sys_pipe.c revision 256281
1/*-
2 * Copyright (c) 1996 John S. Dyson
3 * Copyright (c) 2012 Giovanni Trematerra
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice immediately at the beginning of the file, without modification,
11 *    this list of conditions, and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 *    notice, this list of conditions and the following disclaimer in the
14 *    documentation and/or other materials provided with the distribution.
15 * 3. Absolutely no warranty of function or purpose is made by the author
16 *    John S. Dyson.
17 * 4. Modifications may be freely made to this file if the above conditions
18 *    are met.
19 */
20
21/*
22 * This file contains a high-performance replacement for the socket-based
23 * pipes scheme originally used in FreeBSD/4.4Lite.  It does not support
24 * all features of sockets, but does do everything that pipes normally
25 * do.
26 */
27
28/*
29 * This code has two modes of operation, a small write mode and a large
30 * write mode.  The small write mode acts like conventional pipes with
31 * a kernel buffer.  If the buffer is less than PIPE_MINDIRECT, then the
32 * "normal" pipe buffering is done.  If the buffer is between PIPE_MINDIRECT
33 * and PIPE_SIZE in size, the sending process pins the underlying pages in
34 * memory, and the receiving process copies directly from these pinned pages
35 * in the sending process.
36 *
37 * If the sending process receives a signal, it is possible that it will
38 * go away, and certainly its address space can change, because control
39 * is returned back to the user-mode side.  In that case, the pipe code
40 * arranges to copy the buffer supplied by the user process, to a pageable
41 * kernel buffer, and the receiving process will grab the data from the
42 * pageable kernel buffer.  Since signals don't happen all that often,
43 * the copy operation is normally eliminated.
44 *
45 * The constant PIPE_MINDIRECT is chosen to make sure that buffering will
46 * happen for small transfers so that the system will not spend all of
47 * its time context switching.
48 *
49 * In order to limit the resource use of pipes, two sysctls exist:
50 *
51 * kern.ipc.maxpipekva - This is a hard limit on the amount of pageable
52 * address space available to us in pipe_map. This value is normally
53 * autotuned, but may also be loader tuned.
54 *
55 * kern.ipc.pipekva - This read-only sysctl tracks the current amount of
56 * memory in use by pipes.
57 *
58 * Based on how large pipekva is relative to maxpipekva, the following
59 * will happen:
60 *
61 * 0% - 50%:
62 *     New pipes are given 16K of memory backing, pipes may dynamically
63 *     grow to as large as 64K where needed.
64 * 50% - 75%:
65 *     New pipes are given 4K (or PAGE_SIZE) of memory backing,
66 *     existing pipes may NOT grow.
67 * 75% - 100%:
68 *     New pipes are given 4K (or PAGE_SIZE) of memory backing,
69 *     existing pipes will be shrunk down to 4K whenever possible.
70 *
71 * Resizing may be disabled by setting kern.ipc.piperesizeallowed=0.  If
72 * that is set,  the only resize that will occur is the 0 -> SMALL_PIPE_SIZE
73 * resize which MUST occur for reverse-direction pipes when they are
74 * first used.
75 *
76 * Additional information about the current state of pipes may be obtained
77 * from kern.ipc.pipes, kern.ipc.pipefragretry, kern.ipc.pipeallocfail,
78 * and kern.ipc.piperesizefail.
79 *
80 * Locking rules:  There are two locks present here:  A mutex, used via
81 * PIPE_LOCK, and a flag, used via pipelock().  All locking is done via
82 * the flag, as mutexes can not persist over uiomove.  The mutex
83 * exists only to guard access to the flag, and is not in itself a
84 * locking mechanism.  Also note that there is only a single mutex for
85 * both directions of a pipe.
86 *
87 * As pipelock() may have to sleep before it can acquire the flag, it
88 * is important to reread all data after a call to pipelock(); everything
89 * in the structure may have changed.
90 */
91
92#include <sys/cdefs.h>
93__FBSDID("$FreeBSD: stable/10/sys/kern/sys_pipe.c 255426 2013-09-09 18:11:59Z jhb $");
94
95#include <sys/param.h>
96#include <sys/systm.h>
97#include <sys/conf.h>
98#include <sys/fcntl.h>
99#include <sys/file.h>
100#include <sys/filedesc.h>
101#include <sys/filio.h>
102#include <sys/kernel.h>
103#include <sys/lock.h>
104#include <sys/mutex.h>
105#include <sys/ttycom.h>
106#include <sys/stat.h>
107#include <sys/malloc.h>
108#include <sys/poll.h>
109#include <sys/selinfo.h>
110#include <sys/signalvar.h>
111#include <sys/syscallsubr.h>
112#include <sys/sysctl.h>
113#include <sys/sysproto.h>
114#include <sys/pipe.h>
115#include <sys/proc.h>
116#include <sys/vnode.h>
117#include <sys/uio.h>
118#include <sys/event.h>
119
120#include <security/mac/mac_framework.h>
121
122#include <vm/vm.h>
123#include <vm/vm_param.h>
124#include <vm/vm_object.h>
125#include <vm/vm_kern.h>
126#include <vm/vm_extern.h>
127#include <vm/pmap.h>
128#include <vm/vm_map.h>
129#include <vm/vm_page.h>
130#include <vm/uma.h>
131
132/*
133 * Use this define if you want to disable *fancy* VM things.  Expect an
134 * approx 30% decrease in transfer rate.  This could be useful for
135 * NetBSD or OpenBSD.
136 */
137/* #define PIPE_NODIRECT */
138
139#define PIPE_PEER(pipe)	\
140	(((pipe)->pipe_state & PIPE_NAMED) ? (pipe) : ((pipe)->pipe_peer))
141
142/*
143 * interfaces to the outside world
144 */
145static fo_rdwr_t	pipe_read;
146static fo_rdwr_t	pipe_write;
147static fo_truncate_t	pipe_truncate;
148static fo_ioctl_t	pipe_ioctl;
149static fo_poll_t	pipe_poll;
150static fo_kqfilter_t	pipe_kqfilter;
151static fo_stat_t	pipe_stat;
152static fo_close_t	pipe_close;
153static fo_chmod_t	pipe_chmod;
154static fo_chown_t	pipe_chown;
155
156struct fileops pipeops = {
157	.fo_read = pipe_read,
158	.fo_write = pipe_write,
159	.fo_truncate = pipe_truncate,
160	.fo_ioctl = pipe_ioctl,
161	.fo_poll = pipe_poll,
162	.fo_kqfilter = pipe_kqfilter,
163	.fo_stat = pipe_stat,
164	.fo_close = pipe_close,
165	.fo_chmod = pipe_chmod,
166	.fo_chown = pipe_chown,
167	.fo_sendfile = invfo_sendfile,
168	.fo_flags = DFLAG_PASSABLE
169};
170
171static void	filt_pipedetach(struct knote *kn);
172static void	filt_pipedetach_notsup(struct knote *kn);
173static int	filt_pipenotsup(struct knote *kn, long hint);
174static int	filt_piperead(struct knote *kn, long hint);
175static int	filt_pipewrite(struct knote *kn, long hint);
176
177static struct filterops pipe_nfiltops = {
178	.f_isfd = 1,
179	.f_detach = filt_pipedetach_notsup,
180	.f_event = filt_pipenotsup
181};
182static struct filterops pipe_rfiltops = {
183	.f_isfd = 1,
184	.f_detach = filt_pipedetach,
185	.f_event = filt_piperead
186};
187static struct filterops pipe_wfiltops = {
188	.f_isfd = 1,
189	.f_detach = filt_pipedetach,
190	.f_event = filt_pipewrite
191};
192
193/*
194 * Default pipe buffer size(s), this can be kind-of large now because pipe
195 * space is pageable.  The pipe code will try to maintain locality of
196 * reference for performance reasons, so small amounts of outstanding I/O
197 * will not wipe the cache.
