sys_pipe.c revision 250159
1/*-
2 * Copyright (c) 1996 John S. Dyson
3 * Copyright (c) 2012 Giovanni Trematerra
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice immediately at the beginning of the file, without modification,
11 *    this list of conditions, and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 *    notice, this list of conditions and the following disclaimer in the
14 *    documentation and/or other materials provided with the distribution.
15 * 3. Absolutely no warranty of function or purpose is made by the author
16 *    John S. Dyson.
17 * 4. Modifications may be freely made to this file if the above conditions
18 *    are met.
19 */
20
21/*
22 * This file contains a high-performance replacement for the socket-based
23 * pipes scheme originally used in FreeBSD/4.4Lite.  It does not support
24 * all features of sockets, but does do everything that pipes normally
25 * do.
26 */
27
28/*
29 * This code has two modes of operation, a small write mode and a large
30 * write mode.  The small write mode acts like conventional pipes with
31 * a kernel buffer.  If the buffer is less than PIPE_MINDIRECT, then the
32 * "normal" pipe buffering is done.  If the buffer is between PIPE_MINDIRECT
33 * and PIPE_SIZE in size, the sending process pins the underlying pages in
34 * memory, and the receiving process copies directly from these pinned pages
35 * in the sending process.
36 *
37 * If the sending process receives a signal, it is possible that it will
38 * go away, and certainly its address space can change, because control
39 * is returned back to the user-mode side.  In that case, the pipe code
40 * arranges to copy the buffer supplied by the user process, to a pageable
41 * kernel buffer, and the receiving process will grab the data from the
42 * pageable kernel buffer.  Since signals don't happen all that often,
43 * the copy operation is normally eliminated.
44 *
45 * The constant PIPE_MINDIRECT is chosen to make sure that buffering will
46 * happen for small transfers so that the system will not spend all of
47 * its time context switching.
48 *
49 * In order to limit the resource use of pipes, two sysctls exist:
50 *
51 * kern.ipc.maxpipekva - This is a hard limit on the amount of pageable
52 * address space available to us in pipe_map. This value is normally
53 * autotuned, but may also be loader tuned.
54 *
55 * kern.ipc.pipekva - This read-only sysctl tracks the current amount of
56 * memory in use by pipes.
57 *
58 * Based on how large pipekva is relative to maxpipekva, the following
59 * will happen:
60 *
61 * 0% - 50%:
62 *     New pipes are given 16K of memory backing, pipes may dynamically
63 *     grow to as large as 64K where needed.
64 * 50% - 75%:
65 *     New pipes are given 4K (or PAGE_SIZE) of memory backing,
66 *     existing pipes may NOT grow.
67 * 75% - 100%:
68 *     New pipes are given 4K (or PAGE_SIZE) of memory backing,
69 *     existing pipes will be shrunk down to 4K whenever possible.
70 *
71 * Resizing may be disabled by setting kern.ipc.piperesizeallowed=0.  If
72 * that is set,  the only resize that will occur is the 0 -> SMALL_PIPE_SIZE
73 * resize which MUST occur for reverse-direction pipes when they are
74 * first used.
75 *
76 * Additional information about the current state of pipes may be obtained
77 * from kern.ipc.pipes, kern.ipc.pipefragretry, kern.ipc.pipeallocfail,
78 * and kern.ipc.piperesizefail.
79 *
80 * Locking rules:  There are two locks present here:  A mutex, used via
81 * PIPE_LOCK, and a flag, used via pipelock().  All locking is done via
82 * the flag, as mutexes can not persist over uiomove.  The mutex
83 * exists only to guard access to the flag, and is not in itself a
84 * locking mechanism.  Also note that there is only a single mutex for
85 * both directions of a pipe.
86 *
87 * As pipelock() may have to sleep before it can acquire the flag, it
88 * is important to reread all data after a call to pipelock(); everything
89 * in the structure may have changed.
90 */
91
92#include <sys/cdefs.h>
93__FBSDID("$FreeBSD: head/sys/kern/sys_pipe.c 250159 2013-05-01 22:42:42Z jilles $");
94
95#include <sys/param.h>
96#include <sys/systm.h>
97#include <sys/conf.h>
98#include <sys/fcntl.h>
99#include <sys/file.h>
100#include <sys/filedesc.h>
101#include <sys/filio.h>
102#include <sys/kernel.h>
103#include <sys/lock.h>
104#include <sys/mutex.h>
105#include <sys/ttycom.h>
106#include <sys/stat.h>
107#include <sys/malloc.h>
108#include <sys/poll.h>
109#include <sys/selinfo.h>
110#include <sys/signalvar.h>
111#include <sys/syscallsubr.h>
112#include <sys/sysctl.h>
113#include <sys/sysproto.h>
114#include <sys/pipe.h>
115#include <sys/proc.h>
116#include <sys/vnode.h>
117#include <sys/uio.h>
118#include <sys/event.h>
119
120#include <security/mac/mac_framework.h>
121
122#include <vm/vm.h>
123#include <vm/vm_param.h>
124#include <vm/vm_object.h>
125#include <vm/vm_kern.h>
126#include <vm/vm_extern.h>
127#include <vm/pmap.h>
128#include <vm/vm_map.h>
129#include <vm/vm_page.h>
130#include <vm/uma.h>
131
132/*
133 * Use this define if you want to disable *fancy* VM things.  Expect an
134 * approx 30% decrease in transfer rate.  This could be useful for
135 * NetBSD or OpenBSD.
136 */
137/* #define PIPE_NODIRECT */
138
139#define PIPE_PEER(pipe)	\
140	(((pipe)->pipe_state & PIPE_NAMED) ? (pipe) : ((pipe)->pipe_peer))
141
142/*
143 * interfaces to the outside world
144 */
145static fo_rdwr_t	pipe_read;
146static fo_rdwr_t	pipe_write;
147static fo_truncate_t	pipe_truncate;
148static fo_ioctl_t	pipe_ioctl;
149static fo_poll_t	pipe_poll;
150static fo_kqfilter_t	pipe_kqfilter;
151static fo_stat_t	pipe_stat;
152static fo_close_t	pipe_close;
153static fo_chmod_t	pipe_chmod;
154static fo_chown_t	pipe_chown;
155
156struct fileops pipeops = {
157	.fo_read = pipe_read,
158	.fo_write = pipe_write,
159	.fo_truncate = pipe_truncate,
160	.fo_ioctl = pipe_ioctl,
161	.fo_poll = pipe_poll,
162	.fo_kqfilter = pipe_kqfilter,
163	.fo_stat = pipe_stat,
164	.fo_close = pipe_close,
165	.fo_chmod = pipe_chmod,
166	.fo_chown = pipe_chown,
167	.fo_flags = DFLAG_PASSABLE
168};
169
170static void	filt_pipedetach(struct knote *kn);
171static void	filt_pipedetach_notsup(struct knote *kn);
172static int	filt_pipenotsup(struct knote *kn, long hint);
173static int	filt_piperead(struct knote *kn, long hint);
174static int	filt_pipewrite(struct knote *kn, long hint);
175
176static struct filterops pipe_nfiltops = {
177	.f_isfd = 1,
178	.f_detach = filt_pipedetach_notsup,
179	.f_event = filt_pipenotsup
180};
181static struct filterops pipe_rfiltops = {
182	.f_isfd = 1,
183	.f_detach = filt_pipedetach,
184	.f_event = filt_piperead
185};
186static struct filterops pipe_wfiltops = {
187	.f_isfd = 1,
188	.f_detach = filt_pipedetach,
189	.f_event = filt_pipewrite
190};
191
192/*
193 * Default pipe buffer size(s), this can be kind-of large now because pipe
194 * space is pageable.  The pipe code will try to maintain locality of
195 * reference for performance reasons, so small amounts of outstanding I/O
196 * will not wipe the cache.
