sys_pipe.c revision 123915
1/*
2 * Copyright (c) 1996 John S. Dyson
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice immediately at the beginning of the file, without modification,
10 *    this list of conditions, and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 * 3. Absolutely no warranty of function or purpose is made by the author
15 *    John S. Dyson.
16 * 4. Modifications may be freely made to this file if the above conditions
17 *    are met.
18 */
19
20/*
21 * This file contains a high-performance replacement for the socket-based
22 * pipes scheme originally used in FreeBSD/4.4Lite.  It does not support
23 * all features of sockets, but does do everything that pipes normally
24 * do.
25 */
26
27/*
28 * This code has two modes of operation, a small write mode and a large
29 * write mode.  The small write mode acts like conventional pipes with
30 * a kernel buffer.  If the buffer is less than PIPE_MINDIRECT, then the
31 * "normal" pipe buffering is done.  If the buffer is between PIPE_MINDIRECT
32 * and PIPE_SIZE in size, it is fully mapped and wired into the kernel, and
33 * the receiving process can copy it directly from the pages in the sending
34 * process.
35 *
36 * If the sending process receives a signal, it is possible that it will
37 * go away, and certainly its address space can change, because control
38 * is returned back to the user-mode side.  In that case, the pipe code
39 * arranges to copy the buffer supplied by the user process, to a pageable
40 * kernel buffer, and the receiving process will grab the data from the
41 * pageable kernel buffer.  Since signals don't happen all that often,
42 * the copy operation is normally eliminated.
43 *
44 * The constant PIPE_MINDIRECT is chosen to make sure that buffering will
45 * happen for small transfers so that the system will not spend all of
46 * its time context switching.
47 *
48 * In order to limit the resource use of pipes, two sysctls exist:
49 *
50 * kern.ipc.maxpipekva - This is a hard limit on the amount of pageable
51 * address space available to us in pipe_map.  Whenever the amount in use
52 * exceeds half of this value, all new pipes will be created with size
53 * SMALL_PIPE_SIZE, rather than PIPE_SIZE.  Big pipe creation will be limited
54 * as well.  This value is loader tunable only.
55 *
56 * kern.ipc.maxpipekvawired - This value limits the amount of memory that may
57 * be wired in order to facilitate direct copies using page flipping.
58 * Whenever this value is exceeded, pipes will fall back to using regular
59 * copies.  This value is sysctl controllable at all times.
60 *
61 * These values are autotuned in subr_param.c.
62 *
63 * Memory usage may be monitored through the sysctls
64 * kern.ipc.pipes, kern.ipc.pipekva and kern.ipc.pipekvawired.
65 *
66 */
67
68#include <sys/cdefs.h>
69__FBSDID("$FreeBSD: head/sys/kern/sys_pipe.c 123915 2003-12-28 01:19:58Z silby $");
70
71#include "opt_mac.h"
72
73#include <sys/param.h>
74#include <sys/systm.h>
75#include <sys/fcntl.h>
76#include <sys/file.h>
77#include <sys/filedesc.h>
78#include <sys/filio.h>
79#include <sys/kernel.h>
80#include <sys/lock.h>
81#include <sys/mac.h>
82#include <sys/mutex.h>
83#include <sys/ttycom.h>
84#include <sys/stat.h>
85#include <sys/malloc.h>
86#include <sys/poll.h>
87#include <sys/selinfo.h>
88#include <sys/signalvar.h>
89#include <sys/sysctl.h>
90#include <sys/sysproto.h>
91#include <sys/pipe.h>
92#include <sys/proc.h>
93#include <sys/vnode.h>
94#include <sys/uio.h>
95#include <sys/event.h>
96
97#include <vm/vm.h>
98#include <vm/vm_param.h>
99#include <vm/vm_object.h>
100#include <vm/vm_kern.h>
101#include <vm/vm_extern.h>
102#include <vm/pmap.h>
103#include <vm/vm_map.h>
104#include <vm/vm_page.h>
105#include <vm/uma.h>
106
107/*
108 * Use this define if you want to disable *fancy* VM things.  Expect an
109 * approx 30% decrease in transfer rate.  This could be useful for
110 * NetBSD or OpenBSD.
111 */
112/* #define PIPE_NODIRECT */
113
114/*
115 * interfaces to the outside world
116 */
117static fo_rdwr_t	pipe_read;
118static fo_rdwr_t	pipe_write;
119static fo_ioctl_t	pipe_ioctl;
120static fo_poll_t	pipe_poll;
121static fo_kqfilter_t	pipe_kqfilter;
122static fo_stat_t	pipe_stat;
123static fo_close_t	pipe_close;
124
125static struct fileops pipeops = {
126	.fo_read = pipe_read,
127	.fo_write = pipe_write,
128	.fo_ioctl = pipe_ioctl,
129	.fo_poll = pipe_poll,
130	.fo_kqfilter = pipe_kqfilter,
131	.fo_stat = pipe_stat,
132	.fo_close = pipe_close,
133	.fo_flags = DFLAG_PASSABLE
134};
135
136static void	filt_pipedetach(struct knote *kn);
137static int	filt_piperead(struct knote *kn, long hint);
138static int	filt_pipewrite(struct knote *kn, long hint);
139
140static struct filterops pipe_rfiltops =
141	{ 1, NULL, filt_pipedetach, filt_piperead };
142static struct filterops pipe_wfiltops =
143	{ 1, NULL, filt_pipedetach, filt_pipewrite };
144
145/*
146 * Default pipe buffer size(s), this can be kind-of large now because pipe
147 * space is pageable.  The pipe code will try to maintain locality of
148 * reference for performance reasons, so small amounts of outstanding I/O
149 * will not wipe the cache.
