sys_pipe.c revision 101987
1/*
2 * Copyright (c) 1996 John S. Dyson
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice immediately at the beginning of the file, without modification,
10 *    this list of conditions, and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 * 3. Absolutely no warranty of function or purpose is made by the author
15 *    John S. Dyson.
16 * 4. Modifications may be freely made to this file if the above conditions
17 *    are met.
18 *
19 * $FreeBSD: head/sys/kern/sys_pipe.c 101987 2002-08-16 14:12:40Z rwatson $
20 */
21
22/*
23 * This file contains a high-performance replacement for the socket-based
24 * pipes scheme originally used in FreeBSD/4.4Lite.  It does not support
25 * all features of sockets, but does do everything that pipes normally
26 * do.
27 */
28
29/*
30 * This code has two modes of operation, a small write mode and a large
31 * write mode.  The small write mode acts like conventional pipes with
32 * a kernel buffer.  If the buffer is less than PIPE_MINDIRECT, then the
33 * "normal" pipe buffering is done.  If the buffer is between PIPE_MINDIRECT
34 * and PIPE_SIZE in size, it is fully mapped and wired into the kernel, and
35 * the receiving process can copy it directly from the pages in the sending
36 * process.
37 *
38 * If the sending process receives a signal, it is possible that it will
39 * go away, and certainly its address space can change, because control
40 * is returned back to the user-mode side.  In that case, the pipe code
41 * arranges to copy the buffer supplied by the user process, to a pageable
42 * kernel buffer, and the receiving process will grab the data from the
43 * pageable kernel buffer.  Since signals don't happen all that often,
44 * the copy operation is normally eliminated.
45 *
46 * The constant PIPE_MINDIRECT is chosen to make sure that buffering will
47 * happen for small transfers so that the system will not spend all of
48 * its time context switching.  PIPE_SIZE is constrained by the
49 * amount of kernel virtual memory.
50 */
51
52#include "opt_mac.h"
53
54#include <sys/param.h>
55#include <sys/systm.h>
56#include <sys/fcntl.h>
57#include <sys/file.h>
58#include <sys/filedesc.h>
59#include <sys/filio.h>
60#include <sys/kernel.h>
61#include <sys/lock.h>
62#include <sys/mac.h>
63#include <sys/mutex.h>
64#include <sys/ttycom.h>
65#include <sys/stat.h>
66#include <sys/malloc.h>
67#include <sys/poll.h>
68#include <sys/selinfo.h>
69#include <sys/signalvar.h>
70#include <sys/sysproto.h>
71#include <sys/pipe.h>
72#include <sys/proc.h>
73#include <sys/vnode.h>
74#include <sys/uio.h>
75#include <sys/event.h>
76
77#include <vm/vm.h>
78#include <vm/vm_param.h>
79#include <vm/vm_object.h>
80#include <vm/vm_kern.h>
81#include <vm/vm_extern.h>
82#include <vm/pmap.h>
83#include <vm/vm_map.h>
84#include <vm/vm_page.h>
85#include <vm/uma.h>
86
87/*
88 * Use this define if you want to disable *fancy* VM things.  Expect an
89 * approx 30% decrease in transfer rate.  This could be useful for
90 * NetBSD or OpenBSD.
91 */
92/* #define PIPE_NODIRECT */
93
94/*
95 * interfaces to the outside world
96 */
97static int pipe_read(struct file *fp, struct uio *uio,
98		struct ucred *active_cred, int flags, struct thread *td);
99static int pipe_write(struct file *fp, struct uio *uio,
100		struct ucred *active_cred, int flags, struct thread *td);
101static int pipe_close(struct file *fp, struct thread *td);
102static int pipe_poll(struct file *fp, int events, struct ucred *active_cred,
103		struct thread *td);
104static int pipe_kqfilter(struct file *fp, struct knote *kn);
105static int pipe_stat(struct file *fp, struct stat *sb,
106		struct ucred *active_cred, struct thread *td);
107static int pipe_ioctl(struct file *fp, u_long cmd, void *data,
108		struct thread *td);
109
110static struct fileops pipeops = {
111	pipe_read, pipe_write, pipe_ioctl, pipe_poll, pipe_kqfilter,
112	pipe_stat, pipe_close
113};
114
115static void	filt_pipedetach(struct knote *kn);
116static int	filt_piperead(struct knote *kn, long hint);
117static int	filt_pipewrite(struct knote *kn, long hint);
118
119static struct filterops pipe_rfiltops =
120	{ 1, NULL, filt_pipedetach, filt_piperead };
121static struct filterops pipe_wfiltops =
122	{ 1, NULL, filt_pipedetach, filt_pipewrite };
123
124#define PIPE_GET_GIANT(pipe)						\
125	do {								\
126		KASSERT(((pipe)->pipe_state & PIPE_LOCKFL) != 0,	\
127		    ("%s:%d PIPE_GET_GIANT: line pipe not locked",	\
128		     __FILE__, __LINE__));				\
129		PIPE_UNLOCK(pipe);					\
130		mtx_lock(&Giant);					\
131	} while (0)
132
133#define PIPE_DROP_GIANT(pipe)						\
134	do {								\
135		mtx_unlock(&Giant);					\
136		PIPE_LOCK(pipe);					\
137	} while (0)
138
139/*
140 * Default pipe buffer size(s), this can be kind-of large now because pipe
141 * space is pageable.  The pipe code will try to maintain locality of
142 * reference for performance reasons, so small amounts of outstanding I/O
143 * will not wipe the cache.
144 */
145#define MINPIPESIZE (PIPE_SIZE/3)
146#define MAXPIPESIZE (2*PIPE_SIZE/3)
147
148/*
149 * Maximum amount of kva for pipes -- this is kind-of a soft limit, but
150 * is there so that on large systems, we don't exhaust it.
151 */
152#define MAXPIPEKVA (8*1024*1024)
153
154/*
155 * Limit for direct transfers, we cannot, of course limit
156 * the amount of kva for pipes in general though.