198 */
199#define MINPIPESIZE (PIPE_SIZE/3)
200#define MAXPIPESIZE (2*PIPE_SIZE/3)
201
202static long amountpipekva;
203static int pipefragretry;
204static int pipeallocfail;
205static int piperesizefail;
206static int piperesizeallowed = 1;
207
208SYSCTL_LONG(_kern_ipc, OID_AUTO, maxpipekva, CTLFLAG_RDTUN,
209	   &maxpipekva, 0, "Pipe KVA limit");
210SYSCTL_LONG(_kern_ipc, OID_AUTO, pipekva, CTLFLAG_RD,
211	   &amountpipekva, 0, "Pipe KVA usage");
212SYSCTL_INT(_kern_ipc, OID_AUTO, pipefragretry, CTLFLAG_RD,
213	  &pipefragretry, 0, "Pipe allocation retries due to fragmentation");
214SYSCTL_INT(_kern_ipc, OID_AUTO, pipeallocfail, CTLFLAG_RD,
215	  &pipeallocfail, 0, "Pipe allocation failures");
216SYSCTL_INT(_kern_ipc, OID_AUTO, piperesizefail, CTLFLAG_RD,
217	  &piperesizefail, 0, "Pipe resize failures");
218SYSCTL_INT(_kern_ipc, OID_AUTO, piperesizeallowed, CTLFLAG_RW,
219	  &piperesizeallowed, 0, "Pipe resizing allowed");
220
221static void pipeinit(void *dummy __unused);
222static void pipeclose(struct pipe *cpipe);
223static void pipe_free_kmem(struct pipe *cpipe);
224static int pipe_create(struct pipe *pipe, int backing);
225static int pipe_paircreate(struct thread *td, struct pipepair **p_pp);
226static __inline int pipelock(struct pipe *cpipe, int catch);
227static __inline void pipeunlock(struct pipe *cpipe);
228#ifndef PIPE_NODIRECT
229static int pipe_build_write_buffer(struct pipe *wpipe, struct uio *uio);
230static void pipe_destroy_write_buffer(struct pipe *wpipe);
231static int pipe_direct_write(struct pipe *wpipe, struct uio *uio);
232static void pipe_clone_write_buffer(struct pipe *wpipe);
233#endif
234static int pipespace(struct pipe *cpipe, int size);
235static int pipespace_new(struct pipe *cpipe, int size);
236
237static int	pipe_zone_ctor(void *mem, int size, void *arg, int flags);
238static int	pipe_zone_init(void *mem, int size, int flags);
239static void	pipe_zone_fini(void *mem, int size);
240
241static uma_zone_t pipe_zone;
242static struct unrhdr *pipeino_unr;
243static dev_t pipedev_ino;
244
245SYSINIT(vfs, SI_SUB_VFS, SI_ORDER_ANY, pipeinit, NULL);
246
247static void
248pipeinit(void *dummy __unused)
249{
250
251	pipe_zone = uma_zcreate("pipe", sizeof(struct pipepair),
252	    pipe_zone_ctor, NULL, pipe_zone_init, pipe_zone_fini,
253	    UMA_ALIGN_PTR, 0);
254	KASSERT(pipe_zone != NULL, ("pipe_zone not initialized"));
255	pipeino_unr = new_unrhdr(1, INT32_MAX, NULL);
256	KASSERT(pipeino_unr != NULL, ("pipe fake inodes not initialized"));
257	pipedev_ino = devfs_alloc_cdp_inode();
258	KASSERT(pipedev_ino > 0, ("pipe dev inode not initialized"));
259}
260
261static int
262pipe_zone_ctor(void *mem, int size, void *arg, int flags)
263{
264	struct pipepair *pp;
265	struct pipe *rpipe, *wpipe;
266
267	KASSERT(size == sizeof(*pp), ("pipe_zone_ctor: wrong size"));
268
269	pp = (struct pipepair *)mem;
270
271	/*
272	 * We zero both pipe endpoints to make sure all the kmem pointers
273	 * are NULL, flag fields are zero'd, etc.  We timestamp both
274	 * endpoints with the same time.
275	 */
276	rpipe = &pp->pp_rpipe;
277	bzero(rpipe, sizeof(*rpipe));
278	vfs_timestamp(&rpipe->pipe_ctime);
279	rpipe->pipe_atime = rpipe->pipe_mtime = rpipe->pipe_ctime;
280
281	wpipe = &pp->pp_wpipe;
282	bzero(wpipe, sizeof(*wpipe));
283	wpipe->pipe_ctime = rpipe->pipe_ctime;
284	wpipe->pipe_atime = wpipe->pipe_mtime = rpipe->pipe_ctime;
285
286	rpipe->pipe_peer = wpipe;
287	rpipe->pipe_pair = pp;
288	wpipe->pipe_peer = rpipe;
289	wpipe->pipe_pair = pp;
290
291	/*
292	 * Mark both endpoints as present; they will later get free'd
293	 * one at a time.  When both are free'd, then the whole pair
294	 * is released.
295	 */
296	rpipe->pipe_present = PIPE_ACTIVE;
297	wpipe->pipe_present = PIPE_ACTIVE;
298
299	/*
300	 * Eventually, the MAC Framework may initialize the label
301	 * in ctor or init, but for now we do it elswhere to avoid
302	 * blocking in ctor or init.
303	 */
304	pp->pp_label = NULL;
305
306	return (0);
307}
308
309static int
310pipe_zone_init(void *mem, int size, int flags)
311{
312	struct pipepair *pp;
313
314	KASSERT(size == sizeof(*pp), ("pipe_zone_init: wrong size"));
315
316	pp = (struct pipepair *)mem;
317
318	mtx_init(&pp->pp_mtx, "pipe mutex", NULL, MTX_DEF | MTX_RECURSE);
319	return (0);
320}
321
322static void
323pipe_zone_fini(void *mem, int size)
324{
325	struct pipepair *pp;
326
327	KASSERT(size == sizeof(*pp), ("pipe_zone_fini: wrong size"));
328
329	pp = (struct pipepair *)mem;
330
331	mtx_destroy(&pp->pp_mtx);
332}
333
334static int
335pipe_paircreate(struct thread *td, struct pipepair **p_pp)
336{
337	struct pipepair *pp;
338	struct pipe *rpipe, *wpipe;
339	int error;
340
341	*p_pp = pp = uma_zalloc(pipe_zone, M_WAITOK);
342#ifdef MAC
343	/*
344	 * The MAC label is shared between the connected endpoints.  As a
345	 * result mac_pipe_init() and mac_pipe_create() are called once
346	 * for the pair, and not on the endpoints.
347	 */
348	mac_pipe_init(pp);
349	mac_pipe_create(td->td_ucred, pp);
350#endif
351	rpipe = &pp->pp_rpipe;
352	wpipe = &pp->pp_wpipe;
353
354	knlist_init_mtx(&rpipe->pipe_sel.si_note, PIPE_MTX(rpipe));
355	knlist_init_mtx(&wpipe->pipe_sel.si_note, PIPE_MTX(wpipe));
356
357	/* Only the forward direction pipe is backed by default */
358	if ((error = pipe_create(rpipe, 1)) != 0 ||
359	    (error = pipe_create(wpipe, 0)) != 0) {
360		pipeclose(rpipe);
361		pipeclose(wpipe);
362		return (error);
363	}
364
365	rpipe->pipe_state |= PIPE_DIRECTOK;
366	wpipe->pipe_state |= PIPE_DIRECTOK;
367	return (0);
368}
369
370int
371pipe_named_ctor(struct pipe **ppipe, struct thread *td)
372{
373	struct pipepair *pp;
374	int error;
375
376	error = pipe_paircreate(td, &pp);
377	if (error != 0)
378		return (error);
379	pp->pp_rpipe.pipe_state |= PIPE_NAMED;
380	*ppipe = &pp->pp_rpipe;
381	return (0);
382}
383
384void
385pipe_dtor(struct pipe *dpipe)
386{
387	ino_t ino;
388
389	ino = dpipe->pipe_ino;
390	funsetown(&dpipe->pipe_sigio);
391	pipeclose(dpipe);
392	if (dpipe->pipe_state & PIPE_NAMED) {
393		dpipe = dpipe->pipe_peer;
394		funsetown(&dpipe->pipe_sigio);
395		pipeclose(dpipe);
396	}
397	if (ino != 0 && ino != (ino_t)-1)
398		free_unr(pipeino_unr, ino);
399}
400
401/*
402 * The pipe system call for the DTYPE_PIPE type of pipes.  If we fail, let
403 * the zone pick up the pieces via pipeclose().
