sys_pipe.c revision 189649
1/*-
2 * Copyright (c) 1996 John S. Dyson
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice immediately at the beginning of the file, without modification,
10 *    this list of conditions, and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 * 3. Absolutely no warranty of function or purpose is made by the author
15 *    John S. Dyson.
16 * 4. Modifications may be freely made to this file if the above conditions
17 *    are met.
18 */
19
20/*
21 * This file contains a high-performance replacement for the socket-based
22 * pipes scheme originally used in FreeBSD/4.4Lite.  It does not support
23 * all features of sockets, but does do everything that pipes normally
24 * do.
25 */
26
27/*
28 * This code has two modes of operation, a small write mode and a large
29 * write mode.  The small write mode acts like conventional pipes with
30 * a kernel buffer.  If the buffer is less than PIPE_MINDIRECT, then the
31 * "normal" pipe buffering is done.  If the buffer is between PIPE_MINDIRECT
32 * and PIPE_SIZE in size, it is fully mapped and wired into the kernel, and
33 * the receiving process can copy it directly from the pages in the sending
34 * process.
35 *
36 * If the sending process receives a signal, it is possible that it will
37 * go away, and certainly its address space can change, because control
38 * is returned back to the user-mode side.  In that case, the pipe code
39 * arranges to copy the buffer supplied by the user process, to a pageable
40 * kernel buffer, and the receiving process will grab the data from the
41 * pageable kernel buffer.  Since signals don't happen all that often,
42 * the copy operation is normally eliminated.
43 *
44 * The constant PIPE_MINDIRECT is chosen to make sure that buffering will
45 * happen for small transfers so that the system will not spend all of
46 * its time context switching.
47 *
48 * In order to limit the resource use of pipes, two sysctls exist:
49 *
50 * kern.ipc.maxpipekva - This is a hard limit on the amount of pageable
51 * address space available to us in pipe_map. This value is normally
52 * autotuned, but may also be loader tuned.
53 *
54 * kern.ipc.pipekva - This read-only sysctl tracks the current amount of
55 * memory in use by pipes.
56 *
57 * Based on how large pipekva is relative to maxpipekva, the following
58 * will happen:
59 *
60 * 0% - 50%:
61 *     New pipes are given 16K of memory backing, pipes may dynamically
62 *     grow to as large as 64K where needed.
63 * 50% - 75%:
64 *     New pipes are given 4K (or PAGE_SIZE) of memory backing,
65 *     existing pipes may NOT grow.
66 * 75% - 100%:
67 *     New pipes are given 4K (or PAGE_SIZE) of memory backing,
68 *     existing pipes will be shrunk down to 4K whenever possible.
69 *
70 * Resizing may be disabled by setting kern.ipc.piperesizeallowed=0.  If
71 * that is set,  the only resize that will occur is the 0 -> SMALL_PIPE_SIZE
72 * resize which MUST occur for reverse-direction pipes when they are
73 * first used.
74 *
75 * Additional information about the current state of pipes may be obtained
76 * from kern.ipc.pipes, kern.ipc.pipefragretry, kern.ipc.pipeallocfail,
77 * and kern.ipc.piperesizefail.
78 *
79 * Locking rules:  There are two locks present here:  A mutex, used via
80 * PIPE_LOCK, and a flag, used via pipelock().  All locking is done via
81 * the flag, as mutexes can not persist over uiomove.  The mutex
82 * exists only to guard access to the flag, and is not in itself a
83 * locking mechanism.  Also note that there is only a single mutex for
84 * both directions of a pipe.
85 *
86 * As pipelock() may have to sleep before it can acquire the flag, it
87 * is important to reread all data after a call to pipelock(); everything
88 * in the structure may have changed.
89 */
90
91#include <sys/cdefs.h>
92__FBSDID("$FreeBSD: head/sys/kern/sys_pipe.c 189649 2009-03-10 21:28:43Z jhb $");
93
94#include "opt_mac.h"
95
96#include <sys/param.h>
97#include <sys/systm.h>
98#include <sys/fcntl.h>
99#include <sys/file.h>
100#include <sys/filedesc.h>
101#include <sys/filio.h>
102#include <sys/kernel.h>
103#include <sys/lock.h>
104#include <sys/mutex.h>
105#include <sys/ttycom.h>
106#include <sys/stat.h>
107#include <sys/malloc.h>
108#include <sys/poll.h>
109#include <sys/selinfo.h>
110#include <sys/signalvar.h>
111#include <sys/syscallsubr.h>
112#include <sys/sysctl.h>
113#include <sys/sysproto.h>
114#include <sys/pipe.h>
115#include <sys/proc.h>
116#include <sys/vnode.h>
117#include <sys/uio.h>
118#include <sys/event.h>
119
120#include <security/mac/mac_framework.h>
121
122#include <vm/vm.h>
123#include <vm/vm_param.h>
124#include <vm/vm_object.h>
125#include <vm/vm_kern.h>
126#include <vm/vm_extern.h>
127#include <vm/pmap.h>
128#include <vm/vm_map.h>
129#include <vm/vm_page.h>
130#include <vm/uma.h>
131
132/*
133 * Use this define if you want to disable *fancy* VM things.  Expect an
134 * approx 30% decrease in transfer rate.  This could be useful for
135 * NetBSD or OpenBSD.
136 */
137/* #define PIPE_NODIRECT */
138
139/*
140 * interfaces to the outside world
141 */
142static fo_rdwr_t	pipe_read;
143static fo_rdwr_t	pipe_write;
144static fo_truncate_t	pipe_truncate;
145static fo_ioctl_t	pipe_ioctl;
146static fo_poll_t	pipe_poll;
147static fo_kqfilter_t	pipe_kqfilter;
148static fo_stat_t	pipe_stat;
149static fo_close_t	pipe_close;
150
151static struct fileops pipeops = {
152	.fo_read = pipe_read,
153	.fo_write = pipe_write,
154	.fo_truncate = pipe_truncate,
155	.fo_ioctl = pipe_ioctl,
156	.fo_poll = pipe_poll,
157	.fo_kqfilter = pipe_kqfilter,
158	.fo_stat = pipe_stat,
159	.fo_close = pipe_close,
160	.fo_flags = DFLAG_PASSABLE
161};
162
163static void	filt_pipedetach(struct knote *kn);
164static int	filt_piperead(struct knote *kn, long hint);
165static int	filt_pipewrite(struct knote *kn, long hint);
166
167static struct filterops pipe_rfiltops =
168	{ 1, NULL, filt_pipedetach, filt_piperead };
169static struct filterops pipe_wfiltops =
170	{ 1, NULL, filt_pipedetach, filt_pipewrite };
171
172/*
173 * Default pipe buffer size(s), this can be kind-of large now because pipe
174 * space is pageable.  The pipe code will try to maintain locality of
175 * reference for performance reasons, so small amounts of outstanding I/O
176 * will not wipe the cache.