197 */
198#define MINPIPESIZE (PIPE_SIZE/3)
199#define MAXPIPESIZE (2*PIPE_SIZE/3)
200
201static long amountpipekva;
202static int pipefragretry;
203static int pipeallocfail;
204static int piperesizefail;
205static int piperesizeallowed = 1;
206
207SYSCTL_LONG(_kern_ipc, OID_AUTO, maxpipekva, CTLFLAG_RDTUN,
208	   &maxpipekva, 0, "Pipe KVA limit");
209SYSCTL_LONG(_kern_ipc, OID_AUTO, pipekva, CTLFLAG_RD,
210	   &amountpipekva, 0, "Pipe KVA usage");
211SYSCTL_INT(_kern_ipc, OID_AUTO, pipefragretry, CTLFLAG_RD,
212	  &pipefragretry, 0, "Pipe allocation retries due to fragmentation");
213SYSCTL_INT(_kern_ipc, OID_AUTO, pipeallocfail, CTLFLAG_RD,
214	  &pipeallocfail, 0, "Pipe allocation failures");
215SYSCTL_INT(_kern_ipc, OID_AUTO, piperesizefail, CTLFLAG_RD,
216	  &piperesizefail, 0, "Pipe resize failures");
217SYSCTL_INT(_kern_ipc, OID_AUTO, piperesizeallowed, CTLFLAG_RW,
218	  &piperesizeallowed, 0, "Pipe resizing allowed");
219
220static void pipeinit(void *dummy __unused);
221static void pipeclose(struct pipe *cpipe);
222static void pipe_free_kmem(struct pipe *cpipe);
223static int pipe_create(struct pipe *pipe, int backing);
224static int pipe_paircreate(struct thread *td, struct pipepair **p_pp);
225static __inline int pipelock(struct pipe *cpipe, int catch);
226static __inline void pipeunlock(struct pipe *cpipe);
227#ifndef PIPE_NODIRECT
228static int pipe_build_write_buffer(struct pipe *wpipe, struct uio *uio);
229static void pipe_destroy_write_buffer(struct pipe *wpipe);
230static int pipe_direct_write(struct pipe *wpipe, struct uio *uio);
231static void pipe_clone_write_buffer(struct pipe *wpipe);
232#endif
233static int pipespace(struct pipe *cpipe, int size);
234static int pipespace_new(struct pipe *cpipe, int size);
235
236static int	pipe_zone_ctor(void *mem, int size, void *arg, int flags);
237static int	pipe_zone_init(void *mem, int size, int flags);
238static void	pipe_zone_fini(void *mem, int size);
239
240static uma_zone_t pipe_zone;
241static struct unrhdr *pipeino_unr;
242static dev_t pipedev_ino;
243
244SYSINIT(vfs, SI_SUB_VFS, SI_ORDER_ANY, pipeinit, NULL);
245
246static void
247pipeinit(void *dummy __unused)
248{
249
250	pipe_zone = uma_zcreate("pipe", sizeof(struct pipepair),
251	    pipe_zone_ctor, NULL, pipe_zone_init, pipe_zone_fini,
252	    UMA_ALIGN_PTR, 0);
253	KASSERT(pipe_zone != NULL, ("pipe_zone not initialized"));
254	pipeino_unr = new_unrhdr(1, INT32_MAX, NULL);
255	KASSERT(pipeino_unr != NULL, ("pipe fake inodes not initialized"));
256	pipedev_ino = devfs_alloc_cdp_inode();
257	KASSERT(pipedev_ino > 0, ("pipe dev inode not initialized"));
258}
259
260static int
261pipe_zone_ctor(void *mem, int size, void *arg, int flags)
262{
263	struct pipepair *pp;
264	struct pipe *rpipe, *wpipe;
265
266	KASSERT(size == sizeof(*pp), ("pipe_zone_ctor: wrong size"));
267
268	pp = (struct pipepair *)mem;
269
270	/*
271	 * We zero both pipe endpoints to make sure all the kmem pointers
272	 * are NULL, flag fields are zero'd, etc.  We timestamp both
273	 * endpoints with the same time.
274	 */
275	rpipe = &pp->pp_rpipe;
276	bzero(rpipe, sizeof(*rpipe));
277	vfs_timestamp(&rpipe->pipe_ctime);
278	rpipe->pipe_atime = rpipe->pipe_mtime = rpipe->pipe_ctime;
279
280	wpipe = &pp->pp_wpipe;
281	bzero(wpipe, sizeof(*wpipe));
282	wpipe->pipe_ctime = rpipe->pipe_ctime;
283	wpipe->pipe_atime = wpipe->pipe_mtime = rpipe->pipe_ctime;
284
285	rpipe->pipe_peer = wpipe;
286	rpipe->pipe_pair = pp;
287	wpipe->pipe_peer = rpipe;
288	wpipe->pipe_pair = pp;
289
290	/*
291	 * Mark both endpoints as present; they will later get free'd
292	 * one at a time.  When both are free'd, then the whole pair
293	 * is released.
294	 */
295	rpipe->pipe_present = PIPE_ACTIVE;
296	wpipe->pipe_present = PIPE_ACTIVE;
297
298	/*
299	 * Eventually, the MAC Framework may initialize the label
300	 * in ctor or init, but for now we do it elswhere to avoid
301	 * blocking in ctor or init.
302	 */
303	pp->pp_label = NULL;
304
305	return (0);
306}
307
308static int
309pipe_zone_init(void *mem, int size, int flags)
310{
311	struct pipepair *pp;
312
313	KASSERT(size == sizeof(*pp), ("pipe_zone_init: wrong size"));
314
315	pp = (struct pipepair *)mem;
316
317	mtx_init(&pp->pp_mtx, "pipe mutex", NULL, MTX_DEF | MTX_RECURSE);
318	return (0);
319}
320
321static void
322pipe_zone_fini(void *mem, int size)
323{
324	struct pipepair *pp;
325
326	KASSERT(size == sizeof(*pp), ("pipe_zone_fini: wrong size"));
327
328	pp = (struct pipepair *)mem;
329
330	mtx_destroy(&pp->pp_mtx);
331}
332
333static int
334pipe_paircreate(struct thread *td, struct pipepair **p_pp)
335{
336	struct pipepair *pp;
337	struct pipe *rpipe, *wpipe;
338	int error;
339
340	*p_pp = pp = uma_zalloc(pipe_zone, M_WAITOK);
341#ifdef MAC
342	/*
343	 * The MAC label is shared between the connected endpoints.  As a
344	 * result mac_pipe_init() and mac_pipe_create() are called once
345	 * for the pair, and not on the endpoints.
346	 */
347	mac_pipe_init(pp);
348	mac_pipe_create(td->td_ucred, pp);
349#endif
350	rpipe = &pp->pp_rpipe;
351	wpipe = &pp->pp_wpipe;
352
353	knlist_init_mtx(&rpipe->pipe_sel.si_note, PIPE_MTX(rpipe));
354	knlist_init_mtx(&wpipe->pipe_sel.si_note, PIPE_MTX(wpipe));
355
356	/* Only the forward direction pipe is backed by default */
357	if ((error = pipe_create(rpipe, 1)) != 0 ||
358	    (error = pipe_create(wpipe, 0)) != 0) {
359		pipeclose(rpipe);
360		pipeclose(wpipe);
361		return (error);
362	}
363
364	rpipe->pipe_state |= PIPE_DIRECTOK;
365	wpipe->pipe_state |= PIPE_DIRECTOK;
366	return (0);
367}
368
369int
370pipe_named_ctor(struct pipe **ppipe, struct thread *td)
371{
372	struct pipepair *pp;
373	int error;
374
375	error = pipe_paircreate(td, &pp);
376	if (error != 0)
377		return (error);
378	pp->pp_rpipe.pipe_state |= PIPE_NAMED;
379	*ppipe = &pp->pp_rpipe;
380	return (0);
381}
382
383void
384pipe_dtor(struct pipe *dpipe)
385{
386	ino_t ino;
387
388	ino = dpipe->pipe_ino;
389	funsetown(&dpipe->pipe_sigio);
390	pipeclose(dpipe);
391	if (dpipe->pipe_state & PIPE_NAMED) {
392		dpipe = dpipe->pipe_peer;
393		funsetown(&dpipe->pipe_sigio);
394		pipeclose(dpipe);
395	}
396	if (ino != 0 && ino != (ino_t)-1)
397		free_unr(pipeino_unr, ino);
398}
399
400/*
401 * The pipe system call for the DTYPE_PIPE type of pipes.  If we fail, let
402 * the zone pick up the pieces via pipeclose().
