pg 6 RFC 2460, but right now we'll
1020	 * only check pkts that have no extension headers.
1021	 */
1022	if (ip6->ip6_nxt != IPPROTO_TCP)
1023		goto ret6;
1024
1025	/*
1026	 * If a kernel subsystem reinjects packets into the stack, our pfil
1027	 * hook will be called multiple times for the same packet.
1028	 * Make sure we only process unique packets.
1029	 */
1030	if (siftr_chkreinject(*m, dir, ss))
1031		goto ret6;
1032
1033	if (dir == PFIL_IN)
1034		ss->n_in++;
1035	else
1036		ss->n_out++;
1037
1038	ip6_hl = sizeof(struct ip6_hdr);
1039
1040	/*
1041	 * Create a tcphdr struct starting at the correct offset
1042	 * in the ipv6 packet. ip->ip_hl gives the ip header length
1043	 * in 4-byte words, so multiply it to get the size in bytes.
1044	 */
1045	th = (struct tcphdr *)((caddr_t)ip6 + ip6_hl);
1046
1047	/*
1048	 * For inbound packets, the pfil hooks don't provide a pointer to the
1049	 * inpcb, so we need to find it ourselves and lock it.
1050	 */
1051	if (!inp) {
1052		/* Find the corresponding inpcb for this pkt. */
1053		inp = siftr_findinpcb(INP_IPV6, (struct ip *)ip6, *m,
1054		    th->th_sport, th->th_dport, dir, ss);
1055
1056		if (inp == NULL)
1057			goto ret6;
1058		else
1059			inp_locally_locked = 1;
1060	}
1061
1062	/* Find the TCP control block that corresponds with this packet. */
1063	tp = intotcpcb(inp);
1064
1065	/*
1066	 * If we can't find the TCP control block (happens occasionaly for a
1067	 * packet sent during the shutdown phase of a TCP connection),
1068	 * or we're in the timewait state, bail.
1069	 */
1070	if (tp == NULL || inp->inp_flags & INP_TIMEWAIT) {
1071		if (dir == PFIL_IN)
1072			ss->nskip_in_tcpcb++;
1073		else
1074			ss->nskip_out_tcpcb++;
1075
1076		goto inp_unlock6;
1077	}
1078
1079	pn = malloc(sizeof(struct pkt_node), M_SIFTR_PKTNODE, M_NOWAIT|M_ZERO);
1080
1081	if (pn == NULL) {
1082		if (dir == PFIL_IN)
1083			ss->nskip_in_malloc++;
1084		else
1085			ss->nskip_out_malloc++;
1086
1087		goto inp_unlock6;
1088	}
1089
1090	siftr_siftdata(pn, inp, tp, INP_IPV6, dir, inp_locally_locked);
1091
1092	/* XXX: Figure out how to generate hashes for IPv6 packets. */
1093
1094	mtx_lock(&siftr_pkt_queue_mtx);
1095	STAILQ_INSERT_TAIL(&pkt_queue, pn, nodes);
1096	mtx_unlock(&siftr_pkt_queue_mtx);
1097	goto ret6;
1098
1099inp_unlock6:
1100	if (inp_locally_locked)
1101		INP_RUNLOCK(inp);
1102
1103ret6:
1104	/* Returning 0 ensures pfil will not discard the pkt. */
1105	return (0);
1106}
1107#endif /* #ifdef SIFTR_IPV6 */
1108
1109
1110static int
1111siftr_pfil(int action)
1112{
1113	struct pfil_head *pfh_inet = pfil_head_get(PFIL_TYPE_AF, AF_INET);
1114#ifdef SIFTR_IPV6
1115	struct pfil_head *pfh_inet6 = pfil_head_get(PFIL_TYPE_AF, AF_INET6);
1116#endif
1117
1118	if (action == HOOK) {
1119		pfil_add_hook(siftr_chkpkt, NULL,
1120		    PFIL_IN | PFIL_OUT | PFIL_WAITOK, pfh_inet);
1121#ifdef SIFTR_IPV6
1122		pfil_add_hook(siftr_chkpkt6, NULL,
1123		    PFIL_IN | PFIL_OUT | PFIL_WAITOK, pfh_inet6);
1124#endif
1125	} else if (action == UNHOOK) {
1126		pfil_remove_hook(siftr_chkpkt, NULL,
1127		    PFIL_IN | PFIL_OUT | PFIL_WAITOK, pfh_inet);
1128#ifdef SIFTR_IPV6
1129		pfil_remove_hook(siftr_chkpkt6, NULL,
1130		    PFIL_IN | PFIL_OUT | PFIL_WAITOK, pfh_inet6);
1131#endif
1132	}
1133
1134	return (0);
1135}
1136
1137
1138static int
1139siftr_sysctl_logfile_name_handler(SYSCTL_HANDLER_ARGS)
1140{
1141	struct alq *new_alq;
1142	int error;
1143
1144	if (req->newptr == NULL)
1145		goto skip;
1146
1147	/* If old filename and new filename are different. */
1148	if (strncmp(siftr_logfile, (char *)req->newptr, PATH_MAX)) {
1149
1150		error = alq_open(&new_alq, req->newptr, curthread->td_ucred,
1151		    SIFTR_LOG_FILE_MODE, SIFTR_ALQ_BUFLEN, 0);
1152
1153		/* Bail if unable to create new alq. */
1154		if (error)
1155			return (1);
1156
1157		/*
1158		 * If disabled, siftr_alq == NULL so we simply close
1159		 * the alq as we've proved it can be opened.
