sys_pipe.c revision 133790
1/*
2 * Copyright (c) 1996 John S. Dyson
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice immediately at the beginning of the file, without modification,
10 *    this list of conditions, and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 * 3. Absolutely no warranty of function or purpose is made by the author
15 *    John S. Dyson.
16 * 4. Modifications may be freely made to this file if the above conditions
17 *    are met.
18 */
19
20/*
21 * This file contains a high-performance replacement for the socket-based
22 * pipes scheme originally used in FreeBSD/4.4Lite.  It does not support
23 * all features of sockets, but does do everything that pipes normally
24 * do.
25 */
26
27/*
28 * This code has two modes of operation, a small write mode and a large
29 * write mode.  The small write mode acts like conventional pipes with
30 * a kernel buffer.  If the buffer is less than PIPE_MINDIRECT, then the
31 * "normal" pipe buffering is done.  If the buffer is between PIPE_MINDIRECT
32 * and PIPE_SIZE in size, it is fully mapped and wired into the kernel, and
33 * the receiving process can copy it directly from the pages in the sending
34 * process.
35 *
36 * If the sending process receives a signal, it is possible that it will
37 * go away, and certainly its address space can change, because control
38 * is returned back to the user-mode side.  In that case, the pipe code
39 * arranges to copy the buffer supplied by the user process, to a pageable
40 * kernel buffer, and the receiving process will grab the data from the
41 * pageable kernel buffer.  Since signals don't happen all that often,
42 * the copy operation is normally eliminated.
43 *
44 * The constant PIPE_MINDIRECT is chosen to make sure that buffering will
45 * happen for small transfers so that the system will not spend all of
46 * its time context switching.
47 *
48 * In order to limit the resource use of pipes, two sysctls exist:
49 *
50 * kern.ipc.maxpipekva - This is a hard limit on the amount of pageable
51 * address space available to us in pipe_map. This value is normally
52 * autotuned, but may also be loader tuned.
53 *
54 * kern.ipc.pipekva - This read-only sysctl tracks the current amount of
55 * memory in use by pipes.
56 *
57 * Based on how large pipekva is relative to maxpipekva, the following
58 * will happen:
59 *
60 * 0% - 50%:
61 *     New pipes are given 16K of memory backing, pipes may dynamically
62 *     grow to as large as 64K where needed.
63 * 50% - 75%:
64 *     New pipes are given 4K (or PAGE_SIZE) of memory backing,
65 *     existing pipes may NOT grow.
66 * 75% - 100%:
67 *     New pipes are given 4K (or PAGE_SIZE) of memory backing,
68 *     existing pipes will be shrunk down to 4K whenever possible.
69 *
70 * Resizing may be disabled by setting kern.ipc.piperesizeallowed=0.  If
71 * that is set,  the only resize that will occur is the 0 -> SMALL_PIPE_SIZE
72 * resize which MUST occur for reverse-direction pipes when they are
73 * first used.
74 *
75 * Additional information about the current state of pipes may be obtained
76 * from kern.ipc.pipes, kern.ipc.pipefragretry, kern.ipc.pipeallocfail,
77 * and kern.ipc.piperesizefail.
78 *
79 * Locking rules:  There are two locks present here:  A mutex, used via
80 * PIPE_LOCK, and a flag, used via pipelock().  All locking is done via
81 * the flag, as mutexes can not persist over uiomove.  The mutex
82 * exists only to guard access to the flag, and is not in itself a
83 * locking mechanism.  Also note that there is only a single mutex for
84 * both directions of a pipe.
85 *
86 * As pipelock() may have to sleep before it can acquire the flag, it
87 * is important to reread all data after a call to pipelock(); everything
88 * in the structure may have changed.
89 */
90
91#include <sys/cdefs.h>
92__FBSDID("$FreeBSD: head/sys/kern/sys_pipe.c 133790 2004-08-16 01:27:24Z silby $");
93
94#include "opt_mac.h"
95
96#include <sys/param.h>
97#include <sys/systm.h>
98#include <sys/fcntl.h>
99#include <sys/file.h>
100#include <sys/filedesc.h>
101#include <sys/filio.h>
102#include <sys/kernel.h>
103#include <sys/lock.h>
104#include <sys/mac.h>
105#include <sys/mutex.h>
106#include <sys/ttycom.h>
107#include <sys/stat.h>
108#include <sys/malloc.h>
109#include <sys/poll.h>
110#include <sys/selinfo.h>
111#include <sys/signalvar.h>
112#include <sys/sysctl.h>
113#include <sys/sysproto.h>
114#include <sys/pipe.h>
115#include <sys/proc.h>
116#include <sys/vnode.h>
117#include <sys/uio.h>
118#include <sys/event.h>
119
120#include <vm/vm.h>
121#include <vm/vm_param.h>
122#include <vm/vm_object.h>
123#include <vm/vm_kern.h>
124#include <vm/vm_extern.h>
125#include <vm/pmap.h>
126#include <vm/vm_map.h>
127#include <vm/vm_page.h>
128#include <vm/uma.h>
129
130/*
131 * Use this define if you want to disable *fancy* VM things.  Expect an
132 * approx 30% decrease in transfer rate.  This could be useful for
133 * NetBSD or OpenBSD.
134 */
135/* #define PIPE_NODIRECT */
136
137/*
138 * interfaces to the outside world
139 */
140static fo_rdwr_t	pipe_read;
141static fo_rdwr_t	pipe_write;
142static fo_ioctl_t	pipe_ioctl;
143static fo_poll_t	pipe_poll;
144static fo_kqfilter_t	pipe_kqfilter;
145static fo_stat_t	pipe_stat;
146static fo_close_t	pipe_close;
147
148static struct fileops pipeops = {
149	.fo_read = pipe_read,
150	.fo_write = pipe_write,
151	.fo_ioctl = pipe_ioctl,
152	.fo_poll = pipe_poll,
153	.fo_kqfilter = pipe_kqfilter,
154	.fo_stat = pipe_stat,
155	.fo_close = pipe_close,
156	.fo_flags = DFLAG_PASSABLE
157};
158
159static void	filt_pipedetach(struct knote *kn);
160static int	filt_piperead(struct knote *kn, long hint);
161static int	filt_pipewrite(struct knote *kn, long hint);
162
163static struct filterops pipe_rfiltops =
164	{ 1, NULL, filt_pipedetach, filt_piperead };
165static struct filterops pipe_wfiltops =
166	{ 1, NULL, filt_pipedetach, filt_pipewrite };
167
168/*
169 * Default pipe buffer size(s), this can be kind-of large now because pipe
170 * space is pageable.  The pipe code will try to maintain locality of
171 * reference for performance reasons, so small amounts of outstanding I/O
172 * will not wipe the cache.