150 */
151#define MINPIPESIZE (PIPE_SIZE/3)
152#define MAXPIPESIZE (2*PIPE_SIZE/3)
153
154/*
155 * Limit the number of "big" pipes
156 */
157#define LIMITBIGPIPES	32
158static int nbigpipe;
159
160static int amountpipes;
161static int amountpipekva;
162static int amountpipekvawired;
163
164SYSCTL_DECL(_kern_ipc);
165
166SYSCTL_INT(_kern_ipc, OID_AUTO, maxpipekva, CTLFLAG_RDTUN,
167	   &maxpipekva, 0, "Pipe KVA limit");
168SYSCTL_INT(_kern_ipc, OID_AUTO, maxpipekvawired, CTLFLAG_RW,
169	   &maxpipekvawired, 0, "Pipe KVA wired limit");
170SYSCTL_INT(_kern_ipc, OID_AUTO, pipes, CTLFLAG_RD,
171	   &amountpipes, 0, "Current # of pipes");
172SYSCTL_INT(_kern_ipc, OID_AUTO, bigpipes, CTLFLAG_RD,
173	   &nbigpipe, 0, "Current # of big pipes");
174SYSCTL_INT(_kern_ipc, OID_AUTO, pipekva, CTLFLAG_RD,
175	   &amountpipekva, 0, "Pipe KVA usage");
176SYSCTL_INT(_kern_ipc, OID_AUTO, pipekvawired, CTLFLAG_RD,
177	   &amountpipekvawired, 0, "Pipe wired KVA usage");
178
179static void pipeinit(void *dummy __unused);
180static void pipeclose(struct pipe *cpipe);
181static void pipe_free_kmem(struct pipe *cpipe);
182static int pipe_create(struct pipe **cpipep);
183static __inline int pipelock(struct pipe *cpipe, int catch);
184static __inline void pipeunlock(struct pipe *cpipe);
185static __inline void pipeselwakeup(struct pipe *cpipe);
186#ifndef PIPE_NODIRECT
187static int pipe_build_write_buffer(struct pipe *wpipe, struct uio *uio);
188static void pipe_destroy_write_buffer(struct pipe *wpipe);
189static int pipe_direct_write(struct pipe *wpipe, struct uio *uio);
190static void pipe_clone_write_buffer(struct pipe *wpipe);
191#endif
192static int pipespace(struct pipe *cpipe, int size);
193
194static uma_zone_t pipe_zone;
195
196SYSINIT(vfs, SI_SUB_VFS, SI_ORDER_ANY, pipeinit, NULL);
197
198static void
199pipeinit(void *dummy __unused)
200{
201
202	pipe_zone = uma_zcreate("PIPE", sizeof(struct pipe), NULL,
203	    NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
204	KASSERT(pipe_zone != NULL, ("pipe_zone not initialized"));
205}
206
207/*
208 * The pipe system call for the DTYPE_PIPE type of pipes
209 */
210
211/* ARGSUSED */
212int
213pipe(td, uap)
214	struct thread *td;
215	struct pipe_args /* {
216		int	dummy;
217	} */ *uap;
218{
219	struct filedesc *fdp = td->td_proc->p_fd;
220	struct file *rf, *wf;
221	struct pipe *rpipe, *wpipe;
222	struct mtx *pmtx;
223	int fd, error;
224
225	rpipe = wpipe = NULL;
226	if (pipe_create(&rpipe) || pipe_create(&wpipe)) {
227		pipeclose(rpipe);
228		pipeclose(wpipe);
229		return (ENFILE);
230	}
231
232	rpipe->pipe_state |= PIPE_DIRECTOK;
233	wpipe->pipe_state |= PIPE_DIRECTOK;
234
235	error = falloc(td, &rf, &fd);
236	if (error) {
237		pipeclose(rpipe);
238		pipeclose(wpipe);
239		return (error);
240	}
241	/* An extra reference on `rf' has been held for us by falloc(). */
242	td->td_retval[0] = fd;
243
244	/*
245	 * Warning: once we've gotten past allocation of the fd for the
246	 * read-side, we can only drop the read side via fdrop() in order
247	 * to avoid races against processes which manage to dup() the read
248	 * side while we are blocked trying to allocate the write side.
249	 */
250	FILE_LOCK(rf);
251	rf->f_flag = FREAD | FWRITE;
252	rf->f_type = DTYPE_PIPE;
253	rf->f_data = rpipe;
254	rf->f_ops = &pipeops;
255	FILE_UNLOCK(rf);
256	error = falloc(td, &wf, &fd);
257	if (error) {
258		FILEDESC_LOCK(fdp);
259		if (fdp->fd_ofiles[td->td_retval[0]] == rf) {
260			fdp->fd_ofiles[td->td_retval[0]] = NULL;
261			FILEDESC_UNLOCK(fdp);
262			fdrop(rf, td);
263		} else
264			FILEDESC_UNLOCK(fdp);
265		fdrop(rf, td);
266		/* rpipe has been closed by fdrop(). */
267		pipeclose(wpipe);
268		return (error);
269	}
270	/* An extra reference on `wf' has been held for us by falloc(). */
271	FILE_LOCK(wf);
272	wf->f_flag = FREAD | FWRITE;
273	wf->f_type = DTYPE_PIPE;
274	wf->f_data = wpipe;
275	wf->f_ops = &pipeops;
276	FILE_UNLOCK(wf);
277	fdrop(wf, td);
278	td->td_retval[1] = fd;
279	rpipe->pipe_peer = wpipe;
280	wpipe->pipe_peer = rpipe;
281#ifdef MAC
282	/*
283	 * struct pipe represents a pipe endpoint.  The MAC label is shared
284	 * between the connected endpoints.  As a result mac_init_pipe() and
285	 * mac_create_pipe() should only be called on one of the endpoints
286	 * after they have been connected.
287	 */
288	mac_init_pipe(rpipe);
289	mac_create_pipe(td->td_ucred, rpipe);
290#endif
291	pmtx = malloc(sizeof(*pmtx), M_TEMP, M_WAITOK | M_ZERO);
292	mtx_init(pmtx, "pipe mutex", NULL, MTX_DEF | MTX_RECURSE);
293	rpipe->pipe_mtxp = wpipe->pipe_mtxp = pmtx;
294	fdrop(rf, td);
295
296	return (0);
297}
298
299/*
300 * Allocate kva for pipe circular buffer, the space is pageable
301 * This routine will 'realloc' the size of a pipe safely, if it fails
302 * it will retain the old buffer.
303 * If it fails it will return ENOMEM.
304 */
305static int
306pipespace(cpipe, size)
307	struct pipe *cpipe;
308	int size;
309{
310	caddr_t buffer;
311	int error;
312	static int curfail = 0;
313	static struct timeval lastfail;
314
315	KASSERT(cpipe->pipe_mtxp == NULL || !mtx_owned(PIPE_MTX(cpipe)),
316	       ("pipespace: pipe mutex locked"));
317
318	size = round_page(size);
319	/*
320	 * XXX -- minor change needed here for NetBSD/OpenBSD VM systems.
321	 */
322	buffer = (caddr_t) vm_map_min(pipe_map);
323
324	/*
325	 * The map entry is, by default, pageable.
326	 * XXX -- minor change needed here for NetBSD/OpenBSD VM systems.
327	 */
328	error = vm_map_find(pipe_map, NULL, 0,
329		(vm_offset_t *) &buffer, size, 1,
330		VM_PROT_ALL, VM_PROT_ALL, 0);
331	if (error != KERN_SUCCESS) {
332		if (ppsratecheck(&lastfail, &curfail, 1))
333			printf("kern.ipc.maxpipekva exceeded; see tuning(7)\n");
334		return (ENOMEM);
335	}
336
337	/* free old resources if we're resizing */
338	pipe_free_kmem(cpipe);
339	cpipe->pipe_buffer.buffer = buffer;
340	cpipe->pipe_buffer.size = size;
341	cpipe->pipe_buffer.in = 0;
342	cpipe->pipe_buffer.out = 0;
343	cpipe->pipe_buffer.cnt = 0;
344	atomic_add_int(&amountpipes, 1);
345	atomic_add_int(&amountpipekva, cpipe->pipe_buffer.size);
346	return (0);
347}
348
349/*
350 * initialize and allocate VM and memory for pipe
351 */
352static int
353pipe_create(cpipep)
354	struct pipe **cpipep;
355{
356	struct pipe *cpipe;
357	int error;
358
359	*cpipep = uma_zalloc(pipe_zone, M_WAITOK);
360	if (*cpipep == NULL)
361		return (ENOMEM);
362
363	cpipe = *cpipep;
364
365	/*
366	 * protect so pipeclose() doesn't follow a junk pointer
367	 * if pipespace() fails.
