sys_pipe.c revision 70915
1/*
2 * Copyright (c) 1996 John S. Dyson
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice immediately at the beginning of the file, without modification,
10 *    this list of conditions, and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 * 3. Absolutely no warranty of function or purpose is made by the author
15 *    John S. Dyson.
16 * 4. Modifications may be freely made to this file if the above conditions
17 *    are met.
18 *
19 * $FreeBSD: head/sys/kern/sys_pipe.c 70915 2001-01-11 00:13:54Z dwmalone $
20 */
21
22/*
23 * This file contains a high-performance replacement for the socket-based
24 * pipes scheme originally used in FreeBSD/4.4Lite.  It does not support
25 * all features of sockets, but does do everything that pipes normally
26 * do.
27 */
28
29/*
30 * This code has two modes of operation, a small write mode and a large
31 * write mode.  The small write mode acts like conventional pipes with
32 * a kernel buffer.  If the buffer is less than PIPE_MINDIRECT, then the
33 * "normal" pipe buffering is done.  If the buffer is between PIPE_MINDIRECT
34 * and PIPE_SIZE in size, it is fully mapped and wired into the kernel, and
35 * the receiving process can copy it directly from the pages in the sending
36 * process.
37 *
38 * If the sending process receives a signal, it is possible that it will
39 * go away, and certainly its address space can change, because control
40 * is returned back to the user-mode side.  In that case, the pipe code
41 * arranges to copy the buffer supplied by the user process, to a pageable
42 * kernel buffer, and the receiving process will grab the data from the
43 * pageable kernel buffer.  Since signals don't happen all that often,
44 * the copy operation is normally eliminated.
45 *
46 * The constant PIPE_MINDIRECT is chosen to make sure that buffering will
47 * happen for small transfers so that the system will not spend all of
48 * its time context switching.  PIPE_SIZE is constrained by the
49 * amount of kernel virtual memory.
50 */
51
52#include <sys/param.h>
53#include <sys/systm.h>
54#include <sys/proc.h>
55#include <sys/fcntl.h>
56#include <sys/file.h>
57#include <sys/filedesc.h>
58#include <sys/filio.h>
59#include <sys/ttycom.h>
60#include <sys/stat.h>
61#include <sys/poll.h>
62#include <sys/selinfo.h>
63#include <sys/signalvar.h>
64#include <sys/sysproto.h>
65#include <sys/pipe.h>
66#include <sys/vnode.h>
67#include <sys/uio.h>
68#include <sys/event.h>
69
70#include <vm/vm.h>
71#include <vm/vm_param.h>
72#include <sys/lock.h>
73#include <vm/vm_object.h>
74#include <vm/vm_kern.h>
75#include <vm/vm_extern.h>
76#include <vm/pmap.h>
77#include <vm/vm_map.h>
78#include <vm/vm_page.h>
79#include <vm/vm_zone.h>
80
81/*
82 * Use this define if you want to disable *fancy* VM things.  Expect an
83 * approx 30% decrease in transfer rate.  This could be useful for
84 * NetBSD or OpenBSD.
85 */
86/* #define PIPE_NODIRECT */
87
88/*
89 * interfaces to the outside world
90 */
91static int pipe_read __P((struct file *fp, struct uio *uio,
92		struct ucred *cred, int flags, struct proc *p));
93static int pipe_write __P((struct file *fp, struct uio *uio,
94		struct ucred *cred, int flags, struct proc *p));
95static int pipe_close __P((struct file *fp, struct proc *p));
96static int pipe_poll __P((struct file *fp, int events, struct ucred *cred,
97		struct proc *p));
98static int pipe_stat __P((struct file *fp, struct stat *sb, struct proc *p));
99static int pipe_ioctl __P((struct file *fp, u_long cmd, caddr_t data, struct proc *p));
100
101static struct fileops pipeops =
102    { pipe_read, pipe_write, pipe_ioctl, pipe_poll, pipe_stat, pipe_close };
103
104static int	filt_pipeattach(struct knote *kn);
105static void	filt_pipedetach(struct knote *kn);
106static int	filt_piperead(struct knote *kn, long hint);
107static int	filt_pipewrite(struct knote *kn, long hint);
108
109struct filterops pipe_rwfiltops[] = {
110	{ 1, filt_pipeattach, filt_pipedetach, filt_piperead },
111	{ 1, filt_pipeattach, filt_pipedetach, filt_pipewrite },
112};
113
114/*
115 * Default pipe buffer size(s), this can be kind-of large now because pipe
116 * space is pageable.  The pipe code will try to maintain locality of
117 * reference for performance reasons, so small amounts of outstanding I/O
118 * will not wipe the cache.
119 */
120#define MINPIPESIZE (PIPE_SIZE/3)
121#define MAXPIPESIZE (2*PIPE_SIZE/3)
122
123/*
124 * Maximum amount of kva for pipes -- this is kind-of a soft limit, but
125 * is there so that on large systems, we don't exhaust it.
126 */
127#define MAXPIPEKVA (8*1024*1024)
128
129/*
130 * Limit for direct transfers, we cannot, of course limit
131 * the amount of kva for pipes in general though.
