sys_pipe.c revision 118764
1/*
2 * Copyright (c) 1996 John S. Dyson
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice immediately at the beginning of the file, without modification,
10 *    this list of conditions, and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 * 3. Absolutely no warranty of function or purpose is made by the author
15 *    John S. Dyson.
16 * 4. Modifications may be freely made to this file if the above conditions
17 *    are met.
18 */
19
20/*
21 * This file contains a high-performance replacement for the socket-based
22 * pipes scheme originally used in FreeBSD/4.4Lite.  It does not support
23 * all features of sockets, but does do everything that pipes normally
24 * do.
25 */
26
27/*
28 * This code has two modes of operation, a small write mode and a large
29 * write mode.  The small write mode acts like conventional pipes with
30 * a kernel buffer.  If the buffer is less than PIPE_MINDIRECT, then the
31 * "normal" pipe buffering is done.  If the buffer is between PIPE_MINDIRECT
32 * and PIPE_SIZE in size, it is fully mapped and wired into the kernel, and
33 * the receiving process can copy it directly from the pages in the sending
34 * process.
35 *
36 * If the sending process receives a signal, it is possible that it will
37 * go away, and certainly its address space can change, because control
38 * is returned back to the user-mode side.  In that case, the pipe code
39 * arranges to copy the buffer supplied by the user process, to a pageable
40 * kernel buffer, and the receiving process will grab the data from the
41 * pageable kernel buffer.  Since signals don't happen all that often,
42 * the copy operation is normally eliminated.
43 *
44 * The constant PIPE_MINDIRECT is chosen to make sure that buffering will
45 * happen for small transfers so that the system will not spend all of
46 * its time context switching.
47 *
48 * In order to limit the resource use of pipes, two sysctls exist:
49 *
50 * kern.ipc.maxpipekva - This is a hard limit on the amount of pageable
51 * address space available to us in pipe_map.  Whenever the amount in use
52 * exceeds half of this value, all new pipes will be created with size
53 * SMALL_PIPE_SIZE, rather than PIPE_SIZE.  Big pipe creation will be limited
54 * as well.  This value is loader tunable only.
55 *
56 * kern.ipc.maxpipekvawired - This value limits the amount of memory that may
57 * be wired in order to facilitate direct copies using page flipping.
58 * Whenever this value is exceeded, pipes will fall back to using regular
59 * copies.  This value is sysctl controllable at all times.
60 *
61 * These values are autotuned in subr_param.c.
62 *
63 * Memory usage may be monitored through the sysctls
64 * kern.ipc.pipes, kern.ipc.pipekva and kern.ipc.pipekvawired.
65 *
66 */
67
68#include <sys/cdefs.h>
69__FBSDID("$FreeBSD: head/sys/kern/sys_pipe.c 118764 2003-08-11 05:51:51Z silby $");
70
71#include "opt_mac.h"
72
73#include <sys/param.h>
74#include <sys/systm.h>
75#include <sys/fcntl.h>
76#include <sys/file.h>
77#include <sys/filedesc.h>
78#include <sys/filio.h>
79#include <sys/kernel.h>
80#include <sys/lock.h>
81#include <sys/mac.h>
82#include <sys/mutex.h>
83#include <sys/ttycom.h>
84#include <sys/stat.h>
85#include <sys/malloc.h>
86#include <sys/poll.h>
87#include <sys/selinfo.h>
88#include <sys/signalvar.h>
89#include <sys/sysctl.h>
90#include <sys/sysproto.h>
91#include <sys/pipe.h>
92#include <sys/proc.h>
93#include <sys/vnode.h>
94#include <sys/uio.h>
95#include <sys/event.h>
96
97#include <vm/vm.h>
98#include <vm/vm_param.h>
99#include <vm/vm_object.h>
100#include <vm/vm_kern.h>
101#include <vm/vm_extern.h>
102#include <vm/pmap.h>
103#include <vm/vm_map.h>
104#include <vm/vm_page.h>
105#include <vm/uma.h>
106
107/*
108 * Use this define if you want to disable *fancy* VM things.  Expect an
109 * approx 30% decrease in transfer rate.  This could be useful for
110 * NetBSD or OpenBSD.