177 */
178#define MINPIPESIZE (PIPE_SIZE/3)
179#define MAXPIPESIZE (2*PIPE_SIZE/3)
180
181static long amountpipekva;
182static int pipefragretry;
183static int pipeallocfail;
184static int piperesizefail;
185static int piperesizeallowed = 1;
186
187SYSCTL_LONG(_kern_ipc, OID_AUTO, maxpipekva, CTLFLAG_RDTUN,
188	   &maxpipekva, 0, "Pipe KVA limit");
189SYSCTL_LONG(_kern_ipc, OID_AUTO, pipekva, CTLFLAG_RD,
190	   &amountpipekva, 0, "Pipe KVA usage");
191SYSCTL_INT(_kern_ipc, OID_AUTO, pipefragretry, CTLFLAG_RD,
192	  &pipefragretry, 0, "Pipe allocation retries due to fragmentation");
193SYSCTL_INT(_kern_ipc, OID_AUTO, pipeallocfail, CTLFLAG_RD,
194	  &pipeallocfail, 0, "Pipe allocation failures");
195SYSCTL_INT(_kern_ipc, OID_AUTO, piperesizefail, CTLFLAG_RD,
196	  &piperesizefail, 0, "Pipe resize failures");
197SYSCTL_INT(_kern_ipc, OID_AUTO, piperesizeallowed, CTLFLAG_RW,
198	  &piperesizeallowed, 0, "Pipe resizing allowed");
199
200static void pipeinit(void *dummy __unused);
201static void pipeclose(struct pipe *cpipe);
202static void pipe_free_kmem(struct pipe *cpipe);
203static int pipe_create(struct pipe *pipe, int backing);
204static __inline int pipelock(struct pipe *cpipe, int catch);
205static __inline void pipeunlock(struct pipe *cpipe);
206static __inline void pipeselwakeup(struct pipe *cpipe);
207#ifndef PIPE_NODIRECT
208static int pipe_build_write_buffer(struct pipe *wpipe, struct uio *uio);
209static void pipe_destroy_write_buffer(struct pipe *wpipe);
210static int pipe_direct_write(struct pipe *wpipe, struct uio *uio);
211static void pipe_clone_write_buffer(struct pipe *wpipe);
212#endif
213static int pipespace(struct pipe *cpipe, int size);
214static int pipespace_new(struct pipe *cpipe, int size);
215
216static int	pipe_zone_ctor(void *mem, int size, void *arg, int flags);
217static int	pipe_zone_init(void *mem, int size, int flags);
218static void	pipe_zone_fini(void *mem, int size);
219
220static uma_zone_t pipe_zone;
221
222SYSINIT(vfs, SI_SUB_VFS, SI_ORDER_ANY, pipeinit, NULL);
223
224static void
225pipeinit(void *dummy __unused)
226{
227
228	pipe_zone = uma_zcreate("pipe", sizeof(struct pipepair),
229	    pipe_zone_ctor, NULL, pipe_zone_init, pipe_zone_fini,
230	    UMA_ALIGN_PTR, 0);
231	KASSERT(pipe_zone != NULL, ("pipe_zone not initialized"));
232}
233
234static int
235pipe_zone_ctor(void *mem, int size, void *arg, int flags)
236{
237	struct pipepair *pp;
238	struct pipe *rpipe, *wpipe;
239
240	KASSERT(size == sizeof(*pp), ("pipe_zone_ctor: wrong size"));
241
242	pp = (struct pipepair *)mem;
243
244	/*
245	 * We zero both pipe endpoints to make sure all the kmem pointers
246	 * are NULL, flag fields are zero'd, etc.  We timestamp both
247	 * endpoints with the same time.
248	 */
249	rpipe = &pp->pp_rpipe;
250	bzero(rpipe, sizeof(*rpipe));
251	vfs_timestamp(&rpipe->pipe_ctime);
252	rpipe->pipe_atime = rpipe->pipe_mtime = rpipe->pipe_ctime;
253
254	wpipe = &pp->pp_wpipe;
255	bzero(wpipe, sizeof(*wpipe));
256	wpipe->pipe_ctime = rpipe->pipe_ctime;
257	wpipe->pipe_atime = wpipe->pipe_mtime = rpipe->pipe_ctime;
258
259	rpipe->pipe_peer = wpipe;
260	rpipe->pipe_pair = pp;
261	wpipe->pipe_peer = rpipe;
262	wpipe->pipe_pair = pp;
263
264	/*
265	 * Mark both endpoints as present; they will later get free'd
266	 * one at a time.  When both are free'd, then the whole pair
267	 * is released.
268	 */
269	rpipe->pipe_present = PIPE_ACTIVE;
270	wpipe->pipe_present = PIPE_ACTIVE;
271
272	/*
273	 * Eventually, the MAC Framework may initialize the label
274	 * in ctor or init, but for now we do it elswhere to avoid
275	 * blocking in ctor or init.
276	 */
277	pp->pp_label = NULL;
278
279	return (0);
280}
281
282static int
283pipe_zone_init(void *mem, int size, int flags)
284{
285	struct pipepair *pp;
286
287	KASSERT(size == sizeof(*pp), ("pipe_zone_init: wrong size"));
288
289	pp = (struct pipepair *)mem;
290
291	mtx_init(&pp->pp_mtx, "pipe mutex", NULL, MTX_DEF | MTX_RECURSE);
292	return (0);
293}
294
295static void
296pipe_zone_fini(void *mem, int size)
297{
298	struct pipepair *pp;
299
300	KASSERT(size == sizeof(*pp), ("pipe_zone_fini: wrong size"));
301
302	pp = (struct pipepair *)mem;
303
304	mtx_destroy(&pp->pp_mtx);
305}
306
307/*
308 * The pipe system call for the DTYPE_PIPE type of pipes.  If we fail, let
309 * the zone pick up the pieces via pipeclose().
310 */
311int
312kern_pipe(struct thread *td, int fildes[2])
313{
314	struct filedesc *fdp = td->td_proc->p_fd;
315	struct file *rf, *wf;
316	struct pipepair *pp;
317	struct pipe *rpipe, *wpipe;
318	int fd, error;
319
320	pp = uma_zalloc(pipe_zone, M_WAITOK);
321#ifdef MAC
322	/*
323	 * The MAC label is shared between the connected endpoints.  As a
324	 * result mac_pipe_init() and mac_pipe_create() are called once
325	 * for the pair, and not on the endpoints.
326	 */
327	mac_pipe_init(pp);
328	mac_pipe_create(td->td_ucred, pp);
329#endif
330	rpipe = &pp->pp_rpipe;
331	wpipe = &pp->pp_wpipe;
332
333	knlist_init(&rpipe->pipe_sel.si_note, PIPE_MTX(rpipe), NULL, NULL,
334	    NULL);
335	knlist_init(&wpipe->pipe_sel.si_note, PIPE_MTX(wpipe), NULL, NULL,
336	    NULL);
337
338	/* Only the forward direction pipe is backed by default */
339	if ((error = pipe_create(rpipe, 1)) != 0 ||
340	    (error = pipe_create(wpipe, 0)) != 0) {
341		pipeclose(rpipe);
342		pipeclose(wpipe);
343		return (error);
344	}
345
346	rpipe->pipe_state |= PIPE_DIRECTOK;
347	wpipe->pipe_state |= PIPE_DIRECTOK;
348
349	error = falloc(td, &rf, &fd);
350	if (error) {
351		pipeclose(rpipe);
352		pipeclose(wpipe);
353		return (error);
354	}
355	/* An extra reference on `rf' has been held for us by falloc(). */
356	fildes[0] = fd;
357
358	/*
359	 * Warning: once we've gotten past allocation of the fd for the
360	 * read-side, we can only drop the read side via fdrop() in order
361	 * to avoid races against processes which manage to dup() the read
362	 * side while we are blocked trying to allocate the write side.