403 */
404int
405kern_pipe(struct thread *td, int fildes[2])
406{
407
408	return (kern_pipe2(td, fildes, 0));
409}
410
411int
412kern_pipe2(struct thread *td, int fildes[2], int flags)
413{
414	struct filedesc *fdp;
415	struct file *rf, *wf;
416	struct pipe *rpipe, *wpipe;
417	struct pipepair *pp;
418	int fd, fflags, error;
419
420	fdp = td->td_proc->p_fd;
421	error = pipe_paircreate(td, &pp);
422	if (error != 0)
423		return (error);
424	rpipe = &pp->pp_rpipe;
425	wpipe = &pp->pp_wpipe;
426	error = falloc(td, &rf, &fd, flags);
427	if (error) {
428		pipeclose(rpipe);
429		pipeclose(wpipe);
430		return (error);
431	}
432	/* An extra reference on `rf' has been held for us by falloc(). */
433	fildes[0] = fd;
434
435	fflags = FREAD | FWRITE;
436	if ((flags & O_NONBLOCK) != 0)
437		fflags |= FNONBLOCK;
438
439	/*
440	 * Warning: once we've gotten past allocation of the fd for the
441	 * read-side, we can only drop the read side via fdrop() in order
442	 * to avoid races against processes which manage to dup() the read
443	 * side while we are blocked trying to allocate the write side.
444	 */
445	finit(rf, fflags, DTYPE_PIPE, rpipe, &pipeops);
446	error = falloc(td, &wf, &fd, flags);
447	if (error) {
448		fdclose(fdp, rf, fildes[0], td);
449		fdrop(rf, td);
450		/* rpipe has been closed by fdrop(). */
451		pipeclose(wpipe);
452		return (error);
453	}
454	/* An extra reference on `wf' has been held for us by falloc(). */
455	finit(wf, fflags, DTYPE_PIPE, wpipe, &pipeops);
456	fdrop(wf, td);
457	fildes[1] = fd;
458	fdrop(rf, td);
459
460	return (0);
461}
462
463/* ARGSUSED */
464int
465sys_pipe(struct thread *td, struct pipe_args *uap)
466{
467	int error;
468	int fildes[2];
469
470	error = kern_pipe(td, fildes);
471	if (error)
472		return (error);
473
474	td->td_retval[0] = fildes[0];
475	td->td_retval[1] = fildes[1];
476
477	return (0);
478}
479
480int
481sys_pipe2(struct thread *td, struct pipe2_args *uap)
482{
483	int error, fildes[2];
484
485	if (uap->flags & ~(O_CLOEXEC | O_NONBLOCK))
486		return (EINVAL);
487	error = kern_pipe2(td, fildes, uap->flags);
488	if (error)
489		return (error);
490	error = copyout(fildes, uap->fildes, 2 * sizeof(int));
491	if (error) {
492		(void)kern_close(td, fildes[0]);
493		(void)kern_close(td, fildes[1]);
494	}
495	return (error);
496}
497
498/*
499 * Allocate kva for pipe circular buffer, the space is pageable
500 * This routine will 'realloc' the size of a pipe safely, if it fails
501 * it will retain the old buffer.
502 * If it fails it will return ENOMEM.
503 */
504static int
505pipespace_new(cpipe, size)
506	struct pipe *cpipe;
507	int size;
508{
509	caddr_t buffer;
510	int error, cnt, firstseg;
511	static int curfail = 0;
512	static struct timeval lastfail;
513
514	KASSERT(!mtx_owned(PIPE_MTX(cpipe)), ("pipespace: pipe mutex locked"));
515	KASSERT(!(cpipe->pipe_state & PIPE_DIRECTW),
516		("pipespace: resize of direct writes not allowed"));
517retry:
518	cnt = cpipe->pipe_buffer.cnt;
519	if (cnt > size)
520		size = cnt;
521
522	size = round_page(size);
523	buffer = (caddr_t) vm_map_min(pipe_map);
524
525	error = vm_map_find(pipe_map, NULL, 0,
526		(vm_offset_t *) &buffer, size, 1,
527		VM_PROT_ALL, VM_PROT_ALL, 0);
528	if (error != KERN_SUCCESS) {
529		if ((cpipe->pipe_buffer.buffer == NULL) &&
530			(size > SMALL_PIPE_SIZE)) {
531			size = SMALL_PIPE_SIZE;
532			pipefragretry++;
533			goto retry;
534		}
535		if (cpipe->pipe_buffer.buffer == NULL) {
536			pipeallocfail++;
537			if (ppsratecheck(&lastfail, &curfail, 1))
538				printf("kern.ipc.maxpipekva exceeded; see tuning(7)\n");
539		} else {
540			piperesizefail++;
541		}
542		return (ENOMEM);
543	}
544
545	/* copy data, then free old resources if we're resizing */
546	if (cnt > 0) {
547		if (cpipe->pipe_buffer.in <= cpipe->pipe_buffer.out) {
548			firstseg = cpipe->pipe_buffer.size - cpipe->pipe_buffer.out;
549			bcopy(&cpipe->pipe_buffer.buffer[cpipe->pipe_buffer.out],
550				buffer, firstseg);
551			if ((cnt - firstseg) > 0)
552				bcopy(cpipe->pipe_buffer.buffer, &buffer[firstseg],
553					cpipe->pipe_buffer.in);
554		} else {
555			bcopy(&cpipe->pipe_buffer.buffer[cpipe->pipe_buffer.out],
556				buffer, cnt);
557		}
558	}
559	pipe_free_kmem(cpipe);
560	cpipe->pipe_buffer.buffer = buffer;
561	cpipe->pipe_buffer.size = size;
562	cpipe->pipe_buffer.in = cnt;
563	cpipe->pipe_buffer.out = 0;
564	cpipe->pipe_buffer.cnt = cnt;
565	atomic_add_long(&amountpipekva, cpipe->pipe_buffer.size);
566	return (0);
567}
568
569/*
570 * Wrapper for pipespace_new() that performs locking assertions.
571 */
572static int
573pipespace(cpipe, size)
574	struct pipe *cpipe;
575	int size;
576{
577
578	KASSERT(cpipe->pipe_state & PIPE_LOCKFL,
579		("Unlocked pipe passed to pipespace"));
580	return (pipespace_new(cpipe, size));
581}
582
583/*
584 * lock a pipe for I/O, blocking other access
585 */
586static __inline int
587pipelock(cpipe, catch)
588	struct pipe *cpipe;
589	int catch;
590{
591	int error;
592
593	PIPE_LOCK_ASSERT(cpipe, MA_OWNED);
594	while (cpipe->pipe_state & PIPE_LOCKFL) {
595		cpipe->pipe_state |= PIPE_LWANT;
596		error = msleep(cpipe, PIPE_MTX(cpipe),
597		    catch ? (PRIBIO | PCATCH) : PRIBIO,
598		    "pipelk", 0);
599		if (error != 0)
600			return (error);
601	}
602	cpipe->pipe_state |= PIPE_LOCKFL;
603	return (0);
604}
605
606/*
607 * unlock a pipe I/O lock
608 */
609static __inline void
610pipeunlock(cpipe)
611	struct pipe *cpipe;
612{
613
614	PIPE_LOCK_ASSERT(cpipe, MA_OWNED);
615	KASSERT(cpipe->pipe_state & PIPE_LOCKFL,
616		("Unlocked pipe passed to pipeunlock"));
617	cpipe->pipe_state &= ~PIPE_LOCKFL;
618	if (cpipe->pipe_state & PIPE_LWANT) {
619		cpipe->pipe_state &= ~PIPE_LWANT;
620		wakeup(cpipe);
621	}
622}
623
624void
625pipeselwakeup(cpipe)
626	struct pipe *cpipe;
627{
628
629	PIPE_LOCK_ASSERT(cpipe, MA_OWNED);
630	if (cpipe->pipe_state & PIPE_SEL) {
631		selwakeuppri(&cpipe->pipe_sel, PSOCK);
632		if (!SEL_WAITING(&cpipe->pipe_sel))
633			cpipe->pipe_state &= ~PIPE_SEL;
634	}
635	if ((cpipe->pipe_state & PIPE_ASYNC) && cpipe->pipe_sigio)
636		pgsigio(&cpipe->pipe_sigio, SIGIO, 0);
637	KNOTE_LOCKED(&cpipe->pipe_sel.si_note, 0);
638}
639
640/*
641 * Initialize and allocate VM and memory for pipe.  The structure
642 * will start out zero'd from the ctor, so we just manage the kmem.
