sys_pipe.c revision 116182
1/*
2 * Copyright (c) 1996 John S. Dyson
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice immediately at the beginning of the file, without modification,
10 *    this list of conditions, and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 * 3. Absolutely no warranty of function or purpose is made by the author
15 *    John S. Dyson.
16 * 4. Modifications may be freely made to this file if the above conditions
17 *    are met.
18 */
19
20/*
21 * This file contains a high-performance replacement for the socket-based
22 * pipes scheme originally used in FreeBSD/4.4Lite.  It does not support
23 * all features of sockets, but does do everything that pipes normally
24 * do.
25 */
26
27/*
28 * This code has two modes of operation, a small write mode and a large
29 * write mode.  The small write mode acts like conventional pipes with
30 * a kernel buffer.  If the buffer is less than PIPE_MINDIRECT, then the
31 * "normal" pipe buffering is done.  If the buffer is between PIPE_MINDIRECT
32 * and PIPE_SIZE in size, it is fully mapped and wired into the kernel, and
33 * the receiving process can copy it directly from the pages in the sending
34 * process.
35 *
36 * If the sending process receives a signal, it is possible that it will
37 * go away, and certainly its address space can change, because control
38 * is returned back to the user-mode side.  In that case, the pipe code
39 * arranges to copy the buffer supplied by the user process, to a pageable
40 * kernel buffer, and the receiving process will grab the data from the
41 * pageable kernel buffer.  Since signals don't happen all that often,
42 * the copy operation is normally eliminated.
43 *
44 * The constant PIPE_MINDIRECT is chosen to make sure that buffering will
45 * happen for small transfers so that the system will not spend all of
46 * its time context switching.  PIPE_SIZE is constrained by the
47 * amount of kernel virtual memory.
48 */
49
50#include <sys/cdefs.h>
51__FBSDID("$FreeBSD: head/sys/kern/sys_pipe.c 116182 2003-06-11 00:56:59Z obrien $");
52
53#include "opt_mac.h"
54
55#include <sys/param.h>
56#include <sys/systm.h>
57#include <sys/fcntl.h>
58#include <sys/file.h>
59#include <sys/filedesc.h>
60#include <sys/filio.h>
61#include <sys/kernel.h>
62#include <sys/lock.h>
63#include <sys/mac.h>
64#include <sys/mutex.h>
65#include <sys/ttycom.h>
66#include <sys/stat.h>
67#include <sys/malloc.h>
68#include <sys/poll.h>
69#include <sys/selinfo.h>
70#include <sys/signalvar.h>
71#include <sys/sysproto.h>
72#include <sys/pipe.h>
73#include <sys/proc.h>
74#include <sys/vnode.h>
75#include <sys/uio.h>
76#include <sys/event.h>
77
78#include <vm/vm.h>
79#include <vm/vm_param.h>
80#include <vm/vm_object.h>
81#include <vm/vm_kern.h>
82#include <vm/vm_extern.h>
83#include <vm/pmap.h>
84#include <vm/vm_map.h>
85#include <vm/vm_page.h>
86#include <vm/uma.h>
87
88/*
89 * Use this define if you want to disable *fancy* VM things.  Expect an
90 * approx 30% decrease in transfer rate.  This could be useful for
91 * NetBSD or OpenBSD.
92 */
93/* #define PIPE_NODIRECT */
94
95/*
96 * interfaces to the outside world
97 */
98static fo_rdwr_t	pipe_read;
99static fo_rdwr_t	pipe_write;
100static fo_ioctl_t	pipe_ioctl;
101static fo_poll_t	pipe_poll;
102static fo_kqfilter_t	pipe_kqfilter;
103static fo_stat_t	pipe_stat;
104static fo_close_t	pipe_close;
105
106static struct fileops pipeops = {
107	pipe_read, pipe_write, pipe_ioctl, pipe_poll, pipe_kqfilter,
108	pipe_stat, pipe_close, DFLAG_PASSABLE
109};
110
111static void	filt_pipedetach(struct knote *kn);
112static int	filt_piperead(struct knote *kn, long hint);
113static int	filt_pipewrite(struct knote *kn, long hint);
114
115static struct filterops pipe_rfiltops =
116	{ 1, NULL, filt_pipedetach, filt_piperead };
117static struct filterops pipe_wfiltops =
118	{ 1, NULL, filt_pipedetach, filt_pipewrite };
119
120#define PIPE_GET_GIANT(pipe)						\
121	do {								\
122		KASSERT(((pipe)->pipe_state & PIPE_LOCKFL) != 0,	\
123		    ("%s:%d PIPE_GET_GIANT: line pipe not locked",	\
124		     __FILE__, __LINE__));				\
125		PIPE_UNLOCK(pipe);					\
126		mtx_lock(&Giant);					\
127	} while (0)
128
129#define PIPE_DROP_GIANT(pipe)						\
130	do {								\
131		mtx_unlock(&Giant);					\
132		PIPE_LOCK(pipe);					\
133	} while (0)
134
135/*
136 * Default pipe buffer size(s), this can be kind-of large now because pipe
137 * space is pageable.  The pipe code will try to maintain locality of
138 * reference for performance reasons, so small amounts of outstanding I/O
139 * will not wipe the cache.
140 */
141#define MINPIPESIZE (PIPE_SIZE/3)
142#define MAXPIPESIZE (2*PIPE_SIZE/3)
143
144/*
145 * Maximum amount of kva for pipes -- this is kind-of a soft limit, but
146 * is there so that on large systems, we don't exhaust it.
147 */
148#define MAXPIPEKVA (8*1024*1024)
149
150/*
151 * Limit for direct transfers, we cannot, of course limit
152 * the amount of kva for pipes in general though.