157 */
158#define LIMITPIPEKVA (16*1024*1024)
159
160/*
161 * Limit the number of "big" pipes
162 */
163#define LIMITBIGPIPES	32
164static int nbigpipe;
165
166static int amountpipekva;
167
168static void pipeinit(void *dummy __unused);
169static void pipeclose(struct pipe *cpipe);
170static void pipe_free_kmem(struct pipe *cpipe);
171static int pipe_create(struct pipe **cpipep);
172static __inline int pipelock(struct pipe *cpipe, int catch);
173static __inline void pipeunlock(struct pipe *cpipe);
174static __inline void pipeselwakeup(struct pipe *cpipe);
175#ifndef PIPE_NODIRECT
176static int pipe_build_write_buffer(struct pipe *wpipe, struct uio *uio);
177static void pipe_destroy_write_buffer(struct pipe *wpipe);
178static int pipe_direct_write(struct pipe *wpipe, struct uio *uio);
179static void pipe_clone_write_buffer(struct pipe *wpipe);
180#endif
181static int pipespace(struct pipe *cpipe, int size);
182
183static uma_zone_t pipe_zone;
184
185SYSINIT(vfs, SI_SUB_VFS, SI_ORDER_ANY, pipeinit, NULL);
186
187static void
188pipeinit(void *dummy __unused)
189{
190	pipe_zone = uma_zcreate("PIPE", sizeof(struct pipe), NULL,
191	    NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
192}
193
194/*
195 * The pipe system call for the DTYPE_PIPE type of pipes
196 */
197
198/* ARGSUSED */
199int
200pipe(td, uap)
201	struct thread *td;
202	struct pipe_args /* {
203		int	dummy;
204	} */ *uap;
205{
206	struct filedesc *fdp = td->td_proc->p_fd;
207	struct file *rf, *wf;
208	struct pipe *rpipe, *wpipe;
209	struct mtx *pmtx;
210	int fd, error;
211
212	KASSERT(pipe_zone != NULL, ("pipe_zone not initialized"));
213
214	pmtx = malloc(sizeof(*pmtx), M_TEMP, M_WAITOK | M_ZERO);
215
216	rpipe = wpipe = NULL;
217	if (pipe_create(&rpipe) || pipe_create(&wpipe)) {
218		pipeclose(rpipe);
219		pipeclose(wpipe);
220		free(pmtx, M_TEMP);
221		return (ENFILE);
222	}
223
224	rpipe->pipe_state |= PIPE_DIRECTOK;
225	wpipe->pipe_state |= PIPE_DIRECTOK;
226
227	error = falloc(td, &rf, &fd);
228	if (error) {
229		pipeclose(rpipe);
230		pipeclose(wpipe);
231		free(pmtx, M_TEMP);
232		return (error);
233	}
234	fhold(rf);
235	td->td_retval[0] = fd;
236
237	/*
238	 * Warning: once we've gotten past allocation of the fd for the
239	 * read-side, we can only drop the read side via fdrop() in order
240	 * to avoid races against processes which manage to dup() the read
241	 * side while we are blocked trying to allocate the write side.
242	 */
243	FILE_LOCK(rf);
244	rf->f_flag = FREAD | FWRITE;
245	rf->f_type = DTYPE_PIPE;
246	rf->f_data = rpipe;
247	rf->f_ops = &pipeops;
248	FILE_UNLOCK(rf);
249	error = falloc(td, &wf, &fd);
250	if (error) {
251		FILEDESC_LOCK(fdp);
252		if (fdp->fd_ofiles[td->td_retval[0]] == rf) {
253			fdp->fd_ofiles[td->td_retval[0]] = NULL;
254			FILEDESC_UNLOCK(fdp);
255			fdrop(rf, td);
256		} else
257			FILEDESC_UNLOCK(fdp);
258		fdrop(rf, td);
259		/* rpipe has been closed by fdrop(). */
260		pipeclose(wpipe);
261		free(pmtx, M_TEMP);
262		return (error);
263	}
264	FILE_LOCK(wf);
265	wf->f_flag = FREAD | FWRITE;
266	wf->f_type = DTYPE_PIPE;
267	wf->f_data = wpipe;
268	wf->f_ops = &pipeops;
269	FILE_UNLOCK(wf);
270	td->td_retval[1] = fd;
271	rpipe->pipe_peer = wpipe;
272	wpipe->pipe_peer = rpipe;
273#ifdef MAC
274	/*
275	 * struct pipe represents a pipe endpoint.  The MAC label is shared
276	 * between the connected endpoints.  As a result mac_init_pipe() and
277	 * mac_create_pipe() should only be called on one of the endpoints
278	 * after they have been connected.
279	 */
280	mac_init_pipe(rpipe);
281	mac_create_pipe(td->td_ucred, rpipe);
282#endif
283	mtx_init(pmtx, "pipe mutex", NULL, MTX_DEF | MTX_RECURSE);
284	rpipe->pipe_mtxp = wpipe->pipe_mtxp = pmtx;
285	fdrop(rf, td);
286
287	return (0);
288}
289
290/*
291 * Allocate kva for pipe circular buffer, the space is pageable
292 * This routine will 'realloc' the size of a pipe safely, if it fails
293 * it will retain the old buffer.
294 * If it fails it will return ENOMEM.
295 */
296static int
297pipespace(cpipe, size)
298	struct pipe *cpipe;
299	int size;
300{
301	struct vm_object *object;
302	caddr_t buffer;
303	int npages, error;
304
305	GIANT_REQUIRED;
306	KASSERT(cpipe->pipe_mtxp == NULL || !mtx_owned(PIPE_MTX(cpipe)),
307	       ("pipespace: pipe mutex locked"));
308
309	npages = round_page(size)/PAGE_SIZE;
310	/*
311	 * Create an object, I don't like the idea of paging to/from
312	 * kernel_object.
313	 * XXX -- minor change needed here for NetBSD/OpenBSD VM systems.
314	 */
315	object = vm_object_allocate(OBJT_DEFAULT, npages);
316	buffer = (caddr_t) vm_map_min(kernel_map);
317
318	/*
319	 * Insert the object into the kernel map, and allocate kva for it.
320	 * The map entry is, by default, pageable.
321	 * XXX -- minor change needed here for NetBSD/OpenBSD VM systems.
322	 */
323	error = vm_map_find(kernel_map, object, 0,
324		(vm_offset_t *) &buffer, size, 1,
325		VM_PROT_ALL, VM_PROT_ALL, 0);
326
327	if (error != KERN_SUCCESS) {
328		vm_object_deallocate(object);
329		return (ENOMEM);
330	}
331
332	/* free old resources if we're resizing */
333	pipe_free_kmem(cpipe);
334	cpipe->pipe_buffer.object = object;
335	cpipe->pipe_buffer.buffer = buffer;
336	cpipe->pipe_buffer.size = size;
337	cpipe->pipe_buffer.in = 0;
338	cpipe->pipe_buffer.out = 0;
339	cpipe->pipe_buffer.cnt = 0;
340	amountpipekva += cpipe->pipe_buffer.size;
341	return (0);
342}
343
344/*
345 * initialize and allocate VM and memory for pipe
346 */
347static int
348pipe_create(cpipep)
349	struct pipe **cpipep;
350{
351	struct pipe *cpipe;
352	int error;
353
354	*cpipep = uma_zalloc(pipe_zone, M_WAITOK);
355	if (*cpipep == NULL)
356		return (ENOMEM);
357
358	cpipe = *cpipep;
359
360	/* so pipespace()->pipe_free_kmem() doesn't follow junk pointer */
361	cpipe->pipe_buffer.object = NULL;
362#ifndef PIPE_NODIRECT
363	cpipe->pipe_map.kva = NULL;
364#endif
365	/*
366	 * protect so pipeclose() doesn't follow a junk pointer
367	 * if pipespace() fails.
