ip_output.c revision 260378
1/*-
2 * Copyright (c) 1982, 1986, 1988, 1990, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 4. Neither the name of the University nor the names of its contributors
14 *    may be used to endorse or promote products derived from this software
15 *    without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 *
29 *	@(#)ip_output.c	8.3 (Berkeley) 1/21/94
30 */
31
32#include <sys/cdefs.h>
33__FBSDID("$FreeBSD: releng/10.0/sys/netinet/ip_output.c 260378 2014-01-06 19:14:46Z glebius $");
34
35#include "opt_ipfw.h"
36#include "opt_ipsec.h"
37#include "opt_kdtrace.h"
38#include "opt_mbuf_stress_test.h"
39#include "opt_mpath.h"
40#include "opt_route.h"
41#include "opt_sctp.h"
42
43#include <sys/param.h>
44#include <sys/systm.h>
45#include <sys/kernel.h>
46#include <sys/malloc.h>
47#include <sys/mbuf.h>
48#include <sys/priv.h>
49#include <sys/proc.h>
50#include <sys/protosw.h>
51#include <sys/sdt.h>
52#include <sys/socket.h>
53#include <sys/socketvar.h>
54#include <sys/sysctl.h>
55#include <sys/ucred.h>
56
57#include <net/if.h>
58#include <net/if_llatbl.h>
59#include <net/netisr.h>
60#include <net/pfil.h>
61#include <net/route.h>
62#include <net/flowtable.h>
63#ifdef RADIX_MPATH
64#include <net/radix_mpath.h>
65#endif
66#include <net/vnet.h>
67
68#include <netinet/in.h>
69#include <netinet/in_kdtrace.h>
70#include <netinet/in_systm.h>
71#include <netinet/ip.h>
72#include <netinet/in_pcb.h>
73#include <netinet/in_var.h>
74#include <netinet/ip_var.h>
75#include <netinet/ip_options.h>
76#ifdef SCTP
77#include <netinet/sctp.h>
78#include <netinet/sctp_crc32.h>
79#endif
80
81#ifdef IPSEC
82#include <netinet/ip_ipsec.h>
83#include <netipsec/ipsec.h>
84#endif /* IPSEC*/
85
86#include <machine/in_cksum.h>
87
88#include <security/mac/mac_framework.h>
89
90VNET_DEFINE(u_short, ip_id);
91
92#ifdef MBUF_STRESS_TEST
93static int mbuf_frag_size = 0;
94SYSCTL_INT(_net_inet_ip, OID_AUTO, mbuf_frag_size, CTLFLAG_RW,
95	&mbuf_frag_size, 0, "Fragment outgoing mbufs to this size");
96#endif
97
98static void	ip_mloopback
99	(struct ifnet *, struct mbuf *, struct sockaddr_in *, int);
100
101
102extern int in_mcast_loop;
103extern	struct protosw inetsw[];
104
105/*
106 * IP output.  The packet in mbuf chain m contains a skeletal IP
107 * header (with len, off, ttl, proto, tos, src, dst).
108 * The mbuf chain containing the packet will be freed.
109 * The mbuf opt, if present, will not be freed.
110 * If route ro is present and has ro_rt initialized, route lookup would be
111 * skipped and ro->ro_rt would be used. If ro is present but ro->ro_rt is NULL,
112 * then result of route lookup is stored in ro->ro_rt.
113 *
114 * In the IP forwarding case, the packet will arrive with options already
115 * inserted, so must have a NULL opt pointer.
116 */
117int
118ip_output(struct mbuf *m, struct mbuf *opt, struct route *ro, int flags,
119    struct ip_moptions *imo, struct inpcb *inp)
120{
121	struct ip *ip;
122	struct ifnet *ifp = NULL;	/* keep compiler happy */
123	struct mbuf *m0;
124	int hlen = sizeof (struct ip);
125	int mtu;
126	int n;	/* scratchpad */
127	int error = 0;
128	struct sockaddr_in *dst;
129	const struct sockaddr_in *gw;
130	struct in_ifaddr *ia;
131	int isbroadcast;
132	uint16_t ip_len, ip_off;
133	struct route iproute;
134	struct rtentry *rte;	/* cache for ro->ro_rt */
135	struct in_addr odst;
136	struct m_tag *fwd_tag = NULL;
137#ifdef IPSEC
138	int no_route_but_check_spd = 0;
139#endif
140	M_ASSERTPKTHDR(m);
141
142	if (inp != NULL) {
143		INP_LOCK_ASSERT(inp);
144		M_SETFIB(m, inp->inp_inc.inc_fibnum);
145		if (inp->inp_flags & (INP_HW_FLOWID|INP_SW_FLOWID)) {
146			m->m_pkthdr.flowid = inp->inp_flowid;
147			m->m_flags |= M_FLOWID;
148		}
149	}
150
151	if (ro == NULL) {
152		ro = &iproute;
153		bzero(ro, sizeof (*ro));
154	}
155
156#ifdef FLOWTABLE
157	if (ro->ro_rt == NULL) {
158		struct flentry *fle;
159
160		/*
161		 * The flow table returns route entries valid for up to 30
162		 * seconds; we rely on the remainder of ip_output() taking no
163		 * longer than that long for the stability of ro_rt. The
164		 * flow ID assignment must have happened before this point.
165		 */
166		fle = flowtable_lookup_mbuf(V_ip_ft, m, AF_INET);
167		if (fle != NULL)
168			flow_to_route(fle, ro);
169	}
170#endif
171
172	if (opt) {
173		int len = 0;
174		m = ip_insertoptions(m, opt, &len);
175		if (len != 0)
176			hlen = len; /* ip->ip_hl is updated above */
177	}
178	ip = mtod(m, struct ip *);
179	ip_len = ntohs(ip->ip_len);
180	ip_off = ntohs(ip->ip_off);
181
182	/*
183	 * Fill in IP header.  If we are not allowing fragmentation,
184	 * then the ip_id field is meaningless, but we don't set it
185	 * to zero.  Doing so causes various problems when devices along
186	 * the path (routers, load balancers, firewalls, etc.) illegally
187	 * disable DF on our packet.  Note that a 16-bit counter
188	 * will wrap around in less than 10 seconds at 100 Mbit/s on a
189	 * medium with MTU 1500.  See Steven M. Bellovin, "A Technique
190	 * for Counting NATted Hosts", Proc. IMW'02, available at
191	 * <http://www.cs.columbia.edu/~smb/papers/fnat.pdf>.