404 */
405int
406kern_pipe(struct thread *td, int fildes[2])
407{
408
409	return (kern_pipe2(td, fildes, 0));
410}
411
412int
413kern_pipe2(struct thread *td, int fildes[2], int flags)
414{
415	struct filedesc *fdp;
416	struct file *rf, *wf;
417	struct pipe *rpipe, *wpipe;
418	struct pipepair *pp;
419	int fd, fflags, error;
420
421	fdp = td->td_proc->p_fd;
422	error = pipe_paircreate(td, &pp);
423	if (error != 0)
424		return (error);
425	rpipe = &pp->pp_rpipe;
426	wpipe = &pp->pp_wpipe;
427	error = falloc(td, &rf, &fd, flags);
428	if (error) {
429		pipeclose(rpipe);
430		pipeclose(wpipe);
431		return (error);
432	}
433	/* An extra reference on `rf' has been held for us by falloc(). */
434	fildes[0] = fd;
435
436	fflags = FREAD | FWRITE;
437	if ((flags & O_NONBLOCK) != 0)
438		fflags |= FNONBLOCK;
439
440	/*
441	 * Warning: once we've gotten past allocation of the fd for the
442	 * read-side, we can only drop the read side via fdrop() in order
443	 * to avoid races against processes which manage to dup() the read
444	 * side while we are blocked trying to allocate the write side.
445	 */
446	finit(rf, fflags, DTYPE_PIPE, rpipe, &pipeops);
447	error = falloc(td, &wf, &fd, flags);
448	if (error) {
449		fdclose(fdp, rf, fildes[0], td);
450		fdrop(rf, td);
451		/* rpipe has been closed by fdrop(). */
452		pipeclose(wpipe);
453		return (error);
454	}
455	/* An extra reference on `wf' has been held for us by falloc(). */
456	finit(wf, fflags, DTYPE_PIPE, wpipe, &pipeops);
457	fdrop(wf, td);
458	fildes[1] = fd;
459	fdrop(rf, td);
460
461	return (0);
462}
463
464/* ARGSUSED */
465int
466sys_pipe(struct thread *td, struct pipe_args *uap)
467{
468	int error;
469	int fildes[2];
470
471	error = kern_pipe(td, fildes);
472	if (error)
473		return (error);
474
475	td->td_retval[0] = fildes[0];
476	td->td_retval[1] = fildes[1];
477
478	return (0);
479}
480
481int
482sys_pipe2(struct thread *td, struct pipe2_args *uap)
483{
484	int error, fildes[2];
485
486	if (uap->flags & ~(O_CLOEXEC | O_NONBLOCK))
487		return (EINVAL);
488	error = kern_pipe2(td, fildes, uap->flags);
489	if (error)
490		return (error);
491	error = copyout(fildes, uap->fildes, 2 * sizeof(int));
492	if (error) {
493		(void)kern_close(td, fildes[0]);
494		(void)kern_close(td, fildes[1]);
495	}
496	return (error);
497}
498
499/*
500 * Allocate kva for pipe circular buffer, the space is pageable
501 * This routine will 'realloc' the size of a pipe safely, if it fails
502 * it will retain the old buffer.
503 * If it fails it will return ENOMEM.
504 */
505static int
506pipespace_new(cpipe, size)
507	struct pipe *cpipe;
508	int size;
509{
510	caddr_t buffer;
511	int error, cnt, firstseg;
512	static int curfail = 0;
513	static struct timeval lastfail;
514
515	KASSERT(!mtx_owned(PIPE_MTX(cpipe)), ("pipespace: pipe mutex locked"));
516	KASSERT(!(cpipe->pipe_state & PIPE_DIRECTW),
517		("pipespace: resize of direct writes not allowed"));
518retry:
519	cnt = cpipe->pipe_buffer.cnt;
520	if (cnt > size)
521		size = cnt;
522
523	size = round_page(size);
524	buffer = (caddr_t) vm_map_min(pipe_map);
525
526	error = vm_map_find(pipe_map, NULL, 0,
527		(vm_offset_t *) &buffer, size, 0, VMFS_ANY_SPACE,
528		VM_PROT_ALL, VM_PROT_ALL, 0);
529	if (error != KERN_SUCCESS) {
530		if ((cpipe->pipe_buffer.buffer == NULL) &&
531			(size > SMALL_PIPE_SIZE)) {
532			size = SMALL_PIPE_SIZE;
533			pipefragretry++;
534			goto retry;
535		}
536		if (cpipe->pipe_buffer.buffer == NULL) {
537			pipeallocfail++;
538			if (ppsratecheck(&lastfail, &curfail, 1))
539				printf("kern.ipc.maxpipekva exceeded; see tuning(7)\n");
540		} else {
541			piperesizefail++;
542		}
543		return (ENOMEM);
544	}
545
546	/* copy data, then free old resources if we're resizing */
547	if (cnt > 0) {
548		if (cpipe->pipe_buffer.in <= cpipe->pipe_buffer.out) {
549			firstseg = cpipe->pipe_buffer.size - cpipe->pipe_buffer.out;
550			bcopy(&cpipe->pipe_buffer.buffer[cpipe->pipe_buffer.out],
551				buffer, firstseg);
552			if ((cnt - firstseg) > 0)
553				bcopy(cpipe->pipe_buffer.buffer, &buffer[firstseg],
554					cpipe->pipe_buffer.in);
555		} else {
556			bcopy(&cpipe->pipe_buffer.buffer[cpipe->pipe_buffer.out],
557				buffer, cnt);
558		}
559	}
560	pipe_free_kmem(cpipe);
561	cpipe->pipe_buffer.buffer = buffer;
562	cpipe->pipe_buffer.size = size;
563	cpipe->pipe_buffer.in = cnt;
564	cpipe->pipe_buffer.out = 0;
565	cpipe->pipe_buffer.cnt = cnt;
566	atomic_add_long(&amountpipekva, cpipe->pipe_buffer.size);
567	return (0);
568}
569
570/*
571 * Wrapper for pipespace_new() that performs locking assertions.
572 */
573static int
574pipespace(cpipe, size)
575	struct pipe *cpipe;
576	int size;
577{
578
579	KASSERT(cpipe->pipe_state & PIPE_LOCKFL,
580		("Unlocked pipe passed to pipespace"));
581	return (pipespace_new(cpipe, size));
582}
583
584/*
585 * lock a pipe for I/O, blocking other access
586 */
587static __inline int
588pipelock(cpipe, catch)
589	struct pipe *cpipe;
590	int catch;
591{
592	int error;
593
594	PIPE_LOCK_ASSERT(cpipe, MA_OWNED);
595	while (cpipe->pipe_state & PIPE_LOCKFL) {
596		cpipe->pipe_state |= PIPE_LWANT;
597		error = msleep(cpipe, PIPE_MTX(cpipe),
598		    catch ? (PRIBIO | PCATCH) : PRIBIO,
599		    "pipelk", 0);
600		if (error != 0)
601			return (error);
602	}
603	cpipe->pipe_state |= PIPE_LOCKFL;
604	return (0);
605}
606
607/*
608 * unlock a pipe I/O lock
609 */
610static __inline void
611pipeunlock(cpipe)
612	struct pipe *cpipe;
613{
614
615	PIPE_LOCK_ASSERT(cpipe, MA_OWNED);
616	KASSERT(cpipe->pipe_state & PIPE_LOCKFL,
617		("Unlocked pipe passed to pipeunlock"));
618	cpipe->pipe_state &= ~PIPE_LOCKFL;
619	if (cpipe->pipe_state & PIPE_LWANT) {
620		cpipe->pipe_state &= ~PIPE_LWANT;
621		wakeup(cpipe);
622	}
623}
624
625void
626pipeselwakeup(cpipe)
627	struct pipe *cpipe;
628{
629
630	PIPE_LOCK_ASSERT(cpipe, MA_OWNED);
631	if (cpipe->pipe_state & PIPE_SEL) {
632		selwakeuppri(&cpipe->pipe_sel, PSOCK);
633		if (!SEL_WAITING(&cpipe->pipe_sel))
634			cpipe->pipe_state &= ~PIPE_SEL;
635	}
636	if ((cpipe->pipe_state & PIPE_ASYNC) && cpipe->pipe_sigio)
637		pgsigio(&cpipe->pipe_sigio, SIGIO, 0);
638	KNOTE_LOCKED(&cpipe->pipe_sel.si_note, 0);
639}
640
641/*
642 * Initialize and allocate VM and memory for pipe.  The structure
643 * will start out zero'd from the ctor, so we just manage the kmem.