1160		 * If enabled, close the existing alq and switch the old
1161		 * for the new.
1162		 */
1163		if (siftr_alq == NULL)
1164			alq_close(new_alq);
1165		else {
1166			alq_close(siftr_alq);
1167			siftr_alq = new_alq;
1168		}
1169	}
1170
1171skip:
1172	return (sysctl_handle_string(oidp, arg1, arg2, req));
1173}
1174
1175
1176static int
1177siftr_manage_ops(uint8_t action)
1178{
1179	struct siftr_stats totalss;
1180	struct timeval tval;
1181	struct flow_hash_node *counter, *tmp_counter;
1182	struct sbuf *s;
1183	int i, key_index, ret, error;
1184	uint32_t bytes_to_write, total_skipped_pkts;
1185	uint16_t lport, fport;
1186	uint8_t *key, ipver;
1187
1188#ifdef SIFTR_IPV6
1189	uint32_t laddr[4];
1190	uint32_t faddr[4];
1191#else
1192	uint8_t laddr[4];
1193	uint8_t faddr[4];
1194#endif
1195
1196	error = 0;
1197	total_skipped_pkts = 0;
1198
1199	/* Init an autosizing sbuf that initially holds 200 chars. */
1200	if ((s = sbuf_new(NULL, NULL, 200, SBUF_AUTOEXTEND)) == NULL)
1201		return (-1);
1202
1203	if (action == SIFTR_ENABLE) {
1204		/*
1205		 * Create our alq
1206		 * XXX: We should abort if alq_open fails!
1207		 */
1208		alq_open(&siftr_alq, siftr_logfile, curthread->td_ucred,
1209		    SIFTR_LOG_FILE_MODE, SIFTR_ALQ_BUFLEN, 0);
1210
1211		STAILQ_INIT(&pkt_queue);
1212
1213		DPCPU_ZERO(ss);
1214
1215		siftr_exit_pkt_manager_thread = 0;
1216
1217		ret = kthread_add(&siftr_pkt_manager_thread, NULL, NULL,
1218		    &siftr_pkt_manager_thr, RFNOWAIT, 0,
1219		    "siftr_pkt_manager_thr");
1220
1221		siftr_pfil(HOOK);
1222
1223		microtime(&tval);
1224
1225		sbuf_printf(s,
1226		    "enable_time_secs=%jd\tenable_time_usecs=%06ld\t"
1227		    "siftrver=%s\thz=%u\ttcp_rtt_scale=%u\tsysname=%s\t"
1228		    "sysver=%u\tipmode=%u\n",
1229		    (intmax_t)tval.tv_sec, tval.tv_usec, MODVERSION_STR, hz,
1230		    TCP_RTT_SCALE, SYS_NAME, __FreeBSD_version, SIFTR_IPMODE);
1231
1232		sbuf_finish(s);
1233		alq_writen(siftr_alq, sbuf_data(s), sbuf_len(s), ALQ_WAITOK);
1234
1235	} else if (action == SIFTR_DISABLE && siftr_pkt_manager_thr != NULL) {
1236		/*
1237		 * Remove the pfil hook functions. All threads currently in
1238		 * the hook functions are allowed to exit before siftr_pfil()
1239		 * returns.