111 */
112/* #define PIPE_NODIRECT */
113
114/*
115 * interfaces to the outside world
116 */
117static fo_rdwr_t	pipe_read;
118static fo_rdwr_t	pipe_write;
119static fo_ioctl_t	pipe_ioctl;
120static fo_poll_t	pipe_poll;
121static fo_kqfilter_t	pipe_kqfilter;
122static fo_stat_t	pipe_stat;
123static fo_close_t	pipe_close;
124
125static struct fileops pipeops = {
126	.fo_read = pipe_read,
127	.fo_write = pipe_write,
128	.fo_ioctl = pipe_ioctl,
129	.fo_poll = pipe_poll,
130	.fo_kqfilter = pipe_kqfilter,
131	.fo_stat = pipe_stat,
132	.fo_close = pipe_close,
133	.fo_flags = DFLAG_PASSABLE
134};
135
136static void	filt_pipedetach(struct knote *kn);
137static int	filt_piperead(struct knote *kn, long hint);
138static int	filt_pipewrite(struct knote *kn, long hint);
139
140static struct filterops pipe_rfiltops =
141	{ 1, NULL, filt_pipedetach, filt_piperead };
142static struct filterops pipe_wfiltops =
143	{ 1, NULL, filt_pipedetach, filt_pipewrite };
144
145#define PIPE_GET_GIANT(pipe)						\
146	do {								\
147		KASSERT(((pipe)->pipe_state & PIPE_LOCKFL) != 0,	\
148		    ("%s:%d PIPE_GET_GIANT: line pipe not locked",	\
149		     __FILE__, __LINE__));				\
150		PIPE_UNLOCK(pipe);					\
151		mtx_lock(&Giant);					\
152	} while (0)
153
154#define PIPE_DROP_GIANT(pipe)						\
155	do {								\
156		mtx_unlock(&Giant);					\
157		PIPE_LOCK(pipe);					\
158	} while (0)
159
160/*
161 * Default pipe buffer size(s), this can be kind-of large now because pipe
162 * space is pageable.  The pipe code will try to maintain locality of
163 * reference for performance reasons, so small amounts of outstanding I/O
164 * will not wipe the cache.
165 */
166#define MINPIPESIZE (PIPE_SIZE/3)
167#define MAXPIPESIZE (2*PIPE_SIZE/3)
168
169/*
170 * Limit the number of "big" pipes
171 */
172#define LIMITBIGPIPES	32
173static int nbigpipe;
174
175static int amountpipes;
176static int amountpipekva;
177static int amountpipekvawired;
178
179SYSCTL_DECL(_kern_ipc);
180
181SYSCTL_INT(_kern_ipc, OID_AUTO, maxpipekva, CTLFLAG_RD,
182	   &maxpipekva, 0, "Pipe KVA limit");
183SYSCTL_INT(_kern_ipc, OID_AUTO, maxpipekvawired, CTLFLAG_RW,
184	   &maxpipekvawired, 0, "Pipe KVA wired limit");
185SYSCTL_INT(_kern_ipc, OID_AUTO, pipes, CTLFLAG_RD,
186	   &amountpipes, 0, "Current # of pipes");
187SYSCTL_INT(_kern_ipc, OID_AUTO, bigpipes, CTLFLAG_RD,
188	   &nbigpipe, 0, "Current # of big pipes");
189SYSCTL_INT(_kern_ipc, OID_AUTO, pipekva, CTLFLAG_RD,
190	   &amountpipekva, 0, "Pipe KVA usage");
191SYSCTL_INT(_kern_ipc, OID_AUTO, pipekvawired, CTLFLAG_RD,
192	   &amountpipekvawired, 0, "Pipe wired KVA usage");
193
194static void pipeinit(void *dummy __unused);
195static void pipeclose(struct pipe *cpipe);
196static void pipe_free_kmem(struct pipe *cpipe);
197static int pipe_create(struct pipe **cpipep);
198static __inline int pipelock(struct pipe *cpipe, int catch);
199static __inline void pipeunlock(struct pipe *cpipe);
200static __inline void pipeselwakeup(struct pipe *cpipe);
201#ifndef PIPE_NODIRECT
202static int pipe_build_write_buffer(struct pipe *wpipe, struct uio *uio);
203static void pipe_destroy_write_buffer(struct pipe *wpipe);
204static int pipe_direct_write(struct pipe *wpipe, struct uio *uio);
205static void pipe_clone_write_buffer(struct pipe *wpipe);
206#endif
207static int pipespace(struct pipe *cpipe, int size);
208
209static uma_zone_t pipe_zone;
210
211SYSINIT(vfs, SI_SUB_VFS, SI_ORDER_ANY, pipeinit, NULL);
212
213static void