368	 */
369	bzero(&cpipe->pipe_sel, sizeof(cpipe->pipe_sel));
370	cpipe->pipe_state = 0;
371	cpipe->pipe_peer = NULL;
372	cpipe->pipe_busy = 0;
373
374#ifndef PIPE_NODIRECT
375	/*
376	 * pipe data structure initializations to support direct pipe I/O
377	 */
378	cpipe->pipe_map.cnt = 0;
379	cpipe->pipe_map.kva = 0;
380	cpipe->pipe_map.pos = 0;
381	cpipe->pipe_map.npages = 0;
382	/* cpipe->pipe_map.ms[] = invalid */
383#endif
384
385	cpipe->pipe_mtxp = NULL;	/* avoid pipespace assertion */
386	error = pipespace(cpipe, PIPE_SIZE);
387	if (error)
388		return (error);
389
390	vfs_timestamp(&cpipe->pipe_ctime);
391	cpipe->pipe_atime = cpipe->pipe_ctime;
392	cpipe->pipe_mtime = cpipe->pipe_ctime;
393
394	return (0);
395}
396
397
398/*
399 * lock a pipe for I/O, blocking other access
400 */
401static __inline int
402pipelock(cpipe, catch)
403	struct pipe *cpipe;
404	int catch;
405{
406	int error;
407
408	PIPE_LOCK_ASSERT(cpipe, MA_OWNED);
409	while (cpipe->pipe_state & PIPE_LOCKFL) {
410		cpipe->pipe_state |= PIPE_LWANT;
411		error = msleep(cpipe, PIPE_MTX(cpipe),
412		    catch ? (PRIBIO | PCATCH) : PRIBIO,
413		    "pipelk", 0);
414		if (error != 0)
415			return (error);
416	}
417	cpipe->pipe_state |= PIPE_LOCKFL;
418	return (0);
419}
420
421/*
422 * unlock a pipe I/O lock
423 */
424static __inline void
425pipeunlock(cpipe)
426	struct pipe *cpipe;
427{
428
429	PIPE_LOCK_ASSERT(cpipe, MA_OWNED);
430	cpipe->pipe_state &= ~PIPE_LOCKFL;
431	if (cpipe->pipe_state & PIPE_LWANT) {
432		cpipe->pipe_state &= ~PIPE_LWANT;
433		wakeup(cpipe);
434	}
435}
436
437static __inline void
438pipeselwakeup(cpipe)
439	struct pipe *cpipe;
440{
441
442	if (cpipe->pipe_state & PIPE_SEL) {
443		cpipe->pipe_state &= ~PIPE_SEL;
444		selwakeup(&cpipe->pipe_sel);
445	}
446	if ((cpipe->pipe_state & PIPE_ASYNC) && cpipe->pipe_sigio)
447		pgsigio(&cpipe->pipe_sigio, SIGIO, 0);
448	KNOTE(&cpipe->pipe_sel.si_note, 0);
449}
450
451/* ARGSUSED */
452static int
453pipe_read(fp, uio, active_cred, flags, td)
454	struct file *fp;
455	struct uio *uio;
456	struct ucred *active_cred;
457	struct thread *td;
458	int flags;
459{
460	struct pipe *rpipe = (struct pipe *) fp->f_data;
461	int error;
462	int nread = 0;
463	u_int size;
464
465	PIPE_LOCK(rpipe);
466	++rpipe->pipe_busy;
467	error = pipelock(rpipe, 1);
468	if (error)
469		goto unlocked_error;
470
471#ifdef MAC
472	error = mac_check_pipe_op(active_cred, rpipe, MAC_OP_PIPE_READ);
473	if (error)
474		goto locked_error;
475#endif
476
477	while (uio->uio_resid) {
478		/*
479		 * normal pipe buffer receive
480		 */
481		if (rpipe->pipe_buffer.cnt > 0) {
482			size = rpipe->pipe_buffer.size - rpipe->pipe_buffer.out;
483			if (size > rpipe->pipe_buffer.cnt)
484				size = rpipe->pipe_buffer.cnt;
485			if (size > (u_int) uio->uio_resid)
486				size = (u_int) uio->uio_resid;
487
488			PIPE_UNLOCK(rpipe);
489			error = uiomove(&rpipe->pipe_buffer.buffer[rpipe->pipe_buffer.out],
490					size, uio);
491			PIPE_LOCK(rpipe);
492			if (error)
493				break;
494
495			rpipe->pipe_buffer.out += size;
496			if (rpipe->pipe_buffer.out >= rpipe->pipe_buffer.size)
497				rpipe->pipe_buffer.out = 0;
498
499			rpipe->pipe_buffer.cnt -= size;
500
501			/*
502			 * If there is no more to read in the pipe, reset
503			 * its pointers to the beginning.  This improves
504			 * cache hit stats.
505			 */
506			if (rpipe->pipe_buffer.cnt == 0) {
507				rpipe->pipe_buffer.in = 0;
508				rpipe->pipe_buffer.out = 0;
509			}
510			nread += size;
511#ifndef PIPE_NODIRECT
512		/*
513		 * Direct copy, bypassing a kernel buffer.
514		 */
515		} else if ((size = rpipe->pipe_map.cnt) &&
516			   (rpipe->pipe_state & PIPE_DIRECTW)) {
517			caddr_t	va;
518			if (size > (u_int) uio->uio_resid)
519				size = (u_int) uio->uio_resid;
520
521			va = (caddr_t) rpipe->pipe_map.kva +
522			    rpipe->pipe_map.pos;
523			PIPE_UNLOCK(rpipe);
524			error = uiomove(va, size, uio);
525			PIPE_LOCK(rpipe);
526			if (error)
527				break;
528			nread += size;
529			rpipe->pipe_map.pos += size;
530			rpipe->pipe_map.cnt -= size;
531			if (rpipe->pipe_map.cnt == 0) {
532				rpipe->pipe_state &= ~PIPE_DIRECTW;
533				wakeup(rpipe);
534			}
535#endif
536		} else {
537			/*
538			 * detect EOF condition
539			 * read returns 0 on EOF, no need to set error
540			 */
541			if (rpipe->pipe_state & PIPE_EOF)
542				break;
543
544			/*
545			 * If the "write-side" has been blocked, wake it up now.
546			 */
547			if (rpipe->pipe_state & PIPE_WANTW) {
548				rpipe->pipe_state &= ~PIPE_WANTW;
549				wakeup(rpipe);
550			}
551
552			/*
553			 * Break if some data was read.
554			 */
555			if (nread > 0)
556				break;
557
558			/*
559			 * Unlock the pipe buffer for our remaining processing.  We
560			 * will either break out with an error or we will sleep and
561			 * relock to loop.
562			 */
563			pipeunlock(rpipe);
564
565			/*
566			 * Handle non-blocking mode operation or
567			 * wait for more data.