1240		 */
1241		siftr_pfil(UNHOOK);
1242
1243		/* This will block until the pkt manager thread unlocks it. */
1244		mtx_lock(&siftr_pkt_mgr_mtx);
1245
1246		/* Tell the pkt manager thread that it should exit now. */
1247		siftr_exit_pkt_manager_thread = 1;
1248
1249		/*
1250		 * Wake the pkt_manager thread so it realises that
1251		 * siftr_exit_pkt_manager_thread == 1 and exits gracefully.
1252		 * The wakeup won't be delivered until we unlock
1253		 * siftr_pkt_mgr_mtx so this isn't racy.
1254		 */
1255		wakeup(&wait_for_pkt);
1256
1257		/* Wait for the pkt_manager thread to exit. */
1258		mtx_sleep(siftr_pkt_manager_thr, &siftr_pkt_mgr_mtx, PWAIT,
1259		    "thrwait", 0);
1260
1261		siftr_pkt_manager_thr = NULL;
1262		mtx_unlock(&siftr_pkt_mgr_mtx);
1263
1264		totalss.n_in = DPCPU_VARSUM(ss, n_in);
1265		totalss.n_out = DPCPU_VARSUM(ss, n_out);
1266		totalss.nskip_in_malloc = DPCPU_VARSUM(ss, nskip_in_malloc);
1267		totalss.nskip_out_malloc = DPCPU_VARSUM(ss, nskip_out_malloc);
1268		totalss.nskip_in_mtx = DPCPU_VARSUM(ss, nskip_in_mtx);
1269		totalss.nskip_out_mtx = DPCPU_VARSUM(ss, nskip_out_mtx);
1270		totalss.nskip_in_tcpcb = DPCPU_VARSUM(ss, nskip_in_tcpcb);
1271		totalss.nskip_out_tcpcb = DPCPU_VARSUM(ss, nskip_out_tcpcb);
1272		totalss.nskip_in_inpcb = DPCPU_VARSUM(ss, nskip_in_inpcb);
1273		totalss.nskip_out_inpcb = DPCPU_VARSUM(ss, nskip_out_inpcb);
1274
1275		total_skipped_pkts = totalss.nskip_in_malloc +
1276		    totalss.nskip_out_malloc + totalss.nskip_in_mtx +
1277		    totalss.nskip_out_mtx + totalss.nskip_in_tcpcb +
1278		    totalss.nskip_out_tcpcb + totalss.nskip_in_inpcb +
1279		    totalss.nskip_out_inpcb;
1280
1281		microtime(&tval);
1282
1283		sbuf_printf(s,
1284		    "disable_time_secs=%jd\tdisable_time_usecs=%06ld\t"
1285		    "num_inbound_tcp_pkts=%ju\tnum_outbound_tcp_pkts=%ju\t"
1286		    "total_tcp_pkts=%ju\tnum_inbound_skipped_pkts_malloc=%u\t"
1287		    "num_outbound_skipped_pkts_malloc=%u\t"
1288		    "num_inbound_skipped_pkts_mtx=%u\t"
1289		    "num_outbound_skipped_pkts_mtx=%u\t"
1290		    "num_inbound_skipped_pkts_tcpcb=%u\t"
1291		    "num_outbound_skipped_pkts_tcpcb=%u\t"
1292		    "num_inbound_skipped_pkts_inpcb=%u\t"
1293		    "num_outbound_skipped_pkts_inpcb=%u\t"
1294		    "total_skipped_tcp_pkts=%u\tflow_list=",
1295		    (intmax_t)tval.tv_sec,
1296		    tval.tv_usec,
1297		    (uintmax_t)totalss.n_in,
1298		    (uintmax_t)totalss.n_out,
1299		    (uintmax_t)(totalss.n_in + totalss.n_out),
1300		    totalss.nskip_in_malloc,
1301		    totalss.nskip_out_malloc,
1302		    totalss.nskip_in_mtx,
1303		    totalss.nskip_out_mtx,
1304		    totalss.nskip_in_tcpcb,
1305		    totalss.nskip_out_tcpcb,
1306		    totalss.nskip_in_inpcb,
1307		    totalss.nskip_out_inpcb,
1308		    total_skipped_pkts);
1309
1310		/*
1311		 * Iterate over the flow hash, printing a summary of each
1312		 * flow seen and freeing any malloc'd memory.
1313		 * The hash consists of an array of LISTs (man 3 queue).