644 */
645static int
646pipe_create(pipe, backing)
647	struct pipe *pipe;
648	int backing;
649{
650	int error;
651
652	if (backing) {
653		if (amountpipekva > maxpipekva / 2)
654			error = pipespace_new(pipe, SMALL_PIPE_SIZE);
655		else
656			error = pipespace_new(pipe, PIPE_SIZE);
657	} else {
658		/* If we're not backing this pipe, no need to do anything. */
659		error = 0;
660	}
661	pipe->pipe_ino = -1;
662	return (error);
663}
664
665/* ARGSUSED */
666static int
667pipe_read(fp, uio, active_cred, flags, td)
668	struct file *fp;
669	struct uio *uio;
670	struct ucred *active_cred;
671	struct thread *td;
672	int flags;
673{
674	struct pipe *rpipe;
675	int error;
676	int nread = 0;
677	int size;
678
679	rpipe = fp->f_data;
680	PIPE_LOCK(rpipe);
681	++rpipe->pipe_busy;
682	error = pipelock(rpipe, 1);
683	if (error)
684		goto unlocked_error;
685
686#ifdef MAC
687	error = mac_pipe_check_read(active_cred, rpipe->pipe_pair);
688	if (error)
689		goto locked_error;
690#endif
691	if (amountpipekva > (3 * maxpipekva) / 4) {
692		if (!(rpipe->pipe_state & PIPE_DIRECTW) &&
693			(rpipe->pipe_buffer.size > SMALL_PIPE_SIZE) &&
694			(rpipe->pipe_buffer.cnt <= SMALL_PIPE_SIZE) &&
695			(piperesizeallowed == 1)) {
696			PIPE_UNLOCK(rpipe);
697			pipespace(rpipe, SMALL_PIPE_SIZE);
698			PIPE_LOCK(rpipe);
699		}
700	}
701
702	while (uio->uio_resid) {
703		/*
704		 * normal pipe buffer receive
705		 */
706		if (rpipe->pipe_buffer.cnt > 0) {
707			size = rpipe->pipe_buffer.size - rpipe->pipe_buffer.out;
708			if (size > rpipe->pipe_buffer.cnt)
709				size = rpipe->pipe_buffer.cnt;
710			if (size > uio->uio_resid)
711				size = uio->uio_resid;
712
713			PIPE_UNLOCK(rpipe);
714			error = uiomove(
715			    &rpipe->pipe_buffer.buffer[rpipe->pipe_buffer.out],
716			    size, uio);
717			PIPE_LOCK(rpipe);
718			if (error)
719				break;
720
721			rpipe->pipe_buffer.out += size;
722			if (rpipe->pipe_buffer.out >= rpipe->pipe_buffer.size)
723				rpipe->pipe_buffer.out = 0;
724
725			rpipe->pipe_buffer.cnt -= size;
726
727			/*
728			 * If there is no more to read in the pipe, reset
729			 * its pointers to the beginning.  This improves
730			 * cache hit stats.
731			 */
732			if (rpipe->pipe_buffer.cnt == 0) {
733				rpipe->pipe_buffer.in = 0;
734				rpipe->pipe_buffer.out = 0;
735			}
736			nread += size;
737#ifndef PIPE_NODIRECT
738		/*
739		 * Direct copy, bypassing a kernel buffer.
740		 */
741		} else if ((size = rpipe->pipe_map.cnt) &&
742			   (rpipe->pipe_state & PIPE_DIRECTW)) {
743			if (size > uio->uio_resid)
744				size = (u_int) uio->uio_resid;
745
746			PIPE_UNLOCK(rpipe);
747			error = uiomove_fromphys(rpipe->pipe_map.ms,
748			    rpipe->pipe_map.pos, size, uio);
749			PIPE_LOCK(rpipe);
750			if (error)
751				break;
752			nread += size;
753			rpipe->pipe_map.pos += size;
754			rpipe->pipe_map.cnt -= size;
755			if (rpipe->pipe_map.cnt == 0) {
756				rpipe->pipe_state &= ~(PIPE_DIRECTW|PIPE_WANTW);
757				wakeup(rpipe);
758			}
759#endif
760		} else {
761			/*
762			 * detect EOF condition
763			 * read returns 0 on EOF, no need to set error
764			 */
765			if (rpipe->pipe_state & PIPE_EOF)
766				break;
767
768			/*
769			 * If the "write-side" has been blocked, wake it up now.
770			 */
771			if (rpipe->pipe_state & PIPE_WANTW) {
772				rpipe->pipe_state &= ~PIPE_WANTW;
773				wakeup(rpipe);
774			}
775
776			/*
777			 * Break if some data was read.
778			 */
779			if (nread > 0)
780				break;
781
782			/*
783			 * Unlock the pipe buffer for our remaining processing.
784			 * We will either break out with an error or we will
785			 * sleep and relock to loop.
786			 */
787			pipeunlock(rpipe);
788
789			/*
790			 * Handle non-blocking mode operation or
791			 * wait for more data.
792			 */
793			if (fp->f_flag & FNONBLOCK) {
794				error = EAGAIN;
795			} else {
796				rpipe->pipe_state |= PIPE_WANTR;
797				if ((error = msleep(rpipe, PIPE_MTX(rpipe),
798				    PRIBIO | PCATCH,
799				    "piperd", 0)) == 0)
800					error = pipelock(rpipe, 1);
801			}
802			if (error)
803				goto unlocked_error;
804		}
805	}
806#ifdef MAC
807locked_error:
808#endif
809	pipeunlock(rpipe);
810
811	/* XXX: should probably do this before getting any locks. */
812	if (error == 0)
813		vfs_timestamp(&rpipe->pipe_atime);
814unlocked_error:
815	--rpipe->pipe_busy;
816
817	/*
818	 * PIPE_WANT processing only makes sense if pipe_busy is 0.
819	 */
820	if ((rpipe->pipe_busy == 0) && (rpipe->pipe_state & PIPE_WANT)) {
821		rpipe->pipe_state &= ~(PIPE_WANT|PIPE_WANTW);
822		wakeup(rpipe);
823	} else if (rpipe->pipe_buffer.cnt < MINPIPESIZE) {
824		/*
825		 * Handle write blocking hysteresis.
826		 */
827		if (rpipe->pipe_state & PIPE_WANTW) {
828			rpipe->pipe_state &= ~PIPE_WANTW;
829			wakeup(rpipe);
830		}
831	}
832
833	if ((rpipe->pipe_buffer.size - rpipe->pipe_buffer.cnt) >= PIPE_BUF)
834		pipeselwakeup(rpipe);
835
836	PIPE_UNLOCK(rpipe);
837	return (error);
838}
839
840#ifndef PIPE_NODIRECT
841/*
842 * Map the sending processes' buffer into kernel space and wire it.
843 * This is similar to a physical write operation.
844 */
845static int
846pipe_build_write_buffer(wpipe, uio)
847	struct pipe *wpipe;
848	struct uio *uio;
849{
850	u_int size;
851	int i;
852
853	PIPE_LOCK_ASSERT(wpipe, MA_NOTOWNED);
854	KASSERT(wpipe->pipe_state & PIPE_DIRECTW,
855		("Clone attempt on non-direct write pipe!"));
856
857	if (uio->uio_iov->iov_len > wpipe->pipe_buffer.size)
858                size = wpipe->pipe_buffer.size;
859	else
860                size = uio->uio_iov->iov_len;
861
862	if ((i = vm_fault_quick_hold_pages(&curproc->p_vmspace->vm_map,
863	    (vm_offset_t)uio->uio_iov->iov_base, size, VM_PROT_READ,
864	    wpipe->pipe_map.ms, PIPENPAGES)) < 0)
865		return (EFAULT);
866
867/*
868 * set up the control block
869 */
870	wpipe->pipe_map.npages = i;
871	wpipe->pipe_map.pos =
872	    ((vm_offset_t) uio->uio_iov->iov_base) & PAGE_MASK;
873	wpipe->pipe_map.cnt = size;
874
875/*
876 * and update the uio data
877 */
878
879	uio->uio_iov->iov_len -= size;
880	uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + size;
881	if (uio->uio_iov->iov_len == 0)
882		uio->uio_iov++;
883	uio->uio_resid -= size;
884	uio->uio_offset += size;
885	return (0);
886}
887
888/*
889 * unmap and unwire the process buffer
890 */
891static void
892pipe_destroy_write_buffer(wpipe)
893	struct pipe *wpipe;
894{
895
896	PIPE_LOCK_ASSERT(wpipe, MA_OWNED);
897	vm_page_unhold_pages(wpipe->pipe_map.ms, wpipe->pipe_map.npages);
898	wpipe->pipe_map.npages = 0;
899}
900
901/*
902 * In the case of a signal, the writing process might go away.  This
903 * code copies the data into the circular buffer so that the source
904 * pages can be freed without loss of data.