132 */
133#define LIMITPIPEKVA (16*1024*1024)
134
135/*
136 * Limit the number of "big" pipes
137 */
138#define LIMITBIGPIPES	32
139static int nbigpipe;
140
141static int amountpipekva;
142
143static void pipeclose __P((struct pipe *cpipe));
144static void pipeinit __P((struct pipe *cpipe));
145static __inline int pipelock __P((struct pipe *cpipe, int catch));
146static __inline void pipeunlock __P((struct pipe *cpipe));
147static __inline void pipeselwakeup __P((struct pipe *cpipe));
148#ifndef PIPE_NODIRECT
149static int pipe_build_write_buffer __P((struct pipe *wpipe, struct uio *uio));
150static void pipe_destroy_write_buffer __P((struct pipe *wpipe));
151static int pipe_direct_write __P((struct pipe *wpipe, struct uio *uio));
152static void pipe_clone_write_buffer __P((struct pipe *wpipe));
153#endif
154static void pipespace __P((struct pipe *cpipe));
155
156static vm_zone_t pipe_zone;
157
158/*
159 * The pipe system call for the DTYPE_PIPE type of pipes
160 */
161
162/* ARGSUSED */
163int
164pipe(p, uap)
165	struct proc *p;
166	struct pipe_args /* {
167		int	dummy;
168	} */ *uap;
169{
170	register struct filedesc *fdp = p->p_fd;
171	struct file *rf, *wf;
172	struct pipe *rpipe, *wpipe;
173	int fd, error;
174
175	if (pipe_zone == NULL)
176		pipe_zone = zinit("PIPE", sizeof (struct pipe), 0, 0, 4);
177
178	rpipe = zalloc( pipe_zone);
179	pipeinit(rpipe);
180	rpipe->pipe_state |= PIPE_DIRECTOK;
181	wpipe = zalloc( pipe_zone);
182	pipeinit(wpipe);
183	wpipe->pipe_state |= PIPE_DIRECTOK;
184
185	error = falloc(p, &rf, &fd);
186	if (error) {
187		pipeclose(rpipe);
188		pipeclose(wpipe);
189		return (error);
190	}
191	fhold(rf);
192	p->p_retval[0] = fd;
193
194	/*
195	 * Warning: once we've gotten past allocation of the fd for the
196	 * read-side, we can only drop the read side via fdrop() in order
197	 * to avoid races against processes which manage to dup() the read
198	 * side while we are blocked trying to allocate the write side.
199	 */
200	rf->f_flag = FREAD | FWRITE;
201	rf->f_type = DTYPE_PIPE;
202	rf->f_data = (caddr_t)rpipe;
203	rf->f_ops = &pipeops;
204	error = falloc(p, &wf, &fd);
205	if (error) {
206		if (fdp->fd_ofiles[p->p_retval[0]] == rf) {
207			fdp->fd_ofiles[p->p_retval[0]] = NULL;
208			fdrop(rf, p);
209		}
210		fdrop(rf, p);
211		/* rpipe has been closed by fdrop(). */
212		pipeclose(wpipe);
213		return (error);
214	}
215	wf->f_flag = FREAD | FWRITE;
216	wf->f_type = DTYPE_PIPE;
217	wf->f_data = (caddr_t)wpipe;
218	wf->f_ops = &pipeops;
219	p->p_retval[1] = fd;
220
221	rpipe->pipe_peer = wpipe;
222	wpipe->pipe_peer = rpipe;
223	fdrop(rf, p);
224
225	return (0);
226}
227
228/*
229 * Allocate kva for pipe circular buffer, the space is pageable
230 */
231static void
232pipespace(cpipe)
233	struct pipe *cpipe;
234{
235	int npages, error;
236
237	npages = round_page(cpipe->pipe_buffer.size)/PAGE_SIZE;
238	/*
239	 * Create an object, I don't like the idea of paging to/from
240	 * kernel_object.
241	 * XXX -- minor change needed here for NetBSD/OpenBSD VM systems.
242	 */
243	cpipe->pipe_buffer.object = vm_object_allocate(OBJT_DEFAULT, npages);
244	cpipe->pipe_buffer.buffer = (caddr_t) vm_map_min(kernel_map);
245
246	/*
247	 * Insert the object into the kernel map, and allocate kva for it.
248	 * The map entry is, by default, pageable.
249	 * XXX -- minor change needed here for NetBSD/OpenBSD VM systems.
250	 */
251	error = vm_map_find(kernel_map, cpipe->pipe_buffer.object, 0,
252		(vm_offset_t *) &cpipe->pipe_buffer.buffer,
253		cpipe->pipe_buffer.size, 1,
254		VM_PROT_ALL, VM_PROT_ALL, 0);
255
256	if (error != KERN_SUCCESS)
257		panic("pipeinit: cannot allocate pipe -- out of kvm -- code = %d", error);
258	amountpipekva += cpipe->pipe_buffer.size;
259}
260
261/*
262 * initialize and allocate VM and memory for pipe
263 */
264static void
265pipeinit(cpipe)
266	struct pipe *cpipe;
267{
268
269	cpipe->pipe_buffer.in = 0;
270	cpipe->pipe_buffer.out = 0;
271	cpipe->pipe_buffer.cnt = 0;
272	cpipe->pipe_buffer.size = PIPE_SIZE;
273
274	/* Buffer kva gets dynamically allocated */
275	cpipe->pipe_buffer.buffer = NULL;
276	/* cpipe->pipe_buffer.object = invalid */
277
278	cpipe->pipe_state = 0;
279	cpipe->pipe_peer = NULL;
280	cpipe->pipe_busy = 0;