368	 */
369	bzero(&cpipe->pipe_sel, sizeof(cpipe->pipe_sel));
370	cpipe->pipe_state = 0;
371	cpipe->pipe_peer = NULL;
372	cpipe->pipe_busy = 0;
373
374#ifndef PIPE_NODIRECT
375	/*
376	 * pipe data structure initializations to support direct pipe I/O
377	 */
378	cpipe->pipe_map.cnt = 0;
379	cpipe->pipe_map.kva = 0;
380	cpipe->pipe_map.pos = 0;
381	cpipe->pipe_map.npages = 0;
382	/* cpipe->pipe_map.ms[] = invalid */
383#endif
384
385	cpipe->pipe_mtxp = NULL;	/* avoid pipespace assertion */
386	/*
387	 * Reduce to 1/4th pipe size if we're over our global max.
388	 */
389	if (amountpipekva > maxpipekva / 2)
390		error = pipespace(cpipe, SMALL_PIPE_SIZE);
391	else
392		error = pipespace(cpipe, PIPE_SIZE);
393	if (error)
394		return (error);
395
396	vfs_timestamp(&cpipe->pipe_ctime);
397	cpipe->pipe_atime = cpipe->pipe_ctime;
398	cpipe->pipe_mtime = cpipe->pipe_ctime;
399
400	return (0);
401}
402
403
404/*
405 * lock a pipe for I/O, blocking other access
406 */
407static __inline int
408pipelock(cpipe, catch)
409	struct pipe *cpipe;
410	int catch;
411{
412	int error;
413
414	PIPE_LOCK_ASSERT(cpipe, MA_OWNED);
415	while (cpipe->pipe_state & PIPE_LOCKFL) {
416		cpipe->pipe_state |= PIPE_LWANT;
417		error = msleep(cpipe, PIPE_MTX(cpipe),
418		    catch ? (PRIBIO | PCATCH) : PRIBIO,
419		    "pipelk", 0);
420		if (error != 0)
421			return (error);
422	}
423	cpipe->pipe_state |= PIPE_LOCKFL;
424	return (0);
425}
426
427/*
428 * unlock a pipe I/O lock
429 */
430static __inline void
431pipeunlock(cpipe)
432	struct pipe *cpipe;
433{
434
435	PIPE_LOCK_ASSERT(cpipe, MA_OWNED);
436	cpipe->pipe_state &= ~PIPE_LOCKFL;
437	if (cpipe->pipe_state & PIPE_LWANT) {
438		cpipe->pipe_state &= ~PIPE_LWANT;
439		wakeup(cpipe);
440	}
441}
442
443static __inline void
444pipeselwakeup(cpipe)
445	struct pipe *cpipe;
446{
447
448	if (cpipe->pipe_state & PIPE_SEL) {
449		cpipe->pipe_state &= ~PIPE_SEL;
450		selwakeuppri(&cpipe->pipe_sel, PSOCK);
451	}
452	if ((cpipe->pipe_state & PIPE_ASYNC) && cpipe->pipe_sigio)
453		pgsigio(&cpipe->pipe_sigio, SIGIO, 0);
454	KNOTE(&cpipe->pipe_sel.si_note, 0);
455}
456
457/* ARGSUSED */
458static int
459pipe_read(fp, uio, active_cred, flags, td)
460	struct file *fp;
461	struct uio *uio;
462	struct ucred *active_cred;
463	struct thread *td;
464	int flags;
465{
466	struct pipe *rpipe = fp->f_data;
467	int error;
468	int nread = 0;
469	u_int size;
470
471	PIPE_LOCK(rpipe);
472	++rpipe->pipe_busy;
473	error = pipelock(rpipe, 1);
474	if (error)
475		goto unlocked_error;
476
477#ifdef MAC
478	error = mac_check_pipe_read(active_cred, rpipe);
479	if (error)
480		goto locked_error;
481#endif
482
483	while (uio->uio_resid) {
484		/*
485		 * normal pipe buffer receive
486		 */
487		if (rpipe->pipe_buffer.cnt > 0) {
488			size = rpipe->pipe_buffer.size - rpipe->pipe_buffer.out;
489			if (size > rpipe->pipe_buffer.cnt)
490				size = rpipe->pipe_buffer.cnt;
491			if (size > (u_int) uio->uio_resid)
492				size = (u_int) uio->uio_resid;
493
494			PIPE_UNLOCK(rpipe);
495			error = uiomove(
496			    &rpipe->pipe_buffer.buffer[rpipe->pipe_buffer.out],
497			    size, uio);
498			PIPE_LOCK(rpipe);
499			if (error)
500				break;
501
502			rpipe->pipe_buffer.out += size;
503			if (rpipe->pipe_buffer.out >= rpipe->pipe_buffer.size)
504				rpipe->pipe_buffer.out = 0;
505
506			rpipe->pipe_buffer.cnt -= size;
507
508			/*
509			 * If there is no more to read in the pipe, reset
510			 * its pointers to the beginning.  This improves
511			 * cache hit stats.
512			 */
513			if (rpipe->pipe_buffer.cnt == 0) {
514				rpipe->pipe_buffer.in = 0;
515				rpipe->pipe_buffer.out = 0;
516			}
517			nread += size;
518#ifndef PIPE_NODIRECT
519		/*
520		 * Direct copy, bypassing a kernel buffer.
521		 */
522		} else if ((size = rpipe->pipe_map.cnt) &&
523			   (rpipe->pipe_state & PIPE_DIRECTW)) {
524			caddr_t	va;
525			if (size > (u_int) uio->uio_resid)
526				size = (u_int) uio->uio_resid;
527
528			va = (caddr_t) rpipe->pipe_map.kva +
529			    rpipe->pipe_map.pos;
530			PIPE_UNLOCK(rpipe);
531			error = uiomove(va, size, uio);
532			PIPE_LOCK(rpipe);
533			if (error)
534				break;
535			nread += size;
536			rpipe->pipe_map.pos += size;
537			rpipe->pipe_map.cnt -= size;
538			if (rpipe->pipe_map.cnt == 0) {
539				rpipe->pipe_state &= ~PIPE_DIRECTW;
540				wakeup(rpipe);
541			}
542#endif
543		} else {
544			/*
545			 * detect EOF condition
546			 * read returns 0 on EOF, no need to set error
547			 */
548			if (rpipe->pipe_state & PIPE_EOF)
549				break;
550
551			/*
552			 * If the "write-side" has been blocked, wake it up now.
553			 */
554			if (rpipe->pipe_state & PIPE_WANTW) {
555				rpipe->pipe_state &= ~PIPE_WANTW;
556				wakeup(rpipe);
557			}
558
559			/*
560			 * Break if some data was read.