643 */
644static int
645pipe_create(pipe, backing)
646	struct pipe *pipe;
647	int backing;
648{
649	int error;
650
651	if (backing) {
652		if (amountpipekva > maxpipekva / 2)
653			error = pipespace_new(pipe, SMALL_PIPE_SIZE);
654		else
655			error = pipespace_new(pipe, PIPE_SIZE);
656	} else {
657		/* If we're not backing this pipe, no need to do anything. */
658		error = 0;
659	}
660	pipe->pipe_ino = -1;
661	return (error);
662}
663
664/* ARGSUSED */
665static int
666pipe_read(fp, uio, active_cred, flags, td)
667	struct file *fp;
668	struct uio *uio;
669	struct ucred *active_cred;
670	struct thread *td;
671	int flags;
672{
673	struct pipe *rpipe;
674	int error;
675	int nread = 0;
676	int size;
677
678	rpipe = fp->f_data;
679	PIPE_LOCK(rpipe);
680	++rpipe->pipe_busy;
681	error = pipelock(rpipe, 1);
682	if (error)
683		goto unlocked_error;
684
685#ifdef MAC
686	error = mac_pipe_check_read(active_cred, rpipe->pipe_pair);
687	if (error)
688		goto locked_error;
689#endif
690	if (amountpipekva > (3 * maxpipekva) / 4) {
691		if (!(rpipe->pipe_state & PIPE_DIRECTW) &&
692			(rpipe->pipe_buffer.size > SMALL_PIPE_SIZE) &&
693			(rpipe->pipe_buffer.cnt <= SMALL_PIPE_SIZE) &&
694			(piperesizeallowed == 1)) {
695			PIPE_UNLOCK(rpipe);
696			pipespace(rpipe, SMALL_PIPE_SIZE);
697			PIPE_LOCK(rpipe);
698		}
699	}
700
701	while (uio->uio_resid) {
702		/*
703		 * normal pipe buffer receive
704		 */
705		if (rpipe->pipe_buffer.cnt > 0) {
706			size = rpipe->pipe_buffer.size - rpipe->pipe_buffer.out;
707			if (size > rpipe->pipe_buffer.cnt)
708				size = rpipe->pipe_buffer.cnt;
709			if (size > uio->uio_resid)
710				size = uio->uio_resid;
711
712			PIPE_UNLOCK(rpipe);
713			error = uiomove(
714			    &rpipe->pipe_buffer.buffer[rpipe->pipe_buffer.out],
715			    size, uio);
716			PIPE_LOCK(rpipe);
717			if (error)
718				break;
719
720			rpipe->pipe_buffer.out += size;
721			if (rpipe->pipe_buffer.out >= rpipe->pipe_buffer.size)
722				rpipe->pipe_buffer.out = 0;
723
724			rpipe->pipe_buffer.cnt -= size;
725
726			/*
727			 * If there is no more to read in the pipe, reset
728			 * its pointers to the beginning.  This improves
729			 * cache hit stats.
730			 */
731			if (rpipe->pipe_buffer.cnt == 0) {
732				rpipe->pipe_buffer.in = 0;
733				rpipe->pipe_buffer.out = 0;
734			}
735			nread += size;
736#ifndef PIPE_NODIRECT
737		/*
738		 * Direct copy, bypassing a kernel buffer.
739		 */
740		} else if ((size = rpipe->pipe_map.cnt) &&
741			   (rpipe->pipe_state & PIPE_DIRECTW)) {
742			if (size > uio->uio_resid)
743				size = (u_int) uio->uio_resid;
744
745			PIPE_UNLOCK(rpipe);
746			error = uiomove_fromphys(rpipe->pipe_map.ms,
747			    rpipe->pipe_map.pos, size, uio);
748			PIPE_LOCK(rpipe);
749			if (error)
750				break;
751			nread += size;
752			rpipe->pipe_map.pos += size;
753			rpipe->pipe_map.cnt -= size;
754			if (rpipe->pipe_map.cnt == 0) {
755				rpipe->pipe_state &= ~(PIPE_DIRECTW|PIPE_WANTW);
756				wakeup(rpipe);
757			}
758#endif
759		} else {
760			/*
761			 * detect EOF condition
762			 * read returns 0 on EOF, no need to set error
763			 */
764			if (rpipe->pipe_state & PIPE_EOF)
765				break;
766
767			/*
768			 * If the "write-side" has been blocked, wake it up now.
769			 */
770			if (rpipe->pipe_state & PIPE_WANTW) {
771				rpipe->pipe_state &= ~PIPE_WANTW;
772				wakeup(rpipe);
773			}
774
775			/*
776			 * Break if some data was read.
777			 */
778			if (nread > 0)
779				break;
780
781			/*
782			 * Unlock the pipe buffer for our remaining processing.
783			 * We will either break out with an error or we will
784			 * sleep and relock to loop.
785			 */
786			pipeunlock(rpipe);
787
788			/*
789			 * Handle non-blocking mode operation or
790			 * wait for more data.
791			 */
792			if (fp->f_flag & FNONBLOCK) {
793				error = EAGAIN;
794			} else {
795				rpipe->pipe_state |= PIPE_WANTR;
796				if ((error = msleep(rpipe, PIPE_MTX(rpipe),
797				    PRIBIO | PCATCH,
798				    "piperd", 0)) == 0)
799					error = pipelock(rpipe, 1);
800			}
801			if (error)
802				goto unlocked_error;
803		}
804	}
805#ifdef MAC
806locked_error:
807#endif
808	pipeunlock(rpipe);
809
810	/* XXX: should probably do this before getting any locks. */
811	if (error == 0)
812		vfs_timestamp(&rpipe->pipe_atime);
813unlocked_error:
814	--rpipe->pipe_busy;
815
816	/*
817	 * PIPE_WANT processing only makes sense if pipe_busy is 0.
818	 */
819	if ((rpipe->pipe_busy == 0) && (rpipe->pipe_state & PIPE_WANT)) {
820		rpipe->pipe_state &= ~(PIPE_WANT|PIPE_WANTW);
821		wakeup(rpipe);
822	} else if (rpipe->pipe_buffer.cnt < MINPIPESIZE) {
823		/*
824		 * Handle write blocking hysteresis.
825		 */
826		if (rpipe->pipe_state & PIPE_WANTW) {
827			rpipe->pipe_state &= ~PIPE_WANTW;
828			wakeup(rpipe);
829		}
830	}
831
832	if ((rpipe->pipe_buffer.size - rpipe->pipe_buffer.cnt) >= PIPE_BUF)
833		pipeselwakeup(rpipe);
834
835	PIPE_UNLOCK(rpipe);
836	return (error);
837}
838
839#ifndef PIPE_NODIRECT
840/*
841 * Map the sending processes' buffer into kernel space and wire it.
842 * This is similar to a physical write operation.
843 */
844static int
845pipe_build_write_buffer(wpipe, uio)
846	struct pipe *wpipe;
847	struct uio *uio;
848{
849	u_int size;
850	int i;
851
852	PIPE_LOCK_ASSERT(wpipe, MA_NOTOWNED);
853	KASSERT(wpipe->pipe_state & PIPE_DIRECTW,
854		("Clone attempt on non-direct write pipe!"));
855
856	if (uio->uio_iov->iov_len > wpipe->pipe_buffer.size)
857                size = wpipe->pipe_buffer.size;
858	else
859                size = uio->uio_iov->iov_len;
860
861	if ((i = vm_fault_quick_hold_pages(&curproc->p_vmspace->vm_map,
862	    (vm_offset_t)uio->uio_iov->iov_base, size, VM_PROT_READ,
863	    wpipe->pipe_map.ms, PIPENPAGES)) < 0)
864		return (EFAULT);
865
866/*
867 * set up the control block
868 */
869	wpipe->pipe_map.npages = i;
870	wpipe->pipe_map.pos =
871	    ((vm_offset_t) uio->uio_iov->iov_base) & PAGE_MASK;
872	wpipe->pipe_map.cnt = size;
873
874/*
875 * and update the uio data
876 */
877
878	uio->uio_iov->iov_len -= size;
879	uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + size;
880	if (uio->uio_iov->iov_len == 0)
881		uio->uio_iov++;
882	uio->uio_resid -= size;
883	uio->uio_offset += size;
884	return (0);
885}
886
887/*
888 * unmap and unwire the process buffer
889 */
890static void
891pipe_destroy_write_buffer(wpipe)
892	struct pipe *wpipe;
893{
894
895	PIPE_LOCK_ASSERT(wpipe, MA_OWNED);
896	vm_page_unhold_pages(wpipe->pipe_map.ms, wpipe->pipe_map.npages);
897	wpipe->pipe_map.npages = 0;
898}
899
900/*
901 * In the case of a signal, the writing process might go away.  This
902 * code copies the data into the circular buffer so that the source
903 * pages can be freed without loss of data.