281	vfs_timestamp(&cpipe->pipe_ctime);
282	cpipe->pipe_atime = cpipe->pipe_ctime;
283	cpipe->pipe_mtime = cpipe->pipe_ctime;
284	bzero(&cpipe->pipe_sel, sizeof cpipe->pipe_sel);
285
286#ifndef PIPE_NODIRECT
287	/*
288	 * pipe data structure initializations to support direct pipe I/O
289	 */
290	cpipe->pipe_map.cnt = 0;
291	cpipe->pipe_map.kva = 0;
292	cpipe->pipe_map.pos = 0;
293	cpipe->pipe_map.npages = 0;
294	/* cpipe->pipe_map.ms[] = invalid */
295#endif
296}
297
298
299/*
300 * lock a pipe for I/O, blocking other access
301 */
302static __inline int
303pipelock(cpipe, catch)
304	struct pipe *cpipe;
305	int catch;
306{
307	int error;
308	while (cpipe->pipe_state & PIPE_LOCK) {
309		cpipe->pipe_state |= PIPE_LWANT;
310		if ((error = tsleep( cpipe,
311			catch?(PRIBIO|PCATCH):PRIBIO, "pipelk", 0)) != 0) {
312			return error;
313		}
314	}
315	cpipe->pipe_state |= PIPE_LOCK;
316	return 0;
317}
318
319/*
320 * unlock a pipe I/O lock
321 */
322static __inline void
323pipeunlock(cpipe)
324	struct pipe *cpipe;
325{
326	cpipe->pipe_state &= ~PIPE_LOCK;
327	if (cpipe->pipe_state & PIPE_LWANT) {
328		cpipe->pipe_state &= ~PIPE_LWANT;
329		wakeup(cpipe);
330	}
331}
332
333static __inline void
334pipeselwakeup(cpipe)
335	struct pipe *cpipe;
336{
337	if (cpipe->pipe_state & PIPE_SEL) {
338		cpipe->pipe_state &= ~PIPE_SEL;
339		selwakeup(&cpipe->pipe_sel);
340	}
341	if ((cpipe->pipe_state & PIPE_ASYNC) && cpipe->pipe_sigio)
342		pgsigio(cpipe->pipe_sigio, SIGIO, 0);
343	KNOTE(&cpipe->pipe_sel.si_note, 0);
344}
345
346/* ARGSUSED */
347static int
348pipe_read(fp, uio, cred, flags, p)
349	struct file *fp;
350	struct uio *uio;
351	struct ucred *cred;
352	struct proc *p;
353	int flags;
354{
355
356	struct pipe *rpipe = (struct pipe *) fp->f_data;
357	int error;
358	int nread = 0;
359	u_int size;
360
361	++rpipe->pipe_busy;
362	error = pipelock(rpipe, 1);
363	if (error)
364		goto unlocked_error;
365
366	while (uio->uio_resid) {
367		/*
368		 * normal pipe buffer receive
369		 */
370		if (rpipe->pipe_buffer.cnt > 0) {
371			size = rpipe->pipe_buffer.size - rpipe->pipe_buffer.out;
372			if (size > rpipe->pipe_buffer.cnt)
373				size = rpipe->pipe_buffer.cnt;
374			if (size > (u_int) uio->uio_resid)
375				size = (u_int) uio->uio_resid;
376
377			error = uiomove(&rpipe->pipe_buffer.buffer[rpipe->pipe_buffer.out],
378					size, uio);
379			if (error) {
380				break;
381			}
382			rpipe->pipe_buffer.out += size;
383			if (rpipe->pipe_buffer.out >= rpipe->pipe_buffer.size)
384				rpipe->pipe_buffer.out = 0;
385
386			rpipe->pipe_buffer.cnt -= size;
387
388			/*
389			 * If there is no more to read in the pipe, reset
390			 * its pointers to the beginning.  This improves
391			 * cache hit stats.
392			 */
393			if (rpipe->pipe_buffer.cnt == 0) {
394				rpipe->pipe_buffer.in = 0;
395				rpipe->pipe_buffer.out = 0;
396			}
397			nread += size;
398#ifndef PIPE_NODIRECT
399		/*
400		 * Direct copy, bypassing a kernel buffer.
401		 */
402		} else if ((size = rpipe->pipe_map.cnt) &&
403			   (rpipe->pipe_state & PIPE_DIRECTW)) {
404			caddr_t	va;
405			if (size > (u_int) uio->uio_resid)
406				size = (u_int) uio->uio_resid;
407
408			va = (caddr_t) rpipe->pipe_map.kva + rpipe->pipe_map.pos;
409			error = uiomove(va, size, uio);
410			if (error)
411				break;
412			nread += size;
413			rpipe->pipe_map.pos += size;
414			rpipe->pipe_map.cnt -= size;
415			if (rpipe->pipe_map.cnt == 0) {
416				rpipe->pipe_state &= ~PIPE_DIRECTW;
417				wakeup(rpipe);
418			}
419#endif
420		} else {
421			/*
422			 * detect EOF condition
423			 */
424			if (rpipe->pipe_state & PIPE_EOF) {
425				/* XXX error = ? */
426				break;
427			}
428
429			/*
430			 * If the "write-side" has been blocked, wake it up now.
431			 */
432			if (rpipe->pipe_state & PIPE_WANTW) {
433				rpipe->pipe_state &= ~PIPE_WANTW;
434				wakeup(rpipe);
435			}
436
437			/*
438			 * Break if some data was read.
439			 */
440			if (nread > 0)
441				break;
442
443			/*
444			 * Unlock the pipe buffer for our remaining processing.  We
445			 * will either break out with an error or we will sleep and
446			 * relock to loop.
447			 */
448			pipeunlock(rpipe);
449
450			/*
451			 * Handle non-blocking mode operation or
452			 * wait for more data.