153 */
154#define LIMITPIPEKVA (16*1024*1024)
155
156/*
157 * Limit the number of "big" pipes
158 */
159#define LIMITBIGPIPES	32
160static int nbigpipe;
161
162static int amountpipekva;
163
164static void pipeinit(void *dummy __unused);
165static void pipeclose(struct pipe *cpipe);
166static void pipe_free_kmem(struct pipe *cpipe);
167static int pipe_create(struct pipe **cpipep);
168static __inline int pipelock(struct pipe *cpipe, int catch);
169static __inline void pipeunlock(struct pipe *cpipe);
170static __inline void pipeselwakeup(struct pipe *cpipe);
171#ifndef PIPE_NODIRECT
172static int pipe_build_write_buffer(struct pipe *wpipe, struct uio *uio);
173static void pipe_destroy_write_buffer(struct pipe *wpipe);
174static int pipe_direct_write(struct pipe *wpipe, struct uio *uio);
175static void pipe_clone_write_buffer(struct pipe *wpipe);
176#endif
177static int pipespace(struct pipe *cpipe, int size);
178
179static uma_zone_t pipe_zone;
180
181SYSINIT(vfs, SI_SUB_VFS, SI_ORDER_ANY, pipeinit, NULL);
182
183static void
184pipeinit(void *dummy __unused)
185{
186	pipe_zone = uma_zcreate("PIPE", sizeof(struct pipe), NULL,
187	    NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
188}
189
190/*
191 * The pipe system call for the DTYPE_PIPE type of pipes
192 */
193
194/* ARGSUSED */
195int
196pipe(td, uap)
197	struct thread *td;
198	struct pipe_args /* {
199		int	dummy;
200	} */ *uap;
201{
202	struct filedesc *fdp = td->td_proc->p_fd;
203	struct file *rf, *wf;
204	struct pipe *rpipe, *wpipe;
205	struct mtx *pmtx;
206	int fd, error;
207
208	KASSERT(pipe_zone != NULL, ("pipe_zone not initialized"));
209
210	pmtx = malloc(sizeof(*pmtx), M_TEMP, M_WAITOK | M_ZERO);
211
212	rpipe = wpipe = NULL;
213	if (pipe_create(&rpipe) || pipe_create(&wpipe)) {
214		pipeclose(rpipe);
215		pipeclose(wpipe);
216		free(pmtx, M_TEMP);
217		return (ENFILE);
218	}
219
220	rpipe->pipe_state |= PIPE_DIRECTOK;
221	wpipe->pipe_state |= PIPE_DIRECTOK;
222
223	error = falloc(td, &rf, &fd);
224	if (error) {
225		pipeclose(rpipe);
226		pipeclose(wpipe);
227		free(pmtx, M_TEMP);
228		return (error);
229	}
230	fhold(rf);
231	td->td_retval[0] = fd;
232
233	/*
234	 * Warning: once we've gotten past allocation of the fd for the
235	 * read-side, we can only drop the read side via fdrop() in order
236	 * to avoid races against processes which manage to dup() the read
237	 * side while we are blocked trying to allocate the write side.
238	 */
239	FILE_LOCK(rf);
240	rf->f_flag = FREAD | FWRITE;
241	rf->f_type = DTYPE_PIPE;
242	rf->f_data = rpipe;
243	rf->f_ops = &pipeops;
244	FILE_UNLOCK(rf);
245	error = falloc(td, &wf, &fd);
246	if (error) {
247		FILEDESC_LOCK(fdp);
248		if (fdp->fd_ofiles[td->td_retval[0]] == rf) {
249			fdp->fd_ofiles[td->td_retval[0]] = NULL;
250			FILEDESC_UNLOCK(fdp);
251			fdrop(rf, td);
252		} else
253			FILEDESC_UNLOCK(fdp);
254		fdrop(rf, td);
255		/* rpipe has been closed by fdrop(). */
256		pipeclose(wpipe);
257		free(pmtx, M_TEMP);
258		return (error);
259	}
260	FILE_LOCK(wf);
261	wf->f_flag = FREAD | FWRITE;
262	wf->f_type = DTYPE_PIPE;
263	wf->f_data = wpipe;
264	wf->f_ops = &pipeops;
265	FILE_UNLOCK(wf);
266	td->td_retval[1] = fd;
267	rpipe->pipe_peer = wpipe;
268	wpipe->pipe_peer = rpipe;
269#ifdef MAC
270	/*
271	 * struct pipe represents a pipe endpoint.  The MAC label is shared
272	 * between the connected endpoints.  As a result mac_init_pipe() and
273	 * mac_create_pipe() should only be called on one of the endpoints
274	 * after they have been connected.
275	 */
276	mac_init_pipe(rpipe);
277	mac_create_pipe(td->td_ucred, rpipe);
278#endif
279	mtx_init(pmtx, "pipe mutex", NULL, MTX_DEF | MTX_RECURSE);
280	rpipe->pipe_mtxp = wpipe->pipe_mtxp = pmtx;
281	fdrop(rf, td);
282
283	return (0);
284}
285
286/*
287 * Allocate kva for pipe circular buffer, the space is pageable
288 * This routine will 'realloc' the size of a pipe safely, if it fails
289 * it will retain the old buffer.
290 * If it fails it will return ENOMEM.
291 */
292static int
293pipespace(cpipe, size)
294	struct pipe *cpipe;
295	int size;
296{
297	struct vm_object *object;
298	caddr_t buffer;
299	int npages, error;
300
301	GIANT_REQUIRED;
302	KASSERT(cpipe->pipe_mtxp == NULL || !mtx_owned(PIPE_MTX(cpipe)),
303	       ("pipespace: pipe mutex locked"));
304
305	npages = round_page(size)/PAGE_SIZE;
306	/*
307	 * Create an object, I don't like the idea of paging to/from
308	 * kernel_object.
309	 * XXX -- minor change needed here for NetBSD/OpenBSD VM systems.
310	 */
311	object = vm_object_allocate(OBJT_DEFAULT, npages);
312	buffer = (caddr_t) vm_map_min(kernel_map);
313
314	/*
315	 * Insert the object into the kernel map, and allocate kva for it.
316	 * The map entry is, by default, pageable.
317	 * XXX -- minor change needed here for NetBSD/OpenBSD VM systems.
318	 */
319	error = vm_map_find(kernel_map, object, 0,
320		(vm_offset_t *) &buffer, size, 1,
321		VM_PROT_ALL, VM_PROT_ALL, 0);
322
323	if (error != KERN_SUCCESS) {
324		vm_object_deallocate(object);
325		return (ENOMEM);
326	}
327
328	/* free old resources if we're resizing */
329	pipe_free_kmem(cpipe);
330	cpipe->pipe_buffer.object = object;
331	cpipe->pipe_buffer.buffer = buffer;
332	cpipe->pipe_buffer.size = size;
333	cpipe->pipe_buffer.in = 0;
334	cpipe->pipe_buffer.out = 0;
335	cpipe->pipe_buffer.cnt = 0;
336	atomic_add_int(&amountpipekva, cpipe->pipe_buffer.size);
337	return (0);
338}
339
340/*
341 * initialize and allocate VM and memory for pipe
342 */
343static int
344pipe_create(cpipep)
345	struct pipe **cpipep;
346{
347	struct pipe *cpipe;
348	int error;
349
350	*cpipep = uma_zalloc(pipe_zone, M_WAITOK);
351	if (*cpipep == NULL)
352		return (ENOMEM);
353
354	cpipe = *cpipep;
355
356	/* so pipespace()->pipe_free_kmem() doesn't follow junk pointer */
357	cpipe->pipe_buffer.object = NULL;
358#ifndef PIPE_NODIRECT
359	cpipe->pipe_map.kva = 0;
360#endif
361	/*
362	 * protect so pipeclose() doesn't follow a junk pointer
363	 * if pipespace() fails.