173 */
174#define MINPIPESIZE (PIPE_SIZE/3)
175#define MAXPIPESIZE (2*PIPE_SIZE/3)
176
177static int amountpipes;
178static int amountpipekva;
179static int pipefragretry;
180static int pipeallocfail;
181static int piperesizefail;
182static int piperesizeallowed = 1;
183
184SYSCTL_DECL(_kern_ipc);
185
186SYSCTL_INT(_kern_ipc, OID_AUTO, maxpipekva, CTLFLAG_RDTUN,
187	   &maxpipekva, 0, "Pipe KVA limit");
188SYSCTL_INT(_kern_ipc, OID_AUTO, pipes, CTLFLAG_RD,
189	   &amountpipes, 0, "Current # of pipes");
190SYSCTL_INT(_kern_ipc, OID_AUTO, pipekva, CTLFLAG_RD,
191	   &amountpipekva, 0, "Pipe KVA usage");
192SYSCTL_INT(_kern_ipc, OID_AUTO, pipefragretry, CTLFLAG_RD,
193	  &pipefragretry, 0, "Pipe allocation retries due to fragmentation");
194SYSCTL_INT(_kern_ipc, OID_AUTO, pipeallocfail, CTLFLAG_RD,
195	  &pipeallocfail, 0, "Pipe allocation failures");
196SYSCTL_INT(_kern_ipc, OID_AUTO, piperesizefail, CTLFLAG_RD,
197	  &piperesizefail, 0, "Pipe resize failures");
198SYSCTL_INT(_kern_ipc, OID_AUTO, piperesizeallowed, CTLFLAG_RW,
199	  &piperesizeallowed, 0, "Pipe resizing allowed");
200
201static void pipeinit(void *dummy __unused);
202static void pipeclose(struct pipe *cpipe);
203static void pipe_free_kmem(struct pipe *cpipe);
204static int pipe_create(struct pipe *pipe, int backing);
205static __inline int pipelock(struct pipe *cpipe, int catch);
206static __inline void pipeunlock(struct pipe *cpipe);
207static __inline void pipeselwakeup(struct pipe *cpipe);
208#ifndef PIPE_NODIRECT
209static int pipe_build_write_buffer(struct pipe *wpipe, struct uio *uio);
210static void pipe_destroy_write_buffer(struct pipe *wpipe);
211static int pipe_direct_write(struct pipe *wpipe, struct uio *uio);
212static void pipe_clone_write_buffer(struct pipe *wpipe);
213#endif
214static int pipespace(struct pipe *cpipe, int size);
215static int pipespace_new(struct pipe *cpipe, int size);
216
217static int	pipe_zone_ctor(void *mem, int size, void *arg, int flags);
218static void	pipe_zone_dtor(void *mem, int size, void *arg);
219static int	pipe_zone_init(void *mem, int size, int flags);
220static void	pipe_zone_fini(void *mem, int size);
221
222static uma_zone_t pipe_zone;
223
224SYSINIT(vfs, SI_SUB_VFS, SI_ORDER_ANY, pipeinit, NULL);
225
226static void
227pipeinit(void *dummy __unused)
228{
229
230	pipe_zone = uma_zcreate("PIPE", sizeof(struct pipepair),
231	    pipe_zone_ctor, pipe_zone_dtor, pipe_zone_init, pipe_zone_fini,
232	    UMA_ALIGN_PTR, 0);
233	KASSERT(pipe_zone != NULL, ("pipe_zone not initialized"));
234}
235
236static int
237pipe_zone_ctor(void *mem, int size, void *arg, int flags)
238{
239	struct pipepair *pp;
240	struct pipe *rpipe, *wpipe;
241
242	KASSERT(size == sizeof(*pp), ("pipe_zone_ctor: wrong size"));
243
244	pp = (struct pipepair *)mem;
245
246	/*
247	 * We zero both pipe endpoints to make sure all the kmem pointers
248	 * are NULL, flag fields are zero'd, etc.  We timestamp both
249	 * endpoints with the same time.
250	 */
251	rpipe = &pp->pp_rpipe;
252	bzero(rpipe, sizeof(*rpipe));
253	vfs_timestamp(&rpipe->pipe_ctime);
254	rpipe->pipe_atime = rpipe->pipe_mtime = rpipe->pipe_ctime;
255
256	wpipe = &pp->pp_wpipe;
257	bzero(wpipe, sizeof(*wpipe));
258	wpipe->pipe_ctime = rpipe->pipe_ctime;
259	wpipe->pipe_atime = wpipe->pipe_mtime = rpipe->pipe_ctime;
260
261	rpipe->pipe_peer = wpipe;
262	rpipe->pipe_pair = pp;
263	wpipe->pipe_peer = rpipe;
264	wpipe->pipe_pair = pp;
265
266	/*
267	 * Mark both endpoints as present; they will later get free'd
268	 * one at a time.  When both are free'd, then the whole pair
269	 * is released.
270	 */
271	rpipe->pipe_present = 1;
272	wpipe->pipe_present = 1;
273
274	/*
275	 * Eventually, the MAC Framework may initialize the label
276	 * in ctor or init, but for now we do it elswhere to avoid
277	 * blocking in ctor or init.
278	 */
279	pp->pp_label = NULL;
280
281	atomic_add_int(&amountpipes, 2);
282	return (0);
283}
284
285static void
286pipe_zone_dtor(void *mem, int size, void *arg)
287{
288	struct pipepair *pp;
289
290	KASSERT(size == sizeof(*pp), ("pipe_zone_dtor: wrong size"));
291
292	pp = (struct pipepair *)mem;
293
294	atomic_subtract_int(&amountpipes, 2);
295}
296
297static int
298pipe_zone_init(void *mem, int size, int flags)
299{
300	struct pipepair *pp;
301
302	KASSERT(size == sizeof(*pp), ("pipe_zone_init: wrong size"));
303
304	pp = (struct pipepair *)mem;
305
306	mtx_init(&pp->pp_mtx, "pipe mutex", NULL, MTX_DEF | MTX_RECURSE);
307	return (0);
308}
309
310static void
311pipe_zone_fini(void *mem, int size)
312{
313	struct pipepair *pp;
314
315	KASSERT(size == sizeof(*pp), ("pipe_zone_fini: wrong size"));
316
317	pp = (struct pipepair *)mem;
318
319	mtx_destroy(&pp->pp_mtx);
320}
321
322/*
323 * The pipe system call for the DTYPE_PIPE type of pipes.  If we fail,
324 * let the zone pick up the pieces via pipeclose().
325 */
326
327/* ARGSUSED */
328int
329pipe(td, uap)
330	struct thread *td;
331	struct pipe_args /* {
332		int	dummy;
333	} */ *uap;
334{
335	struct filedesc *fdp = td->td_proc->p_fd;
336	struct file *rf, *wf;
337	struct pipepair *pp;
338	struct pipe *rpipe, *wpipe;
339	int fd, error;
340
341	pp = uma_zalloc(pipe_zone, M_WAITOK);
342#ifdef MAC
343	/*
344	 * The MAC label is shared between the connected endpoints.  As a
345	 * result mac_init_pipe() and mac_create_pipe() are called once
346	 * for the pair, and not on the endpoints.
347	 */
348	mac_init_pipe(pp);
349	mac_create_pipe(td->td_ucred, pp);
350#endif
351	rpipe = &pp->pp_rpipe;
352	wpipe = &pp->pp_wpipe;
353
354	/* Only the forward direction pipe is backed by default */
355	if (pipe_create(rpipe, 1) || pipe_create(wpipe, 0)) {
356		pipeclose(rpipe);
357		pipeclose(wpipe);
358		return (ENFILE);
359	}
360
361	rpipe->pipe_state |= PIPE_DIRECTOK;
362	wpipe->pipe_state |= PIPE_DIRECTOK;
363
364	error = falloc(td, &rf, &fd);
365	if (error) {
366		pipeclose(rpipe);
367		pipeclose(wpipe);
368		return (error);
369	}
370	/* An extra reference on `rf' has been held for us by falloc(). */
371	td->td_retval[0] = fd;
372
373	/*
374	 * Warning: once we've gotten past allocation of the fd for the
375	 * read-side, we can only drop the read side via fdrop() in order
376	 * to avoid races against processes which manage to dup() the read
377	 * side while we are blocked trying to allocate the write side.