561			 */
562			if (nread > 0)
563				break;
564
565			/*
566			 * Unlock the pipe buffer for our remaining processing.
567			 * We will either break out with an error or we will
568			 * sleep and relock to loop.
569			 */
570			pipeunlock(rpipe);
571
572			/*
573			 * Handle non-blocking mode operation or
574			 * wait for more data.
575			 */
576			if (fp->f_flag & FNONBLOCK) {
577				error = EAGAIN;
578			} else {
579				rpipe->pipe_state |= PIPE_WANTR;
580				if ((error = msleep(rpipe, PIPE_MTX(rpipe),
581				    PRIBIO | PCATCH,
582				    "piperd", 0)) == 0)
583					error = pipelock(rpipe, 1);
584			}
585			if (error)
586				goto unlocked_error;
587		}
588	}
589#ifdef MAC
590locked_error:
591#endif
592	pipeunlock(rpipe);
593
594	/* XXX: should probably do this before getting any locks. */
595	if (error == 0)
596		vfs_timestamp(&rpipe->pipe_atime);
597unlocked_error:
598	--rpipe->pipe_busy;
599
600	/*
601	 * PIPE_WANT processing only makes sense if pipe_busy is 0.
602	 */
603	if ((rpipe->pipe_busy == 0) && (rpipe->pipe_state & PIPE_WANT)) {
604		rpipe->pipe_state &= ~(PIPE_WANT|PIPE_WANTW);
605		wakeup(rpipe);
606	} else if (rpipe->pipe_buffer.cnt < MINPIPESIZE) {
607		/*
608		 * Handle write blocking hysteresis.
609		 */
610		if (rpipe->pipe_state & PIPE_WANTW) {
611			rpipe->pipe_state &= ~PIPE_WANTW;
612			wakeup(rpipe);
613		}
614	}
615
616	if ((rpipe->pipe_buffer.size - rpipe->pipe_buffer.cnt) >= PIPE_BUF)
617		pipeselwakeup(rpipe);
618
619	PIPE_UNLOCK(rpipe);
620	return (error);
621}
622
623#ifndef PIPE_NODIRECT
624/*
625 * Map the sending processes' buffer into kernel space and wire it.
626 * This is similar to a physical write operation.
627 */
628static int
629pipe_build_write_buffer(wpipe, uio)
630	struct pipe *wpipe;
631	struct uio *uio;
632{
633	pmap_t pmap;
634	u_int size;
635	int i, j;
636	vm_offset_t addr, endaddr;
637
638	PIPE_LOCK_ASSERT(wpipe, MA_NOTOWNED);
639
640	size = (u_int) uio->uio_iov->iov_len;
641	if (size > wpipe->pipe_buffer.size)
642		size = wpipe->pipe_buffer.size;
643
644	pmap = vmspace_pmap(curproc->p_vmspace);
645	endaddr = round_page((vm_offset_t)uio->uio_iov->iov_base + size);
646	addr = trunc_page((vm_offset_t)uio->uio_iov->iov_base);
647	for (i = 0; addr < endaddr; addr += PAGE_SIZE, i++) {
648		/*
649		 * vm_fault_quick() can sleep.  Consequently,
650		 * vm_page_lock_queue() and vm_page_unlock_queue()
651		 * should not be performed outside of this loop.
652		 */
653	race:
654		if (vm_fault_quick((caddr_t)addr, VM_PROT_READ) < 0) {
655			vm_page_lock_queues();
656			for (j = 0; j < i; j++)
657				vm_page_unhold(wpipe->pipe_map.ms[j]);
658			vm_page_unlock_queues();
659			return (EFAULT);
660		}
661		wpipe->pipe_map.ms[i] = pmap_extract_and_hold(pmap, addr,
662		    VM_PROT_READ);
663		if (wpipe->pipe_map.ms[i] == NULL)
664			goto race;
665	}
666
667/*
668 * set up the control block
669 */
670	wpipe->pipe_map.npages = i;
671	wpipe->pipe_map.pos =
672	    ((vm_offset_t) uio->uio_iov->iov_base) & PAGE_MASK;
673	wpipe->pipe_map.cnt = size;
674
675/*
676 * and map the buffer
677 */
678	if (wpipe->pipe_map.kva == 0) {
679		/*
680		 * We need to allocate space for an extra page because the
681		 * address range might (will) span pages at times.
682		 */
683		wpipe->pipe_map.kva = kmem_alloc_nofault(kernel_map,
684			wpipe->pipe_buffer.size + PAGE_SIZE);
685		atomic_add_int(&amountpipekvawired,
686		    wpipe->pipe_buffer.size + PAGE_SIZE);
687	}
688	pmap_qenter(wpipe->pipe_map.kva, wpipe->pipe_map.ms,
689		wpipe->pipe_map.npages);
690
691/*
692 * and update the uio data
693 */
694
695	uio->uio_iov->iov_len -= size;
696	uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + size;
697	if (uio->uio_iov->iov_len == 0)
698		uio->uio_iov++;
699	uio->uio_resid -= size;
700	uio->uio_offset += size;
701	return (0);
702}
703
704/*
705 * unmap and unwire the process buffer
706 */
707static void
708pipe_destroy_write_buffer(wpipe)
709	struct pipe *wpipe;
710{
711	int i;
712
713	PIPE_LOCK_ASSERT(wpipe, MA_NOTOWNED);
714	if (wpipe->pipe_map.kva) {
715		pmap_qremove(wpipe->pipe_map.kva, wpipe->pipe_map.npages);
716
717		if (amountpipekvawired > maxpipekvawired / 2) {
718			/* Conserve address space */
719			vm_offset_t kva = wpipe->pipe_map.kva;
720			wpipe->pipe_map.kva = 0;
721			kmem_free(kernel_map, kva,
722			    wpipe->pipe_buffer.size + PAGE_SIZE);
723			atomic_subtract_int(&amountpipekvawired,
724			    wpipe->pipe_buffer.size + PAGE_SIZE);
725		}
726	}
727	vm_page_lock_queues();
728	for (i = 0; i < wpipe->pipe_map.npages; i++) {
729		vm_page_unhold(wpipe->pipe_map.ms[i]);
730	}
731	vm_page_unlock_queues();
732	wpipe->pipe_map.npages = 0;
733}
734
735/*
736 * In the case of a signal, the writing process might go away.  This
737 * code copies the data into the circular buffer so that the source
738 * pages can be freed without loss of data.