364	 */
365	bzero(&cpipe->pipe_sel, sizeof(cpipe->pipe_sel));
366	cpipe->pipe_state = 0;
367	cpipe->pipe_peer = NULL;
368	cpipe->pipe_busy = 0;
369
370#ifndef PIPE_NODIRECT
371	/*
372	 * pipe data structure initializations to support direct pipe I/O
373	 */
374	cpipe->pipe_map.cnt = 0;
375	cpipe->pipe_map.kva = 0;
376	cpipe->pipe_map.pos = 0;
377	cpipe->pipe_map.npages = 0;
378	/* cpipe->pipe_map.ms[] = invalid */
379#endif
380
381	cpipe->pipe_mtxp = NULL;	/* avoid pipespace assertion */
382	error = pipespace(cpipe, PIPE_SIZE);
383	if (error)
384		return (error);
385
386	vfs_timestamp(&cpipe->pipe_ctime);
387	cpipe->pipe_atime = cpipe->pipe_ctime;
388	cpipe->pipe_mtime = cpipe->pipe_ctime;
389
390	return (0);
391}
392
393
394/*
395 * lock a pipe for I/O, blocking other access
396 */
397static __inline int
398pipelock(cpipe, catch)
399	struct pipe *cpipe;
400	int catch;
401{
402	int error;
403
404	PIPE_LOCK_ASSERT(cpipe, MA_OWNED);
405	while (cpipe->pipe_state & PIPE_LOCKFL) {
406		cpipe->pipe_state |= PIPE_LWANT;
407		error = msleep(cpipe, PIPE_MTX(cpipe),
408		    catch ? (PRIBIO | PCATCH) : PRIBIO,
409		    "pipelk", 0);
410		if (error != 0)
411			return (error);
412	}
413	cpipe->pipe_state |= PIPE_LOCKFL;
414	return (0);
415}
416
417/*
418 * unlock a pipe I/O lock
419 */
420static __inline void
421pipeunlock(cpipe)
422	struct pipe *cpipe;
423{
424
425	PIPE_LOCK_ASSERT(cpipe, MA_OWNED);
426	cpipe->pipe_state &= ~PIPE_LOCKFL;
427	if (cpipe->pipe_state & PIPE_LWANT) {
428		cpipe->pipe_state &= ~PIPE_LWANT;
429		wakeup(cpipe);
430	}
431}
432
433static __inline void
434pipeselwakeup(cpipe)
435	struct pipe *cpipe;
436{
437
438	if (cpipe->pipe_state & PIPE_SEL) {
439		cpipe->pipe_state &= ~PIPE_SEL;
440		selwakeup(&cpipe->pipe_sel);
441	}
442	if ((cpipe->pipe_state & PIPE_ASYNC) && cpipe->pipe_sigio)
443		pgsigio(&cpipe->pipe_sigio, SIGIO, 0);
444	KNOTE(&cpipe->pipe_sel.si_note, 0);
445}
446
447/* ARGSUSED */
448static int
449pipe_read(fp, uio, active_cred, flags, td)
450	struct file *fp;
451	struct uio *uio;
452	struct ucred *active_cred;
453	struct thread *td;
454	int flags;
455{
456	struct pipe *rpipe = fp->f_data;
457	int error;
458	int nread = 0;
459	u_int size;
460
461	PIPE_LOCK(rpipe);
462	++rpipe->pipe_busy;
463	error = pipelock(rpipe, 1);
464	if (error)
465		goto unlocked_error;
466
467#ifdef MAC
468	error = mac_check_pipe_read(active_cred, rpipe);
469	if (error)
470		goto locked_error;
471#endif
472
473	while (uio->uio_resid) {
474		/*
475		 * normal pipe buffer receive
476		 */
477		if (rpipe->pipe_buffer.cnt > 0) {
478			size = rpipe->pipe_buffer.size - rpipe->pipe_buffer.out;
479			if (size > rpipe->pipe_buffer.cnt)
480				size = rpipe->pipe_buffer.cnt;
481			if (size > (u_int) uio->uio_resid)
482				size = (u_int) uio->uio_resid;
483
484			PIPE_UNLOCK(rpipe);
485			error = uiomove(
486			    &rpipe->pipe_buffer.buffer[rpipe->pipe_buffer.out],
487			    size, uio);
488			PIPE_LOCK(rpipe);
489			if (error)
490				break;
491
492			rpipe->pipe_buffer.out += size;
493			if (rpipe->pipe_buffer.out >= rpipe->pipe_buffer.size)
494				rpipe->pipe_buffer.out = 0;
495
496			rpipe->pipe_buffer.cnt -= size;
497
498			/*
499			 * If there is no more to read in the pipe, reset
500			 * its pointers to the beginning.  This improves
501			 * cache hit stats.
502			 */
503			if (rpipe->pipe_buffer.cnt == 0) {
504				rpipe->pipe_buffer.in = 0;
505				rpipe->pipe_buffer.out = 0;
506			}
507			nread += size;
508#ifndef PIPE_NODIRECT
509		/*
510		 * Direct copy, bypassing a kernel buffer.
511		 */
512		} else if ((size = rpipe->pipe_map.cnt) &&
513			   (rpipe->pipe_state & PIPE_DIRECTW)) {
514			caddr_t	va;
515			if (size > (u_int) uio->uio_resid)
516				size = (u_int) uio->uio_resid;
517
518			va = (caddr_t) rpipe->pipe_map.kva +
519			    rpipe->pipe_map.pos;
520			PIPE_UNLOCK(rpipe);
521			error = uiomove(va, size, uio);
522			PIPE_LOCK(rpipe);
523			if (error)
524				break;
525			nread += size;
526			rpipe->pipe_map.pos += size;
527			rpipe->pipe_map.cnt -= size;
528			if (rpipe->pipe_map.cnt == 0) {
529				rpipe->pipe_state &= ~PIPE_DIRECTW;
530				wakeup(rpipe);
531			}
532#endif
533		} else {
534			/*
535			 * detect EOF condition
536			 * read returns 0 on EOF, no need to set error
537			 */
538			if (rpipe->pipe_state & PIPE_EOF)
539				break;
540
541			/*
542			 * If the "write-side" has been blocked, wake it up now.
543			 */
544			if (rpipe->pipe_state & PIPE_WANTW) {
545				rpipe->pipe_state &= ~PIPE_WANTW;
546				wakeup(rpipe);
547			}
548
549			/*
550			 * Break if some data was read.
551			 */
552			if (nread > 0)
553				break;
554
555			/*
556			 * Unlock the pipe buffer for our remaining processing.
557			 * We will either break out with an error or we will
558			 * sleep and relock to loop.
559			 */
560			pipeunlock(rpipe);
561
562			/*
563			 * Handle non-blocking mode operation or
564			 * wait for more data.