378	 */
379	FILE_LOCK(rf);
380	rf->f_flag = FREAD | FWRITE;
381	rf->f_type = DTYPE_PIPE;
382	rf->f_data = rpipe;
383	rf->f_ops = &pipeops;
384	FILE_UNLOCK(rf);
385	error = falloc(td, &wf, &fd);
386	if (error) {
387		FILEDESC_LOCK(fdp);
388		if (fdp->fd_ofiles[td->td_retval[0]] == rf) {
389			fdp->fd_ofiles[td->td_retval[0]] = NULL;
390			fdunused(fdp, td->td_retval[0]);
391			FILEDESC_UNLOCK(fdp);
392			fdrop(rf, td);
393		} else {
394			FILEDESC_UNLOCK(fdp);
395		}
396		fdrop(rf, td);
397		/* rpipe has been closed by fdrop(). */
398		pipeclose(wpipe);
399		return (error);
400	}
401	/* An extra reference on `wf' has been held for us by falloc(). */
402	FILE_LOCK(wf);
403	wf->f_flag = FREAD | FWRITE;
404	wf->f_type = DTYPE_PIPE;
405	wf->f_data = wpipe;
406	wf->f_ops = &pipeops;
407	FILE_UNLOCK(wf);
408	fdrop(wf, td);
409	td->td_retval[1] = fd;
410	fdrop(rf, td);
411
412	return (0);
413}
414
415/*
416 * Allocate kva for pipe circular buffer, the space is pageable
417 * This routine will 'realloc' the size of a pipe safely, if it fails
418 * it will retain the old buffer.
419 * If it fails it will return ENOMEM.
420 */
421static int
422pipespace_new(cpipe, size)
423	struct pipe *cpipe;
424	int size;
425{
426	caddr_t buffer;
427	int error, cnt, firstseg;
428	static int curfail = 0;
429	static struct timeval lastfail;
430
431	KASSERT(!mtx_owned(PIPE_MTX(cpipe)), ("pipespace: pipe mutex locked"));
432	KASSERT(!(cpipe->pipe_state & PIPE_DIRECTW),
433		("pipespace: resize of direct writes not allowed"));
434retry:
435	cnt = cpipe->pipe_buffer.cnt;
436	if (cnt > size)
437		size = cnt;
438
439	size = round_page(size);
440	buffer = (caddr_t) vm_map_min(pipe_map);
441
442	error = vm_map_find(pipe_map, NULL, 0,
443		(vm_offset_t *) &buffer, size, 1,
444		VM_PROT_ALL, VM_PROT_ALL, 0);
445	if (error != KERN_SUCCESS) {
446		if ((cpipe->pipe_buffer.buffer == NULL) &&
447			(size > SMALL_PIPE_SIZE)) {
448			size = SMALL_PIPE_SIZE;
449			pipefragretry++;
450			goto retry;
451		}
452		if (cpipe->pipe_buffer.buffer == NULL) {
453			pipeallocfail++;
454			if (ppsratecheck(&lastfail, &curfail, 1))
455				printf("kern.ipc.maxpipekva exceeded; see tuning(7)\n");
456		} else {
457			piperesizefail++;
458		}
459		return (ENOMEM);
460	}
461
462	/* copy data, then free old resources if we're resizing */
463	if (cnt > 0) {
464		if (cpipe->pipe_buffer.in <= cpipe->pipe_buffer.out) {
465			firstseg = cpipe->pipe_buffer.size - cpipe->pipe_buffer.out;
466			bcopy(&cpipe->pipe_buffer.buffer[cpipe->pipe_buffer.out],
467				buffer, firstseg);
468			if ((cnt - firstseg) > 0)
469				bcopy(cpipe->pipe_buffer.buffer, &buffer[firstseg],
470					cpipe->pipe_buffer.in);
471		} else {
472			bcopy(&cpipe->pipe_buffer.buffer[cpipe->pipe_buffer.out],
473				buffer, cnt);
474		}
475	}
476	pipe_free_kmem(cpipe);
477	cpipe->pipe_buffer.buffer = buffer;
478	cpipe->pipe_buffer.size = size;
479	cpipe->pipe_buffer.in = cnt;
480	cpipe->pipe_buffer.out = 0;
481	cpipe->pipe_buffer.cnt = cnt;
482	atomic_add_int(&amountpipekva, cpipe->pipe_buffer.size);
483	return (0);
484}
485
486/*
487 * Wrapper for pipespace_new() that performs locking assertions.
488 */
489static int
490pipespace(cpipe, size)
491	struct pipe *cpipe;
492	int size;
493{
494
495	KASSERT(cpipe->pipe_state & PIPE_LOCKFL,
496		("Unlocked pipe passed to pipespace"));
497	return (pipespace_new(cpipe, size));
498}
499
500/*
501 * lock a pipe for I/O, blocking other access
502 */
503static __inline int
504pipelock(cpipe, catch)
505	struct pipe *cpipe;
506	int catch;
507{
508	int error;
509
510	PIPE_LOCK_ASSERT(cpipe, MA_OWNED);
511	while (cpipe->pipe_state & PIPE_LOCKFL) {
512		cpipe->pipe_state |= PIPE_LWANT;
513		error = msleep(cpipe, PIPE_MTX(cpipe),
514		    catch ? (PRIBIO | PCATCH) : PRIBIO,
515		    "pipelk", 0);
516		if (error != 0)
517			return (error);
518	}
519	cpipe->pipe_state |= PIPE_LOCKFL;
520	return (0);
521}
522
523/*
524 * unlock a pipe I/O lock
525 */
526static __inline void
527pipeunlock(cpipe)
528	struct pipe *cpipe;
529{
530
531	PIPE_LOCK_ASSERT(cpipe, MA_OWNED);
532	KASSERT(cpipe->pipe_state & PIPE_LOCKFL,
533		("Unlocked pipe passed to pipeunlock"));
534	cpipe->pipe_state &= ~PIPE_LOCKFL;
535	if (cpipe->pipe_state & PIPE_LWANT) {
536		cpipe->pipe_state &= ~PIPE_LWANT;
537		wakeup(cpipe);
538	}
539}
540
541static __inline void
542pipeselwakeup(cpipe)
543	struct pipe *cpipe;
544{
545
546	PIPE_LOCK_ASSERT(cpipe, MA_OWNED);
547	if (cpipe->pipe_state & PIPE_SEL) {
548		cpipe->pipe_state &= ~PIPE_SEL;
549		selwakeuppri(&cpipe->pipe_sel, PSOCK);
550	}
551	if ((cpipe->pipe_state & PIPE_ASYNC) && cpipe->pipe_sigio)
552		pgsigio(&cpipe->pipe_sigio, SIGIO, 0);
553	KNOTE_LOCKED(&cpipe->pipe_sel.si_note, 0);
554}
555
556/*
557 * Initialize and allocate VM and memory for pipe.  The structure
558 * will start out zero'd from the ctor, so we just manage the kmem.