192	 */
193	if ((flags & (IP_FORWARDING|IP_RAWOUTPUT)) == 0) {
194		ip->ip_v = IPVERSION;
195		ip->ip_hl = hlen >> 2;
196		ip->ip_id = ip_newid();
197		IPSTAT_INC(ips_localout);
198	} else {
199		/* Header already set, fetch hlen from there */
200		hlen = ip->ip_hl << 2;
201	}
202
203	gw = dst = (struct sockaddr_in *)&ro->ro_dst;
204again:
205	ia = NULL;
206	/*
207	 * If there is a cached route,
208	 * check that it is to the same destination
209	 * and is still up.  If not, free it and try again.
210	 * The address family should also be checked in case of sharing the
211	 * cache with IPv6.
212	 */
213	rte = ro->ro_rt;
214	if (rte && ((rte->rt_flags & RTF_UP) == 0 ||
215		    rte->rt_ifp == NULL ||
216		    !RT_LINK_IS_UP(rte->rt_ifp) ||
217			  dst->sin_family != AF_INET ||
218			  dst->sin_addr.s_addr != ip->ip_dst.s_addr)) {
219		RO_RTFREE(ro);
220		ro->ro_lle = NULL;
221		rte = NULL;
222	}
223	if (rte == NULL && fwd_tag == NULL) {
224		bzero(dst, sizeof(*dst));
225		dst->sin_family = AF_INET;
226		dst->sin_len = sizeof(*dst);
227		dst->sin_addr = ip->ip_dst;
228	}
229	/*
230	 * If routing to interface only, short circuit routing lookup.
231	 * The use of an all-ones broadcast address implies this; an
232	 * interface is specified by the broadcast address of an interface,
233	 * or the destination address of a ptp interface.
234	 */
235	if (flags & IP_SENDONES) {
236		if ((ia = ifatoia(ifa_ifwithbroadaddr(sintosa(dst)))) == NULL &&
237		    (ia = ifatoia(ifa_ifwithdstaddr(sintosa(dst)))) == NULL) {
238			IPSTAT_INC(ips_noroute);
239			error = ENETUNREACH;
240			goto bad;
241		}
242		ip->ip_dst.s_addr = INADDR_BROADCAST;
243		dst->sin_addr = ip->ip_dst;
244		ifp = ia->ia_ifp;
245		ip->ip_ttl = 1;
246		isbroadcast = 1;
247	} else if (flags & IP_ROUTETOIF) {
248		if ((ia = ifatoia(ifa_ifwithdstaddr(sintosa(dst)))) == NULL &&
249		    (ia = ifatoia(ifa_ifwithnet(sintosa(dst), 0))) == NULL) {
250			IPSTAT_INC(ips_noroute);
251			error = ENETUNREACH;
252			goto bad;
253		}
254		ifp = ia->ia_ifp;
255		ip->ip_ttl = 1;
256		isbroadcast = in_broadcast(dst->sin_addr, ifp);
257	} else if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) &&
258	    imo != NULL && imo->imo_multicast_ifp != NULL) {
259		/*
260		 * Bypass the normal routing lookup for multicast
261		 * packets if the interface is specified.
262		 */
263		ifp = imo->imo_multicast_ifp;
264		IFP_TO_IA(ifp, ia);
265		isbroadcast = 0;	/* fool gcc */
266	} else {
267		/*
268		 * We want to do any cloning requested by the link layer,
269		 * as this is probably required in all cases for correct
270		 * operation (as it is for ARP).
271		 */
272		if (rte == NULL) {
273#ifdef RADIX_MPATH
274			rtalloc_mpath_fib(ro,
275			    ntohl(ip->ip_src.s_addr ^ ip->ip_dst.s_addr),
276			    inp ? inp->inp_inc.inc_fibnum : M_GETFIB(m));
277#else
278			in_rtalloc_ign(ro, 0,
279			    inp ? inp->inp_inc.inc_fibnum : M_GETFIB(m));
280#endif
281			rte = ro->ro_rt;
282		}
283		if (rte == NULL ||
284		    rte->rt_ifp == NULL ||
285		    !RT_LINK_IS_UP(rte->rt_ifp)) {
286#ifdef IPSEC
287			/*
288			 * There is no route for this packet, but it is
289			 * possible that a matching SPD entry exists.
290			 */
291			no_route_but_check_spd = 1;
292			mtu = 0; /* Silence GCC warning. */
293			goto sendit;
294#endif
295			IPSTAT_INC(ips_noroute);
296			error = EHOSTUNREACH;
297			goto bad;
298		}
299		ia = ifatoia(rte->rt_ifa);
300		ifa_ref(&ia->ia_ifa);
301		ifp = rte->rt_ifp;
302		rte->rt_rmx.rmx_pksent++;
303		if (rte->rt_flags & RTF_GATEWAY)
304			gw = (struct sockaddr_in *)rte->rt_gateway;
305		if (rte->rt_flags & RTF_HOST)
306			isbroadcast = (rte->rt_flags & RTF_BROADCAST);
307		else
308			isbroadcast = in_broadcast(gw->sin_addr, ifp);
309	}
310	/*
311	 * Calculate MTU.  If we have a route that is up, use that,
312	 * otherwise use the interface's MTU.
313	 */
314	if (rte != NULL && (rte->rt_flags & (RTF_UP|RTF_HOST))) {
315		/*
316		 * This case can happen if the user changed the MTU
317		 * of an interface after enabling IP on it.  Because
318		 * most netifs don't keep track of routes pointing to
319		 * them, there is no way for one to update all its
320		 * routes when the MTU is changed.