565			 */
566			if (fp->f_flag & FNONBLOCK) {
567				error = EAGAIN;
568			} else {
569				rpipe->pipe_state |= PIPE_WANTR;
570				if ((error = msleep(rpipe, PIPE_MTX(rpipe),
571				    PRIBIO | PCATCH,
572				    "piperd", 0)) == 0)
573					error = pipelock(rpipe, 1);
574			}
575			if (error)
576				goto unlocked_error;
577		}
578	}
579#ifdef MAC
580locked_error:
581#endif
582	pipeunlock(rpipe);
583
584	/* XXX: should probably do this before getting any locks. */
585	if (error == 0)
586		vfs_timestamp(&rpipe->pipe_atime);
587unlocked_error:
588	--rpipe->pipe_busy;
589
590	/*
591	 * PIPE_WANT processing only makes sense if pipe_busy is 0.
592	 */
593	if ((rpipe->pipe_busy == 0) && (rpipe->pipe_state & PIPE_WANT)) {
594		rpipe->pipe_state &= ~(PIPE_WANT|PIPE_WANTW);
595		wakeup(rpipe);
596	} else if (rpipe->pipe_buffer.cnt < MINPIPESIZE) {
597		/*
598		 * Handle write blocking hysteresis.
599		 */
600		if (rpipe->pipe_state & PIPE_WANTW) {
601			rpipe->pipe_state &= ~PIPE_WANTW;
602			wakeup(rpipe);
603		}
604	}
605
606	if ((rpipe->pipe_buffer.size - rpipe->pipe_buffer.cnt) >= PIPE_BUF)
607		pipeselwakeup(rpipe);
608
609	PIPE_UNLOCK(rpipe);
610	return (error);
611}
612
613#ifndef PIPE_NODIRECT
614/*
615 * Map the sending processes' buffer into kernel space and wire it.
616 * This is similar to a physical write operation.
617 */
618static int
619pipe_build_write_buffer(wpipe, uio)
620	struct pipe *wpipe;
621	struct uio *uio;
622{
623	u_int size;
624	int i;
625	vm_offset_t addr, endaddr;
626	vm_paddr_t paddr;
627
628	GIANT_REQUIRED;
629	PIPE_LOCK_ASSERT(wpipe, MA_NOTOWNED);
630
631	size = (u_int) uio->uio_iov->iov_len;
632	if (size > wpipe->pipe_buffer.size)
633		size = wpipe->pipe_buffer.size;
634
635	endaddr = round_page((vm_offset_t)uio->uio_iov->iov_base + size);
636	addr = trunc_page((vm_offset_t)uio->uio_iov->iov_base);
637	for (i = 0; addr < endaddr; addr += PAGE_SIZE, i++) {
638		vm_page_t m;
639
640		/*
641		 * vm_fault_quick() can sleep.  Consequently,
642		 * vm_page_lock_queue() and vm_page_unlock_queue()
643		 * should not be performed outside of this loop.
644		 */
645		if (vm_fault_quick((caddr_t)addr, VM_PROT_READ) < 0 ||
646		    (paddr = pmap_extract(vmspace_pmap(curproc->p_vmspace),
647		     addr)) == 0) {
648			int j;
649
650			vm_page_lock_queues();
651			for (j = 0; j < i; j++)
652				vm_page_unwire(wpipe->pipe_map.ms[j], 1);
653			vm_page_unlock_queues();
654			return (EFAULT);
655		}
656
657		m = PHYS_TO_VM_PAGE(paddr);
658		vm_page_lock_queues();
659		vm_page_wire(m);
660		vm_page_unlock_queues();
661		wpipe->pipe_map.ms[i] = m;
662	}
663
664/*
665 * set up the control block
666 */
667	wpipe->pipe_map.npages = i;
668	wpipe->pipe_map.pos =
669	    ((vm_offset_t) uio->uio_iov->iov_base) & PAGE_MASK;
670	wpipe->pipe_map.cnt = size;
671
672/*
673 * and map the buffer
674 */
675	if (wpipe->pipe_map.kva == 0) {
676		/*
677		 * We need to allocate space for an extra page because the
678		 * address range might (will) span pages at times.
679		 */
680		wpipe->pipe_map.kva = kmem_alloc_pageable(kernel_map,
681			wpipe->pipe_buffer.size + PAGE_SIZE);
682		atomic_add_int(&amountpipekva,
683		    wpipe->pipe_buffer.size + PAGE_SIZE);
684	}
685	pmap_qenter(wpipe->pipe_map.kva, wpipe->pipe_map.ms,
686		wpipe->pipe_map.npages);
687
688/*
689 * and update the uio data
690 */
691
692	uio->uio_iov->iov_len -= size;
693	uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + size;
694	if (uio->uio_iov->iov_len == 0)
695		uio->uio_iov++;
696	uio->uio_resid -= size;
697	uio->uio_offset += size;
698	return (0);
699}
700
701/*
702 * unmap and unwire the process buffer
703 */
704static void
705pipe_destroy_write_buffer(wpipe)
706	struct pipe *wpipe;
707{
708	int i;
709
710	GIANT_REQUIRED;
711	PIPE_LOCK_ASSERT(wpipe, MA_NOTOWNED);
712
713	if (wpipe->pipe_map.kva) {
714		pmap_qremove(wpipe->pipe_map.kva, wpipe->pipe_map.npages);
715
716		if (amountpipekva > MAXPIPEKVA) {
717			vm_offset_t kva = wpipe->pipe_map.kva;
718			wpipe->pipe_map.kva = 0;
719			kmem_free(kernel_map, kva,
720				wpipe->pipe_buffer.size + PAGE_SIZE);
721			atomic_subtract_int(&amountpipekva,
722			    wpipe->pipe_buffer.size + PAGE_SIZE);
723		}
724	}
725	vm_page_lock_queues();
726	for (i = 0; i < wpipe->pipe_map.npages; i++)
727		vm_page_unwire(wpipe->pipe_map.ms[i], 1);
728	vm_page_unlock_queues();
729	wpipe->pipe_map.npages = 0;
730}
731
732/*
733 * In the case of a signal, the writing process might go away.  This
734 * code copies the data into the circular buffer so that the source
735 * pages can be freed without loss of data.
736 */
737static void
738pipe_clone_write_buffer(wpipe)
739	struct pipe *wpipe;
740{
741	int size;
742	int pos;
743
744	PIPE_LOCK_ASSERT(wpipe, MA_OWNED);
745	size = wpipe->pipe_map.cnt;
746	pos = wpipe->pipe_map.pos;
747
748	wpipe->pipe_buffer.in = size;
749	wpipe->pipe_buffer.out = 0;
750	wpipe->pipe_buffer.cnt = size;
751	wpipe->pipe_state &= ~PIPE_DIRECTW;
752
753	PIPE_GET_GIANT(wpipe);
754	bcopy((caddr_t) wpipe->pipe_map.kva + pos,
755	    wpipe->pipe_buffer.buffer, size);
756	pipe_destroy_write_buffer(wpipe);
757	PIPE_DROP_GIANT(wpipe);
758}
759
760/*
761 * This implements the pipe buffer write mechanism.  Note that only
762 * a direct write OR a normal pipe write can be pending at any given time.