568			 */
569			if (fp->f_flag & FNONBLOCK) {
570				error = EAGAIN;
571			} else {
572				rpipe->pipe_state |= PIPE_WANTR;
573				if ((error = msleep(rpipe, PIPE_MTX(rpipe),
574				    PRIBIO | PCATCH,
575				    "piperd", 0)) == 0)
576					error = pipelock(rpipe, 1);
577			}
578			if (error)
579				goto unlocked_error;
580		}
581	}
582#ifdef MAC
583locked_error:
584#endif
585	pipeunlock(rpipe);
586
587	/* XXX: should probably do this before getting any locks. */
588	if (error == 0)
589		vfs_timestamp(&rpipe->pipe_atime);
590unlocked_error:
591	--rpipe->pipe_busy;
592
593	/*
594	 * PIPE_WANT processing only makes sense if pipe_busy is 0.
595	 */
596	if ((rpipe->pipe_busy == 0) && (rpipe->pipe_state & PIPE_WANT)) {
597		rpipe->pipe_state &= ~(PIPE_WANT|PIPE_WANTW);
598		wakeup(rpipe);
599	} else if (rpipe->pipe_buffer.cnt < MINPIPESIZE) {
600		/*
601		 * Handle write blocking hysteresis.
602		 */
603		if (rpipe->pipe_state & PIPE_WANTW) {
604			rpipe->pipe_state &= ~PIPE_WANTW;
605			wakeup(rpipe);
606		}
607	}
608
609	if ((rpipe->pipe_buffer.size - rpipe->pipe_buffer.cnt) >= PIPE_BUF)
610		pipeselwakeup(rpipe);
611
612	PIPE_UNLOCK(rpipe);
613	return (error);
614}
615
616#ifndef PIPE_NODIRECT
617/*
618 * Map the sending processes' buffer into kernel space and wire it.
619 * This is similar to a physical write operation.
620 */
621static int
622pipe_build_write_buffer(wpipe, uio)
623	struct pipe *wpipe;
624	struct uio *uio;
625{
626	u_int size;
627	int i;
628	vm_offset_t addr, endaddr, paddr;
629
630	GIANT_REQUIRED;
631	PIPE_LOCK_ASSERT(wpipe, MA_NOTOWNED);
632
633	size = (u_int) uio->uio_iov->iov_len;
634	if (size > wpipe->pipe_buffer.size)
635		size = wpipe->pipe_buffer.size;
636
637	endaddr = round_page((vm_offset_t)uio->uio_iov->iov_base + size);
638	addr = trunc_page((vm_offset_t)uio->uio_iov->iov_base);
639	for (i = 0; addr < endaddr; addr += PAGE_SIZE, i++) {
640		vm_page_t m;
641
642		/*
643		 * vm_fault_quick() can sleep.  Consequently,
644		 * vm_page_lock_queue() and vm_page_unlock_queue()
645		 * should not be performed outside of this loop.
646		 */
647		if (vm_fault_quick((caddr_t)addr, VM_PROT_READ) < 0 ||
648		    (paddr = pmap_extract(vmspace_pmap(curproc->p_vmspace),
649		     addr)) == 0) {
650			int j;
651
652			vm_page_lock_queues();
653			for (j = 0; j < i; j++)
654				vm_page_unwire(wpipe->pipe_map.ms[j], 1);
655			vm_page_unlock_queues();
656			return (EFAULT);
657		}
658
659		m = PHYS_TO_VM_PAGE(paddr);
660		vm_page_lock_queues();
661		vm_page_wire(m);
662		vm_page_unlock_queues();
663		wpipe->pipe_map.ms[i] = m;
664	}
665
666/*
667 * set up the control block
668 */
669	wpipe->pipe_map.npages = i;
670	wpipe->pipe_map.pos =
671	    ((vm_offset_t) uio->uio_iov->iov_base) & PAGE_MASK;
672	wpipe->pipe_map.cnt = size;
673
674/*
675 * and map the buffer
676 */
677	if (wpipe->pipe_map.kva == 0) {
678		/*
679		 * We need to allocate space for an extra page because the
680		 * address range might (will) span pages at times.
681		 */
682		wpipe->pipe_map.kva = kmem_alloc_pageable(kernel_map,
683			wpipe->pipe_buffer.size + PAGE_SIZE);
684		amountpipekva += wpipe->pipe_buffer.size + PAGE_SIZE;
685	}
686	pmap_qenter(wpipe->pipe_map.kva, wpipe->pipe_map.ms,
687		wpipe->pipe_map.npages);
688
689/*
690 * and update the uio data
691 */
692
693	uio->uio_iov->iov_len -= size;
694	uio->uio_iov->iov_base += size;
695	if (uio->uio_iov->iov_len == 0)
696		uio->uio_iov++;
697	uio->uio_resid -= size;
698	uio->uio_offset += size;
699	return (0);
700}
701
702/*
703 * unmap and unwire the process buffer
704 */
705static void
706pipe_destroy_write_buffer(wpipe)
707	struct pipe *wpipe;
708{
709	int i;
710
711	GIANT_REQUIRED;
712	PIPE_LOCK_ASSERT(wpipe, MA_NOTOWNED);
713
714	if (wpipe->pipe_map.kva) {
715		pmap_qremove(wpipe->pipe_map.kva, wpipe->pipe_map.npages);
716
717		if (amountpipekva > MAXPIPEKVA) {
718			vm_offset_t kva = wpipe->pipe_map.kva;
719			wpipe->pipe_map.kva = 0;
720			kmem_free(kernel_map, kva,
721				wpipe->pipe_buffer.size + PAGE_SIZE);
722			amountpipekva -= wpipe->pipe_buffer.size + PAGE_SIZE;
723		}
724	}
725	vm_page_lock_queues();
726	for (i = 0; i < wpipe->pipe_map.npages; i++)
727		vm_page_unwire(wpipe->pipe_map.ms[i], 1);
728	vm_page_unlock_queues();
729	wpipe->pipe_map.npages = 0;
730}
731
732/*
733 * In the case of a signal, the writing process might go away.  This
734 * code copies the data into the circular buffer so that the source
735 * pages can be freed without loss of data.
736 */
737static void
738pipe_clone_write_buffer(wpipe)
739	struct pipe *wpipe;
740{
741	int size;
742	int pos;
743
744	PIPE_LOCK_ASSERT(wpipe, MA_OWNED);
745	size = wpipe->pipe_map.cnt;
746	pos = wpipe->pipe_map.pos;
747
748	wpipe->pipe_buffer.in = size;
749	wpipe->pipe_buffer.out = 0;
750	wpipe->pipe_buffer.cnt = size;
751	wpipe->pipe_state &= ~PIPE_DIRECTW;
752
753	PIPE_GET_GIANT(wpipe);
754	bcopy((caddr_t) wpipe->pipe_map.kva + pos,
755	    wpipe->pipe_buffer.buffer, size);
756	pipe_destroy_write_buffer(wpipe);
757	PIPE_DROP_GIANT(wpipe);
758}
759
760/*
761 * This implements the pipe buffer write mechanism.  Note that only
762 * a direct write OR a normal pipe write can be pending at any given time.