904 */
905static void
906pipe_clone_write_buffer(wpipe)
907	struct pipe *wpipe;
908{
909	struct uio uio;
910	struct iovec iov;
911	int size;
912	int pos;
913
914	PIPE_LOCK_ASSERT(wpipe, MA_OWNED);
915	size = wpipe->pipe_map.cnt;
916	pos = wpipe->pipe_map.pos;
917
918	wpipe->pipe_buffer.in = size;
919	wpipe->pipe_buffer.out = 0;
920	wpipe->pipe_buffer.cnt = size;
921	wpipe->pipe_state &= ~PIPE_DIRECTW;
922
923	PIPE_UNLOCK(wpipe);
924	iov.iov_base = wpipe->pipe_buffer.buffer;
925	iov.iov_len = size;
926	uio.uio_iov = &iov;
927	uio.uio_iovcnt = 1;
928	uio.uio_offset = 0;
929	uio.uio_resid = size;
930	uio.uio_segflg = UIO_SYSSPACE;
931	uio.uio_rw = UIO_READ;
932	uio.uio_td = curthread;
933	uiomove_fromphys(wpipe->pipe_map.ms, pos, size, &uio);
934	PIPE_LOCK(wpipe);
935	pipe_destroy_write_buffer(wpipe);
936}
937
938/*
939 * This implements the pipe buffer write mechanism.  Note that only
940 * a direct write OR a normal pipe write can be pending at any given time.
941 * If there are any characters in the pipe buffer, the direct write will
942 * be deferred until the receiving process grabs all of the bytes from
943 * the pipe buffer.  Then the direct mapping write is set-up.
944 */
945static int
946pipe_direct_write(wpipe, uio)
947	struct pipe *wpipe;
948	struct uio *uio;
949{
950	int error;
951
952retry:
953	PIPE_LOCK_ASSERT(wpipe, MA_OWNED);
954	error = pipelock(wpipe, 1);
955	if (wpipe->pipe_state & PIPE_EOF)
956		error = EPIPE;
957	if (error) {
958		pipeunlock(wpipe);
959		goto error1;
960	}
961	while (wpipe->pipe_state & PIPE_DIRECTW) {
962		if (wpipe->pipe_state & PIPE_WANTR) {
963			wpipe->pipe_state &= ~PIPE_WANTR;
964			wakeup(wpipe);
965		}
966		pipeselwakeup(wpipe);
967		wpipe->pipe_state |= PIPE_WANTW;
968		pipeunlock(wpipe);
969		error = msleep(wpipe, PIPE_MTX(wpipe),
970		    PRIBIO | PCATCH, "pipdww", 0);
971		if (error)
972			goto error1;
973		else
974			goto retry;
975	}
976	wpipe->pipe_map.cnt = 0;	/* transfer not ready yet */
977	if (wpipe->pipe_buffer.cnt > 0) {
978		if (wpipe->pipe_state & PIPE_WANTR) {
979			wpipe->pipe_state &= ~PIPE_WANTR;
980			wakeup(wpipe);
981		}
982		pipeselwakeup(wpipe);
983		wpipe->pipe_state |= PIPE_WANTW;
984		pipeunlock(wpipe);
985		error = msleep(wpipe, PIPE_MTX(wpipe),
986		    PRIBIO | PCATCH, "pipdwc", 0);
987		if (error)
988			goto error1;
989		else
990			goto retry;
991	}
992
993	wpipe->pipe_state |= PIPE_DIRECTW;
994
995	PIPE_UNLOCK(wpipe);
996	error = pipe_build_write_buffer(wpipe, uio);
997	PIPE_LOCK(wpipe);
998	if (error) {
999		wpipe->pipe_state &= ~PIPE_DIRECTW;
1000		pipeunlock(wpipe);
1001		goto error1;
1002	}
1003
1004	error = 0;
1005	while (!error && (wpipe->pipe_state & PIPE_DIRECTW)) {
1006		if (wpipe->pipe_state & PIPE_EOF) {
1007			pipe_destroy_write_buffer(wpipe);
1008			pipeselwakeup(wpipe);
1009			pipeunlock(wpipe);
1010			error = EPIPE;
1011			goto error1;
1012		}
1013		if (wpipe->pipe_state & PIPE_WANTR) {
1014			wpipe->pipe_state &= ~PIPE_WANTR;
1015			wakeup(wpipe);
1016		}
1017		pipeselwakeup(wpipe);
1018		wpipe->pipe_state |= PIPE_WANTW;
1019		pipeunlock(wpipe);
1020		error = msleep(wpipe, PIPE_MTX(wpipe), PRIBIO | PCATCH,
1021		    "pipdwt", 0);
1022		pipelock(wpipe, 0);
1023	}
1024
1025	if (wpipe->pipe_state & PIPE_EOF)
1026		error = EPIPE;
1027	if (wpipe->pipe_state & PIPE_DIRECTW) {
1028		/*
1029		 * this bit of trickery substitutes a kernel buffer for
1030		 * the process that might be going away.
1031		 */
1032		pipe_clone_write_buffer(wpipe);
1033	} else {
1034		pipe_destroy_write_buffer(wpipe);
1035	}
1036	pipeunlock(wpipe);
1037	return (error);
1038
1039error1:
1040	wakeup(wpipe);
1041	return (error);
1042}
1043#endif
1044
1045static int
1046pipe_write(fp, uio, active_cred, flags, td)
1047	struct file *fp;
1048	struct uio *uio;
1049	struct ucred *active_cred;
1050	struct thread *td;
1051	int flags;
1052{
1053	int error = 0;
1054	int desiredsize;
1055	ssize_t orig_resid;
1056	struct pipe *wpipe, *rpipe;
1057
1058	rpipe = fp->f_data;
1059	wpipe = PIPE_PEER(rpipe);
1060	PIPE_LOCK(rpipe);
1061	error = pipelock(wpipe, 1);
1062	if (error) {
1063		PIPE_UNLOCK(rpipe);
1064		return (error);
1065	}
1066	/*
1067	 * detect loss of pipe read side, issue SIGPIPE if lost.
1068	 */
1069	if (wpipe->pipe_present != PIPE_ACTIVE ||
1070	    (wpipe->pipe_state & PIPE_EOF)) {
1071		pipeunlock(wpipe);
1072		PIPE_UNLOCK(rpipe);
1073		return (EPIPE);
1074	}
1075#ifdef MAC
1076	error = mac_pipe_check_write(active_cred, wpipe->pipe_pair);
1077	if (error) {
1078		pipeunlock(wpipe);
1079		PIPE_UNLOCK(rpipe);
1080		return (error);
1081	}
1082#endif
1083	++wpipe->pipe_busy;
1084
1085	/* Choose a larger size if it's advantageous */
1086	desiredsize = max(SMALL_PIPE_SIZE, wpipe->pipe_buffer.size);
1087	while (desiredsize < wpipe->pipe_buffer.cnt + uio->uio_resid) {
1088		if (piperesizeallowed != 1)
1089			break;
1090		if (amountpipekva > maxpipekva / 2)
1091			break;
1092		if (desiredsize == BIG_PIPE_SIZE)
1093			break;
1094		desiredsize = desiredsize * 2;
1095	}
1096
1097	/* Choose a smaller size if we're in a OOM situation */
1098	if ((amountpipekva > (3 * maxpipekva) / 4) &&
1099		(wpipe->pipe_buffer.size > SMALL_PIPE_SIZE) &&
1100		(wpipe->pipe_buffer.cnt <= SMALL_PIPE_SIZE) &&
1101		(piperesizeallowed == 1))
1102		desiredsize = SMALL_PIPE_SIZE;
1103
1104	/* Resize if the above determined that a new size was necessary */
1105	if ((desiredsize != wpipe->pipe_buffer.size) &&
1106		((wpipe->pipe_state & PIPE_DIRECTW) == 0)) {
1107		PIPE_UNLOCK(wpipe);
1108		pipespace(wpipe, desiredsize);
1109		PIPE_LOCK(wpipe);
1110	}
1111	if (wpipe->pipe_buffer.size == 0) {
1112		/*
1113		 * This can only happen for reverse direction use of pipes
1114		 * in a complete OOM situation.
1115		 */
1116		error = ENOMEM;
1117		--wpipe->pipe_busy;
1118		pipeunlock(wpipe);
1119		PIPE_UNLOCK(wpipe);
1120		return (error);
1121	}
1122
1123	pipeunlock(wpipe);
1124
1125	orig_resid = uio->uio_resid;
1126
1127	while (uio->uio_resid) {
1128		int space;
1129
1130		pipelock(wpipe, 0);
1131		if (wpipe->pipe_state & PIPE_EOF) {
1132			pipeunlock(wpipe);
1133			error = EPIPE;
1134			break;
1135		}
1136#ifndef PIPE_NODIRECT
1137		/*
1138		 * If the transfer is large, we can gain performance if
1139		 * we do process-to-process copies directly.