321		 */
322		if (rte->rt_rmx.rmx_mtu > ifp->if_mtu)
323			rte->rt_rmx.rmx_mtu = ifp->if_mtu;
324		mtu = rte->rt_rmx.rmx_mtu;
325	} else {
326		mtu = ifp->if_mtu;
327	}
328	/* Catch a possible divide by zero later. */
329	KASSERT(mtu > 0, ("%s: mtu %d <= 0, rte=%p (rt_flags=0x%08x) ifp=%p",
330	    __func__, mtu, rte, (rte != NULL) ? rte->rt_flags : 0, ifp));
331	if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) {
332		m->m_flags |= M_MCAST;
333		/*
334		 * IP destination address is multicast.  Make sure "gw"
335		 * still points to the address in "ro".  (It may have been
336		 * changed to point to a gateway address, above.)
337		 */
338		gw = dst;
339		/*
340		 * See if the caller provided any multicast options
341		 */
342		if (imo != NULL) {
343			ip->ip_ttl = imo->imo_multicast_ttl;
344			if (imo->imo_multicast_vif != -1)
345				ip->ip_src.s_addr =
346				    ip_mcast_src ?
347				    ip_mcast_src(imo->imo_multicast_vif) :
348				    INADDR_ANY;
349		} else
350			ip->ip_ttl = IP_DEFAULT_MULTICAST_TTL;
351		/*
352		 * Confirm that the outgoing interface supports multicast.
353		 */
354		if ((imo == NULL) || (imo->imo_multicast_vif == -1)) {
355			if ((ifp->if_flags & IFF_MULTICAST) == 0) {
356				IPSTAT_INC(ips_noroute);
357				error = ENETUNREACH;
358				goto bad;
359			}
360		}
361		/*
362		 * If source address not specified yet, use address
363		 * of outgoing interface.
364		 */
365		if (ip->ip_src.s_addr == INADDR_ANY) {
366			/* Interface may have no addresses. */
367			if (ia != NULL)
368				ip->ip_src = IA_SIN(ia)->sin_addr;
369		}
370
371		if ((imo == NULL && in_mcast_loop) ||
372		    (imo && imo->imo_multicast_loop)) {
373			/*
374			 * Loop back multicast datagram if not expressly
375			 * forbidden to do so, even if we are not a member
376			 * of the group; ip_input() will filter it later,
377			 * thus deferring a hash lookup and mutex acquisition
378			 * at the expense of a cheap copy using m_copym().
379			 */
380			ip_mloopback(ifp, m, dst, hlen);
381		} else {
382			/*
383			 * If we are acting as a multicast router, perform
384			 * multicast forwarding as if the packet had just
385			 * arrived on the interface to which we are about
386			 * to send.  The multicast forwarding function
387			 * recursively calls this function, using the
388			 * IP_FORWARDING flag to prevent infinite recursion.
389			 *
390			 * Multicasts that are looped back by ip_mloopback(),
391			 * above, will be forwarded by the ip_input() routine,
392			 * if necessary.
393			 */
394			if (V_ip_mrouter && (flags & IP_FORWARDING) == 0) {
395				/*
396				 * If rsvp daemon is not running, do not
397				 * set ip_moptions. This ensures that the packet
398				 * is multicast and not just sent down one link
399				 * as prescribed by rsvpd.
400				 */
401				if (!V_rsvp_on)
402					imo = NULL;
403				if (ip_mforward &&
404				    ip_mforward(ip, ifp, m, imo) != 0) {
405					m_freem(m);
406					goto done;
407				}
408			}
409		}
410
411		/*
412		 * Multicasts with a time-to-live of zero may be looped-
413		 * back, above, but must not be transmitted on a network.
414		 * Also, multicasts addressed to the loopback interface
415		 * are not sent -- the above call to ip_mloopback() will
416		 * loop back a copy. ip_input() will drop the copy if
417		 * this host does not belong to the destination group on
418		 * the loopback interface.
419		 */
420		if (ip->ip_ttl == 0 || ifp->if_flags & IFF_LOOPBACK) {
421			m_freem(m);
422			goto done;
423		}
424
425		goto sendit;
426	}
427
428	/*
429	 * If the source address is not specified yet, use the address
430	 * of the outoing interface.
431	 */
432	if (ip->ip_src.s_addr == INADDR_ANY) {
433		/* Interface may have no addresses. */
434		if (ia != NULL) {
435			ip->ip_src = IA_SIN(ia)->sin_addr;
436		}
437	}
438
439	/*
440	 * Verify that we have any chance at all of being able to queue the
441	 * packet or packet fragments, unless ALTQ is enabled on the given
442	 * interface in which case packetdrop should be done by queueing.
443	 */
444	n = ip_len / mtu + 1; /* how many fragments ? */
445	if (
446#ifdef ALTQ
447	    (!ALTQ_IS_ENABLED(&ifp->if_snd)) &&
448#endif /* ALTQ */
449	    (ifp->if_snd.ifq_len + n) >= ifp->if_snd.ifq_maxlen ) {
450		error = ENOBUFS;
451		IPSTAT_INC(ips_odropped);
452		ifp->if_snd.ifq_drops += n;
453		goto bad;
454	}
455
456	/*
457	 * Look for broadcast address and
458	 * verify user is allowed to send
459	 * such a packet.
460	 */
461	if (isbroadcast) {
462		if ((ifp->if_flags & IFF_BROADCAST) == 0) {
463			error = EADDRNOTAVAIL;
464			goto bad;
465		}
466		if ((flags & IP_ALLOWBROADCAST) == 0) {
467			error = EACCES;
468			goto bad;
469		}
470		/* don't allow broadcast messages to be fragmented */
471		if (ip_len > mtu) {
472			error = EMSGSIZE;
473			goto bad;
474		}
475		m->m_flags |= M_BCAST;
476	} else {
477		m->m_flags &= ~M_BCAST;
478	}
479
480sendit:
481#ifdef IPSEC
482	switch(ip_ipsec_output(&m, inp, &flags, &error)) {
483	case 1:
484		goto bad;
485	case -1:
486		goto done;
487	case 0:
488	default:
489		break;	/* Continue with packet processing. */
490	}
491	/*
492	 * Check if there was a route for this packet; return error if not.