559 */
560static int
561pipe_create(pipe, backing)
562	struct pipe *pipe;
563	int backing;
564{
565	int error;
566
567	if (backing) {
568		if (amountpipekva > maxpipekva / 2)
569			error = pipespace_new(pipe, SMALL_PIPE_SIZE);
570		else
571			error = pipespace_new(pipe, PIPE_SIZE);
572	} else {
573		/* If we're not backing this pipe, no need to do anything. */
574		error = 0;
575	}
576	knlist_init(&pipe->pipe_sel.si_note, PIPE_MTX(pipe));
577	return (error);
578}
579
580/* ARGSUSED */
581static int
582pipe_read(fp, uio, active_cred, flags, td)
583	struct file *fp;
584	struct uio *uio;
585	struct ucred *active_cred;
586	struct thread *td;
587	int flags;
588{
589	struct pipe *rpipe = fp->f_data;
590	int error;
591	int nread = 0;
592	u_int size;
593
594	PIPE_LOCK(rpipe);
595	++rpipe->pipe_busy;
596	error = pipelock(rpipe, 1);
597	if (error)
598		goto unlocked_error;
599
600#ifdef MAC
601	error = mac_check_pipe_read(active_cred, rpipe->pipe_pair);
602	if (error)
603		goto locked_error;
604#endif
605	if (amountpipekva > (3 * maxpipekva) / 4) {
606		if (!(rpipe->pipe_state & PIPE_DIRECTW) &&
607			(rpipe->pipe_buffer.size > SMALL_PIPE_SIZE) &&
608			(rpipe->pipe_buffer.cnt <= SMALL_PIPE_SIZE) &&
609			(piperesizeallowed == 1)) {
610			PIPE_UNLOCK(rpipe);
611			pipespace(rpipe, SMALL_PIPE_SIZE);
612			PIPE_LOCK(rpipe);
613		}
614	}
615
616	while (uio->uio_resid) {
617		/*
618		 * normal pipe buffer receive
619		 */
620		if (rpipe->pipe_buffer.cnt > 0) {
621			size = rpipe->pipe_buffer.size - rpipe->pipe_buffer.out;
622			if (size > rpipe->pipe_buffer.cnt)
623				size = rpipe->pipe_buffer.cnt;
624			if (size > (u_int) uio->uio_resid)
625				size = (u_int) uio->uio_resid;
626
627			PIPE_UNLOCK(rpipe);
628			error = uiomove(
629			    &rpipe->pipe_buffer.buffer[rpipe->pipe_buffer.out],
630			    size, uio);
631			PIPE_LOCK(rpipe);
632			if (error)
633				break;
634
635			rpipe->pipe_buffer.out += size;
636			if (rpipe->pipe_buffer.out >= rpipe->pipe_buffer.size)
637				rpipe->pipe_buffer.out = 0;
638
639			rpipe->pipe_buffer.cnt -= size;
640
641			/*
642			 * If there is no more to read in the pipe, reset
643			 * its pointers to the beginning.  This improves
644			 * cache hit stats.
645			 */
646			if (rpipe->pipe_buffer.cnt == 0) {
647				rpipe->pipe_buffer.in = 0;
648				rpipe->pipe_buffer.out = 0;
649			}
650			nread += size;
651#ifndef PIPE_NODIRECT
652		/*
653		 * Direct copy, bypassing a kernel buffer.
654		 */
655		} else if ((size = rpipe->pipe_map.cnt) &&
656			   (rpipe->pipe_state & PIPE_DIRECTW)) {
657			if (size > (u_int) uio->uio_resid)
658				size = (u_int) uio->uio_resid;
659
660			PIPE_UNLOCK(rpipe);
661			error = uiomove_fromphys(rpipe->pipe_map.ms,
662			    rpipe->pipe_map.pos, size, uio);
663			PIPE_LOCK(rpipe);
664			if (error)
665				break;
666			nread += size;
667			rpipe->pipe_map.pos += size;
668			rpipe->pipe_map.cnt -= size;
669			if (rpipe->pipe_map.cnt == 0) {
670				rpipe->pipe_state &= ~PIPE_DIRECTW;
671				wakeup(rpipe);
672			}
673#endif
674		} else {
675			/*
676			 * detect EOF condition
677			 * read returns 0 on EOF, no need to set error
678			 */
679			if (rpipe->pipe_state & PIPE_EOF)
680				break;
681
682			/*
683			 * If the "write-side" has been blocked, wake it up now.
684			 */
685			if (rpipe->pipe_state & PIPE_WANTW) {
686				rpipe->pipe_state &= ~PIPE_WANTW;
687				wakeup(rpipe);
688			}
689
690			/*
691			 * Break if some data was read.
692			 */
693			if (nread > 0)
694				break;
695
696			/*
697			 * Unlock the pipe buffer for our remaining processing.
698			 * We will either break out with an error or we will
699			 * sleep and relock to loop.
700			 */
701			pipeunlock(rpipe);
702
703			/*
704			 * Handle non-blocking mode operation or
705			 * wait for more data.
706			 */
707			if (fp->f_flag & FNONBLOCK) {
708				error = EAGAIN;
709			} else {
710				rpipe->pipe_state |= PIPE_WANTR;
711				if ((error = msleep(rpipe, PIPE_MTX(rpipe),
712				    PRIBIO | PCATCH,
713				    "piperd", 0)) == 0)
714					error = pipelock(rpipe, 1);
715			}
716			if (error)
717				goto unlocked_error;
718		}
719	}
720#ifdef MAC
721locked_error:
722#endif
723	pipeunlock(rpipe);
724
725	/* XXX: should probably do this before getting any locks. */
726	if (error == 0)
727		vfs_timestamp(&rpipe->pipe_atime);
728unlocked_error:
729	--rpipe->pipe_busy;
730
731	/*
732	 * PIPE_WANT processing only makes sense if pipe_busy is 0.
733	 */
734	if ((rpipe->pipe_busy == 0) && (rpipe->pipe_state & PIPE_WANT)) {
735		rpipe->pipe_state &= ~(PIPE_WANT|PIPE_WANTW);
736		wakeup(rpipe);
737	} else if (rpipe->pipe_buffer.cnt < MINPIPESIZE) {
738		/*
739		 * Handle write blocking hysteresis.
740		 */
741		if (rpipe->pipe_state & PIPE_WANTW) {
742			rpipe->pipe_state &= ~PIPE_WANTW;
743			wakeup(rpipe);
744		}
745	}
746
747	if ((rpipe->pipe_buffer.size - rpipe->pipe_buffer.cnt) >= PIPE_BUF)
748		pipeselwakeup(rpipe);
749
750	PIPE_UNLOCK(rpipe);
751	return (error);
752}
753
754#ifndef PIPE_NODIRECT
755/*
756 * Map the sending processes' buffer into kernel space and wire it.
757 * This is similar to a physical write operation.
758 */
759static int
760pipe_build_write_buffer(wpipe, uio)
761	struct pipe *wpipe;
762	struct uio *uio;
763{
764	pmap_t pmap;
765	u_int size;
766	int i, j;
767	vm_offset_t addr, endaddr;
768
769	PIPE_LOCK_ASSERT(wpipe, MA_NOTOWNED);
770	KASSERT(wpipe->pipe_state & PIPE_DIRECTW,
771		("Clone attempt on non-direct write pipe!"));
772
773	size = (u_int) uio->uio_iov->iov_len;
774	if (size > wpipe->pipe_buffer.size)
775		size = wpipe->pipe_buffer.size;
776
777	pmap = vmspace_pmap(curproc->p_vmspace);
778	endaddr = round_page((vm_offset_t)uio->uio_iov->iov_base + size);
779	addr = trunc_page((vm_offset_t)uio->uio_iov->iov_base);
780	for (i = 0; addr < endaddr; addr += PAGE_SIZE, i++) {
781		/*
782		 * vm_fault_quick() can sleep.  Consequently,
783		 * vm_page_lock_queue() and vm_page_unlock_queue()
784		 * should not be performed outside of this loop.