763 * If there are any characters in the pipe buffer, the direct write will
764 * be deferred until the receiving process grabs all of the bytes from
765 * the pipe buffer.  Then the direct mapping write is set-up.
766 */
767static int
768pipe_direct_write(wpipe, uio)
769	struct pipe *wpipe;
770	struct uio *uio;
771{
772	int error;
773
774retry:
775	PIPE_LOCK_ASSERT(wpipe, MA_OWNED);
776	while (wpipe->pipe_state & PIPE_DIRECTW) {
777		if (wpipe->pipe_state & PIPE_WANTR) {
778			wpipe->pipe_state &= ~PIPE_WANTR;
779			wakeup(wpipe);
780		}
781		wpipe->pipe_state |= PIPE_WANTW;
782		error = msleep(wpipe, PIPE_MTX(wpipe),
783		    PRIBIO | PCATCH, "pipdww", 0);
784		if (error)
785			goto error1;
786		if (wpipe->pipe_state & PIPE_EOF) {
787			error = EPIPE;
788			goto error1;
789		}
790	}
791	wpipe->pipe_map.cnt = 0;	/* transfer not ready yet */
792	if (wpipe->pipe_buffer.cnt > 0) {
793		if (wpipe->pipe_state & PIPE_WANTR) {
794			wpipe->pipe_state &= ~PIPE_WANTR;
795			wakeup(wpipe);
796		}
797
798		wpipe->pipe_state |= PIPE_WANTW;
799		error = msleep(wpipe, PIPE_MTX(wpipe),
800		    PRIBIO | PCATCH, "pipdwc", 0);
801		if (error)
802			goto error1;
803		if (wpipe->pipe_state & PIPE_EOF) {
804			error = EPIPE;
805			goto error1;
806		}
807		goto retry;
808	}
809
810	wpipe->pipe_state |= PIPE_DIRECTW;
811
812	pipelock(wpipe, 0);
813	PIPE_GET_GIANT(wpipe);
814	error = pipe_build_write_buffer(wpipe, uio);
815	PIPE_DROP_GIANT(wpipe);
816	pipeunlock(wpipe);
817	if (error) {
818		wpipe->pipe_state &= ~PIPE_DIRECTW;
819		goto error1;
820	}
821
822	error = 0;
823	while (!error && (wpipe->pipe_state & PIPE_DIRECTW)) {
824		if (wpipe->pipe_state & PIPE_EOF) {
825			pipelock(wpipe, 0);
826			PIPE_GET_GIANT(wpipe);
827			pipe_destroy_write_buffer(wpipe);
828			PIPE_DROP_GIANT(wpipe);
829			pipeselwakeup(wpipe);
830			pipeunlock(wpipe);
831			error = EPIPE;
832			goto error1;
833		}
834		if (wpipe->pipe_state & PIPE_WANTR) {
835			wpipe->pipe_state &= ~PIPE_WANTR;
836			wakeup(wpipe);
837		}
838		pipeselwakeup(wpipe);
839		error = msleep(wpipe, PIPE_MTX(wpipe), PRIBIO | PCATCH,
840		    "pipdwt", 0);
841	}
842
843	pipelock(wpipe,0);
844	if (wpipe->pipe_state & PIPE_DIRECTW) {
845		/*
846		 * this bit of trickery substitutes a kernel buffer for
847		 * the process that might be going away.
848		 */
849		pipe_clone_write_buffer(wpipe);
850	} else {
851		PIPE_GET_GIANT(wpipe);
852		pipe_destroy_write_buffer(wpipe);
853		PIPE_DROP_GIANT(wpipe);
854	}
855	pipeunlock(wpipe);
856	return (error);
857
858error1:
859	wakeup(wpipe);
860	return (error);
861}
862#endif
863
864static int
865pipe_write(fp, uio, active_cred, flags, td)
866	struct file *fp;
867	struct uio *uio;
868	struct ucred *active_cred;
869	struct thread *td;
870	int flags;
871{
872	int error = 0;
873	int orig_resid;
874	struct pipe *wpipe, *rpipe;
875
876	rpipe = fp->f_data;
877	wpipe = rpipe->pipe_peer;
878
879	PIPE_LOCK(rpipe);
880	/*
881	 * detect loss of pipe read side, issue SIGPIPE if lost.
882	 */
883	if ((wpipe == NULL) || (wpipe->pipe_state & PIPE_EOF)) {
884		PIPE_UNLOCK(rpipe);
885		return (EPIPE);
886	}
887#ifdef MAC
888	error = mac_check_pipe_write(active_cred, wpipe);
889	if (error) {
890		PIPE_UNLOCK(rpipe);
891		return (error);
892	}
893#endif
894	++wpipe->pipe_busy;
895
896	/*
897	 * If it is advantageous to resize the pipe buffer, do
898	 * so.
899	 */
900	if ((uio->uio_resid > PIPE_SIZE) &&
901		(nbigpipe < LIMITBIGPIPES) &&
902		(wpipe->pipe_state & PIPE_DIRECTW) == 0 &&
903		(wpipe->pipe_buffer.size <= PIPE_SIZE) &&
904		(wpipe->pipe_buffer.cnt == 0)) {
905
906		if ((error = pipelock(wpipe, 1)) == 0) {
907			PIPE_GET_GIANT(wpipe);
908			if (pipespace(wpipe, BIG_PIPE_SIZE) == 0)
909				nbigpipe++;
910			PIPE_DROP_GIANT(wpipe);
911			pipeunlock(wpipe);
912		}
913	}
914
915	/*
916	 * If an early error occured unbusy and return, waking up any pending
917	 * readers.
918	 */
919	if (error) {
920		--wpipe->pipe_busy;
921		if ((wpipe->pipe_busy == 0) &&
922		    (wpipe->pipe_state & PIPE_WANT)) {
923			wpipe->pipe_state &= ~(PIPE_WANT | PIPE_WANTR);
924			wakeup(wpipe);
925		}
926		PIPE_UNLOCK(rpipe);
927		return(error);
928	}
929
930	orig_resid = uio->uio_resid;
931
932	while (uio->uio_resid) {
933		int space;
934
935#ifndef PIPE_NODIRECT
936		/*
937		 * If the transfer is large, we can gain performance if
938		 * we do process-to-process copies directly.
939		 * If the write is non-blocking, we don't use the
940		 * direct write mechanism.
941		 *
942		 * The direct write mechanism will detect the reader going
943		 * away on us.