493	 */
494	if (no_route_but_check_spd) {
495		IPSTAT_INC(ips_noroute);
496		error = EHOSTUNREACH;
497		goto bad;
498	}
499	/* Update variables that are affected by ipsec4_output(). */
500	ip = mtod(m, struct ip *);
501	hlen = ip->ip_hl << 2;
502#endif /* IPSEC */
503
504	/* Jump over all PFIL processing if hooks are not active. */
505	if (!PFIL_HOOKED(&V_inet_pfil_hook))
506		goto passout;
507
508	/* Run through list of hooks for output packets. */
509	odst.s_addr = ip->ip_dst.s_addr;
510	error = pfil_run_hooks(&V_inet_pfil_hook, &m, ifp, PFIL_OUT, inp);
511	if (error != 0 || m == NULL)
512		goto done;
513
514	ip = mtod(m, struct ip *);
515
516	/* See if destination IP address was changed by packet filter. */
517	if (odst.s_addr != ip->ip_dst.s_addr) {
518		m->m_flags |= M_SKIP_FIREWALL;
519		/* If destination is now ourself drop to ip_input(). */
520		if (in_localip(ip->ip_dst)) {
521			m->m_flags |= M_FASTFWD_OURS;
522			if (m->m_pkthdr.rcvif == NULL)
523				m->m_pkthdr.rcvif = V_loif;
524			if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
525				m->m_pkthdr.csum_flags |=
526				    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
527				m->m_pkthdr.csum_data = 0xffff;
528			}
529			m->m_pkthdr.csum_flags |=
530			    CSUM_IP_CHECKED | CSUM_IP_VALID;
531#ifdef SCTP
532			if (m->m_pkthdr.csum_flags & CSUM_SCTP)
533				m->m_pkthdr.csum_flags |= CSUM_SCTP_VALID;
534#endif
535			error = netisr_queue(NETISR_IP, m);
536			goto done;
537		} else {
538			if (ia != NULL)
539				ifa_free(&ia->ia_ifa);
540			goto again;	/* Redo the routing table lookup. */
541		}
542	}
543
544	/* See if local, if yes, send it to netisr with IP_FASTFWD_OURS. */
545	if (m->m_flags & M_FASTFWD_OURS) {
546		if (m->m_pkthdr.rcvif == NULL)
547			m->m_pkthdr.rcvif = V_loif;
548		if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
549			m->m_pkthdr.csum_flags |=
550			    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
551			m->m_pkthdr.csum_data = 0xffff;
552		}
553#ifdef SCTP
554		if (m->m_pkthdr.csum_flags & CSUM_SCTP)
555			m->m_pkthdr.csum_flags |= CSUM_SCTP_VALID;
556#endif
557		m->m_pkthdr.csum_flags |=
558			    CSUM_IP_CHECKED | CSUM_IP_VALID;
559
560		error = netisr_queue(NETISR_IP, m);
561		goto done;
562	}
563	/* Or forward to some other address? */
564	if ((m->m_flags & M_IP_NEXTHOP) &&
565	    (fwd_tag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL)) != NULL) {
566		bcopy((fwd_tag+1), dst, sizeof(struct sockaddr_in));
567		m->m_flags |= M_SKIP_FIREWALL;
568		m->m_flags &= ~M_IP_NEXTHOP;
569		m_tag_delete(m, fwd_tag);
570		if (ia != NULL)
571			ifa_free(&ia->ia_ifa);
572		goto again;
573	}
574
575passout:
576	/* 127/8 must not appear on wire - RFC1122. */
577	if ((ntohl(ip->ip_dst.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET ||
578	    (ntohl(ip->ip_src.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) {
579		if ((ifp->if_flags & IFF_LOOPBACK) == 0) {
580			IPSTAT_INC(ips_badaddr);
581			error = EADDRNOTAVAIL;
582			goto bad;
583		}
584	}
585
586	m->m_pkthdr.csum_flags |= CSUM_IP;
587	if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA & ~ifp->if_hwassist) {
588		in_delayed_cksum(m);
589		m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
590	}
591#ifdef SCTP
592	if (m->m_pkthdr.csum_flags & CSUM_SCTP & ~ifp->if_hwassist) {
593		sctp_delayed_cksum(m, (uint32_t)(ip->ip_hl << 2));
594		m->m_pkthdr.csum_flags &= ~CSUM_SCTP;
595	}
596#endif
597
598	/*
599	 * If small enough for interface, or the interface will take
600	 * care of the fragmentation for us, we can just send directly.
601	 */
602	if (ip_len <= mtu ||
603	    (m->m_pkthdr.csum_flags & ifp->if_hwassist & CSUM_TSO) != 0 ||
604	    ((ip_off & IP_DF) == 0 && (ifp->if_hwassist & CSUM_FRAGMENT))) {
605		ip->ip_sum = 0;
606		if (m->m_pkthdr.csum_flags & CSUM_IP & ~ifp->if_hwassist) {
607			ip->ip_sum = in_cksum(m, hlen);
608			m->m_pkthdr.csum_flags &= ~CSUM_IP;
609		}
610
611		/*
612		 * Record statistics for this interface address.
613		 * With CSUM_TSO the byte/packet count will be slightly
614		 * incorrect because we count the IP+TCP headers only
615		 * once instead of for every generated packet.
616		 */
617		if (!(flags & IP_FORWARDING) && ia) {
618			if (m->m_pkthdr.csum_flags & CSUM_TSO)
619				ia->ia_ifa.if_opackets +=
620				    m->m_pkthdr.len / m->m_pkthdr.tso_segsz;
621			else
622				ia->ia_ifa.if_opackets++;
623			ia->ia_ifa.if_obytes += m->m_pkthdr.len;
624		}
625#ifdef MBUF_STRESS_TEST
626		if (mbuf_frag_size && m->m_pkthdr.len > mbuf_frag_size)
627			m = m_fragment(m, M_NOWAIT, mbuf_frag_size);
628#endif
629		/*
630		 * Reset layer specific mbuf flags
631		 * to avoid confusing lower layers.