363	 */
364	finit(rf, FREAD | FWRITE, DTYPE_PIPE, rpipe, &pipeops);
365	error = falloc(td, &wf, &fd);
366	if (error) {
367		fdclose(fdp, rf, fildes[0], td);
368		fdrop(rf, td);
369		/* rpipe has been closed by fdrop(). */
370		pipeclose(wpipe);
371		return (error);
372	}
373	/* An extra reference on `wf' has been held for us by falloc(). */
374	finit(wf, FREAD | FWRITE, DTYPE_PIPE, wpipe, &pipeops);
375	fdrop(wf, td);
376	fildes[1] = fd;
377	fdrop(rf, td);
378
379	return (0);
380}
381
382/* ARGSUSED */
383int
384pipe(struct thread *td, struct pipe_args *uap)
385{
386	int error;
387	int fildes[2];
388
389	error = kern_pipe(td, fildes);
390	if (error)
391		return (error);
392
393	td->td_retval[0] = fildes[0];
394	td->td_retval[1] = fildes[1];
395
396	return (0);
397}
398
399/*
400 * Allocate kva for pipe circular buffer, the space is pageable
401 * This routine will 'realloc' the size of a pipe safely, if it fails
402 * it will retain the old buffer.
403 * If it fails it will return ENOMEM.
404 */
405static int
406pipespace_new(cpipe, size)
407	struct pipe *cpipe;
408	int size;
409{
410	caddr_t buffer;
411	int error, cnt, firstseg;
412	static int curfail = 0;
413	static struct timeval lastfail;
414
415	KASSERT(!mtx_owned(PIPE_MTX(cpipe)), ("pipespace: pipe mutex locked"));
416	KASSERT(!(cpipe->pipe_state & PIPE_DIRECTW),
417		("pipespace: resize of direct writes not allowed"));
418retry:
419	cnt = cpipe->pipe_buffer.cnt;
420	if (cnt > size)
421		size = cnt;
422
423	size = round_page(size);
424	buffer = (caddr_t) vm_map_min(pipe_map);
425
426	error = vm_map_find(pipe_map, NULL, 0,
427		(vm_offset_t *) &buffer, size, 1,
428		VM_PROT_ALL, VM_PROT_ALL, 0);
429	if (error != KERN_SUCCESS) {
430		if ((cpipe->pipe_buffer.buffer == NULL) &&
431			(size > SMALL_PIPE_SIZE)) {
432			size = SMALL_PIPE_SIZE;
433			pipefragretry++;
434			goto retry;
435		}
436		if (cpipe->pipe_buffer.buffer == NULL) {
437			pipeallocfail++;
438			if (ppsratecheck(&lastfail, &curfail, 1))
439				printf("kern.ipc.maxpipekva exceeded; see tuning(7)\n");
440		} else {
441			piperesizefail++;
442		}
443		return (ENOMEM);
444	}
445
446	/* copy data, then free old resources if we're resizing */
447	if (cnt > 0) {
448		if (cpipe->pipe_buffer.in <= cpipe->pipe_buffer.out) {
449			firstseg = cpipe->pipe_buffer.size - cpipe->pipe_buffer.out;
450			bcopy(&cpipe->pipe_buffer.buffer[cpipe->pipe_buffer.out],
451				buffer, firstseg);
452			if ((cnt - firstseg) > 0)
453				bcopy(cpipe->pipe_buffer.buffer, &buffer[firstseg],
454					cpipe->pipe_buffer.in);
455		} else {
456			bcopy(&cpipe->pipe_buffer.buffer[cpipe->pipe_buffer.out],
457				buffer, cnt);
458		}
459	}
460	pipe_free_kmem(cpipe);
461	cpipe->pipe_buffer.buffer = buffer;
462	cpipe->pipe_buffer.size = size;
463	cpipe->pipe_buffer.in = cnt;
464	cpipe->pipe_buffer.out = 0;
465	cpipe->pipe_buffer.cnt = cnt;
466	atomic_add_long(&amountpipekva, cpipe->pipe_buffer.size);
467	return (0);
468}
469
470/*
471 * Wrapper for pipespace_new() that performs locking assertions.
472 */
473static int
474pipespace(cpipe, size)
475	struct pipe *cpipe;
476	int size;
477{
478
479	KASSERT(cpipe->pipe_state & PIPE_LOCKFL,
480		("Unlocked pipe passed to pipespace"));
481	return (pipespace_new(cpipe, size));
482}
483
484/*
485 * lock a pipe for I/O, blocking other access
486 */
487static __inline int
488pipelock(cpipe, catch)
489	struct pipe *cpipe;
490	int catch;
491{
492	int error;
493
494	PIPE_LOCK_ASSERT(cpipe, MA_OWNED);
495	while (cpipe->pipe_state & PIPE_LOCKFL) {
496		cpipe->pipe_state |= PIPE_LWANT;
497		error = msleep(cpipe, PIPE_MTX(cpipe),
498		    catch ? (PRIBIO | PCATCH) : PRIBIO,
499		    "pipelk", 0);
500		if (error != 0)
501			return (error);
502	}
503	cpipe->pipe_state |= PIPE_LOCKFL;
504	return (0);
505}
506
507/*
508 * unlock a pipe I/O lock
509 */
510static __inline void
511pipeunlock(cpipe)
512	struct pipe *cpipe;
513{
514
515	PIPE_LOCK_ASSERT(cpipe, MA_OWNED);
516	KASSERT(cpipe->pipe_state & PIPE_LOCKFL,
517		("Unlocked pipe passed to pipeunlock"));
518	cpipe->pipe_state &= ~PIPE_LOCKFL;
519	if (cpipe->pipe_state & PIPE_LWANT) {
520		cpipe->pipe_state &= ~PIPE_LWANT;
521		wakeup(cpipe);
522	}
523}
524
525static __inline void
526pipeselwakeup(cpipe)
527	struct pipe *cpipe;
528{
529
530	PIPE_LOCK_ASSERT(cpipe, MA_OWNED);
531	if (cpipe->pipe_state & PIPE_SEL) {
532		selwakeuppri(&cpipe->pipe_sel, PSOCK);
533		if (!SEL_WAITING(&cpipe->pipe_sel))
534			cpipe->pipe_state &= ~PIPE_SEL;
535	}
536	if ((cpipe->pipe_state & PIPE_ASYNC) && cpipe->pipe_sigio)
537		pgsigio(&cpipe->pipe_sigio, SIGIO, 0);
538	KNOTE_LOCKED(&cpipe->pipe_sel.si_note, 0);
539}
540
541/*
542 * Initialize and allocate VM and memory for pipe.  The structure
543 * will start out zero'd from the ctor, so we just manage the kmem.
544 */
545static int
546pipe_create(pipe, backing)
547	struct pipe *pipe;
548	int backing;
549{
550	int error;
551
552	if (backing) {
553		if (amountpipekva > maxpipekva / 2)
554			error = pipespace_new(pipe, SMALL_PIPE_SIZE);
555		else
556			error = pipespace_new(pipe, PIPE_SIZE);
557	} else {
558		/* If we're not backing this pipe, no need to do anything. */
559		error = 0;
560	}
561	return (error);
562}
563
564/* ARGSUSED */
565static int
566pipe_read(fp, uio, active_cred, flags, td)
567	struct file *fp;
568	struct uio *uio;
569	struct ucred *active_cred;
570	struct thread *td;
571	int flags;
572{
573	struct pipe *rpipe = fp->f_data;
574	int error;
575	int nread = 0;
576	u_int size;
577
578	PIPE_LOCK(rpipe);
579	++rpipe->pipe_busy;
580	error = pipelock(rpipe, 1);
581	if (error)
582		goto unlocked_error;
583
584#ifdef MAC
585	error = mac_pipe_check_read(active_cred, rpipe->pipe_pair);
586	if (error)
587		goto locked_error;
588#endif
589	if (amountpipekva > (3 * maxpipekva) / 4) {
590		if (!(rpipe->pipe_state & PIPE_DIRECTW) &&
591			(rpipe->pipe_buffer.size > SMALL_PIPE_SIZE) &&
592			(rpipe->pipe_buffer.cnt <= SMALL_PIPE_SIZE) &&
593			(piperesizeallowed == 1)) {
594			PIPE_UNLOCK(rpipe);
595			pipespace(rpipe, SMALL_PIPE_SIZE);
596			PIPE_LOCK(rpipe);
597		}
598	}
599
600	while (uio->uio_resid) {
601		/*
602		 * normal pipe buffer receive
603		 */
604		if (rpipe->pipe_buffer.cnt > 0) {
605			size = rpipe->pipe_buffer.size - rpipe->pipe_buffer.out;
606			if (size > rpipe->pipe_buffer.cnt)
607				size = rpipe->pipe_buffer.cnt;
608			if (size > (u_int) uio->uio_resid)
609				size = (u_int) uio->uio_resid;
610
611			PIPE_UNLOCK(rpipe);
612			error = uiomove(
613			    &rpipe->pipe_buffer.buffer[rpipe->pipe_buffer.out],
614			    size, uio);
615			PIPE_LOCK(rpipe);
616			if (error)
617				break;
618
619			rpipe->pipe_buffer.out += size;
620			if (rpipe->pipe_buffer.out >= rpipe->pipe_buffer.size)
621				rpipe->pipe_buffer.out = 0;
622
623			rpipe->pipe_buffer.cnt -= size;
624
625			/*
626			 * If there is no more to read in the pipe, reset
627			 * its pointers to the beginning.  This improves
628			 * cache hit stats.