739 */
740static void
741pipe_clone_write_buffer(wpipe)
742	struct pipe *wpipe;
743{
744	int size;
745	int pos;
746
747	PIPE_LOCK_ASSERT(wpipe, MA_OWNED);
748	size = wpipe->pipe_map.cnt;
749	pos = wpipe->pipe_map.pos;
750
751	wpipe->pipe_buffer.in = size;
752	wpipe->pipe_buffer.out = 0;
753	wpipe->pipe_buffer.cnt = size;
754	wpipe->pipe_state &= ~PIPE_DIRECTW;
755
756	PIPE_UNLOCK(wpipe);
757	bcopy((caddr_t) wpipe->pipe_map.kva + pos,
758	    wpipe->pipe_buffer.buffer, size);
759	pipe_destroy_write_buffer(wpipe);
760	PIPE_LOCK(wpipe);
761}
762
763/*
764 * This implements the pipe buffer write mechanism.  Note that only
765 * a direct write OR a normal pipe write can be pending at any given time.
766 * If there are any characters in the pipe buffer, the direct write will
767 * be deferred until the receiving process grabs all of the bytes from
768 * the pipe buffer.  Then the direct mapping write is set-up.
769 */
770static int
771pipe_direct_write(wpipe, uio)
772	struct pipe *wpipe;
773	struct uio *uio;
774{
775	int error;
776
777retry:
778	PIPE_LOCK_ASSERT(wpipe, MA_OWNED);
779	while (wpipe->pipe_state & PIPE_DIRECTW) {
780		if (wpipe->pipe_state & PIPE_WANTR) {
781			wpipe->pipe_state &= ~PIPE_WANTR;
782			wakeup(wpipe);
783		}
784		wpipe->pipe_state |= PIPE_WANTW;
785		error = msleep(wpipe, PIPE_MTX(wpipe),
786		    PRIBIO | PCATCH, "pipdww", 0);
787		if (error)
788			goto error1;
789		if (wpipe->pipe_state & PIPE_EOF) {
790			error = EPIPE;
791			goto error1;
792		}
793	}
794	wpipe->pipe_map.cnt = 0;	/* transfer not ready yet */
795	if (wpipe->pipe_buffer.cnt > 0) {
796		if (wpipe->pipe_state & PIPE_WANTR) {
797			wpipe->pipe_state &= ~PIPE_WANTR;
798			wakeup(wpipe);
799		}
800
801		wpipe->pipe_state |= PIPE_WANTW;
802		error = msleep(wpipe, PIPE_MTX(wpipe),
803		    PRIBIO | PCATCH, "pipdwc", 0);
804		if (error)
805			goto error1;
806		if (wpipe->pipe_state & PIPE_EOF) {
807			error = EPIPE;
808			goto error1;
809		}
810		goto retry;
811	}
812
813	wpipe->pipe_state |= PIPE_DIRECTW;
814
815	pipelock(wpipe, 0);
816	PIPE_UNLOCK(wpipe);
817	error = pipe_build_write_buffer(wpipe, uio);
818	PIPE_LOCK(wpipe);
819	pipeunlock(wpipe);
820	if (error) {
821		wpipe->pipe_state &= ~PIPE_DIRECTW;
822		goto error1;
823	}
824
825	error = 0;
826	while (!error && (wpipe->pipe_state & PIPE_DIRECTW)) {
827		if (wpipe->pipe_state & PIPE_EOF) {
828			pipelock(wpipe, 0);
829			PIPE_UNLOCK(wpipe);
830			pipe_destroy_write_buffer(wpipe);
831			PIPE_LOCK(wpipe);
832			pipeselwakeup(wpipe);
833			pipeunlock(wpipe);
834			error = EPIPE;
835			goto error1;
836		}
837		if (wpipe->pipe_state & PIPE_WANTR) {
838			wpipe->pipe_state &= ~PIPE_WANTR;
839			wakeup(wpipe);
840		}
841		pipeselwakeup(wpipe);
842		error = msleep(wpipe, PIPE_MTX(wpipe), PRIBIO | PCATCH,
843		    "pipdwt", 0);
844	}
845
846	pipelock(wpipe,0);
847	if (wpipe->pipe_state & PIPE_DIRECTW) {
848		/*
849		 * this bit of trickery substitutes a kernel buffer for
850		 * the process that might be going away.
851		 */
852		pipe_clone_write_buffer(wpipe);
853	} else {
854		PIPE_UNLOCK(wpipe);
855		pipe_destroy_write_buffer(wpipe);
856		PIPE_LOCK(wpipe);
857	}
858	pipeunlock(wpipe);
859	return (error);
860
861error1:
862	wakeup(wpipe);
863	return (error);
864}
865#endif
866
867static int
868pipe_write(fp, uio, active_cred, flags, td)
869	struct file *fp;
870	struct uio *uio;
871	struct ucred *active_cred;
872	struct thread *td;
873	int flags;
874{
875	int error = 0;
876	int orig_resid;
877	struct pipe *wpipe, *rpipe;
878
879	rpipe = fp->f_data;
880	wpipe = rpipe->pipe_peer;
881
882	PIPE_LOCK(rpipe);
883	/*
884	 * detect loss of pipe read side, issue SIGPIPE if lost.
885	 */
886	if ((wpipe == NULL) || (wpipe->pipe_state & PIPE_EOF)) {
887		PIPE_UNLOCK(rpipe);
888		return (EPIPE);
889	}
890#ifdef MAC
891	error = mac_check_pipe_write(active_cred, wpipe);
892	if (error) {
893		PIPE_UNLOCK(rpipe);
894		return (error);
895	}
896#endif
897	++wpipe->pipe_busy;
898
899	/*
900	 * If it is advantageous to resize the pipe buffer, do
901	 * so.
902	 */
903	if ((uio->uio_resid > PIPE_SIZE) &&
904		(amountpipekva < maxpipekva / 2) &&
905		(nbigpipe < LIMITBIGPIPES) &&
906		(wpipe->pipe_state & PIPE_DIRECTW) == 0 &&
907		(wpipe->pipe_buffer.size <= PIPE_SIZE) &&
908		(wpipe->pipe_buffer.cnt == 0)) {
909
910		if ((error = pipelock(wpipe, 1)) == 0) {
911			PIPE_UNLOCK(wpipe);
912			if (pipespace(wpipe, BIG_PIPE_SIZE) == 0)
913				atomic_add_int(&nbigpipe, 1);
914			PIPE_LOCK(wpipe);
915			pipeunlock(wpipe);
916		}
917	}
918
919	/*
920	 * If an early error occured unbusy and return, waking up any pending
921	 * readers.
922	 */
923	if (error) {
924		--wpipe->pipe_busy;
925		if ((wpipe->pipe_busy == 0) &&
926		    (wpipe->pipe_state & PIPE_WANT)) {
927			wpipe->pipe_state &= ~(PIPE_WANT | PIPE_WANTR);
928			wakeup(wpipe);
929		}
930		PIPE_UNLOCK(rpipe);
931		return(error);
932	}
933
934	orig_resid = uio->uio_resid;
935
936	while (uio->uio_resid) {
937		int space;
938
939#ifndef PIPE_NODIRECT
940		/*
941		 * If the transfer is large, we can gain performance if
942		 * we do process-to-process copies directly.
943		 * If the write is non-blocking, we don't use the
944		 * direct write mechanism.
945		 *
946		 * The direct write mechanism will detect the reader going
947		 * away on us.