632		 */
633		m_clrprotoflags(m);
634		IP_PROBE(send, NULL, NULL, ip, ifp, ip, NULL);
635		error = (*ifp->if_output)(ifp, m,
636		    (const struct sockaddr *)gw, ro);
637		goto done;
638	}
639
640	/* Balk when DF bit is set or the interface didn't support TSO. */
641	if ((ip_off & IP_DF) || (m->m_pkthdr.csum_flags & CSUM_TSO)) {
642		error = EMSGSIZE;
643		IPSTAT_INC(ips_cantfrag);
644		goto bad;
645	}
646
647	/*
648	 * Too large for interface; fragment if possible. If successful,
649	 * on return, m will point to a list of packets to be sent.
650	 */
651	error = ip_fragment(ip, &m, mtu, ifp->if_hwassist);
652	if (error)
653		goto bad;
654	for (; m; m = m0) {
655		m0 = m->m_nextpkt;
656		m->m_nextpkt = 0;
657		if (error == 0) {
658			/* Record statistics for this interface address. */
659			if (ia != NULL) {
660				ia->ia_ifa.if_opackets++;
661				ia->ia_ifa.if_obytes += m->m_pkthdr.len;
662			}
663			/*
664			 * Reset layer specific mbuf flags
665			 * to avoid confusing upper layers.
666			 */
667			m_clrprotoflags(m);
668
669			IP_PROBE(send, NULL, NULL, ip, ifp, ip, NULL);
670			error = (*ifp->if_output)(ifp, m,
671			    (const struct sockaddr *)gw, ro);
672		} else
673			m_freem(m);
674	}
675
676	if (error == 0)
677		IPSTAT_INC(ips_fragmented);
678
679done:
680	if (ro == &iproute)
681		RO_RTFREE(ro);
682	if (ia != NULL)
683		ifa_free(&ia->ia_ifa);
684	return (error);
685bad:
686	m_freem(m);
687	goto done;
688}
689
690/*
691 * Create a chain of fragments which fit the given mtu. m_frag points to the
692 * mbuf to be fragmented; on return it points to the chain with the fragments.
693 * Return 0 if no error. If error, m_frag may contain a partially built
694 * chain of fragments that should be freed by the caller.
695 *
696 * if_hwassist_flags is the hw offload capabilities (see if_data.ifi_hwassist)
697 */
698int
699ip_fragment(struct ip *ip, struct mbuf **m_frag, int mtu,
700    u_long if_hwassist_flags)
701{
702	int error = 0;
703	int hlen = ip->ip_hl << 2;
704	int len = (mtu - hlen) & ~7;	/* size of payload in each fragment */
705	int off;
706	struct mbuf *m0 = *m_frag;	/* the original packet		*/
707	int firstlen;
708	struct mbuf **mnext;
709	int nfrags;
710	uint16_t ip_len, ip_off;
711
712	ip_len = ntohs(ip->ip_len);
713	ip_off = ntohs(ip->ip_off);
714
715	if (ip_off & IP_DF) {	/* Fragmentation not allowed */
716		IPSTAT_INC(ips_cantfrag);
717		return EMSGSIZE;
718	}
719
720	/*
721	 * Must be able to put at least 8 bytes per fragment.
722	 */
723	if (len < 8)
724		return EMSGSIZE;
725
726	/*
727	 * If the interface will not calculate checksums on
728	 * fragmented packets, then do it here.
729	 */
730	if (m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
731		in_delayed_cksum(m0);
732		m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
733	}
734#ifdef SCTP
735	if (m0->m_pkthdr.csum_flags & CSUM_SCTP) {
736		sctp_delayed_cksum(m0, hlen);
737		m0->m_pkthdr.csum_flags &= ~CSUM_SCTP;
738	}
739#endif
740	if (len > PAGE_SIZE) {
741		/*
742		 * Fragment large datagrams such that each segment
743		 * contains a multiple of PAGE_SIZE amount of data,
744		 * plus headers. This enables a receiver to perform
745		 * page-flipping zero-copy optimizations.
746		 *
747		 * XXX When does this help given that sender and receiver
748		 * could have different page sizes, and also mtu could
749		 * be less than the receiver's page size ?
750		 */
751		int newlen;
752		struct mbuf *m;
753
754		for (m = m0, off = 0; m && (off+m->m_len) <= mtu; m = m->m_next)
755			off += m->m_len;
756
757		/*
758		 * firstlen (off - hlen) must be aligned on an
759		 * 8-byte boundary
760		 */
761		if (off < hlen)
762			goto smart_frag_failure;
763		off = ((off - hlen) & ~7) + hlen;
764		newlen = (~PAGE_MASK) & mtu;
765		if ((newlen + sizeof (struct ip)) > mtu) {
766			/* we failed, go back the default */
767smart_frag_failure:
768			newlen = len;
769			off = hlen + len;
770		}
771		len = newlen;
772
773	} else {
774		off = hlen + len;
775	}
776
777	firstlen = off - hlen;
778	mnext = &m0->m_nextpkt;		/* pointer to next packet */
779
780	/*
781	 * Loop through length of segment after first fragment,
782	 * make new header and copy data of each part and link onto chain.
783	 * Here, m0 is the original packet, m is the fragment being created.
784	 * The fragments are linked off the m_nextpkt of the original
785	 * packet, which after processing serves as the first fragment.
786	 */
787	for (nfrags = 1; off < ip_len; off += len, nfrags++) {
788		struct ip *mhip;	/* ip header on the fragment */
789		struct mbuf *m;
790		int mhlen = sizeof (struct ip);
791
792		m = m_gethdr(M_NOWAIT, MT_DATA);
793		if (m == NULL) {
794			error = ENOBUFS;
795			IPSTAT_INC(ips_odropped);
796			goto done;
797		}
798		m->m_flags |= (m0->m_flags & M_MCAST);
799		/*
800		 * In the first mbuf, leave room for the link header, then
801		 * copy the original IP header including options. The payload
802		 * goes into an additional mbuf chain returned by m_copym().