1314		 */
1315		for (i = 0; i < siftr_hashmask; i++) {
1316			LIST_FOREACH_SAFE(counter, counter_hash + i, nodes,
1317			    tmp_counter) {
1318				key = counter->key;
1319				key_index = 1;
1320
1321				ipver = key[0];
1322
1323				memcpy(laddr, key + key_index, sizeof(laddr));
1324				key_index += sizeof(laddr);
1325				memcpy(&lport, key + key_index, sizeof(lport));
1326				key_index += sizeof(lport);
1327				memcpy(faddr, key + key_index, sizeof(faddr));
1328				key_index += sizeof(faddr);
1329				memcpy(&fport, key + key_index, sizeof(fport));
1330
1331#ifdef SIFTR_IPV6
1332				laddr[3] = ntohl(laddr[3]);
1333				faddr[3] = ntohl(faddr[3]);
1334
1335				if (ipver == INP_IPV6) {
1336					laddr[0] = ntohl(laddr[0]);
1337					laddr[1] = ntohl(laddr[1]);
1338					laddr[2] = ntohl(laddr[2]);
1339					faddr[0] = ntohl(faddr[0]);
1340					faddr[1] = ntohl(faddr[1]);
1341					faddr[2] = ntohl(faddr[2]);
1342
1343					sbuf_printf(s,
1344					    "%x:%x:%x:%x:%x:%x:%x:%x;%u-"
1345					    "%x:%x:%x:%x:%x:%x:%x:%x;%u,",
1346					    UPPER_SHORT(laddr[0]),
1347					    LOWER_SHORT(laddr[0]),
1348					    UPPER_SHORT(laddr[1]),
1349					    LOWER_SHORT(laddr[1]),
1350					    UPPER_SHORT(laddr[2]),
1351					    LOWER_SHORT(laddr[2]),
1352					    UPPER_SHORT(laddr[3]),
1353					    LOWER_SHORT(laddr[3]),
1354					    ntohs(lport),
1355					    UPPER_SHORT(faddr[0]),
1356					    LOWER_SHORT(faddr[0]),
1357					    UPPER_SHORT(faddr[1]),
1358					    LOWER_SHORT(faddr[1]),
1359					    UPPER_SHORT(faddr[2]),
1360					    LOWER_SHORT(faddr[2]),
1361					    UPPER_SHORT(faddr[3]),
1362					    LOWER_SHORT(faddr[3]),
1363					    ntohs(fport));
1364				} else {
1365					laddr[0] = FIRST_OCTET(laddr[3]);
1366					laddr[1] = SECOND_OCTET(laddr[3]);
1367					laddr[2] = THIRD_OCTET(laddr[3]);
1368					laddr[3] = FOURTH_OCTET(laddr[3]);
1369					faddr[0] = FIRST_OCTET(faddr[3]);
1370					faddr[1] = SECOND_OCTET(faddr[3]);
1371					faddr[2] = THIRD_OCTET(faddr[3]);
1372					faddr[3] = FOURTH_OCTET(faddr[3]);
1373#endif
1374					sbuf_printf(s,
1375					    "%u.%u.%u.%u;%u-%u.%u.%u.%u;%u,",
1376					    laddr[0],
1377					    laddr[1],
1378					    laddr[2],
1379					    laddr[3],
1380					    ntohs(lport),
1381					    faddr[0],
1382					    faddr[1],
1383					    faddr[2],
1384					    faddr[3],
1385					    ntohs(fport));
1386#ifdef SIFTR_IPV6
1387				}
1388#endif
1389
1390				free(counter, M_SIFTR_HASHNODE);
1391			}
1392
1393			LIST_INIT(counter_hash + i);
1394		}
1395
1396		sbuf_printf(s, "\n");
1397		sbuf_finish(s);
1398
1399		i = 0;
1400		do {
1401			bytes_to_write = min(SIFTR_ALQ_BUFLEN, sbuf_len(s)-i);
1402			alq_writen(siftr_alq, sbuf_data(s)+i, bytes_to_write, ALQ_WAITOK);
1403			i += bytes_to_write;
1404		} while (i < sbuf_len(s));
1405
1406		alq_close(siftr_alq);
1407		siftr_alq = NULL;
1408	}
1409
1410	sbuf_delete(s);
1411
1412	/*
1413	 * XXX: Should be using ret to check if any functions fail
1414	 * and set error appropriately
1415	 */
1416
1417	return (error);
1418}
1419
1420
1421static int
1422siftr_sysctl_enabled_handler(SYSCTL_HANDLER_ARGS)
1423{
1424	if (req->newptr == NULL)
1425		goto skip;
1426
1427	/* If the value passed in isn't 0 or 1, return an error. */
1428	if (CAST_PTR_INT(req->newptr) != 0 && CAST_PTR_INT(req->newptr) != 1)
1429		return (1);
1430
1431	/* If we are changing state (0 to 1 or 1 to 0). */
1432	if (CAST_PTR_INT(req->newptr) != siftr_enabled )
1433		if (siftr_manage_ops(CAST_PTR_INT(req->newptr))) {
1434			siftr_manage_ops(SIFTR_DISABLE);
1435			return (1);
1436		}
1437
1438skip:
1439	return (sysctl_handle_int(oidp, arg1, arg2, req));
1440}
1441
1442
1443static void
1444siftr_shutdown_handler(void *arg)
1445{
1446	siftr_manage_ops(SIFTR_DISABLE);
1447}
1448
1449
1450/*
1451 * Module is being unloaded or machine is shutting down. Take care of cleanup.