629			 */
630			if (rpipe->pipe_buffer.cnt == 0) {
631				rpipe->pipe_buffer.in = 0;
632				rpipe->pipe_buffer.out = 0;
633			}
634			nread += size;
635#ifndef PIPE_NODIRECT
636		/*
637		 * Direct copy, bypassing a kernel buffer.
638		 */
639		} else if ((size = rpipe->pipe_map.cnt) &&
640			   (rpipe->pipe_state & PIPE_DIRECTW)) {
641			if (size > (u_int) uio->uio_resid)
642				size = (u_int) uio->uio_resid;
643
644			PIPE_UNLOCK(rpipe);
645			error = uiomove_fromphys(rpipe->pipe_map.ms,
646			    rpipe->pipe_map.pos, size, uio);
647			PIPE_LOCK(rpipe);
648			if (error)
649				break;
650			nread += size;
651			rpipe->pipe_map.pos += size;
652			rpipe->pipe_map.cnt -= size;
653			if (rpipe->pipe_map.cnt == 0) {
654				rpipe->pipe_state &= ~PIPE_DIRECTW;
655				wakeup(rpipe);
656			}
657#endif
658		} else {
659			/*
660			 * detect EOF condition
661			 * read returns 0 on EOF, no need to set error
662			 */
663			if (rpipe->pipe_state & PIPE_EOF)
664				break;
665
666			/*
667			 * If the "write-side" has been blocked, wake it up now.
668			 */
669			if (rpipe->pipe_state & PIPE_WANTW) {
670				rpipe->pipe_state &= ~PIPE_WANTW;
671				wakeup(rpipe);
672			}
673
674			/*
675			 * Break if some data was read.
676			 */
677			if (nread > 0)
678				break;
679
680			/*
681			 * Unlock the pipe buffer for our remaining processing.
682			 * We will either break out with an error or we will
683			 * sleep and relock to loop.
684			 */
685			pipeunlock(rpipe);
686
687			/*
688			 * Handle non-blocking mode operation or
689			 * wait for more data.
690			 */
691			if (fp->f_flag & FNONBLOCK) {
692				error = EAGAIN;
693			} else {
694				rpipe->pipe_state |= PIPE_WANTR;
695				if ((error = msleep(rpipe, PIPE_MTX(rpipe),
696				    PRIBIO | PCATCH,
697				    "piperd", 0)) == 0)
698					error = pipelock(rpipe, 1);
699			}
700			if (error)
701				goto unlocked_error;
702		}
703	}
704#ifdef MAC
705locked_error:
706#endif
707	pipeunlock(rpipe);
708
709	/* XXX: should probably do this before getting any locks. */
710	if (error == 0)
711		vfs_timestamp(&rpipe->pipe_atime);
712unlocked_error:
713	--rpipe->pipe_busy;
714
715	/*
716	 * PIPE_WANT processing only makes sense if pipe_busy is 0.
717	 */
718	if ((rpipe->pipe_busy == 0) && (rpipe->pipe_state & PIPE_WANT)) {
719		rpipe->pipe_state &= ~(PIPE_WANT|PIPE_WANTW);
720		wakeup(rpipe);
721	} else if (rpipe->pipe_buffer.cnt < MINPIPESIZE) {
722		/*
723		 * Handle write blocking hysteresis.
724		 */
725		if (rpipe->pipe_state & PIPE_WANTW) {
726			rpipe->pipe_state &= ~PIPE_WANTW;
727			wakeup(rpipe);
728		}
729	}
730
731	if ((rpipe->pipe_buffer.size - rpipe->pipe_buffer.cnt) >= PIPE_BUF)
732		pipeselwakeup(rpipe);
733
734	PIPE_UNLOCK(rpipe);
735	return (error);
736}
737
738#ifndef PIPE_NODIRECT
739/*
740 * Map the sending processes' buffer into kernel space and wire it.
741 * This is similar to a physical write operation.
742 */
743static int
744pipe_build_write_buffer(wpipe, uio)
745	struct pipe *wpipe;
746	struct uio *uio;
747{
748	pmap_t pmap;
749	u_int size;
750	int i, j;
751	vm_offset_t addr, endaddr;
752
753	PIPE_LOCK_ASSERT(wpipe, MA_NOTOWNED);
754	KASSERT(wpipe->pipe_state & PIPE_DIRECTW,
755		("Clone attempt on non-direct write pipe!"));
756
757	size = (u_int) uio->uio_iov->iov_len;
758	if (size > wpipe->pipe_buffer.size)
759		size = wpipe->pipe_buffer.size;
760
761	pmap = vmspace_pmap(curproc->p_vmspace);
762	endaddr = round_page((vm_offset_t)uio->uio_iov->iov_base + size);
763	addr = trunc_page((vm_offset_t)uio->uio_iov->iov_base);
764	for (i = 0; addr < endaddr; addr += PAGE_SIZE, i++) {
765		/*
766		 * vm_fault_quick() can sleep.  Consequently,
767		 * vm_page_lock_queue() and vm_page_unlock_queue()
768		 * should not be performed outside of this loop.
769		 */
770	race:
771		if (vm_fault_quick((caddr_t)addr, VM_PROT_READ) < 0) {
772			vm_page_lock_queues();
773			for (j = 0; j < i; j++)
774				vm_page_unhold(wpipe->pipe_map.ms[j]);
775			vm_page_unlock_queues();
776			return (EFAULT);
777		}
778		wpipe->pipe_map.ms[i] = pmap_extract_and_hold(pmap, addr,
779		    VM_PROT_READ);
780		if (wpipe->pipe_map.ms[i] == NULL)
781			goto race;
782	}
783
784/*
785 * set up the control block
786 */
787	wpipe->pipe_map.npages = i;
788	wpipe->pipe_map.pos =
789	    ((vm_offset_t) uio->uio_iov->iov_base) & PAGE_MASK;
790	wpipe->pipe_map.cnt = size;
791
792/*
793 * and update the uio data
794 */
795
796	uio->uio_iov->iov_len -= size;
797	uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + size;
798	if (uio->uio_iov->iov_len == 0)
799		uio->uio_iov++;
800	uio->uio_resid -= size;
801	uio->uio_offset += size;
802	return (0);
803}
804
805/*
806 * unmap and unwire the process buffer
807 */
808static void
809pipe_destroy_write_buffer(wpipe)
810	struct pipe *wpipe;
811{
812	int i;
813
814	PIPE_LOCK_ASSERT(wpipe, MA_OWNED);
815	vm_page_lock_queues();
816	for (i = 0; i < wpipe->pipe_map.npages; i++) {
817		vm_page_unhold(wpipe->pipe_map.ms[i]);
818	}
819	vm_page_unlock_queues();
820	wpipe->pipe_map.npages = 0;
821}
822
823/*
824 * In the case of a signal, the writing process might go away.  This
825 * code copies the data into the circular buffer so that the source
826 * pages can be freed without loss of data.