803		 */
804		m->m_data += max_linkhdr;
805		mhip = mtod(m, struct ip *);
806		*mhip = *ip;
807		if (hlen > sizeof (struct ip)) {
808			mhlen = ip_optcopy(ip, mhip) + sizeof (struct ip);
809			mhip->ip_v = IPVERSION;
810			mhip->ip_hl = mhlen >> 2;
811		}
812		m->m_len = mhlen;
813		/* XXX do we need to add ip_off below ? */
814		mhip->ip_off = ((off - hlen) >> 3) + ip_off;
815		if (off + len >= ip_len)
816			len = ip_len - off;
817		else
818			mhip->ip_off |= IP_MF;
819		mhip->ip_len = htons((u_short)(len + mhlen));
820		m->m_next = m_copym(m0, off, len, M_NOWAIT);
821		if (m->m_next == NULL) {	/* copy failed */
822			m_free(m);
823			error = ENOBUFS;	/* ??? */
824			IPSTAT_INC(ips_odropped);
825			goto done;
826		}
827		m->m_pkthdr.len = mhlen + len;
828		m->m_pkthdr.rcvif = NULL;
829#ifdef MAC
830		mac_netinet_fragment(m0, m);
831#endif
832		m->m_pkthdr.csum_flags = m0->m_pkthdr.csum_flags;
833		mhip->ip_off = htons(mhip->ip_off);
834		mhip->ip_sum = 0;
835		if (m->m_pkthdr.csum_flags & CSUM_IP & ~if_hwassist_flags) {
836			mhip->ip_sum = in_cksum(m, mhlen);
837			m->m_pkthdr.csum_flags &= ~CSUM_IP;
838		}
839		*mnext = m;
840		mnext = &m->m_nextpkt;
841	}
842	IPSTAT_ADD(ips_ofragments, nfrags);
843
844	/*
845	 * Update first fragment by trimming what's been copied out
846	 * and updating header.
847	 */
848	m_adj(m0, hlen + firstlen - ip_len);
849	m0->m_pkthdr.len = hlen + firstlen;
850	ip->ip_len = htons((u_short)m0->m_pkthdr.len);
851	ip->ip_off = htons(ip_off | IP_MF);
852	ip->ip_sum = 0;
853	if (m0->m_pkthdr.csum_flags & CSUM_IP & ~if_hwassist_flags) {
854		ip->ip_sum = in_cksum(m0, hlen);
855		m0->m_pkthdr.csum_flags &= ~CSUM_IP;
856	}
857
858done:
859	*m_frag = m0;
860	return error;
861}
862
863void
864in_delayed_cksum(struct mbuf *m)
865{
866	struct ip *ip;
867	uint16_t csum, offset, ip_len;
868
869	ip = mtod(m, struct ip *);
870	offset = ip->ip_hl << 2 ;
871	ip_len = ntohs(ip->ip_len);
872	csum = in_cksum_skip(m, ip_len, offset);
873	if (m->m_pkthdr.csum_flags & CSUM_UDP && csum == 0)
874		csum = 0xffff;
875	offset += m->m_pkthdr.csum_data;	/* checksum offset */
876
877	if (offset + sizeof(u_short) > m->m_len) {
878		printf("delayed m_pullup, m->len: %d  off: %d  p: %d\n",
879		    m->m_len, offset, ip->ip_p);
880		/*
881		 * XXX
882		 * this shouldn't happen, but if it does, the
883		 * correct behavior may be to insert the checksum
884		 * in the appropriate next mbuf in the chain.
885		 */
886		return;
887	}
888	*(u_short *)(m->m_data + offset) = csum;
889}
890
891/*
892 * IP socket option processing.
893 */
894int
895ip_ctloutput(struct socket *so, struct sockopt *sopt)
896{
897	struct	inpcb *inp = sotoinpcb(so);
898	int	error, optval;
899
900	error = optval = 0;
901	if (sopt->sopt_level != IPPROTO_IP) {
902		error = EINVAL;
903
904		if (sopt->sopt_level == SOL_SOCKET &&
905		    sopt->sopt_dir == SOPT_SET) {
906			switch (sopt->sopt_name) {
907			case SO_REUSEADDR:
908				INP_WLOCK(inp);
909				if ((so->so_options & SO_REUSEADDR) != 0)
910					inp->inp_flags2 |= INP_REUSEADDR;
911				else
912					inp->inp_flags2 &= ~INP_REUSEADDR;
913				INP_WUNLOCK(inp);
914				error = 0;
915				break;
916			case SO_REUSEPORT:
917				INP_WLOCK(inp);
918				if ((so->so_options & SO_REUSEPORT) != 0)
919					inp->inp_flags2 |= INP_REUSEPORT;
920				else
921					inp->inp_flags2 &= ~INP_REUSEPORT;
922				INP_WUNLOCK(inp);
923				error = 0;
924				break;
925			case SO_SETFIB:
926				INP_WLOCK(inp);
927				inp->inp_inc.inc_fibnum = so->so_fibnum;
928				INP_WUNLOCK(inp);
929				error = 0;
930				break;
931			default:
932				break;
933			}
934		}
935		return (error);
936	}
937
938	switch (sopt->sopt_dir) {
939	case SOPT_SET:
940		switch (sopt->sopt_name) {
941		case IP_OPTIONS:
942#ifdef notyet
943		case IP_RETOPTS:
944#endif
945		{
946			struct mbuf *m;
947			if (sopt->sopt_valsize > MLEN) {
948				error = EMSGSIZE;
949				break;
950			}
951			m = m_get(sopt->sopt_td ? M_WAITOK : M_NOWAIT, MT_DATA);
952			if (m == NULL) {
953				error = ENOBUFS;
954				break;