763 * If there are any characters in the pipe buffer, the direct write will
764 * be deferred until the receiving process grabs all of the bytes from
765 * the pipe buffer.  Then the direct mapping write is set-up.
766 */
767static int
768pipe_direct_write(wpipe, uio)
769	struct pipe *wpipe;
770	struct uio *uio;
771{
772	int error;
773
774retry:
775	PIPE_LOCK_ASSERT(wpipe, MA_OWNED);
776	while (wpipe->pipe_state & PIPE_DIRECTW) {
777		if (wpipe->pipe_state & PIPE_WANTR) {
778			wpipe->pipe_state &= ~PIPE_WANTR;
779			wakeup(wpipe);
780		}
781		wpipe->pipe_state |= PIPE_WANTW;
782		error = msleep(wpipe, PIPE_MTX(wpipe),
783		    PRIBIO | PCATCH, "pipdww", 0);
784		if (error)
785			goto error1;
786		if (wpipe->pipe_state & PIPE_EOF) {
787			error = EPIPE;
788			goto error1;
789		}
790	}
791	wpipe->pipe_map.cnt = 0;	/* transfer not ready yet */
792	if (wpipe->pipe_buffer.cnt > 0) {
793		if (wpipe->pipe_state & PIPE_WANTR) {
794			wpipe->pipe_state &= ~PIPE_WANTR;
795			wakeup(wpipe);
796		}
797
798		wpipe->pipe_state |= PIPE_WANTW;
799		error = msleep(wpipe, PIPE_MTX(wpipe),
800		    PRIBIO | PCATCH, "pipdwc", 0);
801		if (error)
802			goto error1;
803		if (wpipe->pipe_state & PIPE_EOF) {
804			error = EPIPE;
805			goto error1;
806		}
807		goto retry;
808	}
809
810	wpipe->pipe_state |= PIPE_DIRECTW;
811
812	pipelock(wpipe, 0);
813	PIPE_GET_GIANT(wpipe);
814	error = pipe_build_write_buffer(wpipe, uio);
815	PIPE_DROP_GIANT(wpipe);
816	pipeunlock(wpipe);
817	if (error) {
818		wpipe->pipe_state &= ~PIPE_DIRECTW;
819		goto error1;
820	}
821
822	error = 0;
823	while (!error && (wpipe->pipe_state & PIPE_DIRECTW)) {
824		if (wpipe->pipe_state & PIPE_EOF) {
825			pipelock(wpipe, 0);
826			PIPE_GET_GIANT(wpipe);
827			pipe_destroy_write_buffer(wpipe);
828			PIPE_DROP_GIANT(wpipe);
829			pipeunlock(wpipe);
830			pipeselwakeup(wpipe);
831			error = EPIPE;
832			goto error1;
833		}
834		if (wpipe->pipe_state & PIPE_WANTR) {
835			wpipe->pipe_state &= ~PIPE_WANTR;
836			wakeup(wpipe);
837		}
838		pipeselwakeup(wpipe);
839		error = msleep(wpipe, PIPE_MTX(wpipe), PRIBIO | PCATCH,
840		    "pipdwt", 0);
841	}
842
843	pipelock(wpipe,0);
844	if (wpipe->pipe_state & PIPE_DIRECTW) {
845		/*
846		 * this bit of trickery substitutes a kernel buffer for
847		 * the process that might be going away.
848		 */
849		pipe_clone_write_buffer(wpipe);
850	} else {
851		PIPE_GET_GIANT(wpipe);
852		pipe_destroy_write_buffer(wpipe);
853		PIPE_DROP_GIANT(wpipe);
854	}
855	pipeunlock(wpipe);
856	return (error);
857
858error1:
859	wakeup(wpipe);
860	return (error);
861}
862#endif
863
864static int
865pipe_write(fp, uio, active_cred, flags, td)
866	struct file *fp;
867	struct uio *uio;
868	struct ucred *active_cred;
869	struct thread *td;
870	int flags;
871{
872	int error = 0;
873	int orig_resid;
874	struct pipe *wpipe, *rpipe;
875
876	rpipe = (struct pipe *) fp->f_data;
877	wpipe = rpipe->pipe_peer;
878
879	PIPE_LOCK(rpipe);
880	/*
881	 * detect loss of pipe read side, issue SIGPIPE if lost.
882	 */
883	if ((wpipe == NULL) || (wpipe->pipe_state & PIPE_EOF)) {
884		PIPE_UNLOCK(rpipe);
885		return (EPIPE);
886	}
887#ifdef MAC
888	error = mac_check_pipe_op(active_cred, wpipe, MAC_OP_PIPE_WRITE);
889	if (error) {
890		PIPE_UNLOCK(rpipe);
891		return (error);
892	}
893#endif
894	++wpipe->pipe_busy;
895
896	/*
897	 * If it is advantageous to resize the pipe buffer, do
898	 * so.
899	 */
900	if ((uio->uio_resid > PIPE_SIZE) &&
901		(nbigpipe < LIMITBIGPIPES) &&
902		(wpipe->pipe_state & PIPE_DIRECTW) == 0 &&
903		(wpipe->pipe_buffer.size <= PIPE_SIZE) &&
904		(wpipe->pipe_buffer.cnt == 0)) {
905
906		if ((error = pipelock(wpipe,1)) == 0) {
907			PIPE_GET_GIANT(wpipe);
908			if (pipespace(wpipe, BIG_PIPE_SIZE) == 0)
909				nbigpipe++;
910			PIPE_DROP_GIANT(wpipe);
911			pipeunlock(wpipe);
912		}
913	}
914
915	/*
916	 * If an early error occured unbusy and return, waking up any pending
917	 * readers.
918	 */
919	if (error) {
920		--wpipe->pipe_busy;
921		if ((wpipe->pipe_busy == 0) &&
922		    (wpipe->pipe_state & PIPE_WANT)) {
923			wpipe->pipe_state &= ~(PIPE_WANT | PIPE_WANTR);
924			wakeup(wpipe);
925		}
926		PIPE_UNLOCK(rpipe);
927		return(error);
928	}
929
930	KASSERT(wpipe->pipe_buffer.buffer != NULL, ("pipe buffer gone"));
931
932	orig_resid = uio->uio_resid;
933
934	while (uio->uio_resid) {
935		int space;
936
937#ifndef PIPE_NODIRECT
938		/*
939		 * If the transfer is large, we can gain performance if
940		 * we do process-to-process copies directly.
941		 * If the write is non-blocking, we don't use the
942		 * direct write mechanism.
943		 *
944		 * The direct write mechanism will detect the reader going
945		 * away on us.