948		 */
949		if ((uio->uio_iov->iov_len >= PIPE_MINDIRECT) &&
950		    (fp->f_flag & FNONBLOCK) == 0 &&
951		    amountpipekvawired + uio->uio_resid < maxpipekvawired) {
952			error = pipe_direct_write(wpipe, uio);
953			if (error)
954				break;
955			continue;
956		}
957#endif
958
959		/*
960		 * Pipe buffered writes cannot be coincidental with
961		 * direct writes.  We wait until the currently executing
962		 * direct write is completed before we start filling the
963		 * pipe buffer.  We break out if a signal occurs or the
964		 * reader goes away.
965		 */
966	retrywrite:
967		while (wpipe->pipe_state & PIPE_DIRECTW) {
968			if (wpipe->pipe_state & PIPE_WANTR) {
969				wpipe->pipe_state &= ~PIPE_WANTR;
970				wakeup(wpipe);
971			}
972			error = msleep(wpipe, PIPE_MTX(rpipe), PRIBIO | PCATCH,
973			    "pipbww", 0);
974			if (wpipe->pipe_state & PIPE_EOF)
975				break;
976			if (error)
977				break;
978		}
979		if (wpipe->pipe_state & PIPE_EOF) {
980			error = EPIPE;
981			break;
982		}
983
984		space = wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt;
985
986		/* Writes of size <= PIPE_BUF must be atomic. */
987		if ((space < uio->uio_resid) && (orig_resid <= PIPE_BUF))
988			space = 0;
989
990		if (space > 0) {
991			if ((error = pipelock(wpipe,1)) == 0) {
992				int size;	/* Transfer size */
993				int segsize;	/* first segment to transfer */
994
995				/*
996				 * It is possible for a direct write to
997				 * slip in on us... handle it here...
998				 */
999				if (wpipe->pipe_state & PIPE_DIRECTW) {
1000					pipeunlock(wpipe);
1001					goto retrywrite;
1002				}
1003				/*
1004				 * If a process blocked in uiomove, our
1005				 * value for space might be bad.
1006				 *
1007				 * XXX will we be ok if the reader has gone
1008				 * away here?
1009				 */
1010				if (space > wpipe->pipe_buffer.size -
1011				    wpipe->pipe_buffer.cnt) {
1012					pipeunlock(wpipe);
1013					goto retrywrite;
1014				}
1015
1016				/*
1017				 * Transfer size is minimum of uio transfer
1018				 * and free space in pipe buffer.
1019				 */
1020				if (space > uio->uio_resid)
1021					size = uio->uio_resid;
1022				else
1023					size = space;
1024				/*
1025				 * First segment to transfer is minimum of
1026				 * transfer size and contiguous space in
1027				 * pipe buffer.  If first segment to transfer
1028				 * is less than the transfer size, we've got
1029				 * a wraparound in the buffer.
1030				 */
1031				segsize = wpipe->pipe_buffer.size -
1032					wpipe->pipe_buffer.in;
1033				if (segsize > size)
1034					segsize = size;
1035
1036				/* Transfer first segment */
1037
1038				PIPE_UNLOCK(rpipe);
1039				error = uiomove(&wpipe->pipe_buffer.buffer[wpipe->pipe_buffer.in],
1040						segsize, uio);
1041				PIPE_LOCK(rpipe);
1042
1043				if (error == 0 && segsize < size) {
1044					/*
1045					 * Transfer remaining part now, to
1046					 * support atomic writes.  Wraparound
1047					 * happened.
1048					 */
1049					if (wpipe->pipe_buffer.in + segsize !=
1050					    wpipe->pipe_buffer.size)
1051						panic("Expected pipe buffer "
1052						    "wraparound disappeared");
1053
1054					PIPE_UNLOCK(rpipe);
1055					error = uiomove(
1056					    &wpipe->pipe_buffer.buffer[0],
1057				    	    size - segsize, uio);
1058					PIPE_LOCK(rpipe);
1059				}
1060				if (error == 0) {
1061					wpipe->pipe_buffer.in += size;
1062					if (wpipe->pipe_buffer.in >=
1063					    wpipe->pipe_buffer.size) {
1064						if (wpipe->pipe_buffer.in !=
1065						    size - segsize +
1066						    wpipe->pipe_buffer.size)
1067							panic("Expected "
1068							    "wraparound bad");
1069						wpipe->pipe_buffer.in = size -
1070						    segsize;
1071					}
1072
1073					wpipe->pipe_buffer.cnt += size;
1074					if (wpipe->pipe_buffer.cnt >
1075					    wpipe->pipe_buffer.size)
1076						panic("Pipe buffer overflow");
1077
1078				}
1079				pipeunlock(wpipe);
1080			}
1081			if (error)
1082				break;
1083
1084		} else {
1085			/*
1086			 * If the "read-side" has been blocked, wake it up now.
1087			 */
1088			if (wpipe->pipe_state & PIPE_WANTR) {
1089				wpipe->pipe_state &= ~PIPE_WANTR;
1090				wakeup(wpipe);
1091			}
1092
1093			/*
1094			 * don't block on non-blocking I/O
1095			 */
1096			if (fp->f_flag & FNONBLOCK) {
1097				error = EAGAIN;
1098				break;
1099			}
1100
1101			/*
1102			 * We have no more space and have something to offer,
1103			 * wake up select/poll.
1104			 */
1105			pipeselwakeup(wpipe);
1106
1107			wpipe->pipe_state |= PIPE_WANTW;
1108			error = msleep(wpipe, PIPE_MTX(rpipe),
1109			    PRIBIO | PCATCH, "pipewr", 0);
1110			if (error != 0)
1111				break;
1112			/*
1113			 * If read side wants to go away, we just issue a signal
1114			 * to ourselves.
1115			 */
1116			if (wpipe->pipe_state & PIPE_EOF) {
1117				error = EPIPE;
1118				break;
1119			}
1120		}
1121	}
1122
1123	--wpipe->pipe_busy;
1124
1125	if ((wpipe->pipe_busy == 0) && (wpipe->pipe_state & PIPE_WANT)) {
1126		wpipe->pipe_state &= ~(PIPE_WANT | PIPE_WANTR);
1127		wakeup(wpipe);
1128	} else if (wpipe->pipe_buffer.cnt > 0) {
1129		/*
1130		 * If we have put any characters in the buffer, we wake up
1131		 * the reader.
1132		 */
1133		if (wpipe->pipe_state & PIPE_WANTR) {
1134			wpipe->pipe_state &= ~PIPE_WANTR;
1135			wakeup(wpipe);
1136		}
1137	}
1138
1139	/*
1140	 * Don't return EPIPE if I/O was successful
1141	 */
1142	if ((wpipe->pipe_buffer.cnt == 0) &&
1143	    (uio->uio_resid == 0) &&
1144	    (error == EPIPE)) {
1145		error = 0;
1146	}
1147
1148	if (error == 0)
1149		vfs_timestamp(&wpipe->pipe_mtime);
1150
1151	/*
1152	 * We have something to offer,
1153	 * wake up select/poll.