1140		 * If the write is non-blocking, we don't use the
1141		 * direct write mechanism.
1142		 *
1143		 * The direct write mechanism will detect the reader going
1144		 * away on us.
1145		 */
1146		if (uio->uio_segflg == UIO_USERSPACE &&
1147		    uio->uio_iov->iov_len >= PIPE_MINDIRECT &&
1148		    wpipe->pipe_buffer.size >= PIPE_MINDIRECT &&
1149		    (fp->f_flag & FNONBLOCK) == 0) {
1150			pipeunlock(wpipe);
1151			error = pipe_direct_write(wpipe, uio);
1152			if (error)
1153				break;
1154			continue;
1155		}
1156#endif
1157
1158		/*
1159		 * Pipe buffered writes cannot be coincidental with
1160		 * direct writes.  We wait until the currently executing
1161		 * direct write is completed before we start filling the
1162		 * pipe buffer.  We break out if a signal occurs or the
1163		 * reader goes away.
1164		 */
1165		if (wpipe->pipe_state & PIPE_DIRECTW) {
1166			if (wpipe->pipe_state & PIPE_WANTR) {
1167				wpipe->pipe_state &= ~PIPE_WANTR;
1168				wakeup(wpipe);
1169			}
1170			pipeselwakeup(wpipe);
1171			wpipe->pipe_state |= PIPE_WANTW;
1172			pipeunlock(wpipe);
1173			error = msleep(wpipe, PIPE_MTX(rpipe), PRIBIO | PCATCH,
1174			    "pipbww", 0);
1175			if (error)
1176				break;
1177			else
1178				continue;
1179		}
1180
1181		space = wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt;
1182
1183		/* Writes of size <= PIPE_BUF must be atomic. */
1184		if ((space < uio->uio_resid) && (orig_resid <= PIPE_BUF))
1185			space = 0;
1186
1187		if (space > 0) {
1188			int size;	/* Transfer size */
1189			int segsize;	/* first segment to transfer */
1190
1191			/*
1192			 * Transfer size is minimum of uio transfer
1193			 * and free space in pipe buffer.
1194			 */
1195			if (space > uio->uio_resid)
1196				size = uio->uio_resid;
1197			else
1198				size = space;
1199			/*
1200			 * First segment to transfer is minimum of
1201			 * transfer size and contiguous space in
1202			 * pipe buffer.  If first segment to transfer
1203			 * is less than the transfer size, we've got
1204			 * a wraparound in the buffer.
1205			 */
1206			segsize = wpipe->pipe_buffer.size -
1207				wpipe->pipe_buffer.in;
1208			if (segsize > size)
1209				segsize = size;
1210
1211			/* Transfer first segment */
1212
1213			PIPE_UNLOCK(rpipe);
1214			error = uiomove(&wpipe->pipe_buffer.buffer[wpipe->pipe_buffer.in],
1215					segsize, uio);
1216			PIPE_LOCK(rpipe);
1217
1218			if (error == 0 && segsize < size) {
1219				KASSERT(wpipe->pipe_buffer.in + segsize ==
1220					wpipe->pipe_buffer.size,
1221					("Pipe buffer wraparound disappeared"));
1222				/*
1223				 * Transfer remaining part now, to
1224				 * support atomic writes.  Wraparound
1225				 * happened.
1226				 */
1227
1228				PIPE_UNLOCK(rpipe);
1229				error = uiomove(
1230				    &wpipe->pipe_buffer.buffer[0],
1231				    size - segsize, uio);
1232				PIPE_LOCK(rpipe);
1233			}
1234			if (error == 0) {
1235				wpipe->pipe_buffer.in += size;
1236				if (wpipe->pipe_buffer.in >=
1237				    wpipe->pipe_buffer.size) {
1238					KASSERT(wpipe->pipe_buffer.in ==
1239						size - segsize +
1240						wpipe->pipe_buffer.size,
1241						("Expected wraparound bad"));
1242					wpipe->pipe_buffer.in = size - segsize;
1243				}
1244
1245				wpipe->pipe_buffer.cnt += size;
1246				KASSERT(wpipe->pipe_buffer.cnt <=
1247					wpipe->pipe_buffer.size,
1248					("Pipe buffer overflow"));
1249			}
1250			pipeunlock(wpipe);
1251			if (error != 0)
1252				break;
1253		} else {
1254			/*
1255			 * If the "read-side" has been blocked, wake it up now.
1256			 */
1257			if (wpipe->pipe_state & PIPE_WANTR) {
1258				wpipe->pipe_state &= ~PIPE_WANTR;
1259				wakeup(wpipe);
1260			}
1261
1262			/*
1263			 * don't block on non-blocking I/O
1264			 */
1265			if (fp->f_flag & FNONBLOCK) {
1266				error = EAGAIN;
1267				pipeunlock(wpipe);
1268				break;
1269			}
1270
1271			/*
1272			 * We have no more space and have something to offer,
1273			 * wake up select/poll.
1274			 */
1275			pipeselwakeup(wpipe);
1276
1277			wpipe->pipe_state |= PIPE_WANTW;
1278			pipeunlock(wpipe);
1279			error = msleep(wpipe, PIPE_MTX(rpipe),
1280			    PRIBIO | PCATCH, "pipewr", 0);
1281			if (error != 0)
1282				break;
1283		}
1284	}
1285
1286	pipelock(wpipe, 0);
1287	--wpipe->pipe_busy;
1288
1289	if ((wpipe->pipe_busy == 0) && (wpipe->pipe_state & PIPE_WANT)) {
1290		wpipe->pipe_state &= ~(PIPE_WANT | PIPE_WANTR);
1291		wakeup(wpipe);
1292	} else if (wpipe->pipe_buffer.cnt > 0) {
1293		/*
1294		 * If we have put any characters in the buffer, we wake up
1295		 * the reader.
1296		 */
1297		if (wpipe->pipe_state & PIPE_WANTR) {
1298			wpipe->pipe_state &= ~PIPE_WANTR;
1299			wakeup(wpipe);
1300		}
1301	}
1302
1303	/*
1304	 * Don't return EPIPE if I/O was successful
1305	 */
1306	if ((wpipe->pipe_buffer.cnt == 0) &&
1307	    (uio->uio_resid == 0) &&
1308	    (error == EPIPE)) {
1309		error = 0;
1310	}
1311
1312	if (error == 0)
1313		vfs_timestamp(&wpipe->pipe_mtime);
1314
1315	/*
1316	 * We have something to offer,
1317	 * wake up select/poll.
1318	 */
1319	if (wpipe->pipe_buffer.cnt)
1320		pipeselwakeup(wpipe);
1321
1322	pipeunlock(wpipe);
1323	PIPE_UNLOCK(rpipe);
1324	return (error);
1325}
1326
1327/* ARGSUSED */
1328static int
1329pipe_truncate(fp, length, active_cred, td)
1330	struct file *fp;
1331	off_t length;
1332	struct ucred *active_cred;
1333	struct thread *td;
1334{
1335
1336	/* For named pipes call the vnode operation. */
1337	if (fp->f_vnode != NULL)
1338		return (vnops.fo_truncate(fp, length, active_cred, td));
1339	return (EINVAL);
1340}
1341
1342/*
1343 * we implement a very minimal set of ioctls for compatibility with sockets.