785		 */
786	race:
787		if (vm_fault_quick((caddr_t)addr, VM_PROT_READ) < 0) {
788			vm_page_lock_queues();
789			for (j = 0; j < i; j++)
790				vm_page_unhold(wpipe->pipe_map.ms[j]);
791			vm_page_unlock_queues();
792			return (EFAULT);
793		}
794		wpipe->pipe_map.ms[i] = pmap_extract_and_hold(pmap, addr,
795		    VM_PROT_READ);
796		if (wpipe->pipe_map.ms[i] == NULL)
797			goto race;
798	}
799
800/*
801 * set up the control block
802 */
803	wpipe->pipe_map.npages = i;
804	wpipe->pipe_map.pos =
805	    ((vm_offset_t) uio->uio_iov->iov_base) & PAGE_MASK;
806	wpipe->pipe_map.cnt = size;
807
808/*
809 * and update the uio data
810 */
811
812	uio->uio_iov->iov_len -= size;
813	uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + size;
814	if (uio->uio_iov->iov_len == 0)
815		uio->uio_iov++;
816	uio->uio_resid -= size;
817	uio->uio_offset += size;
818	return (0);
819}
820
821/*
822 * unmap and unwire the process buffer
823 */
824static void
825pipe_destroy_write_buffer(wpipe)
826	struct pipe *wpipe;
827{
828	int i;
829
830	PIPE_LOCK_ASSERT(wpipe, MA_OWNED);
831	vm_page_lock_queues();
832	for (i = 0; i < wpipe->pipe_map.npages; i++) {
833		vm_page_unhold(wpipe->pipe_map.ms[i]);
834	}
835	vm_page_unlock_queues();
836	wpipe->pipe_map.npages = 0;
837}
838
839/*
840 * In the case of a signal, the writing process might go away.  This
841 * code copies the data into the circular buffer so that the source
842 * pages can be freed without loss of data.
843 */
844static void
845pipe_clone_write_buffer(wpipe)
846	struct pipe *wpipe;
847{
848	struct uio uio;
849	struct iovec iov;
850	int size;
851	int pos;
852
853	PIPE_LOCK_ASSERT(wpipe, MA_OWNED);
854	size = wpipe->pipe_map.cnt;
855	pos = wpipe->pipe_map.pos;
856
857	wpipe->pipe_buffer.in = size;
858	wpipe->pipe_buffer.out = 0;
859	wpipe->pipe_buffer.cnt = size;
860	wpipe->pipe_state &= ~PIPE_DIRECTW;
861
862	PIPE_UNLOCK(wpipe);
863	iov.iov_base = wpipe->pipe_buffer.buffer;
864	iov.iov_len = size;
865	uio.uio_iov = &iov;
866	uio.uio_iovcnt = 1;
867	uio.uio_offset = 0;
868	uio.uio_resid = size;
869	uio.uio_segflg = UIO_SYSSPACE;
870	uio.uio_rw = UIO_READ;
871	uio.uio_td = curthread;
872	uiomove_fromphys(wpipe->pipe_map.ms, pos, size, &uio);
873	PIPE_LOCK(wpipe);
874	pipe_destroy_write_buffer(wpipe);
875}
876
877/*
878 * This implements the pipe buffer write mechanism.  Note that only
879 * a direct write OR a normal pipe write can be pending at any given time.
880 * If there are any characters in the pipe buffer, the direct write will
881 * be deferred until the receiving process grabs all of the bytes from
882 * the pipe buffer.  Then the direct mapping write is set-up.
883 */
884static int
885pipe_direct_write(wpipe, uio)
886	struct pipe *wpipe;
887	struct uio *uio;
888{
889	int error;
890
891retry:
892	PIPE_LOCK_ASSERT(wpipe, MA_OWNED);
893	error = pipelock(wpipe, 1);
894	if (wpipe->pipe_state & PIPE_EOF)
895		error = EPIPE;
896	if (error) {
897		pipeunlock(wpipe);
898		goto error1;
899	}
900	while (wpipe->pipe_state & PIPE_DIRECTW) {
901		if (wpipe->pipe_state & PIPE_WANTR) {
902			wpipe->pipe_state &= ~PIPE_WANTR;
903			wakeup(wpipe);
904		}
905		wpipe->pipe_state |= PIPE_WANTW;
906		pipeunlock(wpipe);
907		error = msleep(wpipe, PIPE_MTX(wpipe),
908		    PRIBIO | PCATCH, "pipdww", 0);
909		if (error)
910			goto error1;
911		else
912			goto retry;
913	}
914	wpipe->pipe_map.cnt = 0;	/* transfer not ready yet */
915	if (wpipe->pipe_buffer.cnt > 0) {
916		if (wpipe->pipe_state & PIPE_WANTR) {
917			wpipe->pipe_state &= ~PIPE_WANTR;
918			wakeup(wpipe);
919		}
920		wpipe->pipe_state |= PIPE_WANTW;
921		pipeunlock(wpipe);
922		error = msleep(wpipe, PIPE_MTX(wpipe),
923		    PRIBIO | PCATCH, "pipdwc", 0);
924		if (error)
925			goto error1;
926		else
927			goto retry;
928	}
929
930	wpipe->pipe_state |= PIPE_DIRECTW;
931
932	PIPE_UNLOCK(wpipe);
933	error = pipe_build_write_buffer(wpipe, uio);
934	PIPE_LOCK(wpipe);
935	if (error) {
936		wpipe->pipe_state &= ~PIPE_DIRECTW;
937		pipeunlock(wpipe);
938		goto error1;
939	}
940
941	error = 0;
942	while (!error && (wpipe->pipe_state & PIPE_DIRECTW)) {
943		if (wpipe->pipe_state & PIPE_EOF) {
944			pipe_destroy_write_buffer(wpipe);
945			pipeselwakeup(wpipe);
946			pipeunlock(wpipe);
947			error = EPIPE;
948			goto error1;
949		}
950		if (wpipe->pipe_state & PIPE_WANTR) {
951			wpipe->pipe_state &= ~PIPE_WANTR;
952			wakeup(wpipe);
953		}
954		pipeselwakeup(wpipe);
955		pipeunlock(wpipe);
956		error = msleep(wpipe, PIPE_MTX(wpipe), PRIBIO | PCATCH,
957		    "pipdwt", 0);
958		pipelock(wpipe, 0);
959	}
960
961	if (wpipe->pipe_state & PIPE_EOF)
962		error = EPIPE;
963	if (wpipe->pipe_state & PIPE_DIRECTW) {
964		/*
965		 * this bit of trickery substitutes a kernel buffer for
966		 * the process that might be going away.
967		 */
968		pipe_clone_write_buffer(wpipe);
969	} else {
970		pipe_destroy_write_buffer(wpipe);
971	}
972	pipeunlock(wpipe);
973	return (error);
974
975error1:
976	wakeup(wpipe);
977	return (error);
978}
979#endif
980
981static int
982pipe_write(fp, uio, active_cred, flags, td)
983	struct file *fp;
984	struct uio *uio;
985	struct ucred *active_cred;
986	struct thread *td;
987	int flags;
988{
989	int error = 0;
990	int desiredsize, orig_resid;
991	struct pipe *wpipe, *rpipe;
992
993	rpipe = fp->f_data;
994	wpipe = rpipe->pipe_peer;
995
996	PIPE_LOCK(rpipe);
997	error = pipelock(wpipe, 1);
998	if (error) {
999		PIPE_UNLOCK(rpipe);
1000		return (error);
1001	}
1002	/*
1003	 * detect loss of pipe read side, issue SIGPIPE if lost.