1154	 */
1155	if (wpipe->pipe_buffer.cnt)
1156		pipeselwakeup(wpipe);
1157
1158	PIPE_UNLOCK(rpipe);
1159	return (error);
1160}
1161
1162/*
1163 * we implement a very minimal set of ioctls for compatibility with sockets.
1164 */
1165static int
1166pipe_ioctl(fp, cmd, data, active_cred, td)
1167	struct file *fp;
1168	u_long cmd;
1169	void *data;
1170	struct ucred *active_cred;
1171	struct thread *td;
1172{
1173	struct pipe *mpipe = fp->f_data;
1174#ifdef MAC
1175	int error;
1176#endif
1177
1178	PIPE_LOCK(mpipe);
1179
1180#ifdef MAC
1181	error = mac_check_pipe_ioctl(active_cred, mpipe, cmd, data);
1182	if (error) {
1183		PIPE_UNLOCK(mpipe);
1184		return (error);
1185	}
1186#endif
1187
1188	switch (cmd) {
1189
1190	case FIONBIO:
1191		PIPE_UNLOCK(mpipe);
1192		return (0);
1193
1194	case FIOASYNC:
1195		if (*(int *)data) {
1196			mpipe->pipe_state |= PIPE_ASYNC;
1197		} else {
1198			mpipe->pipe_state &= ~PIPE_ASYNC;
1199		}
1200		PIPE_UNLOCK(mpipe);
1201		return (0);
1202
1203	case FIONREAD:
1204		if (mpipe->pipe_state & PIPE_DIRECTW)
1205			*(int *)data = mpipe->pipe_map.cnt;
1206		else
1207			*(int *)data = mpipe->pipe_buffer.cnt;
1208		PIPE_UNLOCK(mpipe);
1209		return (0);
1210
1211	case FIOSETOWN:
1212		PIPE_UNLOCK(mpipe);
1213		return (fsetown(*(int *)data, &mpipe->pipe_sigio));
1214
1215	case FIOGETOWN:
1216		PIPE_UNLOCK(mpipe);
1217		*(int *)data = fgetown(&mpipe->pipe_sigio);
1218		return (0);
1219
1220	/* This is deprecated, FIOSETOWN should be used instead. */
1221	case TIOCSPGRP:
1222		PIPE_UNLOCK(mpipe);
1223		return (fsetown(-(*(int *)data), &mpipe->pipe_sigio));
1224
1225	/* This is deprecated, FIOGETOWN should be used instead. */
1226	case TIOCGPGRP:
1227		PIPE_UNLOCK(mpipe);
1228		*(int *)data = -fgetown(&mpipe->pipe_sigio);
1229		return (0);
1230
1231	}
1232	PIPE_UNLOCK(mpipe);
1233	return (ENOTTY);
1234}
1235
1236static int
1237pipe_poll(fp, events, active_cred, td)
1238	struct file *fp;
1239	int events;
1240	struct ucred *active_cred;
1241	struct thread *td;
1242{
1243	struct pipe *rpipe = fp->f_data;
1244	struct pipe *wpipe;
1245	int revents = 0;
1246#ifdef MAC
1247	int error;
1248#endif
1249
1250	wpipe = rpipe->pipe_peer;
1251	PIPE_LOCK(rpipe);
1252#ifdef MAC
1253	error = mac_check_pipe_poll(active_cred, rpipe);
1254	if (error)
1255		goto locked_error;
1256#endif
1257	if (events & (POLLIN | POLLRDNORM))
1258		if ((rpipe->pipe_state & PIPE_DIRECTW) ||
1259		    (rpipe->pipe_buffer.cnt > 0) ||
1260		    (rpipe->pipe_state & PIPE_EOF))
1261			revents |= events & (POLLIN | POLLRDNORM);
1262
1263	if (events & (POLLOUT | POLLWRNORM))
1264		if (wpipe == NULL || (wpipe->pipe_state & PIPE_EOF) ||
1265		    (((wpipe->pipe_state & PIPE_DIRECTW) == 0) &&
1266		     (wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt) >= PIPE_BUF))
1267			revents |= events & (POLLOUT | POLLWRNORM);
1268
1269	if ((rpipe->pipe_state & PIPE_EOF) ||
1270	    (wpipe == NULL) ||
1271	    (wpipe->pipe_state & PIPE_EOF))
1272		revents |= POLLHUP;
1273
1274	if (revents == 0) {
1275		if (events & (POLLIN | POLLRDNORM)) {
1276			selrecord(td, &rpipe->pipe_sel);
1277			rpipe->pipe_state |= PIPE_SEL;
1278		}
1279
1280		if (events & (POLLOUT | POLLWRNORM)) {
1281			selrecord(td, &wpipe->pipe_sel);
1282			wpipe->pipe_state |= PIPE_SEL;
1283		}
1284	}
1285#ifdef MAC
1286locked_error:
1287#endif
1288	PIPE_UNLOCK(rpipe);
1289
1290	return (revents);
1291}
1292
1293/*
1294 * We shouldn't need locks here as we're doing a read and this should
1295 * be a natural race.
1296 */
1297static int
1298pipe_stat(fp, ub, active_cred, td)
1299	struct file *fp;
1300	struct stat *ub;
1301	struct ucred *active_cred;
1302	struct thread *td;
1303{
1304	struct pipe *pipe = fp->f_data;
1305#ifdef MAC
1306	int error;
1307
1308	PIPE_LOCK(pipe);
1309	error = mac_check_pipe_stat(active_cred, pipe);
1310	PIPE_UNLOCK(pipe);
1311	if (error)
1312		return (error);
1313#endif
1314	bzero(ub, sizeof(*ub));
1315	ub->st_mode = S_IFIFO;
1316	ub->st_blksize = pipe->pipe_buffer.size;
1317	ub->st_size = pipe->pipe_buffer.cnt;
1318	ub->st_blocks = (ub->st_size + ub->st_blksize - 1) / ub->st_blksize;
1319	ub->st_atimespec = pipe->pipe_atime;
1320	ub->st_mtimespec = pipe->pipe_mtime;
1321	ub->st_ctimespec = pipe->pipe_ctime;
1322	ub->st_uid = fp->f_cred->cr_uid;
1323	ub->st_gid = fp->f_cred->cr_gid;
1324	/*
1325	 * Left as 0: st_dev, st_ino, st_nlink, st_rdev, st_flags, st_gen.
1326	 * XXX (st_dev, st_ino) should be unique.