453			 */
454			if (fp->f_flag & FNONBLOCK)
455				error = EAGAIN;
456			else {
457				rpipe->pipe_state |= PIPE_WANTR;
458				if ((error = tsleep(rpipe, PRIBIO|PCATCH, "piperd", 0)) == 0)
459					error = pipelock(rpipe, 1);
460			}
461			if (error)
462				goto unlocked_error;
463		}
464	}
465	pipeunlock(rpipe);
466
467	if (error == 0)
468		vfs_timestamp(&rpipe->pipe_atime);
469unlocked_error:
470	--rpipe->pipe_busy;
471
472	/*
473	 * PIPE_WANT processing only makes sense if pipe_busy is 0.
474	 */
475	if ((rpipe->pipe_busy == 0) && (rpipe->pipe_state & PIPE_WANT)) {
476		rpipe->pipe_state &= ~(PIPE_WANT|PIPE_WANTW);
477		wakeup(rpipe);
478	} else if (rpipe->pipe_buffer.cnt < MINPIPESIZE) {
479		/*
480		 * Handle write blocking hysteresis.
481		 */
482		if (rpipe->pipe_state & PIPE_WANTW) {
483			rpipe->pipe_state &= ~PIPE_WANTW;
484			wakeup(rpipe);
485		}
486	}
487
488	if ((rpipe->pipe_buffer.size - rpipe->pipe_buffer.cnt) >= PIPE_BUF)
489		pipeselwakeup(rpipe);
490
491	return error;
492}
493
494#ifndef PIPE_NODIRECT
495/*
496 * Map the sending processes' buffer into kernel space and wire it.
497 * This is similar to a physical write operation.
498 */
499static int
500pipe_build_write_buffer(wpipe, uio)
501	struct pipe *wpipe;
502	struct uio *uio;
503{
504	u_int size;
505	int i;
506	vm_offset_t addr, endaddr, paddr;
507
508	size = (u_int) uio->uio_iov->iov_len;
509	if (size > wpipe->pipe_buffer.size)
510		size = wpipe->pipe_buffer.size;
511
512	endaddr = round_page((vm_offset_t)uio->uio_iov->iov_base + size);
513	for(i = 0, addr = trunc_page((vm_offset_t)uio->uio_iov->iov_base);
514		addr < endaddr;
515		addr += PAGE_SIZE, i+=1) {
516
517		vm_page_t m;
518
519		if (vm_fault_quick((caddr_t)addr, VM_PROT_READ) < 0 ||
520		    (paddr = pmap_kextract(addr)) == 0) {
521			int j;
522			for(j=0;j<i;j++)
523				vm_page_unwire(wpipe->pipe_map.ms[j], 1);
524			return EFAULT;
525		}
526
527		m = PHYS_TO_VM_PAGE(paddr);
528		vm_page_wire(m);
529		wpipe->pipe_map.ms[i] = m;
530	}
531
532/*
533 * set up the control block
534 */
535	wpipe->pipe_map.npages = i;
536	wpipe->pipe_map.pos = ((vm_offset_t) uio->uio_iov->iov_base) & PAGE_MASK;
537	wpipe->pipe_map.cnt = size;
538
539/*
540 * and map the buffer
541 */
542	if (wpipe->pipe_map.kva == 0) {
543		/*
544		 * We need to allocate space for an extra page because the
545		 * address range might (will) span pages at times.
546		 */
547		wpipe->pipe_map.kva = kmem_alloc_pageable(kernel_map,
548			wpipe->pipe_buffer.size + PAGE_SIZE);
549		amountpipekva += wpipe->pipe_buffer.size + PAGE_SIZE;
550	}
551	pmap_qenter(wpipe->pipe_map.kva, wpipe->pipe_map.ms,
552		wpipe->pipe_map.npages);
553
554/*
555 * and update the uio data
556 */
557
558	uio->uio_iov->iov_len -= size;
559	uio->uio_iov->iov_base += size;
560	if (uio->uio_iov->iov_len == 0)
561		uio->uio_iov++;
562	uio->uio_resid -= size;
563	uio->uio_offset += size;
564	return 0;
565}
566
567/*
568 * unmap and unwire the process buffer
569 */
570static void
571pipe_destroy_write_buffer(wpipe)
572struct pipe *wpipe;
573{
574	int i;
575	if (wpipe->pipe_map.kva) {
576		pmap_qremove(wpipe->pipe_map.kva, wpipe->pipe_map.npages);
577
578		if (amountpipekva > MAXPIPEKVA) {
579			vm_offset_t kva = wpipe->pipe_map.kva;
580			wpipe->pipe_map.kva = 0;
581			kmem_free(kernel_map, kva,
582				wpipe->pipe_buffer.size + PAGE_SIZE);
583			amountpipekva -= wpipe->pipe_buffer.size + PAGE_SIZE;
584		}
585	}
586	for (i=0;i<wpipe->pipe_map.npages;i++)
587		vm_page_unwire(wpipe->pipe_map.ms[i], 1);
588}
589
590/*
591 * In the case of a signal, the writing process might go away.  This
592 * code copies the data into the circular buffer so that the source
593 * pages can be freed without loss of data.
594 */
595static void
596pipe_clone_write_buffer(wpipe)
597struct pipe *wpipe;
598{
599	int size;
600	int pos;
601
602	size = wpipe->pipe_map.cnt;
603	pos = wpipe->pipe_map.pos;
604	bcopy((caddr_t) wpipe->pipe_map.kva+pos,
605			(caddr_t) wpipe->pipe_buffer.buffer,
606			size);
607
608	wpipe->pipe_buffer.in = size;
609	wpipe->pipe_buffer.out = 0;
610	wpipe->pipe_buffer.cnt = size;
611	wpipe->pipe_state &= ~PIPE_DIRECTW;
612
613	pipe_destroy_write_buffer(wpipe);
614}
615
616/*
617 * This implements the pipe buffer write mechanism.  Note that only
618 * a direct write OR a normal pipe write can be pending at any given time.