944		 */
945		if ((uio->uio_iov->iov_len >= PIPE_MINDIRECT) &&
946		    (fp->f_flag & FNONBLOCK) == 0 &&
947			(wpipe->pipe_map.kva || (amountpipekva < LIMITPIPEKVA)) &&
948			(uio->uio_iov->iov_len >= PIPE_MINDIRECT)) {
949			error = pipe_direct_write(wpipe, uio);
950			if (error)
951				break;
952			continue;
953		}
954#endif
955
956		/*
957		 * Pipe buffered writes cannot be coincidental with
958		 * direct writes.  We wait until the currently executing
959		 * direct write is completed before we start filling the
960		 * pipe buffer.  We break out if a signal occurs or the
961		 * reader goes away.
962		 */
963	retrywrite:
964		while (wpipe->pipe_state & PIPE_DIRECTW) {
965			if (wpipe->pipe_state & PIPE_WANTR) {
966				wpipe->pipe_state &= ~PIPE_WANTR;
967				wakeup(wpipe);
968			}
969			error = msleep(wpipe, PIPE_MTX(rpipe), PRIBIO | PCATCH,
970			    "pipbww", 0);
971			if (wpipe->pipe_state & PIPE_EOF)
972				break;
973			if (error)
974				break;
975		}
976		if (wpipe->pipe_state & PIPE_EOF) {
977			error = EPIPE;
978			break;
979		}
980
981		space = wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt;
982
983		/* Writes of size <= PIPE_BUF must be atomic. */
984		if ((space < uio->uio_resid) && (orig_resid <= PIPE_BUF))
985			space = 0;
986
987		if (space > 0 && (wpipe->pipe_buffer.cnt < PIPE_SIZE)) {
988			if ((error = pipelock(wpipe,1)) == 0) {
989				int size;	/* Transfer size */
990				int segsize;	/* first segment to transfer */
991
992				/*
993				 * It is possible for a direct write to
994				 * slip in on us... handle it here...
995				 */
996				if (wpipe->pipe_state & PIPE_DIRECTW) {
997					pipeunlock(wpipe);
998					goto retrywrite;
999				}
1000				/*
1001				 * If a process blocked in uiomove, our
1002				 * value for space might be bad.
1003				 *
1004				 * XXX will we be ok if the reader has gone
1005				 * away here?
1006				 */
1007				if (space > wpipe->pipe_buffer.size -
1008				    wpipe->pipe_buffer.cnt) {
1009					pipeunlock(wpipe);
1010					goto retrywrite;
1011				}
1012
1013				/*
1014				 * Transfer size is minimum of uio transfer
1015				 * and free space in pipe buffer.
1016				 */
1017				if (space > uio->uio_resid)
1018					size = uio->uio_resid;
1019				else
1020					size = space;
1021				/*
1022				 * First segment to transfer is minimum of
1023				 * transfer size and contiguous space in
1024				 * pipe buffer.  If first segment to transfer
1025				 * is less than the transfer size, we've got
1026				 * a wraparound in the buffer.
1027				 */
1028				segsize = wpipe->pipe_buffer.size -
1029					wpipe->pipe_buffer.in;
1030				if (segsize > size)
1031					segsize = size;
1032
1033				/* Transfer first segment */
1034
1035				PIPE_UNLOCK(rpipe);
1036				error = uiomove(&wpipe->pipe_buffer.buffer[wpipe->pipe_buffer.in],
1037						segsize, uio);
1038				PIPE_LOCK(rpipe);
1039
1040				if (error == 0 && segsize < size) {
1041					/*
1042					 * Transfer remaining part now, to
1043					 * support atomic writes.  Wraparound
1044					 * happened.
1045					 */
1046					if (wpipe->pipe_buffer.in + segsize !=
1047					    wpipe->pipe_buffer.size)
1048						panic("Expected pipe buffer "
1049						    "wraparound disappeared");
1050
1051					PIPE_UNLOCK(rpipe);
1052					error = uiomove(
1053					    &wpipe->pipe_buffer.buffer[0],
1054				    	    size - segsize, uio);
1055					PIPE_LOCK(rpipe);
1056				}
1057				if (error == 0) {
1058					wpipe->pipe_buffer.in += size;
1059					if (wpipe->pipe_buffer.in >=
1060					    wpipe->pipe_buffer.size) {
1061						if (wpipe->pipe_buffer.in !=
1062						    size - segsize +
1063						    wpipe->pipe_buffer.size)
1064							panic("Expected "
1065							    "wraparound bad");
1066						wpipe->pipe_buffer.in = size -
1067						    segsize;
1068					}
1069
1070					wpipe->pipe_buffer.cnt += size;
1071					if (wpipe->pipe_buffer.cnt >
1072					    wpipe->pipe_buffer.size)
1073						panic("Pipe buffer overflow");
1074
1075				}
1076				pipeunlock(wpipe);
1077			}
1078			if (error)
1079				break;
1080
1081		} else {
1082			/*
1083			 * If the "read-side" has been blocked, wake it up now.
1084			 */
1085			if (wpipe->pipe_state & PIPE_WANTR) {
1086				wpipe->pipe_state &= ~PIPE_WANTR;
1087				wakeup(wpipe);
1088			}
1089
1090			/*
1091			 * don't block on non-blocking I/O
1092			 */
1093			if (fp->f_flag & FNONBLOCK) {
1094				error = EAGAIN;
1095				break;
1096			}
1097
1098			/*
1099			 * We have no more space and have something to offer,
1100			 * wake up select/poll.
1101			 */
1102			pipeselwakeup(wpipe);
1103
1104			wpipe->pipe_state |= PIPE_WANTW;
1105			error = msleep(wpipe, PIPE_MTX(rpipe),
1106			    PRIBIO | PCATCH, "pipewr", 0);
1107			if (error != 0)
1108				break;
1109			/*
1110			 * If read side wants to go away, we just issue a signal
1111			 * to ourselves.
1112			 */
1113			if (wpipe->pipe_state & PIPE_EOF) {
1114				error = EPIPE;
1115				break;
1116			}
1117		}
1118	}
1119
1120	--wpipe->pipe_busy;
1121
1122	if ((wpipe->pipe_busy == 0) && (wpipe->pipe_state & PIPE_WANT)) {
1123		wpipe->pipe_state &= ~(PIPE_WANT | PIPE_WANTR);
1124		wakeup(wpipe);
1125	} else if (wpipe->pipe_buffer.cnt > 0) {
1126		/*
1127		 * If we have put any characters in the buffer, we wake up
1128		 * the reader.
1129		 */
1130		if (wpipe->pipe_state & PIPE_WANTR) {
1131			wpipe->pipe_state &= ~PIPE_WANTR;
1132			wakeup(wpipe);
1133		}
1134	}
1135
1136	/*
1137	 * Don't return EPIPE if I/O was successful
1138	 */
1139	if ((wpipe->pipe_buffer.cnt == 0) &&
1140	    (uio->uio_resid == 0) &&
1141	    (error == EPIPE)) {
1142		error = 0;
1143	}
1144
1145	if (error == 0)
1146		vfs_timestamp(&wpipe->pipe_mtime);
1147
1148	/*
1149	 * We have something to offer,
1150	 * wake up select/poll.