827 */
828static void
829pipe_clone_write_buffer(wpipe)
830	struct pipe *wpipe;
831{
832	struct uio uio;
833	struct iovec iov;
834	int size;
835	int pos;
836
837	PIPE_LOCK_ASSERT(wpipe, MA_OWNED);
838	size = wpipe->pipe_map.cnt;
839	pos = wpipe->pipe_map.pos;
840
841	wpipe->pipe_buffer.in = size;
842	wpipe->pipe_buffer.out = 0;
843	wpipe->pipe_buffer.cnt = size;
844	wpipe->pipe_state &= ~PIPE_DIRECTW;
845
846	PIPE_UNLOCK(wpipe);
847	iov.iov_base = wpipe->pipe_buffer.buffer;
848	iov.iov_len = size;
849	uio.uio_iov = &iov;
850	uio.uio_iovcnt = 1;
851	uio.uio_offset = 0;
852	uio.uio_resid = size;
853	uio.uio_segflg = UIO_SYSSPACE;
854	uio.uio_rw = UIO_READ;
855	uio.uio_td = curthread;
856	uiomove_fromphys(wpipe->pipe_map.ms, pos, size, &uio);
857	PIPE_LOCK(wpipe);
858	pipe_destroy_write_buffer(wpipe);
859}
860
861/*
862 * This implements the pipe buffer write mechanism.  Note that only
863 * a direct write OR a normal pipe write can be pending at any given time.
864 * If there are any characters in the pipe buffer, the direct write will
865 * be deferred until the receiving process grabs all of the bytes from
866 * the pipe buffer.  Then the direct mapping write is set-up.
867 */
868static int
869pipe_direct_write(wpipe, uio)
870	struct pipe *wpipe;
871	struct uio *uio;
872{
873	int error;
874
875retry:
876	PIPE_LOCK_ASSERT(wpipe, MA_OWNED);
877	error = pipelock(wpipe, 1);
878	if (wpipe->pipe_state & PIPE_EOF)
879		error = EPIPE;
880	if (error) {
881		pipeunlock(wpipe);
882		goto error1;
883	}
884	while (wpipe->pipe_state & PIPE_DIRECTW) {
885		if (wpipe->pipe_state & PIPE_WANTR) {
886			wpipe->pipe_state &= ~PIPE_WANTR;
887			wakeup(wpipe);
888		}
889		pipeselwakeup(wpipe);
890		wpipe->pipe_state |= PIPE_WANTW;
891		pipeunlock(wpipe);
892		error = msleep(wpipe, PIPE_MTX(wpipe),
893		    PRIBIO | PCATCH, "pipdww", 0);
894		if (error)
895			goto error1;
896		else
897			goto retry;
898	}
899	wpipe->pipe_map.cnt = 0;	/* transfer not ready yet */
900	if (wpipe->pipe_buffer.cnt > 0) {
901		if (wpipe->pipe_state & PIPE_WANTR) {
902			wpipe->pipe_state &= ~PIPE_WANTR;
903			wakeup(wpipe);
904		}
905		pipeselwakeup(wpipe);
906		wpipe->pipe_state |= PIPE_WANTW;
907		pipeunlock(wpipe);
908		error = msleep(wpipe, PIPE_MTX(wpipe),
909		    PRIBIO | PCATCH, "pipdwc", 0);
910		if (error)
911			goto error1;
912		else
913			goto retry;
914	}
915
916	wpipe->pipe_state |= PIPE_DIRECTW;
917
918	PIPE_UNLOCK(wpipe);
919	error = pipe_build_write_buffer(wpipe, uio);
920	PIPE_LOCK(wpipe);
921	if (error) {
922		wpipe->pipe_state &= ~PIPE_DIRECTW;
923		pipeunlock(wpipe);
924		goto error1;
925	}
926
927	error = 0;
928	while (!error && (wpipe->pipe_state & PIPE_DIRECTW)) {
929		if (wpipe->pipe_state & PIPE_EOF) {
930			pipe_destroy_write_buffer(wpipe);
931			pipeselwakeup(wpipe);
932			pipeunlock(wpipe);
933			error = EPIPE;
934			goto error1;
935		}
936		if (wpipe->pipe_state & PIPE_WANTR) {
937			wpipe->pipe_state &= ~PIPE_WANTR;
938			wakeup(wpipe);
939		}
940		pipeselwakeup(wpipe);
941		pipeunlock(wpipe);
942		error = msleep(wpipe, PIPE_MTX(wpipe), PRIBIO | PCATCH,
943		    "pipdwt", 0);
944		pipelock(wpipe, 0);
945	}
946
947	if (wpipe->pipe_state & PIPE_EOF)
948		error = EPIPE;
949	if (wpipe->pipe_state & PIPE_DIRECTW) {
950		/*
951		 * this bit of trickery substitutes a kernel buffer for
952		 * the process that might be going away.
953		 */
954		pipe_clone_write_buffer(wpipe);
955	} else {
956		pipe_destroy_write_buffer(wpipe);
957	}
958	pipeunlock(wpipe);
959	return (error);
960
961error1:
962	wakeup(wpipe);
963	return (error);
964}
965#endif
966
967static int
968pipe_write(fp, uio, active_cred, flags, td)
969	struct file *fp;
970	struct uio *uio;
971	struct ucred *active_cred;
972	struct thread *td;
973	int flags;
974{
975	int error = 0;
976	int desiredsize, orig_resid;
977	struct pipe *wpipe, *rpipe;
978
979	rpipe = fp->f_data;
980	wpipe = rpipe->pipe_peer;
981
982	PIPE_LOCK(rpipe);
983	error = pipelock(wpipe, 1);
984	if (error) {
985		PIPE_UNLOCK(rpipe);
986		return (error);
987	}
988	/*
989	 * detect loss of pipe read side, issue SIGPIPE if lost.
990	 */
991	if (wpipe->pipe_present != PIPE_ACTIVE ||
992	    (wpipe->pipe_state & PIPE_EOF)) {
993		pipeunlock(wpipe);
994		PIPE_UNLOCK(rpipe);
995		return (EPIPE);
996	}
997#ifdef MAC
998	error = mac_pipe_check_write(active_cred, wpipe->pipe_pair);
999	if (error) {
1000		pipeunlock(wpipe);
1001		PIPE_UNLOCK(rpipe);
1002		return (error);
1003	}
1004#endif
1005	++wpipe->pipe_busy;
1006
1007	/* Choose a larger size if it's advantageous */
1008	desiredsize = max(SMALL_PIPE_SIZE, wpipe->pipe_buffer.size);
1009	while (desiredsize < wpipe->pipe_buffer.cnt + uio->uio_resid) {
1010		if (piperesizeallowed != 1)
1011			break;
1012		if (amountpipekva > maxpipekva / 2)
1013			break;
1014		if (desiredsize == BIG_PIPE_SIZE)
1015			break;
1016		desiredsize = desiredsize * 2;
1017	}
1018
1019	/* Choose a smaller size if we're in a OOM situation */
1020	if ((amountpipekva > (3 * maxpipekva) / 4) &&
1021		(wpipe->pipe_buffer.size > SMALL_PIPE_SIZE) &&
1022		(wpipe->pipe_buffer.cnt <= SMALL_PIPE_SIZE) &&
1023		(piperesizeallowed == 1))
1024		desiredsize = SMALL_PIPE_SIZE;
1025
1026	/* Resize if the above determined that a new size was necessary */
1027	if ((desiredsize != wpipe->pipe_buffer.size) &&
1028		((wpipe->pipe_state & PIPE_DIRECTW) == 0)) {
1029		PIPE_UNLOCK(wpipe);
1030		pipespace(wpipe, desiredsize);
1031		PIPE_LOCK(wpipe);
1032	}
1033	if (wpipe->pipe_buffer.size == 0) {
1034		/*
1035		 * This can only happen for reverse direction use of pipes
1036		 * in a complete OOM situation.