905 */
906static void
907pipe_clone_write_buffer(wpipe)
908	struct pipe *wpipe;
909{
910	struct uio uio;
911	struct iovec iov;
912	int size;
913	int pos;
914
915	PIPE_LOCK_ASSERT(wpipe, MA_OWNED);
916	size = wpipe->pipe_map.cnt;
917	pos = wpipe->pipe_map.pos;
918
919	wpipe->pipe_buffer.in = size;
920	wpipe->pipe_buffer.out = 0;
921	wpipe->pipe_buffer.cnt = size;
922	wpipe->pipe_state &= ~PIPE_DIRECTW;
923
924	PIPE_UNLOCK(wpipe);
925	iov.iov_base = wpipe->pipe_buffer.buffer;
926	iov.iov_len = size;
927	uio.uio_iov = &iov;
928	uio.uio_iovcnt = 1;
929	uio.uio_offset = 0;
930	uio.uio_resid = size;
931	uio.uio_segflg = UIO_SYSSPACE;
932	uio.uio_rw = UIO_READ;
933	uio.uio_td = curthread;
934	uiomove_fromphys(wpipe->pipe_map.ms, pos, size, &uio);
935	PIPE_LOCK(wpipe);
936	pipe_destroy_write_buffer(wpipe);
937}
938
939/*
940 * This implements the pipe buffer write mechanism.  Note that only
941 * a direct write OR a normal pipe write can be pending at any given time.
942 * If there are any characters in the pipe buffer, the direct write will
943 * be deferred until the receiving process grabs all of the bytes from
944 * the pipe buffer.  Then the direct mapping write is set-up.
945 */
946static int
947pipe_direct_write(wpipe, uio)
948	struct pipe *wpipe;
949	struct uio *uio;
950{
951	int error;
952
953retry:
954	PIPE_LOCK_ASSERT(wpipe, MA_OWNED);
955	error = pipelock(wpipe, 1);
956	if (wpipe->pipe_state & PIPE_EOF)
957		error = EPIPE;
958	if (error) {
959		pipeunlock(wpipe);
960		goto error1;
961	}
962	while (wpipe->pipe_state & PIPE_DIRECTW) {
963		if (wpipe->pipe_state & PIPE_WANTR) {
964			wpipe->pipe_state &= ~PIPE_WANTR;
965			wakeup(wpipe);
966		}
967		pipeselwakeup(wpipe);
968		wpipe->pipe_state |= PIPE_WANTW;
969		pipeunlock(wpipe);
970		error = msleep(wpipe, PIPE_MTX(wpipe),
971		    PRIBIO | PCATCH, "pipdww", 0);
972		if (error)
973			goto error1;
974		else
975			goto retry;
976	}
977	wpipe->pipe_map.cnt = 0;	/* transfer not ready yet */
978	if (wpipe->pipe_buffer.cnt > 0) {
979		if (wpipe->pipe_state & PIPE_WANTR) {
980			wpipe->pipe_state &= ~PIPE_WANTR;
981			wakeup(wpipe);
982		}
983		pipeselwakeup(wpipe);
984		wpipe->pipe_state |= PIPE_WANTW;
985		pipeunlock(wpipe);
986		error = msleep(wpipe, PIPE_MTX(wpipe),
987		    PRIBIO | PCATCH, "pipdwc", 0);
988		if (error)
989			goto error1;
990		else
991			goto retry;
992	}
993
994	wpipe->pipe_state |= PIPE_DIRECTW;
995
996	PIPE_UNLOCK(wpipe);
997	error = pipe_build_write_buffer(wpipe, uio);
998	PIPE_LOCK(wpipe);
999	if (error) {
1000		wpipe->pipe_state &= ~PIPE_DIRECTW;
1001		pipeunlock(wpipe);
1002		goto error1;
1003	}
1004
1005	error = 0;
1006	while (!error && (wpipe->pipe_state & PIPE_DIRECTW)) {
1007		if (wpipe->pipe_state & PIPE_EOF) {
1008			pipe_destroy_write_buffer(wpipe);
1009			pipeselwakeup(wpipe);
1010			pipeunlock(wpipe);
1011			error = EPIPE;
1012			goto error1;
1013		}
1014		if (wpipe->pipe_state & PIPE_WANTR) {
1015			wpipe->pipe_state &= ~PIPE_WANTR;
1016			wakeup(wpipe);
1017		}
1018		pipeselwakeup(wpipe);
1019		wpipe->pipe_state |= PIPE_WANTW;
1020		pipeunlock(wpipe);
1021		error = msleep(wpipe, PIPE_MTX(wpipe), PRIBIO | PCATCH,
1022		    "pipdwt", 0);
1023		pipelock(wpipe, 0);
1024	}
1025
1026	if (wpipe->pipe_state & PIPE_EOF)
1027		error = EPIPE;
1028	if (wpipe->pipe_state & PIPE_DIRECTW) {
1029		/*
1030		 * this bit of trickery substitutes a kernel buffer for
1031		 * the process that might be going away.
1032		 */
1033		pipe_clone_write_buffer(wpipe);
1034	} else {
1035		pipe_destroy_write_buffer(wpipe);
1036	}
1037	pipeunlock(wpipe);
1038	return (error);
1039
1040error1:
1041	wakeup(wpipe);
1042	return (error);
1043}
1044#endif
1045
1046static int
1047pipe_write(fp, uio, active_cred, flags, td)
1048	struct file *fp;
1049	struct uio *uio;
1050	struct ucred *active_cred;
1051	struct thread *td;
1052	int flags;
1053{
1054	int error = 0;
1055	int desiredsize;
1056	ssize_t orig_resid;
1057	struct pipe *wpipe, *rpipe;
1058
1059	rpipe = fp->f_data;
1060	wpipe = PIPE_PEER(rpipe);
1061	PIPE_LOCK(rpipe);
1062	error = pipelock(wpipe, 1);
1063	if (error) {
1064		PIPE_UNLOCK(rpipe);
1065		return (error);
1066	}
1067	/*
1068	 * detect loss of pipe read side, issue SIGPIPE if lost.
1069	 */
1070	if (wpipe->pipe_present != PIPE_ACTIVE ||
1071	    (wpipe->pipe_state & PIPE_EOF)) {
1072		pipeunlock(wpipe);
1073		PIPE_UNLOCK(rpipe);
1074		return (EPIPE);
1075	}
1076#ifdef MAC
1077	error = mac_pipe_check_write(active_cred, wpipe->pipe_pair);
1078	if (error) {
1079		pipeunlock(wpipe);
1080		PIPE_UNLOCK(rpipe);
1081		return (error);
1082	}
1083#endif
1084	++wpipe->pipe_busy;
1085
1086	/* Choose a larger size if it's advantageous */
1087	desiredsize = max(SMALL_PIPE_SIZE, wpipe->pipe_buffer.size);
1088	while (desiredsize < wpipe->pipe_buffer.cnt + uio->uio_resid) {
1089		if (piperesizeallowed != 1)
1090			break;
1091		if (amountpipekva > maxpipekva / 2)
1092			break;
1093		if (desiredsize == BIG_PIPE_SIZE)
1094			break;
1095		desiredsize = desiredsize * 2;
1096	}
1097
1098	/* Choose a smaller size if we're in a OOM situation */
1099	if ((amountpipekva > (3 * maxpipekva) / 4) &&
1100		(wpipe->pipe_buffer.size > SMALL_PIPE_SIZE) &&
1101		(wpipe->pipe_buffer.cnt <= SMALL_PIPE_SIZE) &&
1102		(piperesizeallowed == 1))
1103		desiredsize = SMALL_PIPE_SIZE;
1104
1105	/* Resize if the above determined that a new size was necessary */
1106	if ((desiredsize != wpipe->pipe_buffer.size) &&
1107		((wpipe->pipe_state & PIPE_DIRECTW) == 0)) {
1108		PIPE_UNLOCK(wpipe);
1109		pipespace(wpipe, desiredsize);
1110		PIPE_LOCK(wpipe);
1111	}
1112	if (wpipe->pipe_buffer.size == 0) {
1113		/*
1114		 * This can only happen for reverse direction use of pipes
1115		 * in a complete OOM situation.
1116		 */
1117		error = ENOMEM;
1118		--wpipe->pipe_busy;
1119		pipeunlock(wpipe);
1120		PIPE_UNLOCK(wpipe);
1121		return (error);
1122	}
1123
1124	pipeunlock(wpipe);
1125
1126	orig_resid = uio->uio_resid;
1127
1128	while (uio->uio_resid) {
1129		int space;
1130
1131		pipelock(wpipe, 0);
1132		if (wpipe->pipe_state & PIPE_EOF) {
1133			pipeunlock(wpipe);
1134			error = EPIPE;
1135			break;
1136		}
1137#ifndef PIPE_NODIRECT
1138		/*
1139		 * If the transfer is large, we can gain performance if
1140		 * we do process-to-process copies directly.