1344 */
1345static int
1346pipe_ioctl(fp, cmd, data, active_cred, td)
1347	struct file *fp;
1348	u_long cmd;
1349	void *data;
1350	struct ucred *active_cred;
1351	struct thread *td;
1352{
1353	struct pipe *mpipe = fp->f_data;
1354	int error;
1355
1356	PIPE_LOCK(mpipe);
1357
1358#ifdef MAC
1359	error = mac_pipe_check_ioctl(active_cred, mpipe->pipe_pair, cmd, data);
1360	if (error) {
1361		PIPE_UNLOCK(mpipe);
1362		return (error);
1363	}
1364#endif
1365
1366	error = 0;
1367	switch (cmd) {
1368
1369	case FIONBIO:
1370		break;
1371
1372	case FIOASYNC:
1373		if (*(int *)data) {
1374			mpipe->pipe_state |= PIPE_ASYNC;
1375		} else {
1376			mpipe->pipe_state &= ~PIPE_ASYNC;
1377		}
1378		break;
1379
1380	case FIONREAD:
1381		if (!(fp->f_flag & FREAD)) {
1382			*(int *)data = 0;
1383			PIPE_UNLOCK(mpipe);
1384			return (0);
1385		}
1386		if (mpipe->pipe_state & PIPE_DIRECTW)
1387			*(int *)data = mpipe->pipe_map.cnt;
1388		else
1389			*(int *)data = mpipe->pipe_buffer.cnt;
1390		break;
1391
1392	case FIOSETOWN:
1393		PIPE_UNLOCK(mpipe);
1394		error = fsetown(*(int *)data, &mpipe->pipe_sigio);
1395		goto out_unlocked;
1396
1397	case FIOGETOWN:
1398		*(int *)data = fgetown(&mpipe->pipe_sigio);
1399		break;
1400
1401	/* This is deprecated, FIOSETOWN should be used instead. */
1402	case TIOCSPGRP:
1403		PIPE_UNLOCK(mpipe);
1404		error = fsetown(-(*(int *)data), &mpipe->pipe_sigio);
1405		goto out_unlocked;
1406
1407	/* This is deprecated, FIOGETOWN should be used instead. */
1408	case TIOCGPGRP:
1409		*(int *)data = -fgetown(&mpipe->pipe_sigio);
1410		break;
1411
1412	default:
1413		error = ENOTTY;
1414		break;
1415	}
1416	PIPE_UNLOCK(mpipe);
1417out_unlocked:
1418	return (error);
1419}
1420
1421static int
1422pipe_poll(fp, events, active_cred, td)
1423	struct file *fp;
1424	int events;
1425	struct ucred *active_cred;
1426	struct thread *td;
1427{
1428	struct pipe *rpipe;
1429	struct pipe *wpipe;
1430	int levents, revents;
1431#ifdef MAC
1432	int error;
1433#endif
1434
1435	revents = 0;
1436	rpipe = fp->f_data;
1437	wpipe = PIPE_PEER(rpipe);
1438	PIPE_LOCK(rpipe);
1439#ifdef MAC
1440	error = mac_pipe_check_poll(active_cred, rpipe->pipe_pair);
1441	if (error)
1442		goto locked_error;
1443#endif
1444	if (fp->f_flag & FREAD && events & (POLLIN | POLLRDNORM))
1445		if ((rpipe->pipe_state & PIPE_DIRECTW) ||
1446		    (rpipe->pipe_buffer.cnt > 0))
1447			revents |= events & (POLLIN | POLLRDNORM);
1448
1449	if (fp->f_flag & FWRITE && events & (POLLOUT | POLLWRNORM))
1450		if (wpipe->pipe_present != PIPE_ACTIVE ||
1451		    (wpipe->pipe_state & PIPE_EOF) ||
1452		    (((wpipe->pipe_state & PIPE_DIRECTW) == 0) &&
1453		     ((wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt) >= PIPE_BUF ||
1454			 wpipe->pipe_buffer.size == 0)))
1455			revents |= events & (POLLOUT | POLLWRNORM);
1456
1457	levents = events &
1458	    (POLLIN | POLLINIGNEOF | POLLPRI | POLLRDNORM | POLLRDBAND);
1459	if (rpipe->pipe_state & PIPE_NAMED && fp->f_flag & FREAD && levents &&
1460	    fp->f_seqcount == rpipe->pipe_wgen)
1461		events |= POLLINIGNEOF;
1462
1463	if ((events & POLLINIGNEOF) == 0) {
1464		if (rpipe->pipe_state & PIPE_EOF) {
1465			revents |= (events & (POLLIN | POLLRDNORM));
1466			if (wpipe->pipe_present != PIPE_ACTIVE ||
1467			    (wpipe->pipe_state & PIPE_EOF))
1468				revents |= POLLHUP;
1469		}
1470	}
1471
1472	if (revents == 0) {
1473		if (fp->f_flag & FREAD && events & (POLLIN | POLLRDNORM)) {
1474			selrecord(td, &rpipe->pipe_sel);
1475			if (SEL_WAITING(&rpipe->pipe_sel))
1476				rpipe->pipe_state |= PIPE_SEL;
1477		}
1478
1479		if (fp->f_flag & FWRITE && events & (POLLOUT | POLLWRNORM)) {
1480			selrecord(td, &wpipe->pipe_sel);
1481			if (SEL_WAITING(&wpipe->pipe_sel))
1482				wpipe->pipe_state |= PIPE_SEL;
1483		}
1484	}
1485#ifdef MAC
1486locked_error:
1487#endif
1488	PIPE_UNLOCK(rpipe);
1489
1490	return (revents);
1491}
1492
1493/*
1494 * We shouldn't need locks here as we're doing a read and this should
1495 * be a natural race.
1496 */
1497static int
1498pipe_stat(fp, ub, active_cred, td)
1499	struct file *fp;
1500	struct stat *ub;
1501	struct ucred *active_cred;
1502	struct thread *td;
1503{
1504	struct pipe *pipe;
1505	int new_unr;
1506#ifdef MAC
1507	int error;
1508#endif
1509
1510	pipe = fp->f_data;
1511	PIPE_LOCK(pipe);
1512#ifdef MAC
1513	error = mac_pipe_check_stat(active_cred, pipe->pipe_pair);
1514	if (error) {
1515		PIPE_UNLOCK(pipe);
1516		return (error);
1517	}
1518#endif
1519
1520	/* For named pipes ask the underlying filesystem. */
1521	if (pipe->pipe_state & PIPE_NAMED) {
1522		PIPE_UNLOCK(pipe);
1523		return (vnops.fo_stat(fp, ub, active_cred, td));
1524	}
1525
1526	/*
1527	 * Lazily allocate an inode number for the pipe.  Most pipe
1528	 * users do not call fstat(2) on the pipe, which means that
1529	 * postponing the inode allocation until it is must be
1530	 * returned to userland is useful.  If alloc_unr failed,
1531	 * assign st_ino zero instead of returning an error.
1532	 * Special pipe_ino values:
1533	 *  -1 - not yet initialized;
1534	 *  0  - alloc_unr failed, return 0 as st_ino forever.
1535	 */
1536	if (pipe->pipe_ino == (ino_t)-1) {
1537		new_unr = alloc_unr(pipeino_unr);
1538		if (new_unr != -1)
1539			pipe->pipe_ino = new_unr;
1540		else
1541			pipe->pipe_ino = 0;
1542	}
1543	PIPE_UNLOCK(pipe);
1544
1545	bzero(ub, sizeof(*ub));
1546	ub->st_mode = S_IFIFO;
1547	ub->st_blksize = PAGE_SIZE;
1548	if (pipe->pipe_state & PIPE_DIRECTW)
1549		ub->st_size = pipe->pipe_map.cnt;
1550	else
1551		ub->st_size = pipe->pipe_buffer.cnt;
1552	ub->st_blocks = (ub->st_size + ub->st_blksize - 1) / ub->st_blksize;
1553	ub->st_atim = pipe->pipe_atime;
1554	ub->st_mtim = pipe->pipe_mtime;
1555	ub->st_ctim = pipe->pipe_ctime;
1556	ub->st_uid = fp->f_cred->cr_uid;
1557	ub->st_gid = fp->f_cred->cr_gid;
1558	ub->st_dev = pipedev_ino;
1559	ub->st_ino = pipe->pipe_ino;
1560	/*
1561	 * Left as 0: st_nlink, st_rdev, st_flags, st_gen.