619 * If there are any characters in the pipe buffer, the direct write will
620 * be deferred until the receiving process grabs all of the bytes from
621 * the pipe buffer.  Then the direct mapping write is set-up.
622 */
623static int
624pipe_direct_write(wpipe, uio)
625	struct pipe *wpipe;
626	struct uio *uio;
627{
628	int error;
629retry:
630	while (wpipe->pipe_state & PIPE_DIRECTW) {
631		if ( wpipe->pipe_state & PIPE_WANTR) {
632			wpipe->pipe_state &= ~PIPE_WANTR;
633			wakeup(wpipe);
634		}
635		wpipe->pipe_state |= PIPE_WANTW;
636		error = tsleep(wpipe,
637				PRIBIO|PCATCH, "pipdww", 0);
638		if (error)
639			goto error1;
640		if (wpipe->pipe_state & PIPE_EOF) {
641			error = EPIPE;
642			goto error1;
643		}
644	}
645	wpipe->pipe_map.cnt = 0;	/* transfer not ready yet */
646	if (wpipe->pipe_buffer.cnt > 0) {
647		if ( wpipe->pipe_state & PIPE_WANTR) {
648			wpipe->pipe_state &= ~PIPE_WANTR;
649			wakeup(wpipe);
650		}
651
652		wpipe->pipe_state |= PIPE_WANTW;
653		error = tsleep(wpipe,
654				PRIBIO|PCATCH, "pipdwc", 0);
655		if (error)
656			goto error1;
657		if (wpipe->pipe_state & PIPE_EOF) {
658			error = EPIPE;
659			goto error1;
660		}
661		goto retry;
662	}
663
664	wpipe->pipe_state |= PIPE_DIRECTW;
665
666	error = pipe_build_write_buffer(wpipe, uio);
667	if (error) {
668		wpipe->pipe_state &= ~PIPE_DIRECTW;
669		goto error1;
670	}
671
672	error = 0;
673	while (!error && (wpipe->pipe_state & PIPE_DIRECTW)) {
674		if (wpipe->pipe_state & PIPE_EOF) {
675			pipelock(wpipe, 0);
676			pipe_destroy_write_buffer(wpipe);
677			pipeunlock(wpipe);
678			pipeselwakeup(wpipe);
679			error = EPIPE;
680			goto error1;
681		}
682		if (wpipe->pipe_state & PIPE_WANTR) {
683			wpipe->pipe_state &= ~PIPE_WANTR;
684			wakeup(wpipe);
685		}
686		pipeselwakeup(wpipe);
687		error = tsleep(wpipe, PRIBIO|PCATCH, "pipdwt", 0);
688	}
689
690	pipelock(wpipe,0);
691	if (wpipe->pipe_state & PIPE_DIRECTW) {
692		/*
693		 * this bit of trickery substitutes a kernel buffer for
694		 * the process that might be going away.
695		 */
696		pipe_clone_write_buffer(wpipe);
697	} else {
698		pipe_destroy_write_buffer(wpipe);
699	}
700	pipeunlock(wpipe);
701	return error;
702
703error1:
704	wakeup(wpipe);
705	return error;
706}
707#endif
708
709static int
710pipe_write(fp, uio, cred, flags, p)
711	struct file *fp;
712	struct uio *uio;
713	struct ucred *cred;
714	struct proc *p;
715	int flags;
716{
717	int error = 0;
718	int orig_resid;
719
720	struct pipe *wpipe, *rpipe;
721
722	rpipe = (struct pipe *) fp->f_data;
723	wpipe = rpipe->pipe_peer;
724
725	/*
726	 * detect loss of pipe read side, issue SIGPIPE if lost.
727	 */
728	if ((wpipe == NULL) || (wpipe->pipe_state & PIPE_EOF)) {
729		return EPIPE;
730	}
731
732	/*
733	 * If it is advantageous to resize the pipe buffer, do
734	 * so.
735	 */
736	if ((uio->uio_resid > PIPE_SIZE) &&
737		(nbigpipe < LIMITBIGPIPES) &&
738		(wpipe->pipe_state & PIPE_DIRECTW) == 0 &&
739		(wpipe->pipe_buffer.size <= PIPE_SIZE) &&
740		(wpipe->pipe_buffer.cnt == 0)) {
741
742		if (wpipe->pipe_buffer.buffer) {
743			amountpipekva -= wpipe->pipe_buffer.size;
744			kmem_free(kernel_map,
745				(vm_offset_t)wpipe->pipe_buffer.buffer,
746				wpipe->pipe_buffer.size);
747		}
748
749#ifndef PIPE_NODIRECT
750		if (wpipe->pipe_map.kva) {
751			amountpipekva -= wpipe->pipe_buffer.size + PAGE_SIZE;
752			kmem_free(kernel_map,
753				wpipe->pipe_map.kva,
754				wpipe->pipe_buffer.size + PAGE_SIZE);
755		}
756#endif
757
758		wpipe->pipe_buffer.in = 0;
759		wpipe->pipe_buffer.out = 0;
760		wpipe->pipe_buffer.cnt = 0;
761		wpipe->pipe_buffer.size = BIG_PIPE_SIZE;
762		wpipe->pipe_buffer.buffer = NULL;
763		++nbigpipe;
764
765#ifndef PIPE_NODIRECT
766		wpipe->pipe_map.cnt = 0;
767		wpipe->pipe_map.kva = 0;
768		wpipe->pipe_map.pos = 0;
769		wpipe->pipe_map.npages = 0;
770#endif
771
772	}
773
774
775	if( wpipe->pipe_buffer.buffer == NULL) {
776		if ((error = pipelock(wpipe,1)) == 0) {
777			pipespace(wpipe);
778			pipeunlock(wpipe);
779		} else {
780			return error;
781		}
782	}
783
784	++wpipe->pipe_busy;
785	orig_resid = uio->uio_resid;
786	while (uio->uio_resid) {
787		int space;
788#ifndef PIPE_NODIRECT
789		/*
790		 * If the transfer is large, we can gain performance if
791		 * we do process-to-process copies directly.