1004	 */
1005	if ((!wpipe->pipe_present) || (wpipe->pipe_state & PIPE_EOF)) {
1006		pipeunlock(wpipe);
1007		PIPE_UNLOCK(rpipe);
1008		return (EPIPE);
1009	}
1010#ifdef MAC
1011	error = mac_check_pipe_write(active_cred, wpipe->pipe_pair);
1012	if (error) {
1013		pipeunlock(wpipe);
1014		PIPE_UNLOCK(rpipe);
1015		return (error);
1016	}
1017#endif
1018	++wpipe->pipe_busy;
1019
1020	/* Choose a larger size if it's advantageous */
1021	desiredsize = max(SMALL_PIPE_SIZE, wpipe->pipe_buffer.size);
1022	while (desiredsize < wpipe->pipe_buffer.cnt + uio->uio_resid) {
1023		if (piperesizeallowed != 1)
1024			break;
1025		if (amountpipekva > maxpipekva / 2)
1026			break;
1027		if (desiredsize == BIG_PIPE_SIZE)
1028			break;
1029		desiredsize = desiredsize * 2;
1030	}
1031
1032	/* Choose a smaller size if we're in a OOM situation */
1033	if ((amountpipekva > (3 * maxpipekva) / 4) &&
1034		(wpipe->pipe_buffer.size > SMALL_PIPE_SIZE) &&
1035		(wpipe->pipe_buffer.cnt <= SMALL_PIPE_SIZE) &&
1036		(piperesizeallowed == 1))
1037		desiredsize = SMALL_PIPE_SIZE;
1038
1039	/* Resize if the above determined that a new size was necessary */
1040	if ((desiredsize != wpipe->pipe_buffer.size) &&
1041		((wpipe->pipe_state & PIPE_DIRECTW) == 0)) {
1042		PIPE_UNLOCK(wpipe);
1043		pipespace(wpipe, desiredsize);
1044		PIPE_LOCK(wpipe);
1045	}
1046	if (wpipe->pipe_buffer.size == 0) {
1047		/*
1048		 * This can only happen for reverse direction use of pipes
1049		 * in a complete OOM situation.
1050		 */
1051		error = ENOMEM;
1052		--wpipe->pipe_busy;
1053		pipeunlock(wpipe);
1054		PIPE_UNLOCK(wpipe);
1055		return (error);
1056	}
1057
1058	pipeunlock(wpipe);
1059
1060	orig_resid = uio->uio_resid;
1061
1062	while (uio->uio_resid) {
1063		int space;
1064
1065		pipelock(wpipe, 0);
1066		if (wpipe->pipe_state & PIPE_EOF) {
1067			pipeunlock(wpipe);
1068			error = EPIPE;
1069			break;
1070		}
1071#ifndef PIPE_NODIRECT
1072		/*
1073		 * If the transfer is large, we can gain performance if
1074		 * we do process-to-process copies directly.
1075		 * If the write is non-blocking, we don't use the
1076		 * direct write mechanism.
1077		 *
1078		 * The direct write mechanism will detect the reader going
1079		 * away on us.
1080		 */
1081		if ((uio->uio_iov->iov_len >= PIPE_MINDIRECT) &&
1082		    (wpipe->pipe_buffer.size >= PIPE_MINDIRECT) &&
1083		    (fp->f_flag & FNONBLOCK) == 0) {
1084			pipeunlock(wpipe);
1085			error = pipe_direct_write(wpipe, uio);
1086			if (error)
1087				break;
1088			continue;
1089		}
1090#endif
1091
1092		/*
1093		 * Pipe buffered writes cannot be coincidental with
1094		 * direct writes.  We wait until the currently executing
1095		 * direct write is completed before we start filling the
1096		 * pipe buffer.  We break out if a signal occurs or the
1097		 * reader goes away.
1098		 */
1099		if (wpipe->pipe_state & PIPE_DIRECTW) {
1100			if (wpipe->pipe_state & PIPE_WANTR) {
1101				wpipe->pipe_state &= ~PIPE_WANTR;
1102				wakeup(wpipe);
1103			}
1104			pipeunlock(wpipe);
1105			error = msleep(wpipe, PIPE_MTX(rpipe), PRIBIO | PCATCH,
1106			    "pipbww", 0);
1107			if (error)
1108				break;
1109			else
1110				continue;
1111		}
1112
1113		space = wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt;
1114
1115		/* Writes of size <= PIPE_BUF must be atomic. */
1116		if ((space < uio->uio_resid) && (orig_resid <= PIPE_BUF))
1117			space = 0;
1118
1119		if (space > 0) {
1120			int size;	/* Transfer size */
1121			int segsize;	/* first segment to transfer */
1122
1123			/*
1124			 * Transfer size is minimum of uio transfer
1125			 * and free space in pipe buffer.
1126			 */
1127			if (space > uio->uio_resid)
1128				size = uio->uio_resid;
1129			else
1130				size = space;
1131			/*
1132			 * First segment to transfer is minimum of
1133			 * transfer size and contiguous space in
1134			 * pipe buffer.  If first segment to transfer
1135			 * is less than the transfer size, we've got
1136			 * a wraparound in the buffer.
1137			 */
1138			segsize = wpipe->pipe_buffer.size -
1139				wpipe->pipe_buffer.in;
1140			if (segsize > size)
1141				segsize = size;
1142
1143			/* Transfer first segment */
1144
1145			PIPE_UNLOCK(rpipe);
1146			error = uiomove(&wpipe->pipe_buffer.buffer[wpipe->pipe_buffer.in],
1147					segsize, uio);
1148			PIPE_LOCK(rpipe);
1149
1150			if (error == 0 && segsize < size) {
1151				KASSERT(wpipe->pipe_buffer.in + segsize ==
1152					wpipe->pipe_buffer.size,
1153					("Pipe buffer wraparound disappeared"));
1154				/*
1155				 * Transfer remaining part now, to
1156				 * support atomic writes.  Wraparound
1157				 * happened.
1158				 */
1159
1160				PIPE_UNLOCK(rpipe);
1161				error = uiomove(
1162				    &wpipe->pipe_buffer.buffer[0],
1163				    size - segsize, uio);
1164				PIPE_LOCK(rpipe);
1165			}
1166			if (error == 0) {
1167				wpipe->pipe_buffer.in += size;
1168				if (wpipe->pipe_buffer.in >=
1169				    wpipe->pipe_buffer.size) {
1170					KASSERT(wpipe->pipe_buffer.in ==
1171						size - segsize +
1172						wpipe->pipe_buffer.size,
1173						("Expected wraparound bad"));
1174					wpipe->pipe_buffer.in = size - segsize;
1175				}
1176
1177				wpipe->pipe_buffer.cnt += size;
1178				KASSERT(wpipe->pipe_buffer.cnt <=
1179					wpipe->pipe_buffer.size,
1180					("Pipe buffer overflow"));
1181			}
1182			pipeunlock(wpipe);
1183		} else {
1184			/*
1185			 * If the "read-side" has been blocked, wake it up now.
1186			 */
1187			if (wpipe->pipe_state & PIPE_WANTR) {
1188				wpipe->pipe_state &= ~PIPE_WANTR;
1189				wakeup(wpipe);
1190			}
1191
1192			/*
1193			 * don't block on non-blocking I/O
1194			 */
1195			if (fp->f_flag & FNONBLOCK) {
1196				error = EAGAIN;
1197				pipeunlock(wpipe);
1198				break;
1199			}
1200
1201			/*
1202			 * We have no more space and have something to offer,
1203			 * wake up select/poll.
1204			 */
1205			pipeselwakeup(wpipe);
1206
1207			wpipe->pipe_state |= PIPE_WANTW;
1208			pipeunlock(wpipe);
1209			error = msleep(wpipe, PIPE_MTX(rpipe),
1210			    PRIBIO | PCATCH, "pipewr", 0);
1211			if (error != 0)
1212				break;
1213		}
1214	}
1215
1216	pipelock(wpipe, 0);
1217	--wpipe->pipe_busy;
1218
1219	if ((wpipe->pipe_busy == 0) && (wpipe->pipe_state & PIPE_WANT)) {
1220		wpipe->pipe_state &= ~(PIPE_WANT | PIPE_WANTR);
1221		wakeup(wpipe);
1222	} else if (wpipe->pipe_buffer.cnt > 0) {
1223		/*
1224		 * If we have put any characters in the buffer, we wake up
1225		 * the reader.