1562	 */
1563	return (0);
1564}
1565
1566/* ARGSUSED */
1567static int
1568pipe_close(fp, td)
1569	struct file *fp;
1570	struct thread *td;
1571{
1572
1573	if (fp->f_vnode != NULL)
1574		return vnops.fo_close(fp, td);
1575	fp->f_ops = &badfileops;
1576	pipe_dtor(fp->f_data);
1577	fp->f_data = NULL;
1578	return (0);
1579}
1580
1581static int
1582pipe_chmod(struct file *fp, mode_t mode, struct ucred *active_cred, struct thread *td)
1583{
1584	struct pipe *cpipe;
1585	int error;
1586
1587	cpipe = fp->f_data;
1588	if (cpipe->pipe_state & PIPE_NAMED)
1589		error = vn_chmod(fp, mode, active_cred, td);
1590	else
1591		error = invfo_chmod(fp, mode, active_cred, td);
1592	return (error);
1593}
1594
1595static int
1596pipe_chown(fp, uid, gid, active_cred, td)
1597	struct file *fp;
1598	uid_t uid;
1599	gid_t gid;
1600	struct ucred *active_cred;
1601	struct thread *td;
1602{
1603	struct pipe *cpipe;
1604	int error;
1605
1606	cpipe = fp->f_data;
1607	if (cpipe->pipe_state & PIPE_NAMED)
1608		error = vn_chown(fp, uid, gid, active_cred, td);
1609	else
1610		error = invfo_chown(fp, uid, gid, active_cred, td);
1611	return (error);
1612}
1613
1614static void
1615pipe_free_kmem(cpipe)
1616	struct pipe *cpipe;
1617{
1618
1619	KASSERT(!mtx_owned(PIPE_MTX(cpipe)),
1620	    ("pipe_free_kmem: pipe mutex locked"));
1621
1622	if (cpipe->pipe_buffer.buffer != NULL) {
1623		atomic_subtract_long(&amountpipekva, cpipe->pipe_buffer.size);
1624		vm_map_remove(pipe_map,
1625		    (vm_offset_t)cpipe->pipe_buffer.buffer,
1626		    (vm_offset_t)cpipe->pipe_buffer.buffer + cpipe->pipe_buffer.size);
1627		cpipe->pipe_buffer.buffer = NULL;
1628	}
1629#ifndef PIPE_NODIRECT
1630	{
1631		cpipe->pipe_map.cnt = 0;
1632		cpipe->pipe_map.pos = 0;
1633		cpipe->pipe_map.npages = 0;
1634	}
1635#endif
1636}
1637
1638/*
1639 * shutdown the pipe
1640 */
1641static void
1642pipeclose(cpipe)
1643	struct pipe *cpipe;
1644{
1645	struct pipepair *pp;
1646	struct pipe *ppipe;
1647
1648	KASSERT(cpipe != NULL, ("pipeclose: cpipe == NULL"));
1649
1650	PIPE_LOCK(cpipe);
1651	pipelock(cpipe, 0);
1652	pp = cpipe->pipe_pair;
1653
1654	pipeselwakeup(cpipe);
1655
1656	/*
1657	 * If the other side is blocked, wake it up saying that
1658	 * we want to close it down.
1659	 */
1660	cpipe->pipe_state |= PIPE_EOF;
1661	while (cpipe->pipe_busy) {
1662		wakeup(cpipe);
1663		cpipe->pipe_state |= PIPE_WANT;
1664		pipeunlock(cpipe);
1665		msleep(cpipe, PIPE_MTX(cpipe), PRIBIO, "pipecl", 0);
1666		pipelock(cpipe, 0);
1667	}
1668
1669
1670	/*
1671	 * Disconnect from peer, if any.
1672	 */
1673	ppipe = cpipe->pipe_peer;
1674	if (ppipe->pipe_present == PIPE_ACTIVE) {
1675		pipeselwakeup(ppipe);
1676
1677		ppipe->pipe_state |= PIPE_EOF;
1678		wakeup(ppipe);
1679		KNOTE_LOCKED(&ppipe->pipe_sel.si_note, 0);
1680	}
1681
1682	/*
1683	 * Mark this endpoint as free.  Release kmem resources.  We
1684	 * don't mark this endpoint as unused until we've finished
1685	 * doing that, or the pipe might disappear out from under
1686	 * us.
1687	 */
1688	PIPE_UNLOCK(cpipe);
1689	pipe_free_kmem(cpipe);
1690	PIPE_LOCK(cpipe);
1691	cpipe->pipe_present = PIPE_CLOSING;
1692	pipeunlock(cpipe);
1693
1694	/*
1695	 * knlist_clear() may sleep dropping the PIPE_MTX. Set the
1696	 * PIPE_FINALIZED, that allows other end to free the
1697	 * pipe_pair, only after the knotes are completely dismantled.
1698	 */
1699	knlist_clear(&cpipe->pipe_sel.si_note, 1);
1700	cpipe->pipe_present = PIPE_FINALIZED;
1701	seldrain(&cpipe->pipe_sel);
1702	knlist_destroy(&cpipe->pipe_sel.si_note);
1703
1704	/*
1705	 * If both endpoints are now closed, release the memory for the
1706	 * pipe pair.  If not, unlock.
1707	 */
1708	if (ppipe->pipe_present == PIPE_FINALIZED) {
1709		PIPE_UNLOCK(cpipe);
1710#ifdef MAC
1711		mac_pipe_destroy(pp);
1712#endif
1713		uma_zfree(pipe_zone, cpipe->pipe_pair);
1714	} else
1715		PIPE_UNLOCK(cpipe);
1716}
1717
1718/*ARGSUSED*/
1719static int
1720pipe_kqfilter(struct file *fp, struct knote *kn)
1721{
1722	struct pipe *cpipe;
1723
1724	/*
1725	 * If a filter is requested that is not supported by this file
1726	 * descriptor, don't return an error, but also don't ever generate an
1727	 * event.
1728	 */
1729	if ((kn->kn_filter == EVFILT_READ) && !(fp->f_flag & FREAD)) {
1730		kn->kn_fop = &pipe_nfiltops;
1731		return (0);
1732	}
1733	if ((kn->kn_filter == EVFILT_WRITE) && !(fp->f_flag & FWRITE)) {
1734		kn->kn_fop = &pipe_nfiltops;
1735		return (0);
1736	}
1737	cpipe = fp->f_data;
1738	PIPE_LOCK(cpipe);
1739	switch (kn->kn_filter) {
1740	case EVFILT_READ:
1741		kn->kn_fop = &pipe_rfiltops;
1742		break;
1743	case EVFILT_WRITE:
1744		kn->kn_fop = &pipe_wfiltops;
1745		if (cpipe->pipe_peer->pipe_present != PIPE_ACTIVE) {
1746			/* other end of pipe has been closed */
1747			PIPE_UNLOCK(cpipe);
1748			return (EPIPE);
1749		}
1750		cpipe = PIPE_PEER(cpipe);
1751		break;
1752	default:
1753		PIPE_UNLOCK(cpipe);
1754		return (EINVAL);
1755	}
1756
1757	kn->kn_hook = cpipe;
1758	knlist_add(&cpipe->pipe_sel.si_note, kn, 1);
1759	PIPE_UNLOCK(cpipe);
1760	return (0);
1761}
1762
1763static void
1764filt_pipedetach(struct knote *kn)
1765{
1766	struct pipe *cpipe = kn->kn_hook;
1767
1768	PIPE_LOCK(cpipe);
1769	knlist_remove(&cpipe->pipe_sel.si_note, kn, 1);
1770	PIPE_UNLOCK(cpipe);
1771}
1772
1773/*ARGSUSED*/
1774static int
1775filt_piperead(struct knote *kn, long hint)
1776{
1777	struct pipe *rpipe = kn->kn_hook;
1778	struct pipe *wpipe = rpipe->pipe_peer;
1779	int ret;
1780
1781	PIPE_LOCK(rpipe);
1782	kn->kn_data = rpipe->pipe_buffer.cnt;
1783	if ((kn->kn_data == 0) && (rpipe->pipe_state & PIPE_DIRECTW))
1784		kn->kn_data = rpipe->pipe_map.cnt;
1785
1786	if ((rpipe->pipe_state & PIPE_EOF) ||
1787	    wpipe->pipe_present != PIPE_ACTIVE ||
1788	    (wpipe->pipe_state & PIPE_EOF)) {
1789		kn->kn_flags |= EV_EOF;
1790		PIPE_UNLOCK(rpipe);
1791		return (1);
1792	}
1793	ret = kn->kn_data > 0;
1794	PIPE_UNLOCK(rpipe);
1795	return ret;
1796}
1797
1798/*ARGSUSED*/
1799static int
1800filt_pipewrite(struct knote *kn, long hint)
1801{
1802	struct pipe *wpipe;
1803
1804	wpipe = kn->kn_hook;
1805	PIPE_LOCK(wpipe);
1806	if (wpipe->pipe_present != PIPE_ACTIVE ||
1807	    (wpipe->pipe_state & PIPE_EOF)) {
1808		kn->kn_data = 0;
1809		kn->kn_flags |= EV_EOF;
1810		PIPE_UNLOCK(wpipe);
1811		return (1);
1812	}
1813	kn->kn_data = (wpipe->pipe_buffer.size > 0) ?
1814	    (wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt) : PIPE_BUF;
1815	if (wpipe->pipe_state & PIPE_DIRECTW)
1816		kn->kn_data = 0;
1817
1818	PIPE_UNLOCK(wpipe);
1819	return (kn->kn_data >= PIPE_BUF);
1820}
1821
1822static void
1823filt_pipedetach_notsup(struct knote *kn)
1824{
1825
1826}
1827
1828static int
1829filt_pipenotsup(struct knote *kn, long hint)
1830{
1831
1832	return (0);
1833}
1834