1141		 * If the write is non-blocking, we don't use the
1142		 * direct write mechanism.
1143		 *
1144		 * The direct write mechanism will detect the reader going
1145		 * away on us.
1146		 */
1147		if (uio->uio_segflg == UIO_USERSPACE &&
1148		    uio->uio_iov->iov_len >= PIPE_MINDIRECT &&
1149		    wpipe->pipe_buffer.size >= PIPE_MINDIRECT &&
1150		    (fp->f_flag & FNONBLOCK) == 0) {
1151			pipeunlock(wpipe);
1152			error = pipe_direct_write(wpipe, uio);
1153			if (error)
1154				break;
1155			continue;
1156		}
1157#endif
1158
1159		/*
1160		 * Pipe buffered writes cannot be coincidental with
1161		 * direct writes.  We wait until the currently executing
1162		 * direct write is completed before we start filling the
1163		 * pipe buffer.  We break out if a signal occurs or the
1164		 * reader goes away.
1165		 */
1166		if (wpipe->pipe_state & PIPE_DIRECTW) {
1167			if (wpipe->pipe_state & PIPE_WANTR) {
1168				wpipe->pipe_state &= ~PIPE_WANTR;
1169				wakeup(wpipe);
1170			}
1171			pipeselwakeup(wpipe);
1172			wpipe->pipe_state |= PIPE_WANTW;
1173			pipeunlock(wpipe);
1174			error = msleep(wpipe, PIPE_MTX(rpipe), PRIBIO | PCATCH,
1175			    "pipbww", 0);
1176			if (error)
1177				break;
1178			else
1179				continue;
1180		}
1181
1182		space = wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt;
1183
1184		/* Writes of size <= PIPE_BUF must be atomic. */
1185		if ((space < uio->uio_resid) && (orig_resid <= PIPE_BUF))
1186			space = 0;
1187
1188		if (space > 0) {
1189			int size;	/* Transfer size */
1190			int segsize;	/* first segment to transfer */
1191
1192			/*
1193			 * Transfer size is minimum of uio transfer
1194			 * and free space in pipe buffer.
1195			 */
1196			if (space > uio->uio_resid)
1197				size = uio->uio_resid;
1198			else
1199				size = space;
1200			/*
1201			 * First segment to transfer is minimum of
1202			 * transfer size and contiguous space in
1203			 * pipe buffer.  If first segment to transfer
1204			 * is less than the transfer size, we've got
1205			 * a wraparound in the buffer.
1206			 */
1207			segsize = wpipe->pipe_buffer.size -
1208				wpipe->pipe_buffer.in;
1209			if (segsize > size)
1210				segsize = size;
1211
1212			/* Transfer first segment */
1213
1214			PIPE_UNLOCK(rpipe);
1215			error = uiomove(&wpipe->pipe_buffer.buffer[wpipe->pipe_buffer.in],
1216					segsize, uio);
1217			PIPE_LOCK(rpipe);
1218
1219			if (error == 0 && segsize < size) {
1220				KASSERT(wpipe->pipe_buffer.in + segsize ==
1221					wpipe->pipe_buffer.size,
1222					("Pipe buffer wraparound disappeared"));
1223				/*
1224				 * Transfer remaining part now, to
1225				 * support atomic writes.  Wraparound
1226				 * happened.
1227				 */
1228
1229				PIPE_UNLOCK(rpipe);
1230				error = uiomove(
1231				    &wpipe->pipe_buffer.buffer[0],
1232				    size - segsize, uio);
1233				PIPE_LOCK(rpipe);
1234			}
1235			if (error == 0) {
1236				wpipe->pipe_buffer.in += size;
1237				if (wpipe->pipe_buffer.in >=
1238				    wpipe->pipe_buffer.size) {
1239					KASSERT(wpipe->pipe_buffer.in ==
1240						size - segsize +
1241						wpipe->pipe_buffer.size,
1242						("Expected wraparound bad"));
1243					wpipe->pipe_buffer.in = size - segsize;
1244				}
1245
1246				wpipe->pipe_buffer.cnt += size;
1247				KASSERT(wpipe->pipe_buffer.cnt <=
1248					wpipe->pipe_buffer.size,
1249					("Pipe buffer overflow"));
1250			}
1251			pipeunlock(wpipe);
1252			if (error != 0)
1253				break;
1254		} else {
1255			/*
1256			 * If the "read-side" has been blocked, wake it up now.
1257			 */
1258			if (wpipe->pipe_state & PIPE_WANTR) {
1259				wpipe->pipe_state &= ~PIPE_WANTR;
1260				wakeup(wpipe);
1261			}
1262
1263			/*
1264			 * don't block on non-blocking I/O
1265			 */
1266			if (fp->f_flag & FNONBLOCK) {
1267				error = EAGAIN;
1268				pipeunlock(wpipe);
1269				break;
1270			}
1271
1272			/*
1273			 * We have no more space and have something to offer,
1274			 * wake up select/poll.
1275			 */
1276			pipeselwakeup(wpipe);
1277
1278			wpipe->pipe_state |= PIPE_WANTW;
1279			pipeunlock(wpipe);
1280			error = msleep(wpipe, PIPE_MTX(rpipe),
1281			    PRIBIO | PCATCH, "pipewr", 0);
1282			if (error != 0)
1283				break;
1284		}
1285	}
1286
1287	pipelock(wpipe, 0);
1288	--wpipe->pipe_busy;
1289
1290	if ((wpipe->pipe_busy == 0) && (wpipe->pipe_state & PIPE_WANT)) {
1291		wpipe->pipe_state &= ~(PIPE_WANT | PIPE_WANTR);
1292		wakeup(wpipe);
1293	} else if (wpipe->pipe_buffer.cnt > 0) {
1294		/*
1295		 * If we have put any characters in the buffer, we wake up
1296		 * the reader.
1297		 */
1298		if (wpipe->pipe_state & PIPE_WANTR) {
1299			wpipe->pipe_state &= ~PIPE_WANTR;
1300			wakeup(wpipe);
1301		}
1302	}
1303
1304	/*
1305	 * Don't return EPIPE if I/O was successful
1306	 */
1307	if ((wpipe->pipe_buffer.cnt == 0) &&
1308	    (uio->uio_resid == 0) &&
1309	    (error == EPIPE)) {
1310		error = 0;
1311	}
1312
1313	if (error == 0)
1314		vfs_timestamp(&wpipe->pipe_mtime);
1315
1316	/*
1317	 * We have something to offer,
1318	 * wake up select/poll.
1319	 */
1320	if (wpipe->pipe_buffer.cnt)
1321		pipeselwakeup(wpipe);
1322
1323	pipeunlock(wpipe);
1324	PIPE_UNLOCK(rpipe);
1325	return (error);
1326}
1327
1328/* ARGSUSED */
1329static int
1330pipe_truncate(fp, length, active_cred, td)
1331	struct file *fp;
1332	off_t length;
1333	struct ucred *active_cred;
1334	struct thread *td;
1335{
1336
1337	/* For named pipes call the vnode operation. */
1338	if (fp->f_vnode != NULL)
1339		return (vnops.fo_truncate(fp, length, active_cred, td));
1340	return (EINVAL);
1341}
1342
1343/*
1344 * we implement a very minimal set of ioctls for compatibility with sockets.