792		 * If the write is non-blocking, we don't use the
793		 * direct write mechanism.
794		 *
795		 * The direct write mechanism will detect the reader going
796		 * away on us.
797		 */
798		if ((uio->uio_iov->iov_len >= PIPE_MINDIRECT) &&
799		    (fp->f_flag & FNONBLOCK) == 0 &&
800			(wpipe->pipe_map.kva || (amountpipekva < LIMITPIPEKVA)) &&
801			(uio->uio_iov->iov_len >= PIPE_MINDIRECT)) {
802			error = pipe_direct_write( wpipe, uio);
803			if (error) {
804				break;
805			}
806			continue;
807		}
808#endif
809
810		/*
811		 * Pipe buffered writes cannot be coincidental with
812		 * direct writes.  We wait until the currently executing
813		 * direct write is completed before we start filling the
814		 * pipe buffer.  We break out if a signal occurs or the
815		 * reader goes away.
816		 */
817	retrywrite:
818		while (wpipe->pipe_state & PIPE_DIRECTW) {
819			if (wpipe->pipe_state & PIPE_WANTR) {
820				wpipe->pipe_state &= ~PIPE_WANTR;
821				wakeup(wpipe);
822			}
823			error = tsleep(wpipe, PRIBIO|PCATCH, "pipbww", 0);
824			if (wpipe->pipe_state & PIPE_EOF)
825				break;
826			if (error)
827				break;
828		}
829		if (wpipe->pipe_state & PIPE_EOF) {
830			error = EPIPE;
831			break;
832		}
833
834		space = wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt;
835
836		/* Writes of size <= PIPE_BUF must be atomic. */
837		if ((space < uio->uio_resid) && (orig_resid <= PIPE_BUF))
838			space = 0;
839
840		if (space > 0 && (wpipe->pipe_buffer.cnt < PIPE_SIZE)) {
841			if ((error = pipelock(wpipe,1)) == 0) {
842				int size;	/* Transfer size */
843				int segsize;	/* first segment to transfer */
844				/*
845				 * It is possible for a direct write to
846				 * slip in on us... handle it here...
847				 */
848				if (wpipe->pipe_state & PIPE_DIRECTW) {
849					pipeunlock(wpipe);
850					goto retrywrite;
851				}
852				/*
853				 * If a process blocked in uiomove, our
854				 * value for space might be bad.
855				 *
856				 * XXX will we be ok if the reader has gone
857				 * away here?
858				 */
859				if (space > wpipe->pipe_buffer.size -
860				    wpipe->pipe_buffer.cnt) {
861					pipeunlock(wpipe);
862					goto retrywrite;
863				}
864
865				/*
866				 * Transfer size is minimum of uio transfer
867				 * and free space in pipe buffer.
868				 */
869				if (space > uio->uio_resid)
870					size = uio->uio_resid;
871				else
872					size = space;
873				/*
874				 * First segment to transfer is minimum of
875				 * transfer size and contiguous space in
876				 * pipe buffer.  If first segment to transfer
877				 * is less than the transfer size, we've got
878				 * a wraparound in the buffer.
879				 */
880				segsize = wpipe->pipe_buffer.size -
881					wpipe->pipe_buffer.in;
882				if (segsize > size)
883					segsize = size;
884
885				/* Transfer first segment */
886
887				error = uiomove(&wpipe->pipe_buffer.buffer[wpipe->pipe_buffer.in],
888						segsize, uio);
889
890				if (error == 0 && segsize < size) {
891					/*
892					 * Transfer remaining part now, to
893					 * support atomic writes.  Wraparound
894					 * happened.
895					 */
896					if (wpipe->pipe_buffer.in + segsize !=
897					    wpipe->pipe_buffer.size)
898						panic("Expected pipe buffer wraparound disappeared");
899
900					error = uiomove(&wpipe->pipe_buffer.buffer[0],
901							size - segsize, uio);
902				}
903				if (error == 0) {
904					wpipe->pipe_buffer.in += size;
905					if (wpipe->pipe_buffer.in >=
906					    wpipe->pipe_buffer.size) {
907						if (wpipe->pipe_buffer.in != size - segsize + wpipe->pipe_buffer.size)
908							panic("Expected wraparound bad");
909						wpipe->pipe_buffer.in = size - segsize;
910					}
911
912					wpipe->pipe_buffer.cnt += size;
913					if (wpipe->pipe_buffer.cnt > wpipe->pipe_buffer.size)
914						panic("Pipe buffer overflow");
915
916				}
917				pipeunlock(wpipe);
918			}
919			if (error)
920				break;
921
922		} else {
923			/*
924			 * If the "read-side" has been blocked, wake it up now.
925			 */
926			if (wpipe->pipe_state & PIPE_WANTR) {
927				wpipe->pipe_state &= ~PIPE_WANTR;
928				wakeup(wpipe);
929			}
930
931			/*
932			 * don't block on non-blocking I/O
933			 */
934			if (fp->f_flag & FNONBLOCK) {
935				error = EAGAIN;
936				break;
937			}
938
939			/*
940			 * We have no more space and have something to offer,
941			 * wake up select/poll.