214pipeinit(void *dummy __unused)
215{
216	pipe_zone = uma_zcreate("PIPE", sizeof(struct pipe), NULL,
217	    NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
218}
219
220/*
221 * The pipe system call for the DTYPE_PIPE type of pipes
222 */
223
224/* ARGSUSED */
225int
226pipe(td, uap)
227	struct thread *td;
228	struct pipe_args /* {
229		int	dummy;
230	} */ *uap;
231{
232	struct filedesc *fdp = td->td_proc->p_fd;
233	struct file *rf, *wf;
234	struct pipe *rpipe, *wpipe;
235	struct mtx *pmtx;
236	int fd, error;
237
238	KASSERT(pipe_zone != NULL, ("pipe_zone not initialized"));
239
240	pmtx = malloc(sizeof(*pmtx), M_TEMP, M_WAITOK | M_ZERO);
241
242	rpipe = wpipe = NULL;
243	if (pipe_create(&rpipe) || pipe_create(&wpipe)) {
244		pipeclose(rpipe);
245		pipeclose(wpipe);
246		free(pmtx, M_TEMP);
247		return (ENFILE);
248	}
249
250	rpipe->pipe_state |= PIPE_DIRECTOK;
251	wpipe->pipe_state |= PIPE_DIRECTOK;
252
253	error = falloc(td, &rf, &fd);
254	if (error) {
255		pipeclose(rpipe);
256		pipeclose(wpipe);
257		free(pmtx, M_TEMP);
258		return (error);
259	}
260	fhold(rf);
261	td->td_retval[0] = fd;
262
263	/*
264	 * Warning: once we've gotten past allocation of the fd for the
265	 * read-side, we can only drop the read side via fdrop() in order
266	 * to avoid races against processes which manage to dup() the read
267	 * side while we are blocked trying to allocate the write side.
268	 */
269	FILE_LOCK(rf);
270	rf->f_flag = FREAD | FWRITE;
271	rf->f_type = DTYPE_PIPE;
272	rf->f_data = rpipe;
273	rf->f_ops = &pipeops;
274	FILE_UNLOCK(rf);
275	error = falloc(td, &wf, &fd);
276	if (error) {
277		FILEDESC_LOCK(fdp);
278		if (fdp->fd_ofiles[td->td_retval[0]] == rf) {
279			fdp->fd_ofiles[td->td_retval[0]] = NULL;
280			FILEDESC_UNLOCK(fdp);
281			fdrop(rf, td);
282		} else
283			FILEDESC_UNLOCK(fdp);
284		fdrop(rf, td);
285		/* rpipe has been closed by fdrop(). */
286		pipeclose(wpipe);
287		free(pmtx, M_TEMP);
288		return (error);
289	}
290	FILE_LOCK(wf);
291	wf->f_flag = FREAD | FWRITE;
292	wf->f_type = DTYPE_PIPE;
293	wf->f_data = wpipe;
294	wf->f_ops = &pipeops;
295	FILE_UNLOCK(wf);
296	td->td_retval[1] = fd;
297	rpipe->pipe_peer = wpipe;
298	wpipe->pipe_peer = rpipe;
299#ifdef MAC
300	/*
301	 * struct pipe represents a pipe endpoint.  The MAC label is shared
302	 * between the connected endpoints.  As a result mac_init_pipe() and
303	 * mac_create_pipe() should only be called on one of the endpoints
304	 * after they have been connected.
305	 */
306	mac_init_pipe(rpipe);
307	mac_create_pipe(td->td_ucred, rpipe);
308#endif
309	mtx_init(pmtx, "pipe mutex", NULL, MTX_DEF | MTX_RECURSE);
310	rpipe->pipe_mtxp = wpipe->pipe_mtxp = pmtx;
311	fdrop(rf, td);
312
313	return (0);
314}
315
316/*
317 * Allocate kva for pipe circular buffer, the space is pageable
318 * This routine will 'realloc' the size of a pipe safely, if it fails
319 * it will retain the old buffer.
320 * If it fails it will return ENOMEM.
321 */
322static int
323pipespace(cpipe, size)
324	struct pipe *cpipe;
325	int size;
326{
327	struct vm_object *object;
328	caddr_t buffer;
329	int npages, error;
330	static int curfail = 0;
331	static struct timeval lastfail;
332
333	KASSERT(cpipe->pipe_mtxp == NULL || !mtx_owned(PIPE_MTX(cpipe)),
334	       ("pipespace: pipe mutex locked"));
335
336	size = round_page(size);
337	npages = size / PAGE_SIZE;
338	/*
339	 * Create an object, I don't like the idea of paging to/from
340	 * kernel_object.