1151	 */
1152	if (wpipe->pipe_buffer.cnt)
1153		pipeselwakeup(wpipe);
1154
1155	PIPE_UNLOCK(rpipe);
1156	return (error);
1157}
1158
1159/*
1160 * we implement a very minimal set of ioctls for compatibility with sockets.
1161 */
1162static int
1163pipe_ioctl(fp, cmd, data, active_cred, td)
1164	struct file *fp;
1165	u_long cmd;
1166	void *data;
1167	struct ucred *active_cred;
1168	struct thread *td;
1169{
1170	struct pipe *mpipe = fp->f_data;
1171#ifdef MAC
1172	int error;
1173#endif
1174
1175	PIPE_LOCK(mpipe);
1176
1177#ifdef MAC
1178	error = mac_check_pipe_ioctl(active_cred, mpipe, cmd, data);
1179	if (error)
1180		return (error);
1181#endif
1182
1183	switch (cmd) {
1184
1185	case FIONBIO:
1186		PIPE_UNLOCK(mpipe);
1187		return (0);
1188
1189	case FIOASYNC:
1190		if (*(int *)data) {
1191			mpipe->pipe_state |= PIPE_ASYNC;
1192		} else {
1193			mpipe->pipe_state &= ~PIPE_ASYNC;
1194		}
1195		PIPE_UNLOCK(mpipe);
1196		return (0);
1197
1198	case FIONREAD:
1199		if (mpipe->pipe_state & PIPE_DIRECTW)
1200			*(int *)data = mpipe->pipe_map.cnt;
1201		else
1202			*(int *)data = mpipe->pipe_buffer.cnt;
1203		PIPE_UNLOCK(mpipe);
1204		return (0);
1205
1206	case FIOSETOWN:
1207		PIPE_UNLOCK(mpipe);
1208		return (fsetown(*(int *)data, &mpipe->pipe_sigio));
1209
1210	case FIOGETOWN:
1211		PIPE_UNLOCK(mpipe);
1212		*(int *)data = fgetown(&mpipe->pipe_sigio);
1213		return (0);
1214
1215	/* This is deprecated, FIOSETOWN should be used instead. */
1216	case TIOCSPGRP:
1217		PIPE_UNLOCK(mpipe);
1218		return (fsetown(-(*(int *)data), &mpipe->pipe_sigio));
1219
1220	/* This is deprecated, FIOGETOWN should be used instead. */
1221	case TIOCGPGRP:
1222		PIPE_UNLOCK(mpipe);
1223		*(int *)data = -fgetown(&mpipe->pipe_sigio);
1224		return (0);
1225
1226	}
1227	PIPE_UNLOCK(mpipe);
1228	return (ENOTTY);
1229}
1230
1231static int
1232pipe_poll(fp, events, active_cred, td)
1233	struct file *fp;
1234	int events;
1235	struct ucred *active_cred;
1236	struct thread *td;
1237{
1238	struct pipe *rpipe = fp->f_data;
1239	struct pipe *wpipe;
1240	int revents = 0;
1241#ifdef MAC
1242	int error;
1243#endif
1244
1245	wpipe = rpipe->pipe_peer;
1246	PIPE_LOCK(rpipe);
1247#ifdef MAC
1248	error = mac_check_pipe_poll(active_cred, rpipe);
1249	if (error)
1250		goto locked_error;
1251#endif
1252	if (events & (POLLIN | POLLRDNORM))
1253		if ((rpipe->pipe_state & PIPE_DIRECTW) ||
1254		    (rpipe->pipe_buffer.cnt > 0) ||
1255		    (rpipe->pipe_state & PIPE_EOF))
1256			revents |= events & (POLLIN | POLLRDNORM);
1257
1258	if (events & (POLLOUT | POLLWRNORM))
1259		if (wpipe == NULL || (wpipe->pipe_state & PIPE_EOF) ||
1260		    (((wpipe->pipe_state & PIPE_DIRECTW) == 0) &&
1261		     (wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt) >= PIPE_BUF))
1262			revents |= events & (POLLOUT | POLLWRNORM);
1263
1264	if ((rpipe->pipe_state & PIPE_EOF) ||
1265	    (wpipe == NULL) ||
1266	    (wpipe->pipe_state & PIPE_EOF))
1267		revents |= POLLHUP;
1268
1269	if (revents == 0) {
1270		if (events & (POLLIN | POLLRDNORM)) {
1271			selrecord(td, &rpipe->pipe_sel);
1272			rpipe->pipe_state |= PIPE_SEL;
1273		}
1274
1275		if (events & (POLLOUT | POLLWRNORM)) {
1276			selrecord(td, &wpipe->pipe_sel);
1277			wpipe->pipe_state |= PIPE_SEL;
1278		}
1279	}
1280#ifdef MAC
1281locked_error:
1282#endif
1283	PIPE_UNLOCK(rpipe);
1284
1285	return (revents);
1286}
1287
1288/*
1289 * We shouldn't need locks here as we're doing a read and this should
1290 * be a natural race.
1291 */
1292static int
1293pipe_stat(fp, ub, active_cred, td)
1294	struct file *fp;
1295	struct stat *ub;
1296	struct ucred *active_cred;
1297	struct thread *td;
1298{
1299	struct pipe *pipe = fp->f_data;
1300#ifdef MAC
1301	int error;
1302
1303	PIPE_LOCK(pipe);
1304	error = mac_check_pipe_stat(active_cred, pipe);
1305	PIPE_UNLOCK(pipe);
1306	if (error)
1307		return (error);
1308#endif
1309	bzero(ub, sizeof(*ub));
1310	ub->st_mode = S_IFIFO;
1311	ub->st_blksize = pipe->pipe_buffer.size;
1312	ub->st_size = pipe->pipe_buffer.cnt;
1313	ub->st_blocks = (ub->st_size + ub->st_blksize - 1) / ub->st_blksize;
1314	ub->st_atimespec = pipe->pipe_atime;
1315	ub->st_mtimespec = pipe->pipe_mtime;
1316	ub->st_ctimespec = pipe->pipe_ctime;
1317	ub->st_uid = fp->f_cred->cr_uid;
1318	ub->st_gid = fp->f_cred->cr_gid;
1319	/*
1320	 * Left as 0: st_dev, st_ino, st_nlink, st_rdev, st_flags, st_gen.
1321	 * XXX (st_dev, st_ino) should be unique.