1037		 */
1038		error = ENOMEM;
1039		--wpipe->pipe_busy;
1040		pipeunlock(wpipe);
1041		PIPE_UNLOCK(wpipe);
1042		return (error);
1043	}
1044
1045	pipeunlock(wpipe);
1046
1047	orig_resid = uio->uio_resid;
1048
1049	while (uio->uio_resid) {
1050		int space;
1051
1052		pipelock(wpipe, 0);
1053		if (wpipe->pipe_state & PIPE_EOF) {
1054			pipeunlock(wpipe);
1055			error = EPIPE;
1056			break;
1057		}
1058#ifndef PIPE_NODIRECT
1059		/*
1060		 * If the transfer is large, we can gain performance if
1061		 * we do process-to-process copies directly.
1062		 * If the write is non-blocking, we don't use the
1063		 * direct write mechanism.
1064		 *
1065		 * The direct write mechanism will detect the reader going
1066		 * away on us.
1067		 */
1068		if (uio->uio_segflg == UIO_USERSPACE &&
1069		    uio->uio_iov->iov_len >= PIPE_MINDIRECT &&
1070		    wpipe->pipe_buffer.size >= PIPE_MINDIRECT &&
1071		    (fp->f_flag & FNONBLOCK) == 0) {
1072			pipeunlock(wpipe);
1073			error = pipe_direct_write(wpipe, uio);
1074			if (error)
1075				break;
1076			continue;
1077		}
1078#endif
1079
1080		/*
1081		 * Pipe buffered writes cannot be coincidental with
1082		 * direct writes.  We wait until the currently executing
1083		 * direct write is completed before we start filling the
1084		 * pipe buffer.  We break out if a signal occurs or the
1085		 * reader goes away.
1086		 */
1087		if (wpipe->pipe_state & PIPE_DIRECTW) {
1088			if (wpipe->pipe_state & PIPE_WANTR) {
1089				wpipe->pipe_state &= ~PIPE_WANTR;
1090				wakeup(wpipe);
1091			}
1092			pipeselwakeup(wpipe);
1093			wpipe->pipe_state |= PIPE_WANTW;
1094			pipeunlock(wpipe);
1095			error = msleep(wpipe, PIPE_MTX(rpipe), PRIBIO | PCATCH,
1096			    "pipbww", 0);
1097			if (error)
1098				break;
1099			else
1100				continue;
1101		}
1102
1103		space = wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt;
1104
1105		/* Writes of size <= PIPE_BUF must be atomic. */
1106		if ((space < uio->uio_resid) && (orig_resid <= PIPE_BUF))
1107			space = 0;
1108
1109		if (space > 0) {
1110			int size;	/* Transfer size */
1111			int segsize;	/* first segment to transfer */
1112
1113			/*
1114			 * Transfer size is minimum of uio transfer
1115			 * and free space in pipe buffer.
1116			 */
1117			if (space > uio->uio_resid)
1118				size = uio->uio_resid;
1119			else
1120				size = space;
1121			/*
1122			 * First segment to transfer is minimum of
1123			 * transfer size and contiguous space in
1124			 * pipe buffer.  If first segment to transfer
1125			 * is less than the transfer size, we've got
1126			 * a wraparound in the buffer.
1127			 */
1128			segsize = wpipe->pipe_buffer.size -
1129				wpipe->pipe_buffer.in;
1130			if (segsize > size)
1131				segsize = size;
1132
1133			/* Transfer first segment */
1134
1135			PIPE_UNLOCK(rpipe);
1136			error = uiomove(&wpipe->pipe_buffer.buffer[wpipe->pipe_buffer.in],
1137					segsize, uio);
1138			PIPE_LOCK(rpipe);
1139
1140			if (error == 0 && segsize < size) {
1141				KASSERT(wpipe->pipe_buffer.in + segsize ==
1142					wpipe->pipe_buffer.size,
1143					("Pipe buffer wraparound disappeared"));
1144				/*
1145				 * Transfer remaining part now, to
1146				 * support atomic writes.  Wraparound
1147				 * happened.
1148				 */
1149
1150				PIPE_UNLOCK(rpipe);
1151				error = uiomove(
1152				    &wpipe->pipe_buffer.buffer[0],
1153				    size - segsize, uio);
1154				PIPE_LOCK(rpipe);
1155			}
1156			if (error == 0) {
1157				wpipe->pipe_buffer.in += size;
1158				if (wpipe->pipe_buffer.in >=
1159				    wpipe->pipe_buffer.size) {
1160					KASSERT(wpipe->pipe_buffer.in ==
1161						size - segsize +
1162						wpipe->pipe_buffer.size,
1163						("Expected wraparound bad"));
1164					wpipe->pipe_buffer.in = size - segsize;
1165				}
1166
1167				wpipe->pipe_buffer.cnt += size;
1168				KASSERT(wpipe->pipe_buffer.cnt <=
1169					wpipe->pipe_buffer.size,
1170					("Pipe buffer overflow"));
1171			}
1172			pipeunlock(wpipe);
1173			if (error != 0)
1174				break;
1175		} else {
1176			/*
1177			 * If the "read-side" has been blocked, wake it up now.
1178			 */
1179			if (wpipe->pipe_state & PIPE_WANTR) {
1180				wpipe->pipe_state &= ~PIPE_WANTR;
1181				wakeup(wpipe);
1182			}
1183
1184			/*
1185			 * don't block on non-blocking I/O
1186			 */
1187			if (fp->f_flag & FNONBLOCK) {
1188				error = EAGAIN;
1189				pipeunlock(wpipe);
1190				break;
1191			}
1192
1193			/*
1194			 * We have no more space and have something to offer,
1195			 * wake up select/poll.
1196			 */
1197			pipeselwakeup(wpipe);
1198
1199			wpipe->pipe_state |= PIPE_WANTW;
1200			pipeunlock(wpipe);
1201			error = msleep(wpipe, PIPE_MTX(rpipe),
1202			    PRIBIO | PCATCH, "pipewr", 0);
1203			if (error != 0)
1204				break;
1205		}
1206	}
1207
1208	pipelock(wpipe, 0);
1209	--wpipe->pipe_busy;
1210
1211	if ((wpipe->pipe_busy == 0) && (wpipe->pipe_state & PIPE_WANT)) {
1212		wpipe->pipe_state &= ~(PIPE_WANT | PIPE_WANTR);
1213		wakeup(wpipe);
1214	} else if (wpipe->pipe_buffer.cnt > 0) {
1215		/*
1216		 * If we have put any characters in the buffer, we wake up
1217		 * the reader.
1218		 */
1219		if (wpipe->pipe_state & PIPE_WANTR) {
1220			wpipe->pipe_state &= ~PIPE_WANTR;
1221			wakeup(wpipe);
1222		}
1223	}
1224
1225	/*
1226	 * Don't return EPIPE if I/O was successful
1227	 */
1228	if ((wpipe->pipe_buffer.cnt == 0) &&
1229	    (uio->uio_resid == 0) &&
1230	    (error == EPIPE)) {
1231		error = 0;
1232	}
1233
1234	if (error == 0)
1235		vfs_timestamp(&wpipe->pipe_mtime);
1236
1237	/*
1238	 * We have something to offer,
1239	 * wake up select/poll.