1452 */
1453static int
1454deinit_siftr(void)
1455{
1456	/* Cleanup. */
1457	siftr_manage_ops(SIFTR_DISABLE);
1458	hashdestroy(counter_hash, M_SIFTR, siftr_hashmask);
1459	mtx_destroy(&siftr_pkt_queue_mtx);
1460	mtx_destroy(&siftr_pkt_mgr_mtx);
1461
1462	return (0);
1463}
1464
1465
1466/*
1467 * Module has just been loaded into the kernel.
1468 */
1469static int
1470init_siftr(void)
1471{
1472	EVENTHANDLER_REGISTER(shutdown_pre_sync, siftr_shutdown_handler, NULL,
1473	    SHUTDOWN_PRI_FIRST);
1474
1475	/* Initialise our flow counter hash table. */
1476	counter_hash = hashinit(SIFTR_EXPECTED_MAX_TCP_FLOWS, M_SIFTR,
1477	    &siftr_hashmask);
1478
1479	mtx_init(&siftr_pkt_queue_mtx, "siftr_pkt_queue_mtx", NULL, MTX_DEF);
1480	mtx_init(&siftr_pkt_mgr_mtx, "siftr_pkt_mgr_mtx", NULL, MTX_DEF);
1481
1482	/* Print message to the user's current terminal. */
1483	uprintf("\nStatistical Information For TCP Research (SIFTR) %s\n"
1484	    "          http://caia.swin.edu.au/urp/newtcp\n\n",
1485	    MODVERSION_STR);
1486
1487	return (0);
1488}
1489
1490
1491/*
1492 * This is the function that is called to load and unload the module.
1493 * When the module is loaded, this function is called once with
1494 * "what" == MOD_LOAD
1495 * When the module is unloaded, this function is called twice with
1496 * "what" = MOD_QUIESCE first, followed by "what" = MOD_UNLOAD second
1497 * When the system is shut down e.g. CTRL-ALT-DEL or using the shutdown command,
1498 * this function is called once with "what" = MOD_SHUTDOWN
1499 * When the system is shut down, the handler isn't called until the very end
1500 * of the shutdown sequence i.e. after the disks have been synced.
1501 */
1502static int
1503siftr_load_handler(module_t mod, int what, void *arg)
1504{
1505	int ret;
1506
1507	switch (what) {
1508	case MOD_LOAD:
1509		ret = init_siftr();
1510		break;
1511
1512	case MOD_QUIESCE:
1513	case MOD_SHUTDOWN:
1514		ret = deinit_siftr();
1515		break;
1516
1517	case MOD_UNLOAD:
1518		ret = 0;
1519		break;
1520
1521	default:
1522		ret = EINVAL;
1523		break;
1524	}
1525
1526	return (ret);
1527}
1528
1529
1530static moduledata_t siftr_mod = {
1531	.name = "siftr",
1532	.evhand = siftr_load_handler,
1533};
1534
1535/*
1536 * Param 1: name of the kernel module
1537 * Param 2: moduledata_t struct containing info about the kernel module
1538 *          and the execution entry point for the module
1539 * Param 3: From sysinit_sub_id enumeration in /usr/include/sys/kernel.h
1540 *          Defines the module initialisation order
1541 * Param 4: From sysinit_elem_order enumeration in /usr/include/sys/kernel.h
1542 *          Defines the initialisation order of this kld relative to others
1543 *          within the same subsystem as defined by param 3
1544 */
1545DECLARE_MODULE(siftr, siftr_mod, SI_SUB_SMP, SI_ORDER_ANY);
1546MODULE_DEPEND(siftr, alq, 1, 1, 1);
1547MODULE_VERSION(siftr, MODVERSION);
1548