946		 */
947		if ((uio->uio_iov->iov_len >= PIPE_MINDIRECT) &&
948		    (fp->f_flag & FNONBLOCK) == 0 &&
949			(wpipe->pipe_map.kva || (amountpipekva < LIMITPIPEKVA)) &&
950			(uio->uio_iov->iov_len >= PIPE_MINDIRECT)) {
951			error = pipe_direct_write( wpipe, uio);
952			if (error)
953				break;
954			continue;
955		}
956#endif
957
958		/*
959		 * Pipe buffered writes cannot be coincidental with
960		 * direct writes.  We wait until the currently executing
961		 * direct write is completed before we start filling the
962		 * pipe buffer.  We break out if a signal occurs or the
963		 * reader goes away.
964		 */
965	retrywrite:
966		while (wpipe->pipe_state & PIPE_DIRECTW) {
967			if (wpipe->pipe_state & PIPE_WANTR) {
968				wpipe->pipe_state &= ~PIPE_WANTR;
969				wakeup(wpipe);
970			}
971			error = msleep(wpipe, PIPE_MTX(rpipe), PRIBIO | PCATCH,
972			    "pipbww", 0);
973			if (wpipe->pipe_state & PIPE_EOF)
974				break;
975			if (error)
976				break;
977		}
978		if (wpipe->pipe_state & PIPE_EOF) {
979			error = EPIPE;
980			break;
981		}
982
983		space = wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt;
984
985		/* Writes of size <= PIPE_BUF must be atomic. */
986		if ((space < uio->uio_resid) && (orig_resid <= PIPE_BUF))
987			space = 0;
988
989		if (space > 0 && (wpipe->pipe_buffer.cnt < PIPE_SIZE)) {
990			if ((error = pipelock(wpipe,1)) == 0) {
991				int size;	/* Transfer size */
992				int segsize;	/* first segment to transfer */
993
994				/*
995				 * It is possible for a direct write to
996				 * slip in on us... handle it here...
997				 */
998				if (wpipe->pipe_state & PIPE_DIRECTW) {
999					pipeunlock(wpipe);
1000					goto retrywrite;
1001				}
1002				/*
1003				 * If a process blocked in uiomove, our
1004				 * value for space might be bad.
1005				 *
1006				 * XXX will we be ok if the reader has gone
1007				 * away here?
1008				 */
1009				if (space > wpipe->pipe_buffer.size -
1010				    wpipe->pipe_buffer.cnt) {
1011					pipeunlock(wpipe);
1012					goto retrywrite;
1013				}
1014
1015				/*
1016				 * Transfer size is minimum of uio transfer
1017				 * and free space in pipe buffer.
1018				 */
1019				if (space > uio->uio_resid)
1020					size = uio->uio_resid;
1021				else
1022					size = space;
1023				/*
1024				 * First segment to transfer is minimum of
1025				 * transfer size and contiguous space in
1026				 * pipe buffer.  If first segment to transfer
1027				 * is less than the transfer size, we've got
1028				 * a wraparound in the buffer.
1029				 */
1030				segsize = wpipe->pipe_buffer.size -
1031					wpipe->pipe_buffer.in;
1032				if (segsize > size)
1033					segsize = size;
1034
1035				/* Transfer first segment */
1036
1037				PIPE_UNLOCK(rpipe);
1038				error = uiomove(&wpipe->pipe_buffer.buffer[wpipe->pipe_buffer.in],
1039						segsize, uio);
1040				PIPE_LOCK(rpipe);
1041
1042				if (error == 0 && segsize < size) {
1043					/*
1044					 * Transfer remaining part now, to
1045					 * support atomic writes.  Wraparound
1046					 * happened.
1047					 */
1048					if (wpipe->pipe_buffer.in + segsize !=
1049					    wpipe->pipe_buffer.size)
1050						panic("Expected pipe buffer wraparound disappeared");
1051
1052					PIPE_UNLOCK(rpipe);
1053					error = uiomove(&wpipe->pipe_buffer.buffer[0],
1054							size - segsize, uio);
1055					PIPE_LOCK(rpipe);
1056				}
1057				if (error == 0) {
1058					wpipe->pipe_buffer.in += size;
1059					if (wpipe->pipe_buffer.in >=
1060					    wpipe->pipe_buffer.size) {
1061						if (wpipe->pipe_buffer.in != size - segsize + wpipe->pipe_buffer.size)
1062							panic("Expected wraparound bad");
1063						wpipe->pipe_buffer.in = size - segsize;
1064					}
1065
1066					wpipe->pipe_buffer.cnt += size;
1067					if (wpipe->pipe_buffer.cnt > wpipe->pipe_buffer.size)
1068						panic("Pipe buffer overflow");
1069
1070				}
1071				pipeunlock(wpipe);
1072			}
1073			if (error)
1074				break;
1075
1076		} else {
1077			/*
1078			 * If the "read-side" has been blocked, wake it up now.
1079			 */
1080			if (wpipe->pipe_state & PIPE_WANTR) {
1081				wpipe->pipe_state &= ~PIPE_WANTR;
1082				wakeup(wpipe);
1083			}
1084
1085			/*
1086			 * don't block on non-blocking I/O
1087			 */
1088			if (fp->f_flag & FNONBLOCK) {
1089				error = EAGAIN;
1090				break;
1091			}
1092
1093			/*
1094			 * We have no more space and have something to offer,
1095			 * wake up select/poll.
1096			 */
1097			pipeselwakeup(wpipe);
1098
1099			wpipe->pipe_state |= PIPE_WANTW;
1100			error = msleep(wpipe, PIPE_MTX(rpipe),
1101			    PRIBIO | PCATCH, "pipewr", 0);
1102			if (error != 0)
1103				break;
1104			/*
1105			 * If read side wants to go away, we just issue a signal
1106			 * to ourselves.
1107			 */
1108			if (wpipe->pipe_state & PIPE_EOF) {
1109				error = EPIPE;
1110				break;
1111			}
1112		}
1113	}
1114
1115	--wpipe->pipe_busy;
1116
1117	if ((wpipe->pipe_busy == 0) && (wpipe->pipe_state & PIPE_WANT)) {
1118		wpipe->pipe_state &= ~(PIPE_WANT | PIPE_WANTR);
1119		wakeup(wpipe);
1120	} else if (wpipe->pipe_buffer.cnt > 0) {
1121		/*
1122		 * If we have put any characters in the buffer, we wake up
1123		 * the reader.
1124		 */
1125		if (wpipe->pipe_state & PIPE_WANTR) {
1126			wpipe->pipe_state &= ~PIPE_WANTR;
1127			wakeup(wpipe);
1128		}
1129	}
1130
1131	/*
1132	 * Don't return EPIPE if I/O was successful
1133	 */
1134	if ((wpipe->pipe_buffer.cnt == 0) &&
1135	    (uio->uio_resid == 0) &&
1136	    (error == EPIPE)) {
1137		error = 0;
1138	}
1139
1140	if (error == 0)
1141		vfs_timestamp(&wpipe->pipe_mtime);
1142
1143	/*
1144	 * We have something to offer,
1145	 * wake up select/poll.