955			}
956			m->m_len = sopt->sopt_valsize;
957			error = sooptcopyin(sopt, mtod(m, char *), m->m_len,
958					    m->m_len);
959			if (error) {
960				m_free(m);
961				break;
962			}
963			INP_WLOCK(inp);
964			error = ip_pcbopts(inp, sopt->sopt_name, m);
965			INP_WUNLOCK(inp);
966			return (error);
967		}
968
969		case IP_BINDANY:
970			if (sopt->sopt_td != NULL) {
971				error = priv_check(sopt->sopt_td,
972				    PRIV_NETINET_BINDANY);
973				if (error)
974					break;
975			}
976			/* FALLTHROUGH */
977		case IP_TOS:
978		case IP_TTL:
979		case IP_MINTTL:
980		case IP_RECVOPTS:
981		case IP_RECVRETOPTS:
982		case IP_RECVDSTADDR:
983		case IP_RECVTTL:
984		case IP_RECVIF:
985		case IP_FAITH:
986		case IP_ONESBCAST:
987		case IP_DONTFRAG:
988		case IP_RECVTOS:
989			error = sooptcopyin(sopt, &optval, sizeof optval,
990					    sizeof optval);
991			if (error)
992				break;
993
994			switch (sopt->sopt_name) {
995			case IP_TOS:
996				inp->inp_ip_tos = optval;
997				break;
998
999			case IP_TTL:
1000				inp->inp_ip_ttl = optval;
1001				break;
1002
1003			case IP_MINTTL:
1004				if (optval >= 0 && optval <= MAXTTL)
1005					inp->inp_ip_minttl = optval;
1006				else
1007					error = EINVAL;
1008				break;
1009
1010#define	OPTSET(bit) do {						\
1011	INP_WLOCK(inp);							\
1012	if (optval)							\
1013		inp->inp_flags |= bit;					\
1014	else								\
1015		inp->inp_flags &= ~bit;					\
1016	INP_WUNLOCK(inp);						\
1017} while (0)
1018
1019			case IP_RECVOPTS:
1020				OPTSET(INP_RECVOPTS);
1021				break;
1022
1023			case IP_RECVRETOPTS:
1024				OPTSET(INP_RECVRETOPTS);
1025				break;
1026
1027			case IP_RECVDSTADDR:
1028				OPTSET(INP_RECVDSTADDR);
1029				break;
1030
1031			case IP_RECVTTL:
1032				OPTSET(INP_RECVTTL);
1033				break;
1034
1035			case IP_RECVIF:
1036				OPTSET(INP_RECVIF);
1037				break;
1038
1039			case IP_FAITH:
1040				OPTSET(INP_FAITH);
1041				break;
1042
1043			case IP_ONESBCAST:
1044				OPTSET(INP_ONESBCAST);
1045				break;
1046			case IP_DONTFRAG:
1047				OPTSET(INP_DONTFRAG);
1048				break;
1049			case IP_BINDANY:
1050				OPTSET(INP_BINDANY);
1051				break;
1052			case IP_RECVTOS:
1053				OPTSET(INP_RECVTOS);
1054				break;
1055			}
1056			break;
1057#undef OPTSET
1058
1059		/*
1060		 * Multicast socket options are processed by the in_mcast
1061		 * module.
1062		 */
1063		case IP_MULTICAST_IF:
1064		case IP_MULTICAST_VIF:
1065		case IP_MULTICAST_TTL:
1066		case IP_MULTICAST_LOOP:
1067		case IP_ADD_MEMBERSHIP:
1068		case IP_DROP_MEMBERSHIP:
1069		case IP_ADD_SOURCE_MEMBERSHIP:
1070		case IP_DROP_SOURCE_MEMBERSHIP:
1071		case IP_BLOCK_SOURCE:
1072		case IP_UNBLOCK_SOURCE:
1073		case IP_MSFILTER:
1074		case MCAST_JOIN_GROUP:
1075		case MCAST_LEAVE_GROUP:
1076		case MCAST_JOIN_SOURCE_GROUP:
1077		case MCAST_LEAVE_SOURCE_GROUP:
1078		case MCAST_BLOCK_SOURCE:
1079		case MCAST_UNBLOCK_SOURCE:
1080			error = inp_setmoptions(inp, sopt);
1081			break;
1082
1083		case IP_PORTRANGE:
1084			error = sooptcopyin(sopt, &optval, sizeof optval,
1085					    sizeof optval);
1086			if (error)
1087				break;
1088
1089			INP_WLOCK(inp);
1090			switch (optval) {
1091			case IP_PORTRANGE_DEFAULT:
1092				inp->inp_flags &= ~(INP_LOWPORT);
1093				inp->inp_flags &= ~(INP_HIGHPORT);
1094				break;
1095
1096			case IP_PORTRANGE_HIGH:
1097				inp->inp_flags &= ~(INP_LOWPORT);
1098				inp->inp_flags |= INP_HIGHPORT;
1099				break;
1100
1101			case IP_PORTRANGE_LOW:
1102				inp->inp_flags &= ~(INP_HIGHPORT);
1103				inp->inp_flags |= INP_LOWPORT;
1104				break;
1105
1106			default:
1107				error = EINVAL;
1108				break;
1109			}
1110			INP_WUNLOCK(inp);
1111			break;
1112
1113#ifdef IPSEC
1114		case IP_IPSEC_POLICY:
1115		{
1116			caddr_t req;
1117			struct mbuf *m;
1118
1119			if ((error = soopt_getm(sopt, &m)) != 0) /* XXX */
1120				break;
1121			if ((error = soopt_mcopyin(sopt, m)) != 0) /* XXX */
1122				break;
1123			req = mtod(m, caddr_t);
1124			error = ipsec_set_policy(inp, sopt->sopt_name, req,
1125			    m->m_len, (sopt->sopt_td != NULL) ?