1322	 */
1323	return (0);
1324}
1325
1326/* ARGSUSED */
1327static int
1328pipe_close(fp, td)
1329	struct file *fp;
1330	struct thread *td;
1331{
1332	struct pipe *cpipe = fp->f_data;
1333
1334	fp->f_ops = &badfileops;
1335	fp->f_data = NULL;
1336	funsetown(&cpipe->pipe_sigio);
1337	pipeclose(cpipe);
1338	return (0);
1339}
1340
1341static void
1342pipe_free_kmem(cpipe)
1343	struct pipe *cpipe;
1344{
1345
1346	GIANT_REQUIRED;
1347	KASSERT(cpipe->pipe_mtxp == NULL || !mtx_owned(PIPE_MTX(cpipe)),
1348	       ("pipespace: pipe mutex locked"));
1349
1350	if (cpipe->pipe_buffer.buffer != NULL) {
1351		if (cpipe->pipe_buffer.size > PIPE_SIZE)
1352			--nbigpipe;
1353		atomic_subtract_int(&amountpipekva, cpipe->pipe_buffer.size);
1354		kmem_free(kernel_map,
1355			(vm_offset_t)cpipe->pipe_buffer.buffer,
1356			cpipe->pipe_buffer.size);
1357		cpipe->pipe_buffer.buffer = NULL;
1358	}
1359#ifndef PIPE_NODIRECT
1360	if (cpipe->pipe_map.kva != 0) {
1361		atomic_subtract_int(&amountpipekva,
1362		    cpipe->pipe_buffer.size + PAGE_SIZE);
1363		kmem_free(kernel_map,
1364			cpipe->pipe_map.kva,
1365			cpipe->pipe_buffer.size + PAGE_SIZE);
1366		cpipe->pipe_map.cnt = 0;
1367		cpipe->pipe_map.kva = 0;
1368		cpipe->pipe_map.pos = 0;
1369		cpipe->pipe_map.npages = 0;
1370	}
1371#endif
1372}
1373
1374/*
1375 * shutdown the pipe
1376 */
1377static void
1378pipeclose(cpipe)
1379	struct pipe *cpipe;
1380{
1381	struct pipe *ppipe;
1382	int hadpeer;
1383
1384	if (cpipe == NULL)
1385		return;
1386
1387	hadpeer = 0;
1388
1389	/* partially created pipes won't have a valid mutex. */
1390	if (PIPE_MTX(cpipe) != NULL)
1391		PIPE_LOCK(cpipe);
1392
1393	pipeselwakeup(cpipe);
1394
1395	/*
1396	 * If the other side is blocked, wake it up saying that
1397	 * we want to close it down.
1398	 */
1399	while (cpipe->pipe_busy) {
1400		wakeup(cpipe);
1401		cpipe->pipe_state |= PIPE_WANT | PIPE_EOF;
1402		msleep(cpipe, PIPE_MTX(cpipe), PRIBIO, "pipecl", 0);
1403	}
1404
1405#ifdef MAC
1406	if (cpipe->pipe_label != NULL && cpipe->pipe_peer == NULL)
1407		mac_destroy_pipe(cpipe);
1408#endif
1409
1410	/*
1411	 * Disconnect from peer
1412	 */
1413	if ((ppipe = cpipe->pipe_peer) != NULL) {
1414		hadpeer++;
1415		pipeselwakeup(ppipe);
1416
1417		ppipe->pipe_state |= PIPE_EOF;
1418		wakeup(ppipe);
1419		KNOTE(&ppipe->pipe_sel.si_note, 0);
1420		ppipe->pipe_peer = NULL;
1421	}
1422	/*
1423	 * free resources
1424	 */
1425	if (PIPE_MTX(cpipe) != NULL) {
1426		PIPE_UNLOCK(cpipe);
1427		if (!hadpeer) {
1428			mtx_destroy(PIPE_MTX(cpipe));
1429			free(PIPE_MTX(cpipe), M_TEMP);
1430		}
1431	}
1432	mtx_lock(&Giant);
1433	pipe_free_kmem(cpipe);
1434	uma_zfree(pipe_zone, cpipe);
1435	mtx_unlock(&Giant);
1436}
1437
1438/*ARGSUSED*/
1439static int
1440pipe_kqfilter(struct file *fp, struct knote *kn)
1441{
1442	struct pipe *cpipe;
1443
1444	cpipe = kn->kn_fp->f_data;
1445	switch (kn->kn_filter) {
1446	case EVFILT_READ:
1447		kn->kn_fop = &pipe_rfiltops;
1448		break;
1449	case EVFILT_WRITE:
1450		kn->kn_fop = &pipe_wfiltops;
1451		cpipe = cpipe->pipe_peer;
1452		if (cpipe == NULL)
1453			/* other end of pipe has been closed */
1454			return (EBADF);
1455		break;
1456	default:
1457		return (1);
1458	}
1459	kn->kn_hook = cpipe;
1460
1461	PIPE_LOCK(cpipe);
1462	SLIST_INSERT_HEAD(&cpipe->pipe_sel.si_note, kn, kn_selnext);
1463	PIPE_UNLOCK(cpipe);
1464	return (0);
1465}
1466
1467static void
1468filt_pipedetach(struct knote *kn)
1469{
1470	struct pipe *cpipe = (struct pipe *)kn->kn_hook;
1471
1472	PIPE_LOCK(cpipe);
1473	SLIST_REMOVE(&cpipe->pipe_sel.si_note, kn, knote, kn_selnext);
1474	PIPE_UNLOCK(cpipe);
1475}
1476
1477/*ARGSUSED*/
1478static int
1479filt_piperead(struct knote *kn, long hint)
1480{
1481	struct pipe *rpipe = kn->kn_fp->f_data;
1482	struct pipe *wpipe = rpipe->pipe_peer;
1483
1484	PIPE_LOCK(rpipe);
1485	kn->kn_data = rpipe->pipe_buffer.cnt;
1486	if ((kn->kn_data == 0) && (rpipe->pipe_state & PIPE_DIRECTW))
1487		kn->kn_data = rpipe->pipe_map.cnt;
1488
1489	if ((rpipe->pipe_state & PIPE_EOF) ||
1490	    (wpipe == NULL) || (wpipe->pipe_state & PIPE_EOF)) {
1491		kn->kn_flags |= EV_EOF;
1492		PIPE_UNLOCK(rpipe);
1493		return (1);
1494	}
1495	PIPE_UNLOCK(rpipe);
1496	return (kn->kn_data > 0);
1497}
1498
1499/*ARGSUSED*/
1500static int
1501filt_pipewrite(struct knote *kn, long hint)
1502{
1503	struct pipe *rpipe = kn->kn_fp->f_data;
1504	struct pipe *wpipe = rpipe->pipe_peer;
1505
1506	PIPE_LOCK(rpipe);
1507	if ((wpipe == NULL) || (wpipe->pipe_state & PIPE_EOF)) {
1508		kn->kn_data = 0;
1509		kn->kn_flags |= EV_EOF;
1510		PIPE_UNLOCK(rpipe);
1511		return (1);
1512	}
1513	kn->kn_data = wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt;
1514	if (wpipe->pipe_state & PIPE_DIRECTW)
1515		kn->kn_data = 0;
1516
1517	PIPE_UNLOCK(rpipe);
1518	return (kn->kn_data >= PIPE_BUF);
1519}
1520