942			 */
943			pipeselwakeup(wpipe);
944
945			wpipe->pipe_state |= PIPE_WANTW;
946			if ((error = tsleep(wpipe, (PRIBIO+1)|PCATCH, "pipewr", 0)) != 0) {
947				break;
948			}
949			/*
950			 * If read side wants to go away, we just issue a signal
951			 * to ourselves.
952			 */
953			if (wpipe->pipe_state & PIPE_EOF) {
954				error = EPIPE;
955				break;
956			}
957		}
958	}
959
960	--wpipe->pipe_busy;
961	if ((wpipe->pipe_busy == 0) &&
962		(wpipe->pipe_state & PIPE_WANT)) {
963		wpipe->pipe_state &= ~(PIPE_WANT|PIPE_WANTR);
964		wakeup(wpipe);
965	} else if (wpipe->pipe_buffer.cnt > 0) {
966		/*
967		 * If we have put any characters in the buffer, we wake up
968		 * the reader.
969		 */
970		if (wpipe->pipe_state & PIPE_WANTR) {
971			wpipe->pipe_state &= ~PIPE_WANTR;
972			wakeup(wpipe);
973		}
974	}
975
976	/*
977	 * Don't return EPIPE if I/O was successful
978	 */
979	if ((wpipe->pipe_buffer.cnt == 0) &&
980		(uio->uio_resid == 0) &&
981		(error == EPIPE))
982		error = 0;
983
984	if (error == 0)
985		vfs_timestamp(&wpipe->pipe_mtime);
986
987	/*
988	 * We have something to offer,
989	 * wake up select/poll.
990	 */
991	if (wpipe->pipe_buffer.cnt)
992		pipeselwakeup(wpipe);
993
994	return error;
995}
996
997/*
998 * we implement a very minimal set of ioctls for compatibility with sockets.
999 */
1000int
1001pipe_ioctl(fp, cmd, data, p)
1002	struct file *fp;
1003	u_long cmd;
1004	register caddr_t data;
1005	struct proc *p;
1006{
1007	register struct pipe *mpipe = (struct pipe *)fp->f_data;
1008
1009	switch (cmd) {
1010
1011	case FIONBIO:
1012		return (0);
1013
1014	case FIOASYNC:
1015		if (*(int *)data) {
1016			mpipe->pipe_state |= PIPE_ASYNC;
1017		} else {
1018			mpipe->pipe_state &= ~PIPE_ASYNC;
1019		}
1020		return (0);
1021
1022	case FIONREAD:
1023		if (mpipe->pipe_state & PIPE_DIRECTW)
1024			*(int *)data = mpipe->pipe_map.cnt;
1025		else
1026			*(int *)data = mpipe->pipe_buffer.cnt;
1027		return (0);
1028
1029	case FIOSETOWN:
1030		return (fsetown(*(int *)data, &mpipe->pipe_sigio));
1031
1032	case FIOGETOWN:
1033		*(int *)data = fgetown(mpipe->pipe_sigio);
1034		return (0);
1035
1036	/* This is deprecated, FIOSETOWN should be used instead. */
1037	case TIOCSPGRP:
1038		return (fsetown(-(*(int *)data), &mpipe->pipe_sigio));
1039
1040	/* This is deprecated, FIOGETOWN should be used instead. */
1041	case TIOCGPGRP:
1042		*(int *)data = -fgetown(mpipe->pipe_sigio);
1043		return (0);
1044
1045	}
1046	return (ENOTTY);
1047}
1048
1049int
1050pipe_poll(fp, events, cred, p)
1051	struct file *fp;
1052	int events;
1053	struct ucred *cred;
1054	struct proc *p;
1055{
1056	register struct pipe *rpipe = (struct pipe *)fp->f_data;
1057	struct pipe *wpipe;
1058	int revents = 0;
1059
1060	wpipe = rpipe->pipe_peer;
1061	if (events & (POLLIN | POLLRDNORM))
1062		if ((rpipe->pipe_state & PIPE_DIRECTW) ||
1063		    (rpipe->pipe_buffer.cnt > 0) ||
1064		    (rpipe->pipe_state & PIPE_EOF))
1065			revents |= events & (POLLIN | POLLRDNORM);
1066
1067	if (events & (POLLOUT | POLLWRNORM))
1068		if (wpipe == NULL || (wpipe->pipe_state & PIPE_EOF) ||
1069		    (((wpipe->pipe_state & PIPE_DIRECTW) == 0) &&
1070		     (wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt) >= PIPE_BUF))
1071			revents |= events & (POLLOUT | POLLWRNORM);
1072
1073	if ((rpipe->pipe_state & PIPE_EOF) ||
1074	    (wpipe == NULL) ||
1075	    (wpipe->pipe_state & PIPE_EOF))
1076		revents |= POLLHUP;
1077
1078	if (revents == 0) {
1079		if (events & (POLLIN | POLLRDNORM)) {
1080			selrecord(p, &rpipe->pipe_sel);
1081			rpipe->pipe_state |= PIPE_SEL;
1082		}
1083
1084		if (events & (POLLOUT | POLLWRNORM)) {
1085			selrecord(p, &wpipe->pipe_sel);
1086			wpipe->pipe_state |= PIPE_SEL;
1087		}
1088	}
1089
1090	return (revents);
1091}
1092
1093static int
1094pipe_stat(fp, ub, p)
1095	struct file *fp;
1096	struct stat *ub;
1097	struct proc *p;
1098{
1099	struct pipe *pipe = (struct pipe *)fp->f_data;
1100
1101	bzero((caddr_t)ub, sizeof (*ub));
1102	ub->st_mode = S_IFIFO;
1103	ub->st_blksize = pipe->pipe_buffer.size;
1104	ub->st_size = pipe->pipe_buffer.cnt;
1105	ub->st_blocks = (ub->st_size + ub->st_blksize - 1) / ub->st_blksize;
1106	ub->st_atimespec = pipe->pipe_atime;
1107	ub->st_mtimespec = pipe->pipe_mtime;
1108	ub->st_ctimespec = pipe->pipe_ctime;
1109	ub->st_uid = fp->f_cred->cr_uid;
1110	ub->st_gid = fp->f_cred->cr_gid;
1111	/*
1112	 * Left as 0: st_dev, st_ino, st_nlink, st_rdev, st_flags, st_gen.