1126			    sopt->sopt_td->td_ucred : NULL);
1127			m_freem(m);
1128			break;
1129		}
1130#endif /* IPSEC */
1131
1132		default:
1133			error = ENOPROTOOPT;
1134			break;
1135		}
1136		break;
1137
1138	case SOPT_GET:
1139		switch (sopt->sopt_name) {
1140		case IP_OPTIONS:
1141		case IP_RETOPTS:
1142			if (inp->inp_options)
1143				error = sooptcopyout(sopt,
1144						     mtod(inp->inp_options,
1145							  char *),
1146						     inp->inp_options->m_len);
1147			else
1148				sopt->sopt_valsize = 0;
1149			break;
1150
1151		case IP_TOS:
1152		case IP_TTL:
1153		case IP_MINTTL:
1154		case IP_RECVOPTS:
1155		case IP_RECVRETOPTS:
1156		case IP_RECVDSTADDR:
1157		case IP_RECVTTL:
1158		case IP_RECVIF:
1159		case IP_PORTRANGE:
1160		case IP_FAITH:
1161		case IP_ONESBCAST:
1162		case IP_DONTFRAG:
1163		case IP_BINDANY:
1164		case IP_RECVTOS:
1165			switch (sopt->sopt_name) {
1166
1167			case IP_TOS:
1168				optval = inp->inp_ip_tos;
1169				break;
1170
1171			case IP_TTL:
1172				optval = inp->inp_ip_ttl;
1173				break;
1174
1175			case IP_MINTTL:
1176				optval = inp->inp_ip_minttl;
1177				break;
1178
1179#define	OPTBIT(bit)	(inp->inp_flags & bit ? 1 : 0)
1180
1181			case IP_RECVOPTS:
1182				optval = OPTBIT(INP_RECVOPTS);
1183				break;
1184
1185			case IP_RECVRETOPTS:
1186				optval = OPTBIT(INP_RECVRETOPTS);
1187				break;
1188
1189			case IP_RECVDSTADDR:
1190				optval = OPTBIT(INP_RECVDSTADDR);
1191				break;
1192
1193			case IP_RECVTTL:
1194				optval = OPTBIT(INP_RECVTTL);
1195				break;
1196
1197			case IP_RECVIF:
1198				optval = OPTBIT(INP_RECVIF);
1199				break;
1200
1201			case IP_PORTRANGE:
1202				if (inp->inp_flags & INP_HIGHPORT)
1203					optval = IP_PORTRANGE_HIGH;
1204				else if (inp->inp_flags & INP_LOWPORT)
1205					optval = IP_PORTRANGE_LOW;
1206				else
1207					optval = 0;
1208				break;
1209
1210			case IP_FAITH:
1211				optval = OPTBIT(INP_FAITH);
1212				break;
1213
1214			case IP_ONESBCAST:
1215				optval = OPTBIT(INP_ONESBCAST);
1216				break;
1217			case IP_DONTFRAG:
1218				optval = OPTBIT(INP_DONTFRAG);
1219				break;
1220			case IP_BINDANY:
1221				optval = OPTBIT(INP_BINDANY);
1222				break;
1223			case IP_RECVTOS:
1224				optval = OPTBIT(INP_RECVTOS);
1225				break;
1226			}
1227			error = sooptcopyout(sopt, &optval, sizeof optval);
1228			break;
1229
1230		/*
1231		 * Multicast socket options are processed by the in_mcast
1232		 * module.
1233		 */
1234		case IP_MULTICAST_IF:
1235		case IP_MULTICAST_VIF:
1236		case IP_MULTICAST_TTL:
1237		case IP_MULTICAST_LOOP:
1238		case IP_MSFILTER:
1239			error = inp_getmoptions(inp, sopt);
1240			break;
1241
1242#ifdef IPSEC
1243		case IP_IPSEC_POLICY:
1244		{
1245			struct mbuf *m = NULL;
1246			caddr_t req = NULL;
1247			size_t len = 0;
1248
1249			if (m != 0) {
1250				req = mtod(m, caddr_t);
1251				len = m->m_len;
1252			}
1253			error = ipsec_get_policy(sotoinpcb(so), req, len, &m);
1254			if (error == 0)
1255				error = soopt_mcopyout(sopt, m); /* XXX */
1256			if (error == 0)
1257				m_freem(m);
1258			break;
1259		}
1260#endif /* IPSEC */
1261
1262		default:
1263			error = ENOPROTOOPT;
1264			break;
1265		}
1266		break;
1267	}
1268	return (error);
1269}
1270
1271/*
1272 * Routine called from ip_output() to loop back a copy of an IP multicast
1273 * packet to the input queue of a specified interface.  Note that this
1274 * calls the output routine of the loopback "driver", but with an interface
1275 * pointer that might NOT be a loopback interface -- evil, but easier than
1276 * replicating that code here.
1277 */
1278static void
1279ip_mloopback(struct ifnet *ifp, struct mbuf *m, struct sockaddr_in *dst,
1280    int hlen)
1281{
1282	register struct ip *ip;
1283	struct mbuf *copym;
1284
1285	/*
1286	 * Make a deep copy of the packet because we're going to
1287	 * modify the pack in order to generate checksums.
1288	 */
1289	copym = m_dup(m, M_NOWAIT);
1290	if (copym != NULL && (copym->m_flags & M_EXT || copym->m_len < hlen))
1291		copym = m_pullup(copym, hlen);
1292	if (copym != NULL) {
1293		/* If needed, compute the checksum and mark it as valid. */
1294		if (copym->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
1295			in_delayed_cksum(copym);
1296			copym->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
1297			copym->m_pkthdr.csum_flags |=
1298			    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
1299			copym->m_pkthdr.csum_data = 0xffff;
1300		}
1301		/*
1302		 * We don't bother to fragment if the IP length is greater
1303		 * than the interface's MTU.  Can this possibly matter?
1304		 */
1305		ip = mtod(copym, struct ip *);
1306		ip->ip_sum = 0;
1307		ip->ip_sum = in_cksum(copym, hlen);
1308#if 1 /* XXX */
1309		if (dst->sin_family != AF_INET) {
1310			printf("ip_mloopback: bad address family %d\n",
1311						dst->sin_family);
1312			dst->sin_family = AF_INET;
1313		}
1314#endif
1315		if_simloop(ifp, copym, dst->sin_family, 0);
1316	}
1317}
1318