1240	 */
1241	if (wpipe->pipe_buffer.cnt)
1242		pipeselwakeup(wpipe);
1243
1244	pipeunlock(wpipe);
1245	PIPE_UNLOCK(rpipe);
1246	return (error);
1247}
1248
1249/* ARGSUSED */
1250static int
1251pipe_truncate(fp, length, active_cred, td)
1252	struct file *fp;
1253	off_t length;
1254	struct ucred *active_cred;
1255	struct thread *td;
1256{
1257
1258	return (EINVAL);
1259}
1260
1261/*
1262 * we implement a very minimal set of ioctls for compatibility with sockets.
1263 */
1264static int
1265pipe_ioctl(fp, cmd, data, active_cred, td)
1266	struct file *fp;
1267	u_long cmd;
1268	void *data;
1269	struct ucred *active_cred;
1270	struct thread *td;
1271{
1272	struct pipe *mpipe = fp->f_data;
1273	int error;
1274
1275	PIPE_LOCK(mpipe);
1276
1277#ifdef MAC
1278	error = mac_pipe_check_ioctl(active_cred, mpipe->pipe_pair, cmd, data);
1279	if (error) {
1280		PIPE_UNLOCK(mpipe);
1281		return (error);
1282	}
1283#endif
1284
1285	error = 0;
1286	switch (cmd) {
1287
1288	case FIONBIO:
1289		break;
1290
1291	case FIOASYNC:
1292		if (*(int *)data) {
1293			mpipe->pipe_state |= PIPE_ASYNC;
1294		} else {
1295			mpipe->pipe_state &= ~PIPE_ASYNC;
1296		}
1297		break;
1298
1299	case FIONREAD:
1300		if (mpipe->pipe_state & PIPE_DIRECTW)
1301			*(int *)data = mpipe->pipe_map.cnt;
1302		else
1303			*(int *)data = mpipe->pipe_buffer.cnt;
1304		break;
1305
1306	case FIOSETOWN:
1307		PIPE_UNLOCK(mpipe);
1308		error = fsetown(*(int *)data, &mpipe->pipe_sigio);
1309		goto out_unlocked;
1310
1311	case FIOGETOWN:
1312		*(int *)data = fgetown(&mpipe->pipe_sigio);
1313		break;
1314
1315	/* This is deprecated, FIOSETOWN should be used instead. */
1316	case TIOCSPGRP:
1317		PIPE_UNLOCK(mpipe);
1318		error = fsetown(-(*(int *)data), &mpipe->pipe_sigio);
1319		goto out_unlocked;
1320
1321	/* This is deprecated, FIOGETOWN should be used instead. */
1322	case TIOCGPGRP:
1323		*(int *)data = -fgetown(&mpipe->pipe_sigio);
1324		break;
1325
1326	default:
1327		error = ENOTTY;
1328		break;
1329	}
1330	PIPE_UNLOCK(mpipe);
1331out_unlocked:
1332	return (error);
1333}
1334
1335static int
1336pipe_poll(fp, events, active_cred, td)
1337	struct file *fp;
1338	int events;
1339	struct ucred *active_cred;
1340	struct thread *td;
1341{
1342	struct pipe *rpipe = fp->f_data;
1343	struct pipe *wpipe;
1344	int revents = 0;
1345#ifdef MAC
1346	int error;
1347#endif
1348
1349	wpipe = rpipe->pipe_peer;
1350	PIPE_LOCK(rpipe);
1351#ifdef MAC
1352	error = mac_pipe_check_poll(active_cred, rpipe->pipe_pair);
1353	if (error)
1354		goto locked_error;
1355#endif
1356	if (events & (POLLIN | POLLRDNORM))
1357		if ((rpipe->pipe_state & PIPE_DIRECTW) ||
1358		    (rpipe->pipe_buffer.cnt > 0) ||
1359		    (rpipe->pipe_state & PIPE_EOF))
1360			revents |= events & (POLLIN | POLLRDNORM);
1361
1362	if (events & (POLLOUT | POLLWRNORM))
1363		if (wpipe->pipe_present != PIPE_ACTIVE ||
1364		    (wpipe->pipe_state & PIPE_EOF) ||
1365		    (((wpipe->pipe_state & PIPE_DIRECTW) == 0) &&
1366		     (wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt) >= PIPE_BUF))
1367			revents |= events & (POLLOUT | POLLWRNORM);
1368
1369	if ((rpipe->pipe_state & PIPE_EOF) ||
1370	    wpipe->pipe_present != PIPE_ACTIVE ||
1371	    (wpipe->pipe_state & PIPE_EOF))
1372		revents |= POLLHUP;
1373
1374	if (revents == 0) {
1375		if (events & (POLLIN | POLLRDNORM)) {
1376			selrecord(td, &rpipe->pipe_sel);
1377			if (SEL_WAITING(&rpipe->pipe_sel))
1378				rpipe->pipe_state |= PIPE_SEL;
1379		}
1380
1381		if (events & (POLLOUT | POLLWRNORM)) {
1382			selrecord(td, &wpipe->pipe_sel);
1383			if (SEL_WAITING(&wpipe->pipe_sel))
1384				wpipe->pipe_state |= PIPE_SEL;
1385		}
1386	}
1387#ifdef MAC
1388locked_error:
1389#endif
1390	PIPE_UNLOCK(rpipe);
1391
1392	return (revents);
1393}
1394
1395/*
1396 * We shouldn't need locks here as we're doing a read and this should
1397 * be a natural race.
1398 */
1399static int
1400pipe_stat(fp, ub, active_cred, td)
1401	struct file *fp;
1402	struct stat *ub;
1403	struct ucred *active_cred;
1404	struct thread *td;
1405{
1406	struct pipe *pipe = fp->f_data;
1407#ifdef MAC
1408	int error;
1409
1410	PIPE_LOCK(pipe);
1411	error = mac_pipe_check_stat(active_cred, pipe->pipe_pair);
1412	PIPE_UNLOCK(pipe);
1413	if (error)
1414		return (error);
1415#endif
1416	bzero(ub, sizeof(*ub));
1417	ub->st_mode = S_IFIFO;
1418	ub->st_blksize = PAGE_SIZE;
1419	if (pipe->pipe_state & PIPE_DIRECTW)
1420		ub->st_size = pipe->pipe_map.cnt;
1421	else
1422		ub->st_size = pipe->pipe_buffer.cnt;
1423	ub->st_blocks = (ub->st_size + ub->st_blksize - 1) / ub->st_blksize;
1424	ub->st_atimespec = pipe->pipe_atime;
1425	ub->st_mtimespec = pipe->pipe_mtime;
1426	ub->st_ctimespec = pipe->pipe_ctime;
1427	ub->st_uid = fp->f_cred->cr_uid;
1428	ub->st_gid = fp->f_cred->cr_gid;
1429	/*
1430	 * Left as 0: st_dev, st_ino, st_nlink, st_rdev, st_flags, st_gen.
1431	 * XXX (st_dev, st_ino) should be unique.