1146	 */
1147	if (wpipe->pipe_buffer.cnt)
1148		pipeselwakeup(wpipe);
1149
1150	PIPE_UNLOCK(rpipe);
1151	return (error);
1152}
1153
1154/*
1155 * we implement a very minimal set of ioctls for compatibility with sockets.
1156 */
1157int
1158pipe_ioctl(fp, cmd, data, td)
1159	struct file *fp;
1160	u_long cmd;
1161	void *data;
1162	struct thread *td;
1163{
1164	struct pipe *mpipe = (struct pipe *)fp->f_data;
1165#ifdef MAC
1166	int error;
1167
1168	/* XXXMAC: Pipe should be locked for this check. */
1169	error = mac_check_pipe_ioctl(td->td_ucred, mpipe, cmd, data);
1170	if (error)
1171		return (error);
1172#endif
1173
1174	switch (cmd) {
1175
1176	case FIONBIO:
1177		return (0);
1178
1179	case FIOASYNC:
1180		PIPE_LOCK(mpipe);
1181		if (*(int *)data) {
1182			mpipe->pipe_state |= PIPE_ASYNC;
1183		} else {
1184			mpipe->pipe_state &= ~PIPE_ASYNC;
1185		}
1186		PIPE_UNLOCK(mpipe);
1187		return (0);
1188
1189	case FIONREAD:
1190		PIPE_LOCK(mpipe);
1191		if (mpipe->pipe_state & PIPE_DIRECTW)
1192			*(int *)data = mpipe->pipe_map.cnt;
1193		else
1194			*(int *)data = mpipe->pipe_buffer.cnt;
1195		PIPE_UNLOCK(mpipe);
1196		return (0);
1197
1198	case FIOSETOWN:
1199		return (fsetown(*(int *)data, &mpipe->pipe_sigio));
1200
1201	case FIOGETOWN:
1202		*(int *)data = fgetown(mpipe->pipe_sigio);
1203		return (0);
1204
1205	/* This is deprecated, FIOSETOWN should be used instead. */
1206	case TIOCSPGRP:
1207		return (fsetown(-(*(int *)data), &mpipe->pipe_sigio));
1208
1209	/* This is deprecated, FIOGETOWN should be used instead. */
1210	case TIOCGPGRP:
1211		*(int *)data = -fgetown(mpipe->pipe_sigio);
1212		return (0);
1213
1214	}
1215	return (ENOTTY);
1216}
1217
1218int
1219pipe_poll(fp, events, active_cred, td)
1220	struct file *fp;
1221	int events;
1222	struct ucred *active_cred;
1223	struct thread *td;
1224{
1225	struct pipe *rpipe = (struct pipe *)fp->f_data;
1226	struct pipe *wpipe;
1227	int revents = 0;
1228#ifdef MAC
1229	int error;
1230#endif
1231
1232	wpipe = rpipe->pipe_peer;
1233	PIPE_LOCK(rpipe);
1234#ifdef MAC
1235	error = mac_check_pipe_op(active_cred, rpipe, MAC_OP_PIPE_POLL);
1236	if (error)
1237		goto locked_error;
1238#endif
1239	if (events & (POLLIN | POLLRDNORM))
1240		if ((rpipe->pipe_state & PIPE_DIRECTW) ||
1241		    (rpipe->pipe_buffer.cnt > 0) ||
1242		    (rpipe->pipe_state & PIPE_EOF))
1243			revents |= events & (POLLIN | POLLRDNORM);
1244
1245	if (events & (POLLOUT | POLLWRNORM))
1246		if (wpipe == NULL || (wpipe->pipe_state & PIPE_EOF) ||
1247		    (((wpipe->pipe_state & PIPE_DIRECTW) == 0) &&
1248		     (wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt) >= PIPE_BUF))
1249			revents |= events & (POLLOUT | POLLWRNORM);
1250
1251	if ((rpipe->pipe_state & PIPE_EOF) ||
1252	    (wpipe == NULL) ||
1253	    (wpipe->pipe_state & PIPE_EOF))
1254		revents |= POLLHUP;
1255
1256	if (revents == 0) {
1257		if (events & (POLLIN | POLLRDNORM)) {
1258			selrecord(td, &rpipe->pipe_sel);
1259			rpipe->pipe_state |= PIPE_SEL;
1260		}
1261
1262		if (events & (POLLOUT | POLLWRNORM)) {
1263			selrecord(td, &wpipe->pipe_sel);
1264			wpipe->pipe_state |= PIPE_SEL;
1265		}
1266	}
1267#ifdef MAC
1268locked_error:
1269#endif
1270	PIPE_UNLOCK(rpipe);
1271
1272	return (revents);
1273}
1274
1275/*
1276 * We shouldn't need locks here as we're doing a read and this should
1277 * be a natural race.
1278 */
1279static int
1280pipe_stat(fp, ub, active_cred, td)
1281	struct file *fp;
1282	struct stat *ub;
1283	struct ucred *active_cred;
1284	struct thread *td;
1285{
1286	struct pipe *pipe = (struct pipe *)fp->f_data;
1287#ifdef MAC
1288	int error;
1289
1290	/* XXXMAC: Pipe should be locked for this check. */
1291	error = mac_check_pipe_op(active_cred, pipe, MAC_OP_PIPE_STAT);
1292	if (error)
1293		return (error);
1294#endif
1295	bzero(ub, sizeof(*ub));
1296	ub->st_mode = S_IFIFO;
1297	ub->st_blksize = pipe->pipe_buffer.size;
1298	ub->st_size = pipe->pipe_buffer.cnt;
1299	ub->st_blocks = (ub->st_size + ub->st_blksize - 1) / ub->st_blksize;
1300	ub->st_atimespec = pipe->pipe_atime;
1301	ub->st_mtimespec = pipe->pipe_mtime;
1302	ub->st_ctimespec = pipe->pipe_ctime;
1303	ub->st_uid = fp->f_cred->cr_uid;
1304	ub->st_gid = fp->f_cred->cr_gid;
1305	/*
1306	 * Left as 0: st_dev, st_ino, st_nlink, st_rdev, st_flags, st_gen.
1307	 * XXX (st_dev, st_ino) should be unique.