1345 */
1346static int
1347pipe_ioctl(fp, cmd, data, active_cred, td)
1348	struct file *fp;
1349	u_long cmd;
1350	void *data;
1351	struct ucred *active_cred;
1352	struct thread *td;
1353{
1354	struct pipe *mpipe = fp->f_data;
1355	int error;
1356
1357	PIPE_LOCK(mpipe);
1358
1359#ifdef MAC
1360	error = mac_pipe_check_ioctl(active_cred, mpipe->pipe_pair, cmd, data);
1361	if (error) {
1362		PIPE_UNLOCK(mpipe);
1363		return (error);
1364	}
1365#endif
1366
1367	error = 0;
1368	switch (cmd) {
1369
1370	case FIONBIO:
1371		break;
1372
1373	case FIOASYNC:
1374		if (*(int *)data) {
1375			mpipe->pipe_state |= PIPE_ASYNC;
1376		} else {
1377			mpipe->pipe_state &= ~PIPE_ASYNC;
1378		}
1379		break;
1380
1381	case FIONREAD:
1382		if (!(fp->f_flag & FREAD)) {
1383			*(int *)data = 0;
1384			PIPE_UNLOCK(mpipe);
1385			return (0);
1386		}
1387		if (mpipe->pipe_state & PIPE_DIRECTW)
1388			*(int *)data = mpipe->pipe_map.cnt;
1389		else
1390			*(int *)data = mpipe->pipe_buffer.cnt;
1391		break;
1392
1393	case FIOSETOWN:
1394		PIPE_UNLOCK(mpipe);
1395		error = fsetown(*(int *)data, &mpipe->pipe_sigio);
1396		goto out_unlocked;
1397
1398	case FIOGETOWN:
1399		*(int *)data = fgetown(&mpipe->pipe_sigio);
1400		break;
1401
1402	/* This is deprecated, FIOSETOWN should be used instead. */
1403	case TIOCSPGRP:
1404		PIPE_UNLOCK(mpipe);
1405		error = fsetown(-(*(int *)data), &mpipe->pipe_sigio);
1406		goto out_unlocked;
1407
1408	/* This is deprecated, FIOGETOWN should be used instead. */
1409	case TIOCGPGRP:
1410		*(int *)data = -fgetown(&mpipe->pipe_sigio);
1411		break;
1412
1413	default:
1414		error = ENOTTY;
1415		break;
1416	}
1417	PIPE_UNLOCK(mpipe);
1418out_unlocked:
1419	return (error);
1420}
1421
1422static int
1423pipe_poll(fp, events, active_cred, td)
1424	struct file *fp;
1425	int events;
1426	struct ucred *active_cred;
1427	struct thread *td;
1428{
1429	struct pipe *rpipe;
1430	struct pipe *wpipe;
1431	int levents, revents;
1432#ifdef MAC
1433	int error;
1434#endif
1435
1436	revents = 0;
1437	rpipe = fp->f_data;
1438	wpipe = PIPE_PEER(rpipe);
1439	PIPE_LOCK(rpipe);
1440#ifdef MAC
1441	error = mac_pipe_check_poll(active_cred, rpipe->pipe_pair);
1442	if (error)
1443		goto locked_error;
1444#endif
1445	if (fp->f_flag & FREAD && events & (POLLIN | POLLRDNORM))
1446		if ((rpipe->pipe_state & PIPE_DIRECTW) ||
1447		    (rpipe->pipe_buffer.cnt > 0))
1448			revents |= events & (POLLIN | POLLRDNORM);
1449
1450	if (fp->f_flag & FWRITE && events & (POLLOUT | POLLWRNORM))
1451		if (wpipe->pipe_present != PIPE_ACTIVE ||
1452		    (wpipe->pipe_state & PIPE_EOF) ||
1453		    (((wpipe->pipe_state & PIPE_DIRECTW) == 0) &&
1454		     ((wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt) >= PIPE_BUF ||
1455			 wpipe->pipe_buffer.size == 0)))
1456			revents |= events & (POLLOUT | POLLWRNORM);
1457
1458	levents = events &
1459	    (POLLIN | POLLINIGNEOF | POLLPRI | POLLRDNORM | POLLRDBAND);
1460	if (rpipe->pipe_state & PIPE_NAMED && fp->f_flag & FREAD && levents &&
1461	    fp->f_seqcount == rpipe->pipe_wgen)
1462		events |= POLLINIGNEOF;
1463
1464	if ((events & POLLINIGNEOF) == 0) {
1465		if (rpipe->pipe_state & PIPE_EOF) {
1466			revents |= (events & (POLLIN | POLLRDNORM));
1467			if (wpipe->pipe_present != PIPE_ACTIVE ||
1468			    (wpipe->pipe_state & PIPE_EOF))
1469				revents |= POLLHUP;
1470		}
1471	}
1472
1473	if (revents == 0) {
1474		if (fp->f_flag & FREAD && events & (POLLIN | POLLRDNORM)) {
1475			selrecord(td, &rpipe->pipe_sel);
1476			if (SEL_WAITING(&rpipe->pipe_sel))
1477				rpipe->pipe_state |= PIPE_SEL;
1478		}
1479
1480		if (fp->f_flag & FWRITE && events & (POLLOUT | POLLWRNORM)) {
1481			selrecord(td, &wpipe->pipe_sel);
1482			if (SEL_WAITING(&wpipe->pipe_sel))
1483				wpipe->pipe_state |= PIPE_SEL;
1484		}
1485	}
1486#ifdef MAC
1487locked_error:
1488#endif
1489	PIPE_UNLOCK(rpipe);
1490
1491	return (revents);
1492}
1493
1494/*
1495 * We shouldn't need locks here as we're doing a read and this should
1496 * be a natural race.
1497 */
1498static int
1499pipe_stat(fp, ub, active_cred, td)
1500	struct file *fp;
1501	struct stat *ub;
1502	struct ucred *active_cred;
1503	struct thread *td;
1504{
1505	struct pipe *pipe;
1506	int new_unr;
1507#ifdef MAC
1508	int error;
1509#endif
1510
1511	pipe = fp->f_data;
1512	PIPE_LOCK(pipe);
1513#ifdef MAC
1514	error = mac_pipe_check_stat(active_cred, pipe->pipe_pair);
1515	if (error) {
1516		PIPE_UNLOCK(pipe);
1517		return (error);
1518	}
1519#endif
1520
1521	/* For named pipes ask the underlying filesystem. */
1522	if (pipe->pipe_state & PIPE_NAMED) {
1523		PIPE_UNLOCK(pipe);
1524		return (vnops.fo_stat(fp, ub, active_cred, td));
1525	}
1526
1527	/*
1528	 * Lazily allocate an inode number for the pipe.  Most pipe
1529	 * users do not call fstat(2) on the pipe, which means that
1530	 * postponing the inode allocation until it is must be
1531	 * returned to userland is useful.  If alloc_unr failed,
1532	 * assign st_ino zero instead of returning an error.
1533	 * Special pipe_ino values:
1534	 *  -1 - not yet initialized;
1535	 *  0  - alloc_unr failed, return 0 as st_ino forever.
1536	 */
1537	if (pipe->pipe_ino == (ino_t)-1) {
1538		new_unr = alloc_unr(pipeino_unr);
1539		if (new_unr != -1)
1540			pipe->pipe_ino = new_unr;
1541		else
1542			pipe->pipe_ino = 0;
1543	}
1544	PIPE_UNLOCK(pipe);
1545
1546	bzero(ub, sizeof(*ub));
1547	ub->st_mode = S_IFIFO;
1548	ub->st_blksize = PAGE_SIZE;
1549	if (pipe->pipe_state & PIPE_DIRECTW)
1550		ub->st_size = pipe->pipe_map.cnt;
1551	else
1552		ub->st_size = pipe->pipe_buffer.cnt;
1553	ub->st_blocks = (ub->st_size + ub->st_blksize - 1) / ub->st_blksize;
1554	ub->st_atim = pipe->pipe_atime;
1555	ub->st_mtim = pipe->pipe_mtime;
1556	ub->st_ctim = pipe->pipe_ctime;
1557	ub->st_uid = fp->f_cred->cr_uid;
1558	ub->st_gid = fp->f_cred->cr_gid;
1559	ub->st_dev = pipedev_ino;
1560	ub->st_ino = pipe->pipe_ino;
1561	/*
1562	 * Left as 0: st_nlink, st_rdev, st_flags, st_gen.