1226		 */
1227		if (wpipe->pipe_state & PIPE_WANTR) {
1228			wpipe->pipe_state &= ~PIPE_WANTR;
1229			wakeup(wpipe);
1230		}
1231	}
1232
1233	/*
1234	 * Don't return EPIPE if I/O was successful
1235	 */
1236	if ((wpipe->pipe_buffer.cnt == 0) &&
1237	    (uio->uio_resid == 0) &&
1238	    (error == EPIPE)) {
1239		error = 0;
1240	}
1241
1242	if (error == 0)
1243		vfs_timestamp(&wpipe->pipe_mtime);
1244
1245	/*
1246	 * We have something to offer,
1247	 * wake up select/poll.
1248	 */
1249	if (wpipe->pipe_buffer.cnt)
1250		pipeselwakeup(wpipe);
1251
1252	pipeunlock(wpipe);
1253	PIPE_UNLOCK(rpipe);
1254	return (error);
1255}
1256
1257/*
1258 * we implement a very minimal set of ioctls for compatibility with sockets.
1259 */
1260static int
1261pipe_ioctl(fp, cmd, data, active_cred, td)
1262	struct file *fp;
1263	u_long cmd;
1264	void *data;
1265	struct ucred *active_cred;
1266	struct thread *td;
1267{
1268	struct pipe *mpipe = fp->f_data;
1269#ifdef MAC
1270	int error;
1271#endif
1272
1273	PIPE_LOCK(mpipe);
1274
1275#ifdef MAC
1276	error = mac_check_pipe_ioctl(active_cred, mpipe->pipe_pair, cmd, data);
1277	if (error) {
1278		PIPE_UNLOCK(mpipe);
1279		return (error);
1280	}
1281#endif
1282
1283	switch (cmd) {
1284
1285	case FIONBIO:
1286		PIPE_UNLOCK(mpipe);
1287		return (0);
1288
1289	case FIOASYNC:
1290		if (*(int *)data) {
1291			mpipe->pipe_state |= PIPE_ASYNC;
1292		} else {
1293			mpipe->pipe_state &= ~PIPE_ASYNC;
1294		}
1295		PIPE_UNLOCK(mpipe);
1296		return (0);
1297
1298	case FIONREAD:
1299		if (mpipe->pipe_state & PIPE_DIRECTW)
1300			*(int *)data = mpipe->pipe_map.cnt;
1301		else
1302			*(int *)data = mpipe->pipe_buffer.cnt;
1303		PIPE_UNLOCK(mpipe);
1304		return (0);
1305
1306	case FIOSETOWN:
1307		PIPE_UNLOCK(mpipe);
1308		return (fsetown(*(int *)data, &mpipe->pipe_sigio));
1309
1310	case FIOGETOWN:
1311		PIPE_UNLOCK(mpipe);
1312		*(int *)data = fgetown(&mpipe->pipe_sigio);
1313		return (0);
1314
1315	/* This is deprecated, FIOSETOWN should be used instead. */
1316	case TIOCSPGRP:
1317		PIPE_UNLOCK(mpipe);
1318		return (fsetown(-(*(int *)data), &mpipe->pipe_sigio));
1319
1320	/* This is deprecated, FIOGETOWN should be used instead. */
1321	case TIOCGPGRP:
1322		PIPE_UNLOCK(mpipe);
1323		*(int *)data = -fgetown(&mpipe->pipe_sigio);
1324		return (0);
1325
1326	}
1327	PIPE_UNLOCK(mpipe);
1328	return (ENOTTY);
1329}
1330
1331static int
1332pipe_poll(fp, events, active_cred, td)
1333	struct file *fp;
1334	int events;
1335	struct ucred *active_cred;
1336	struct thread *td;
1337{
1338	struct pipe *rpipe = fp->f_data;
1339	struct pipe *wpipe;
1340	int revents = 0;
1341#ifdef MAC
1342	int error;
1343#endif
1344
1345	wpipe = rpipe->pipe_peer;
1346	PIPE_LOCK(rpipe);
1347#ifdef MAC
1348	error = mac_check_pipe_poll(active_cred, rpipe->pipe_pair);
1349	if (error)
1350		goto locked_error;
1351#endif
1352	if (events & (POLLIN | POLLRDNORM))
1353		if ((rpipe->pipe_state & PIPE_DIRECTW) ||
1354		    (rpipe->pipe_buffer.cnt > 0) ||
1355		    (rpipe->pipe_state & PIPE_EOF))
1356			revents |= events & (POLLIN | POLLRDNORM);
1357
1358	if (events & (POLLOUT | POLLWRNORM))
1359		if (!wpipe->pipe_present || (wpipe->pipe_state & PIPE_EOF) ||
1360		    (((wpipe->pipe_state & PIPE_DIRECTW) == 0) &&
1361		     (wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt) >= PIPE_BUF))
1362			revents |= events & (POLLOUT | POLLWRNORM);
1363
1364	if ((rpipe->pipe_state & PIPE_EOF) ||
1365	    (!wpipe->pipe_present) ||
1366	    (wpipe->pipe_state & PIPE_EOF))
1367		revents |= POLLHUP;
1368
1369	if (revents == 0) {
1370		if (events & (POLLIN | POLLRDNORM)) {
1371			selrecord(td, &rpipe->pipe_sel);
1372			rpipe->pipe_state |= PIPE_SEL;
1373		}
1374
1375		if (events & (POLLOUT | POLLWRNORM)) {
1376			selrecord(td, &wpipe->pipe_sel);
1377			wpipe->pipe_state |= PIPE_SEL;
1378		}
1379	}
1380#ifdef MAC
1381locked_error:
1382#endif
1383	PIPE_UNLOCK(rpipe);
1384
1385	return (revents);
1386}
1387
1388/*
1389 * We shouldn't need locks here as we're doing a read and this should
1390 * be a natural race.
1391 */
1392static int
1393pipe_stat(fp, ub, active_cred, td)
1394	struct file *fp;
1395	struct stat *ub;
1396	struct ucred *active_cred;
1397	struct thread *td;
1398{
1399	struct pipe *pipe = fp->f_data;
1400#ifdef MAC
1401	int error;
1402
1403	PIPE_LOCK(pipe);
1404	error = mac_check_pipe_stat(active_cred, pipe->pipe_pair);
1405	PIPE_UNLOCK(pipe);
1406	if (error)
1407		return (error);
1408#endif
1409	bzero(ub, sizeof(*ub));
1410	ub->st_mode = S_IFIFO;
1411	ub->st_blksize = PAGE_SIZE;
1412	if (pipe->pipe_state & PIPE_DIRECTW)
1413		ub->st_size = pipe->pipe_map.cnt;
1414	else
1415		ub->st_size = pipe->pipe_buffer.cnt;
1416	ub->st_blocks = (ub->st_size + ub->st_blksize - 1) / ub->st_blksize;
1417	ub->st_atimespec = pipe->pipe_atime;
1418	ub->st_mtimespec = pipe->pipe_mtime;
1419	ub->st_ctimespec = pipe->pipe_ctime;
1420	ub->st_uid = fp->f_cred->cr_uid;
1421	ub->st_gid = fp->f_cred->cr_gid;
1422	/*
1423	 * Left as 0: st_dev, st_ino, st_nlink, st_rdev, st_flags, st_gen.
1424	 * XXX (st_dev, st_ino) should be unique.