1113	 * XXX (st_dev, st_ino) should be unique.
1114	 */
1115	return 0;
1116}
1117
1118/* ARGSUSED */
1119static int
1120pipe_close(fp, p)
1121	struct file *fp;
1122	struct proc *p;
1123{
1124	struct pipe *cpipe = (struct pipe *)fp->f_data;
1125
1126	fp->f_ops = &badfileops;
1127	fp->f_data = NULL;
1128	funsetown(cpipe->pipe_sigio);
1129	pipeclose(cpipe);
1130	return 0;
1131}
1132
1133/*
1134 * shutdown the pipe
1135 */
1136static void
1137pipeclose(cpipe)
1138	struct pipe *cpipe;
1139{
1140	struct pipe *ppipe;
1141	if (cpipe) {
1142
1143		pipeselwakeup(cpipe);
1144
1145		/*
1146		 * If the other side is blocked, wake it up saying that
1147		 * we want to close it down.
1148		 */
1149		while (cpipe->pipe_busy) {
1150			wakeup(cpipe);
1151			cpipe->pipe_state |= PIPE_WANT|PIPE_EOF;
1152			tsleep(cpipe, PRIBIO, "pipecl", 0);
1153		}
1154
1155		/*
1156		 * Disconnect from peer
1157		 */
1158		if ((ppipe = cpipe->pipe_peer) != NULL) {
1159			pipeselwakeup(ppipe);
1160
1161			ppipe->pipe_state |= PIPE_EOF;
1162			wakeup(ppipe);
1163			ppipe->pipe_peer = NULL;
1164		}
1165
1166		/*
1167		 * free resources
1168		 */
1169		if (cpipe->pipe_buffer.buffer) {
1170			if (cpipe->pipe_buffer.size > PIPE_SIZE)
1171				--nbigpipe;
1172			amountpipekva -= cpipe->pipe_buffer.size;
1173			kmem_free(kernel_map,
1174				(vm_offset_t)cpipe->pipe_buffer.buffer,
1175				cpipe->pipe_buffer.size);
1176		}
1177#ifndef PIPE_NODIRECT
1178		if (cpipe->pipe_map.kva) {
1179			amountpipekva -= cpipe->pipe_buffer.size + PAGE_SIZE;
1180			kmem_free(kernel_map,
1181				cpipe->pipe_map.kva,
1182				cpipe->pipe_buffer.size + PAGE_SIZE);
1183		}
1184#endif
1185		zfree(pipe_zone, cpipe);
1186	}
1187}
1188
1189static int
1190filt_pipeattach(struct knote *kn)
1191{
1192	struct pipe *rpipe = (struct pipe *)kn->kn_fp->f_data;
1193
1194	SLIST_INSERT_HEAD(&rpipe->pipe_sel.si_note, kn, kn_selnext);
1195	return (0);
1196}
1197
1198static void
1199filt_pipedetach(struct knote *kn)
1200{
1201	struct pipe *rpipe = (struct pipe *)kn->kn_fp->f_data;
1202
1203	SLIST_REMOVE(&rpipe->pipe_sel.si_note, kn, knote, kn_selnext);
1204}
1205
1206/*ARGSUSED*/
1207static int
1208filt_piperead(struct knote *kn, long hint)
1209{
1210	struct pipe *rpipe = (struct pipe *)kn->kn_fp->f_data;
1211	struct pipe *wpipe = rpipe->pipe_peer;
1212
1213	kn->kn_data = rpipe->pipe_buffer.cnt;
1214	if ((kn->kn_data == 0) && (rpipe->pipe_state & PIPE_DIRECTW))
1215		kn->kn_data = rpipe->pipe_map.cnt;
1216
1217	if ((rpipe->pipe_state & PIPE_EOF) ||
1218	    (wpipe == NULL) || (wpipe->pipe_state & PIPE_EOF)) {
1219		kn->kn_flags |= EV_EOF;
1220		return (1);
1221	}
1222	return (kn->kn_data > 0);
1223}
1224
1225/*ARGSUSED*/
1226static int
1227filt_pipewrite(struct knote *kn, long hint)
1228{
1229	struct pipe *rpipe = (struct pipe *)kn->kn_fp->f_data;
1230	struct pipe *wpipe = rpipe->pipe_peer;
1231
1232	if ((wpipe == NULL) || (wpipe->pipe_state & PIPE_EOF)) {
1233		kn->kn_data = 0;
1234		kn->kn_flags |= EV_EOF;
1235		return (1);
1236	}
1237	kn->kn_data = wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt;
1238	if (wpipe->pipe_state & PIPE_DIRECTW)
1239		kn->kn_data = 0;
1240
1241	return (kn->kn_data >= PIPE_BUF);
1242}
1243