1563	 */
1564	return (0);
1565}
1566
1567/* ARGSUSED */
1568static int
1569pipe_close(fp, td)
1570	struct file *fp;
1571	struct thread *td;
1572{
1573
1574	if (fp->f_vnode != NULL)
1575		return vnops.fo_close(fp, td);
1576	fp->f_ops = &badfileops;
1577	pipe_dtor(fp->f_data);
1578	fp->f_data = NULL;
1579	return (0);
1580}
1581
1582static int
1583pipe_chmod(struct file *fp, mode_t mode, struct ucred *active_cred, struct thread *td)
1584{
1585	struct pipe *cpipe;
1586	int error;
1587
1588	cpipe = fp->f_data;
1589	if (cpipe->pipe_state & PIPE_NAMED)
1590		error = vn_chmod(fp, mode, active_cred, td);
1591	else
1592		error = invfo_chmod(fp, mode, active_cred, td);
1593	return (error);
1594}
1595
1596static int
1597pipe_chown(fp, uid, gid, active_cred, td)
1598	struct file *fp;
1599	uid_t uid;
1600	gid_t gid;
1601	struct ucred *active_cred;
1602	struct thread *td;
1603{
1604	struct pipe *cpipe;
1605	int error;
1606
1607	cpipe = fp->f_data;
1608	if (cpipe->pipe_state & PIPE_NAMED)
1609		error = vn_chown(fp, uid, gid, active_cred, td);
1610	else
1611		error = invfo_chown(fp, uid, gid, active_cred, td);
1612	return (error);
1613}
1614
1615static void
1616pipe_free_kmem(cpipe)
1617	struct pipe *cpipe;
1618{
1619
1620	KASSERT(!mtx_owned(PIPE_MTX(cpipe)),
1621	    ("pipe_free_kmem: pipe mutex locked"));
1622
1623	if (cpipe->pipe_buffer.buffer != NULL) {
1624		atomic_subtract_long(&amountpipekva, cpipe->pipe_buffer.size);
1625		vm_map_remove(pipe_map,
1626		    (vm_offset_t)cpipe->pipe_buffer.buffer,
1627		    (vm_offset_t)cpipe->pipe_buffer.buffer + cpipe->pipe_buffer.size);
1628		cpipe->pipe_buffer.buffer = NULL;
1629	}
1630#ifndef PIPE_NODIRECT
1631	{
1632		cpipe->pipe_map.cnt = 0;
1633		cpipe->pipe_map.pos = 0;
1634		cpipe->pipe_map.npages = 0;
1635	}
1636#endif
1637}
1638
1639/*
1640 * shutdown the pipe
1641 */
1642static void
1643pipeclose(cpipe)
1644	struct pipe *cpipe;
1645{
1646	struct pipepair *pp;
1647	struct pipe *ppipe;
1648
1649	KASSERT(cpipe != NULL, ("pipeclose: cpipe == NULL"));
1650
1651	PIPE_LOCK(cpipe);
1652	pipelock(cpipe, 0);
1653	pp = cpipe->pipe_pair;
1654
1655	pipeselwakeup(cpipe);
1656
1657	/*
1658	 * If the other side is blocked, wake it up saying that
1659	 * we want to close it down.
1660	 */
1661	cpipe->pipe_state |= PIPE_EOF;
1662	while (cpipe->pipe_busy) {
1663		wakeup(cpipe);
1664		cpipe->pipe_state |= PIPE_WANT;
1665		pipeunlock(cpipe);
1666		msleep(cpipe, PIPE_MTX(cpipe), PRIBIO, "pipecl", 0);
1667		pipelock(cpipe, 0);
1668	}
1669
1670
1671	/*
1672	 * Disconnect from peer, if any.
1673	 */
1674	ppipe = cpipe->pipe_peer;
1675	if (ppipe->pipe_present == PIPE_ACTIVE) {
1676		pipeselwakeup(ppipe);
1677
1678		ppipe->pipe_state |= PIPE_EOF;
1679		wakeup(ppipe);
1680		KNOTE_LOCKED(&ppipe->pipe_sel.si_note, 0);
1681	}
1682
1683	/*
1684	 * Mark this endpoint as free.  Release kmem resources.  We
1685	 * don't mark this endpoint as unused until we've finished
1686	 * doing that, or the pipe might disappear out from under
1687	 * us.
1688	 */
1689	PIPE_UNLOCK(cpipe);
1690	pipe_free_kmem(cpipe);
1691	PIPE_LOCK(cpipe);
1692	cpipe->pipe_present = PIPE_CLOSING;
1693	pipeunlock(cpipe);
1694
1695	/*
1696	 * knlist_clear() may sleep dropping the PIPE_MTX. Set the
1697	 * PIPE_FINALIZED, that allows other end to free the
1698	 * pipe_pair, only after the knotes are completely dismantled.
1699	 */
1700	knlist_clear(&cpipe->pipe_sel.si_note, 1);
1701	cpipe->pipe_present = PIPE_FINALIZED;
1702	seldrain(&cpipe->pipe_sel);
1703	knlist_destroy(&cpipe->pipe_sel.si_note);
1704
1705	/*
1706	 * If both endpoints are now closed, release the memory for the
1707	 * pipe pair.  If not, unlock.
1708	 */
1709	if (ppipe->pipe_present == PIPE_FINALIZED) {
1710		PIPE_UNLOCK(cpipe);
1711#ifdef MAC
1712		mac_pipe_destroy(pp);
1713#endif
1714		uma_zfree(pipe_zone, cpipe->pipe_pair);
1715	} else
1716		PIPE_UNLOCK(cpipe);
1717}
1718
1719/*ARGSUSED*/
1720static int
1721pipe_kqfilter(struct file *fp, struct knote *kn)
1722{
1723	struct pipe *cpipe;
1724
1725	/*
1726	 * If a filter is requested that is not supported by this file
1727	 * descriptor, don't return an error, but also don't ever generate an
1728	 * event.
1729	 */
1730	if ((kn->kn_filter == EVFILT_READ) && !(fp->f_flag & FREAD)) {
1731		kn->kn_fop = &pipe_nfiltops;
1732		return (0);
1733	}
1734	if ((kn->kn_filter == EVFILT_WRITE) && !(fp->f_flag & FWRITE)) {
1735		kn->kn_fop = &pipe_nfiltops;
1736		return (0);
1737	}
1738	cpipe = fp->f_data;
1739	PIPE_LOCK(cpipe);
1740	switch (kn->kn_filter) {
1741	case EVFILT_READ:
1742		kn->kn_fop = &pipe_rfiltops;
1743		break;
1744	case EVFILT_WRITE:
1745		kn->kn_fop = &pipe_wfiltops;
1746		if (cpipe->pipe_peer->pipe_present != PIPE_ACTIVE) {
1747			/* other end of pipe has been closed */
1748			PIPE_UNLOCK(cpipe);
1749			return (EPIPE);
1750		}
1751		cpipe = PIPE_PEER(cpipe);
1752		break;
1753	default:
1754		PIPE_UNLOCK(cpipe);
1755		return (EINVAL);
1756	}
1757
1758	kn->kn_hook = cpipe;
1759	knlist_add(&cpipe->pipe_sel.si_note, kn, 1);
1760	PIPE_UNLOCK(cpipe);
1761	return (0);
1762}
1763
1764static void
1765filt_pipedetach(struct knote *kn)
1766{
1767	struct pipe *cpipe = kn->kn_hook;
1768
1769	PIPE_LOCK(cpipe);
1770	knlist_remove(&cpipe->pipe_sel.si_note, kn, 1);
1771	PIPE_UNLOCK(cpipe);
1772}
1773
1774/*ARGSUSED*/
1775static int
1776filt_piperead(struct knote *kn, long hint)
1777{
1778	struct pipe *rpipe = kn->kn_hook;
1779	struct pipe *wpipe = rpipe->pipe_peer;
1780	int ret;
1781
1782	PIPE_LOCK(rpipe);
1783	kn->kn_data = rpipe->pipe_buffer.cnt;
1784	if ((kn->kn_data == 0) && (rpipe->pipe_state & PIPE_DIRECTW))
1785		kn->kn_data = rpipe->pipe_map.cnt;
1786
1787	if ((rpipe->pipe_state & PIPE_EOF) ||
1788	    wpipe->pipe_present != PIPE_ACTIVE ||
1789	    (wpipe->pipe_state & PIPE_EOF)) {
1790		kn->kn_flags |= EV_EOF;
1791		PIPE_UNLOCK(rpipe);
1792		return (1);
1793	}
1794	ret = kn->kn_data > 0;
1795	PIPE_UNLOCK(rpipe);
1796	return ret;
1797}
1798
1799/*ARGSUSED*/
1800static int
1801filt_pipewrite(struct knote *kn, long hint)
1802{
1803	struct pipe *wpipe;
1804
1805	wpipe = kn->kn_hook;
1806	PIPE_LOCK(wpipe);
1807	if (wpipe->pipe_present != PIPE_ACTIVE ||
1808	    (wpipe->pipe_state & PIPE_EOF)) {
1809		kn->kn_data = 0;
1810		kn->kn_flags |= EV_EOF;
1811		PIPE_UNLOCK(wpipe);
1812		return (1);
1813	}
1814	kn->kn_data = (wpipe->pipe_buffer.size > 0) ?
1815	    (wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt) : PIPE_BUF;
1816	if (wpipe->pipe_state & PIPE_DIRECTW)
1817		kn->kn_data = 0;
1818
1819	PIPE_UNLOCK(wpipe);
1820	return (kn->kn_data >= PIPE_BUF);
1821}
1822
1823static void
1824filt_pipedetach_notsup(struct knote *kn)
1825{
1826
1827}
1828
1829static int
1830filt_pipenotsup(struct knote *kn, long hint)
1831{
1832
1833	return (0);
1834}
1835