1327	 */
1328	return (0);
1329}
1330
1331/* ARGSUSED */
1332static int
1333pipe_close(fp, td)
1334	struct file *fp;
1335	struct thread *td;
1336{
1337	struct pipe *cpipe = fp->f_data;
1338
1339	fp->f_ops = &badfileops;
1340	fp->f_data = NULL;
1341	funsetown(&cpipe->pipe_sigio);
1342	pipeclose(cpipe);
1343	return (0);
1344}
1345
1346static void
1347pipe_free_kmem(cpipe)
1348	struct pipe *cpipe;
1349{
1350
1351	KASSERT(cpipe->pipe_mtxp == NULL || !mtx_owned(PIPE_MTX(cpipe)),
1352	       ("pipespace: pipe mutex locked"));
1353
1354	if (cpipe->pipe_buffer.buffer != NULL) {
1355		if (cpipe->pipe_buffer.size > PIPE_SIZE)
1356			atomic_subtract_int(&nbigpipe, 1);
1357		atomic_subtract_int(&amountpipekva, cpipe->pipe_buffer.size);
1358		atomic_subtract_int(&amountpipes, 1);
1359		vm_map_remove(pipe_map,
1360		    (vm_offset_t)cpipe->pipe_buffer.buffer,
1361		    (vm_offset_t)cpipe->pipe_buffer.buffer + cpipe->pipe_buffer.size);
1362		cpipe->pipe_buffer.buffer = NULL;
1363	}
1364#ifndef PIPE_NODIRECT
1365	if (cpipe->pipe_map.kva != 0) {
1366		atomic_subtract_int(&amountpipekvawired,
1367		    cpipe->pipe_buffer.size + PAGE_SIZE);
1368		kmem_free(kernel_map,
1369			cpipe->pipe_map.kva,
1370			cpipe->pipe_buffer.size + PAGE_SIZE);
1371		cpipe->pipe_map.cnt = 0;
1372		cpipe->pipe_map.kva = 0;
1373		cpipe->pipe_map.pos = 0;
1374		cpipe->pipe_map.npages = 0;
1375	}
1376#endif
1377}
1378
1379/*
1380 * shutdown the pipe
1381 */
1382static void
1383pipeclose(cpipe)
1384	struct pipe *cpipe;
1385{
1386	struct pipe *ppipe;
1387	int hadpeer;
1388
1389	if (cpipe == NULL)
1390		return;
1391
1392	hadpeer = 0;
1393
1394	/* partially created pipes won't have a valid mutex. */
1395	if (PIPE_MTX(cpipe) != NULL)
1396		PIPE_LOCK(cpipe);
1397
1398	pipeselwakeup(cpipe);
1399
1400	/*
1401	 * If the other side is blocked, wake it up saying that
1402	 * we want to close it down.
1403	 */
1404	while (cpipe->pipe_busy) {
1405		wakeup(cpipe);
1406		cpipe->pipe_state |= PIPE_WANT | PIPE_EOF;
1407		msleep(cpipe, PIPE_MTX(cpipe), PRIBIO, "pipecl", 0);
1408	}
1409
1410#ifdef MAC
1411	if (cpipe->pipe_label != NULL && cpipe->pipe_peer == NULL)
1412		mac_destroy_pipe(cpipe);
1413#endif
1414
1415	/*
1416	 * Disconnect from peer
1417	 */
1418	if ((ppipe = cpipe->pipe_peer) != NULL) {
1419		hadpeer++;
1420		pipeselwakeup(ppipe);
1421
1422		ppipe->pipe_state |= PIPE_EOF;
1423		wakeup(ppipe);
1424		KNOTE(&ppipe->pipe_sel.si_note, 0);
1425		ppipe->pipe_peer = NULL;
1426	}
1427	/*
1428	 * free resources
1429	 */
1430	if (PIPE_MTX(cpipe) != NULL) {
1431		PIPE_UNLOCK(cpipe);
1432		if (!hadpeer) {
1433			mtx_destroy(PIPE_MTX(cpipe));
1434			free(PIPE_MTX(cpipe), M_TEMP);
1435		}
1436	}
1437	pipe_free_kmem(cpipe);
1438	uma_zfree(pipe_zone, cpipe);
1439}
1440
1441/*ARGSUSED*/
1442static int
1443pipe_kqfilter(struct file *fp, struct knote *kn)
1444{
1445	struct pipe *cpipe;
1446
1447	cpipe = kn->kn_fp->f_data;
1448	switch (kn->kn_filter) {
1449	case EVFILT_READ:
1450		kn->kn_fop = &pipe_rfiltops;
1451		break;
1452	case EVFILT_WRITE:
1453		kn->kn_fop = &pipe_wfiltops;
1454		cpipe = cpipe->pipe_peer;
1455		if (cpipe == NULL)
1456			/* other end of pipe has been closed */
1457			return (EPIPE);
1458		break;
1459	default:
1460		return (1);
1461	}
1462
1463	PIPE_LOCK(cpipe);
1464	SLIST_INSERT_HEAD(&cpipe->pipe_sel.si_note, kn, kn_selnext);
1465	PIPE_UNLOCK(cpipe);
1466	return (0);
1467}
1468
1469static void
1470filt_pipedetach(struct knote *kn)
1471{
1472	struct pipe *cpipe = (struct pipe *)kn->kn_fp->f_data;
1473
1474	if (kn->kn_filter == EVFILT_WRITE) {
1475		if (cpipe->pipe_peer == NULL)
1476			return;
1477		cpipe = cpipe->pipe_peer;
1478	}
1479
1480	PIPE_LOCK(cpipe);
1481	SLIST_REMOVE(&cpipe->pipe_sel.si_note, kn, knote, kn_selnext);
1482	PIPE_UNLOCK(cpipe);
1483}
1484
1485/*ARGSUSED*/
1486static int
1487filt_piperead(struct knote *kn, long hint)
1488{
1489	struct pipe *rpipe = kn->kn_fp->f_data;
1490	struct pipe *wpipe = rpipe->pipe_peer;
1491
1492	PIPE_LOCK(rpipe);
1493	kn->kn_data = rpipe->pipe_buffer.cnt;
1494	if ((kn->kn_data == 0) && (rpipe->pipe_state & PIPE_DIRECTW))
1495		kn->kn_data = rpipe->pipe_map.cnt;
1496
1497	if ((rpipe->pipe_state & PIPE_EOF) ||
1498	    (wpipe == NULL) || (wpipe->pipe_state & PIPE_EOF)) {
1499		kn->kn_flags |= EV_EOF;
1500		PIPE_UNLOCK(rpipe);
1501		return (1);
1502	}
1503	PIPE_UNLOCK(rpipe);
1504	return (kn->kn_data > 0);
1505}
1506
1507/*ARGSUSED*/
1508static int
1509filt_pipewrite(struct knote *kn, long hint)
1510{
1511	struct pipe *rpipe = kn->kn_fp->f_data;
1512	struct pipe *wpipe = rpipe->pipe_peer;
1513
1514	PIPE_LOCK(rpipe);
1515	if ((wpipe == NULL) || (wpipe->pipe_state & PIPE_EOF)) {
1516		kn->kn_data = 0;
1517		kn->kn_flags |= EV_EOF;
1518		PIPE_UNLOCK(rpipe);
1519		return (1);
1520	}
1521	kn->kn_data = wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt;
1522	if (wpipe->pipe_state & PIPE_DIRECTW)
1523		kn->kn_data = 0;
1524
1525	PIPE_UNLOCK(rpipe);
1526	return (kn->kn_data >= PIPE_BUF);
1527}
1528