1308	 */
1309	return (0);
1310}
1311
1312/* ARGSUSED */
1313static int
1314pipe_close(fp, td)
1315	struct file *fp;
1316	struct thread *td;
1317{
1318	struct pipe *cpipe = (struct pipe *)fp->f_data;
1319
1320	fp->f_ops = &badfileops;
1321	fp->f_data = NULL;
1322	funsetown(&cpipe->pipe_sigio);
1323	pipeclose(cpipe);
1324	return (0);
1325}
1326
1327static void
1328pipe_free_kmem(cpipe)
1329	struct pipe *cpipe;
1330{
1331
1332	GIANT_REQUIRED;
1333	KASSERT(cpipe->pipe_mtxp == NULL || !mtx_owned(PIPE_MTX(cpipe)),
1334	       ("pipespace: pipe mutex locked"));
1335
1336	if (cpipe->pipe_buffer.buffer != NULL) {
1337		if (cpipe->pipe_buffer.size > PIPE_SIZE)
1338			--nbigpipe;
1339		amountpipekva -= cpipe->pipe_buffer.size;
1340		kmem_free(kernel_map,
1341			(vm_offset_t)cpipe->pipe_buffer.buffer,
1342			cpipe->pipe_buffer.size);
1343		cpipe->pipe_buffer.buffer = NULL;
1344	}
1345#ifndef PIPE_NODIRECT
1346	if (cpipe->pipe_map.kva != NULL) {
1347		amountpipekva -= cpipe->pipe_buffer.size + PAGE_SIZE;
1348		kmem_free(kernel_map,
1349			cpipe->pipe_map.kva,
1350			cpipe->pipe_buffer.size + PAGE_SIZE);
1351		cpipe->pipe_map.cnt = 0;
1352		cpipe->pipe_map.kva = 0;
1353		cpipe->pipe_map.pos = 0;
1354		cpipe->pipe_map.npages = 0;
1355	}
1356#endif
1357}
1358
1359/*
1360 * shutdown the pipe
1361 */
1362static void
1363pipeclose(cpipe)
1364	struct pipe *cpipe;
1365{
1366	struct pipe *ppipe;
1367	int hadpeer;
1368
1369	if (cpipe == NULL)
1370		return;
1371
1372	hadpeer = 0;
1373
1374	/* partially created pipes won't have a valid mutex. */
1375	if (PIPE_MTX(cpipe) != NULL)
1376		PIPE_LOCK(cpipe);
1377
1378	pipeselwakeup(cpipe);
1379
1380	/*
1381	 * If the other side is blocked, wake it up saying that
1382	 * we want to close it down.
1383	 */
1384	while (cpipe->pipe_busy) {
1385		wakeup(cpipe);
1386		cpipe->pipe_state |= PIPE_WANT | PIPE_EOF;
1387		msleep(cpipe, PIPE_MTX(cpipe), PRIBIO, "pipecl", 0);
1388	}
1389
1390#ifdef MAC
1391	if (cpipe->pipe_label != NULL && cpipe->pipe_peer == NULL)
1392		mac_destroy_pipe(cpipe);
1393#endif
1394
1395	/*
1396	 * Disconnect from peer
1397	 */
1398	if ((ppipe = cpipe->pipe_peer) != NULL) {
1399		hadpeer++;
1400		pipeselwakeup(ppipe);
1401
1402		ppipe->pipe_state |= PIPE_EOF;
1403		wakeup(ppipe);
1404		KNOTE(&ppipe->pipe_sel.si_note, 0);
1405		ppipe->pipe_peer = NULL;
1406	}
1407	/*
1408	 * free resources
1409	 */
1410	if (PIPE_MTX(cpipe) != NULL) {
1411		PIPE_UNLOCK(cpipe);
1412		if (!hadpeer) {
1413			mtx_destroy(PIPE_MTX(cpipe));
1414			free(PIPE_MTX(cpipe), M_TEMP);
1415		}
1416	}
1417	mtx_lock(&Giant);
1418	pipe_free_kmem(cpipe);
1419	uma_zfree(pipe_zone, cpipe);
1420	mtx_unlock(&Giant);
1421}
1422
1423/*ARGSUSED*/
1424static int
1425pipe_kqfilter(struct file *fp, struct knote *kn)
1426{
1427	struct pipe *cpipe;
1428
1429	cpipe = (struct pipe *)kn->kn_fp->f_data;
1430	switch (kn->kn_filter) {
1431	case EVFILT_READ:
1432		kn->kn_fop = &pipe_rfiltops;
1433		break;
1434	case EVFILT_WRITE:
1435		kn->kn_fop = &pipe_wfiltops;
1436		cpipe = cpipe->pipe_peer;
1437		if (cpipe == NULL)
1438			/* other end of pipe has been closed */
1439			return (EBADF);
1440		break;
1441	default:
1442		return (1);
1443	}
1444	kn->kn_hook = cpipe;
1445
1446	PIPE_LOCK(cpipe);
1447	SLIST_INSERT_HEAD(&cpipe->pipe_sel.si_note, kn, kn_selnext);
1448	PIPE_UNLOCK(cpipe);
1449	return (0);
1450}
1451
1452static void
1453filt_pipedetach(struct knote *kn)
1454{
1455	struct pipe *cpipe = (struct pipe *)kn->kn_hook;
1456
1457	PIPE_LOCK(cpipe);
1458	SLIST_REMOVE(&cpipe->pipe_sel.si_note, kn, knote, kn_selnext);
1459	PIPE_UNLOCK(cpipe);
1460}
1461
1462/*ARGSUSED*/
1463static int
1464filt_piperead(struct knote *kn, long hint)
1465{
1466	struct pipe *rpipe = (struct pipe *)kn->kn_fp->f_data;
1467	struct pipe *wpipe = rpipe->pipe_peer;
1468
1469	PIPE_LOCK(rpipe);
1470	kn->kn_data = rpipe->pipe_buffer.cnt;
1471	if ((kn->kn_data == 0) && (rpipe->pipe_state & PIPE_DIRECTW))
1472		kn->kn_data = rpipe->pipe_map.cnt;
1473
1474	if ((rpipe->pipe_state & PIPE_EOF) ||
1475	    (wpipe == NULL) || (wpipe->pipe_state & PIPE_EOF)) {
1476		kn->kn_flags |= EV_EOF;
1477		PIPE_UNLOCK(rpipe);
1478		return (1);
1479	}
1480	PIPE_UNLOCK(rpipe);
1481	return (kn->kn_data > 0);
1482}
1483
1484/*ARGSUSED*/
1485static int
1486filt_pipewrite(struct knote *kn, long hint)
1487{
1488	struct pipe *rpipe = (struct pipe *)kn->kn_fp->f_data;
1489	struct pipe *wpipe = rpipe->pipe_peer;
1490
1491	PIPE_LOCK(rpipe);
1492	if ((wpipe == NULL) || (wpipe->pipe_state & PIPE_EOF)) {
1493		kn->kn_data = 0;
1494		kn->kn_flags |= EV_EOF;
1495		PIPE_UNLOCK(rpipe);
1496		return (1);
1497	}
1498	kn->kn_data = wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt;
1499	if (wpipe->pipe_state & PIPE_DIRECTW)
1500		kn->kn_data = 0;
1501
1502	PIPE_UNLOCK(rpipe);
1503	return (kn->kn_data >= PIPE_BUF);
1504}
1505