1432	 */
1433	return (0);
1434}
1435
1436/* ARGSUSED */
1437static int
1438pipe_close(fp, td)
1439	struct file *fp;
1440	struct thread *td;
1441{
1442	struct pipe *cpipe = fp->f_data;
1443
1444	fp->f_ops = &badfileops;
1445	fp->f_data = NULL;
1446	funsetown(&cpipe->pipe_sigio);
1447	pipeclose(cpipe);
1448	return (0);
1449}
1450
1451static void
1452pipe_free_kmem(cpipe)
1453	struct pipe *cpipe;
1454{
1455
1456	KASSERT(!mtx_owned(PIPE_MTX(cpipe)),
1457	    ("pipe_free_kmem: pipe mutex locked"));
1458
1459	if (cpipe->pipe_buffer.buffer != NULL) {
1460		atomic_subtract_long(&amountpipekva, cpipe->pipe_buffer.size);
1461		vm_map_remove(pipe_map,
1462		    (vm_offset_t)cpipe->pipe_buffer.buffer,
1463		    (vm_offset_t)cpipe->pipe_buffer.buffer + cpipe->pipe_buffer.size);
1464		cpipe->pipe_buffer.buffer = NULL;
1465	}
1466#ifndef PIPE_NODIRECT
1467	{
1468		cpipe->pipe_map.cnt = 0;
1469		cpipe->pipe_map.pos = 0;
1470		cpipe->pipe_map.npages = 0;
1471	}
1472#endif
1473}
1474
1475/*
1476 * shutdown the pipe
1477 */
1478static void
1479pipeclose(cpipe)
1480	struct pipe *cpipe;
1481{
1482	struct pipepair *pp;
1483	struct pipe *ppipe;
1484
1485	KASSERT(cpipe != NULL, ("pipeclose: cpipe == NULL"));
1486
1487	PIPE_LOCK(cpipe);
1488	pipelock(cpipe, 0);
1489	pp = cpipe->pipe_pair;
1490
1491	pipeselwakeup(cpipe);
1492
1493	/*
1494	 * If the other side is blocked, wake it up saying that
1495	 * we want to close it down.
1496	 */
1497	cpipe->pipe_state |= PIPE_EOF;
1498	while (cpipe->pipe_busy) {
1499		wakeup(cpipe);
1500		cpipe->pipe_state |= PIPE_WANT;
1501		pipeunlock(cpipe);
1502		msleep(cpipe, PIPE_MTX(cpipe), PRIBIO, "pipecl", 0);
1503		pipelock(cpipe, 0);
1504	}
1505
1506
1507	/*
1508	 * Disconnect from peer, if any.
1509	 */
1510	ppipe = cpipe->pipe_peer;
1511	if (ppipe->pipe_present == PIPE_ACTIVE) {
1512		pipeselwakeup(ppipe);
1513
1514		ppipe->pipe_state |= PIPE_EOF;
1515		wakeup(ppipe);
1516		KNOTE_LOCKED(&ppipe->pipe_sel.si_note, 0);
1517	}
1518
1519	/*
1520	 * Mark this endpoint as free.  Release kmem resources.  We
1521	 * don't mark this endpoint as unused until we've finished
1522	 * doing that, or the pipe might disappear out from under
1523	 * us.
1524	 */
1525	PIPE_UNLOCK(cpipe);
1526	pipe_free_kmem(cpipe);
1527	PIPE_LOCK(cpipe);
1528	cpipe->pipe_present = PIPE_CLOSING;
1529	pipeunlock(cpipe);
1530
1531	/*
1532	 * knlist_clear() may sleep dropping the PIPE_MTX. Set the
1533	 * PIPE_FINALIZED, that allows other end to free the
1534	 * pipe_pair, only after the knotes are completely dismantled.
1535	 */
1536	knlist_clear(&cpipe->pipe_sel.si_note, 1);
1537	cpipe->pipe_present = PIPE_FINALIZED;
1538	knlist_destroy(&cpipe->pipe_sel.si_note);
1539
1540	/*
1541	 * If both endpoints are now closed, release the memory for the
1542	 * pipe pair.  If not, unlock.
1543	 */
1544	if (ppipe->pipe_present == PIPE_FINALIZED) {
1545		PIPE_UNLOCK(cpipe);
1546#ifdef MAC
1547		mac_pipe_destroy(pp);
1548#endif
1549		uma_zfree(pipe_zone, cpipe->pipe_pair);
1550	} else
1551		PIPE_UNLOCK(cpipe);
1552}
1553
1554/*ARGSUSED*/
1555static int
1556pipe_kqfilter(struct file *fp, struct knote *kn)
1557{
1558	struct pipe *cpipe;
1559
1560	cpipe = kn->kn_fp->f_data;
1561	PIPE_LOCK(cpipe);
1562	switch (kn->kn_filter) {
1563	case EVFILT_READ:
1564		kn->kn_fop = &pipe_rfiltops;
1565		break;
1566	case EVFILT_WRITE:
1567		kn->kn_fop = &pipe_wfiltops;
1568		if (cpipe->pipe_peer->pipe_present != PIPE_ACTIVE) {
1569			/* other end of pipe has been closed */
1570			PIPE_UNLOCK(cpipe);
1571			return (EPIPE);
1572		}
1573		cpipe = cpipe->pipe_peer;
1574		break;
1575	default:
1576		PIPE_UNLOCK(cpipe);
1577		return (EINVAL);
1578	}
1579
1580	knlist_add(&cpipe->pipe_sel.si_note, kn, 1);
1581	PIPE_UNLOCK(cpipe);
1582	return (0);
1583}
1584
1585static void
1586filt_pipedetach(struct knote *kn)
1587{
1588	struct pipe *cpipe = (struct pipe *)kn->kn_fp->f_data;
1589
1590	PIPE_LOCK(cpipe);
1591	if (kn->kn_filter == EVFILT_WRITE)
1592		cpipe = cpipe->pipe_peer;
1593	knlist_remove(&cpipe->pipe_sel.si_note, kn, 1);
1594	PIPE_UNLOCK(cpipe);
1595}
1596
1597/*ARGSUSED*/
1598static int
1599filt_piperead(struct knote *kn, long hint)
1600{
1601	struct pipe *rpipe = kn->kn_fp->f_data;
1602	struct pipe *wpipe = rpipe->pipe_peer;
1603	int ret;
1604
1605	PIPE_LOCK(rpipe);
1606	kn->kn_data = rpipe->pipe_buffer.cnt;
1607	if ((kn->kn_data == 0) && (rpipe->pipe_state & PIPE_DIRECTW))
1608		kn->kn_data = rpipe->pipe_map.cnt;
1609
1610	if ((rpipe->pipe_state & PIPE_EOF) ||
1611	    wpipe->pipe_present != PIPE_ACTIVE ||
1612	    (wpipe->pipe_state & PIPE_EOF)) {
1613		kn->kn_flags |= EV_EOF;
1614		PIPE_UNLOCK(rpipe);
1615		return (1);
1616	}
1617	ret = kn->kn_data > 0;
1618	PIPE_UNLOCK(rpipe);
1619	return ret;
1620}
1621
1622/*ARGSUSED*/
1623static int
1624filt_pipewrite(struct knote *kn, long hint)
1625{
1626	struct pipe *rpipe = kn->kn_fp->f_data;
1627	struct pipe *wpipe = rpipe->pipe_peer;
1628
1629	PIPE_LOCK(rpipe);
1630	if (wpipe->pipe_present != PIPE_ACTIVE ||
1631	    (wpipe->pipe_state & PIPE_EOF)) {
1632		kn->kn_data = 0;
1633		kn->kn_flags |= EV_EOF;
1634		PIPE_UNLOCK(rpipe);
1635		return (1);
1636	}
1637	kn->kn_data = wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt;
1638	if (wpipe->pipe_state & PIPE_DIRECTW)
1639		kn->kn_data = 0;
1640
1641	PIPE_UNLOCK(rpipe);
1642	return (kn->kn_data >= PIPE_BUF);
1643}
1644