1425	 */
1426	return (0);
1427}
1428
1429/* ARGSUSED */
1430static int
1431pipe_close(fp, td)
1432	struct file *fp;
1433	struct thread *td;
1434{
1435	struct pipe *cpipe = fp->f_data;
1436
1437	fp->f_ops = &badfileops;
1438	fp->f_data = NULL;
1439	funsetown(&cpipe->pipe_sigio);
1440	pipeclose(cpipe);
1441	return (0);
1442}
1443
1444static void
1445pipe_free_kmem(cpipe)
1446	struct pipe *cpipe;
1447{
1448
1449	KASSERT(!mtx_owned(PIPE_MTX(cpipe)),
1450	    ("pipe_free_kmem: pipe mutex locked"));
1451
1452	if (cpipe->pipe_buffer.buffer != NULL) {
1453		atomic_subtract_int(&amountpipekva, cpipe->pipe_buffer.size);
1454		vm_map_remove(pipe_map,
1455		    (vm_offset_t)cpipe->pipe_buffer.buffer,
1456		    (vm_offset_t)cpipe->pipe_buffer.buffer + cpipe->pipe_buffer.size);
1457		cpipe->pipe_buffer.buffer = NULL;
1458	}
1459#ifndef PIPE_NODIRECT
1460	{
1461		cpipe->pipe_map.cnt = 0;
1462		cpipe->pipe_map.pos = 0;
1463		cpipe->pipe_map.npages = 0;
1464	}
1465#endif
1466}
1467
1468/*
1469 * shutdown the pipe
1470 */
1471static void
1472pipeclose(cpipe)
1473	struct pipe *cpipe;
1474{
1475	struct pipepair *pp;
1476	struct pipe *ppipe;
1477
1478	KASSERT(cpipe != NULL, ("pipeclose: cpipe == NULL"));
1479
1480	PIPE_LOCK(cpipe);
1481	pipelock(cpipe, 0);
1482	pp = cpipe->pipe_pair;
1483
1484	pipeselwakeup(cpipe);
1485
1486	/*
1487	 * If the other side is blocked, wake it up saying that
1488	 * we want to close it down.
1489	 */
1490	cpipe->pipe_state |= PIPE_EOF;
1491	while (cpipe->pipe_busy) {
1492		wakeup(cpipe);
1493		cpipe->pipe_state |= PIPE_WANT;
1494		pipeunlock(cpipe);
1495		msleep(cpipe, PIPE_MTX(cpipe), PRIBIO, "pipecl", 0);
1496		pipelock(cpipe, 0);
1497	}
1498
1499
1500	/*
1501	 * Disconnect from peer, if any.
1502	 */
1503	ppipe = cpipe->pipe_peer;
1504	if (ppipe->pipe_present != 0) {
1505		pipeselwakeup(ppipe);
1506
1507		ppipe->pipe_state |= PIPE_EOF;
1508		wakeup(ppipe);
1509		KNOTE_LOCKED(&ppipe->pipe_sel.si_note, 0);
1510	}
1511
1512	/*
1513	 * Mark this endpoint as free.  Release kmem resources.  We
1514	 * don't mark this endpoint as unused until we've finished
1515	 * doing that, or the pipe might disappear out from under
1516	 * us.
1517	 */
1518	PIPE_UNLOCK(cpipe);
1519	pipe_free_kmem(cpipe);
1520	PIPE_LOCK(cpipe);
1521	cpipe->pipe_present = 0;
1522	pipeunlock(cpipe);
1523	knlist_clear(&cpipe->pipe_sel.si_note, 1);
1524	knlist_destroy(&cpipe->pipe_sel.si_note);
1525
1526	/*
1527	 * If both endpoints are now closed, release the memory for the
1528	 * pipe pair.  If not, unlock.
1529	 */
1530	if (ppipe->pipe_present == 0) {
1531		PIPE_UNLOCK(cpipe);
1532#ifdef MAC
1533		mac_destroy_pipe(pp);
1534#endif
1535		uma_zfree(pipe_zone, cpipe->pipe_pair);
1536	} else
1537		PIPE_UNLOCK(cpipe);
1538}
1539
1540/*ARGSUSED*/
1541static int
1542pipe_kqfilter(struct file *fp, struct knote *kn)
1543{
1544	struct pipe *cpipe;
1545
1546	cpipe = kn->kn_fp->f_data;
1547	PIPE_LOCK(cpipe);
1548	switch (kn->kn_filter) {
1549	case EVFILT_READ:
1550		kn->kn_fop = &pipe_rfiltops;
1551		break;
1552	case EVFILT_WRITE:
1553		kn->kn_fop = &pipe_wfiltops;
1554		if (!cpipe->pipe_peer->pipe_present) {
1555			/* other end of pipe has been closed */
1556			PIPE_UNLOCK(cpipe);
1557			return (EPIPE);
1558		}
1559		cpipe = cpipe->pipe_peer;
1560		break;
1561	default:
1562		PIPE_UNLOCK(cpipe);
1563		return (EINVAL);
1564	}
1565
1566	knlist_add(&cpipe->pipe_sel.si_note, kn, 1);
1567	PIPE_UNLOCK(cpipe);
1568	return (0);
1569}
1570
1571static void
1572filt_pipedetach(struct knote *kn)
1573{
1574	struct pipe *cpipe = (struct pipe *)kn->kn_fp->f_data;
1575
1576	PIPE_LOCK(cpipe);
1577	if (kn->kn_filter == EVFILT_WRITE) {
1578		if (!cpipe->pipe_peer->pipe_present) {
1579			PIPE_UNLOCK(cpipe);
1580			return;
1581		}
1582		cpipe = cpipe->pipe_peer;
1583	}
1584	knlist_remove(&cpipe->pipe_sel.si_note, kn, 1);
1585	PIPE_UNLOCK(cpipe);
1586}
1587
1588/*ARGSUSED*/
1589static int
1590filt_piperead(struct knote *kn, long hint)
1591{
1592	struct pipe *rpipe = kn->kn_fp->f_data;
1593	struct pipe *wpipe = rpipe->pipe_peer;
1594	int ret;
1595
1596	PIPE_LOCK(rpipe);
1597	kn->kn_data = rpipe->pipe_buffer.cnt;
1598	if ((kn->kn_data == 0) && (rpipe->pipe_state & PIPE_DIRECTW))
1599		kn->kn_data = rpipe->pipe_map.cnt;
1600
1601	if ((rpipe->pipe_state & PIPE_EOF) ||
1602	    (!wpipe->pipe_present) || (wpipe->pipe_state & PIPE_EOF)) {
1603		kn->kn_flags |= EV_EOF;
1604		PIPE_UNLOCK(rpipe);
1605		return (1);
1606	}
1607	ret = kn->kn_data > 0;
1608	PIPE_UNLOCK(rpipe);
1609	return ret;
1610}
1611
1612/*ARGSUSED*/
1613static int
1614filt_pipewrite(struct knote *kn, long hint)
1615{
1616	struct pipe *rpipe = kn->kn_fp->f_data;
1617	struct pipe *wpipe = rpipe->pipe_peer;
1618
1619	PIPE_LOCK(rpipe);
1620	if ((!wpipe->pipe_present) || (wpipe->pipe_state & PIPE_EOF)) {
1621		kn->kn_data = 0;
1622		kn->kn_flags |= EV_EOF;
1623		PIPE_UNLOCK(rpipe);
1624		return (1);
1625	}
1626	kn->kn_data = wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt;
1627	if (wpipe->pipe_state & PIPE_DIRECTW)
1628		kn->kn_data = 0;
1629
1630	PIPE_UNLOCK(rpipe);
1631	return (kn->kn_data >= PIPE_BUF);
1632}
1633