341	 * XXX -- minor change needed here for NetBSD/OpenBSD VM systems.
342	 */
343	object = vm_object_allocate(OBJT_DEFAULT, npages);
344	buffer = (caddr_t) vm_map_min(pipe_map);
345
346	/*
347	 * Insert the object into the kernel map, and allocate kva for it.
348	 * The map entry is, by default, pageable.
349	 * XXX -- minor change needed here for NetBSD/OpenBSD VM systems.
350	 */
351	error = vm_map_find(pipe_map, object, 0,
352		(vm_offset_t *) &buffer, size, 1,
353		VM_PROT_ALL, VM_PROT_ALL, 0);
354
355	if (error != KERN_SUCCESS) {
356		vm_object_deallocate(object);
357		if (ppsratecheck(&lastfail, &curfail, 1))
358			printf("kern.maxpipekva exceeded, please see tuning(7).\n");
359		return (ENOMEM);
360	}
361
362	/* free old resources if we're resizing */
363	pipe_free_kmem(cpipe);
364	cpipe->pipe_buffer.object = object;
365	cpipe->pipe_buffer.buffer = buffer;
366	cpipe->pipe_buffer.size = size;
367	cpipe->pipe_buffer.in = 0;
368	cpipe->pipe_buffer.out = 0;
369	cpipe->pipe_buffer.cnt = 0;
370	atomic_add_int(&amountpipes, 1);
371	atomic_add_int(&amountpipekva, cpipe->pipe_buffer.size);
372	return (0);
373}
374
375/*
376 * initialize and allocate VM and memory for pipe
377 */
378static int
379pipe_create(cpipep)
380	struct pipe **cpipep;
381{
382	struct pipe *cpipe;
383	int error;
384
385	*cpipep = uma_zalloc(pipe_zone, M_WAITOK);
386	if (*cpipep == NULL)
387		return (ENOMEM);
388
389	cpipe = *cpipep;
390
391	/* so pipespace()->pipe_free_kmem() doesn't follow junk pointer */
392	cpipe->pipe_buffer.object = NULL;
393	/*
394	 * protect so pipeclose() doesn't follow a junk pointer
395	 * if pipespace() fails.
396	 */
397	bzero(&cpipe->pipe_sel, sizeof(cpipe->pipe_sel));
398	cpipe->pipe_state = 0;
399	cpipe->pipe_peer = NULL;
400	cpipe->pipe_busy = 0;
401
402#ifndef PIPE_NODIRECT
403	/*
404	 * pipe data structure initializations to support direct pipe I/O
405	 */
406	cpipe->pipe_map.cnt = 0;
407	cpipe->pipe_map.kva = 0;
408	cpipe->pipe_map.pos = 0;
409	cpipe->pipe_map.npages = 0;
410	/* cpipe->pipe_map.ms[] = invalid */
411#endif
412
413	cpipe->pipe_mtxp = NULL;	/* avoid pipespace assertion */
414	/*
415	 * Reduce to 1/4th pipe size if we're over our global max.
416	 */
417	if (amountpipekva > maxpipekva / 2)
418		error = pipespace(cpipe, SMALL_PIPE_SIZE);
419	else
420		error = pipespace(cpipe, PIPE_SIZE);
421	if (error)
422		return (error);
423
424	vfs_timestamp(&cpipe->pipe_ctime);
425	cpipe->pipe_atime = cpipe->pipe_ctime;
426	cpipe->pipe_mtime = cpipe->pipe_ctime;
427
428	return (0);
429}
430
431
432/*
433 * lock a pipe for I/O, blocking other access
434 */
435static __inline int
436pipelock(cpipe, catch)
437	struct pipe *cpipe;
438	int catch;
439{
440	int error;
441
442	PIPE_LOCK_ASSERT(cpipe, MA_OWNED);
443	while (cpipe->pipe_state & PIPE_LOCKFL) {
444		cpipe->pipe_state |= PIPE_LWANT;
445		error = msleep(cpipe, PIPE_MTX(cpipe),
446		    catch ? (PRIBIO | PCATCH) : PRIBIO,
447		    "pipelk", 0);
448		if (error != 0)
449			return (error);
450	}
451	cpipe->pipe_state |= PIPE_LOCKFL;
452	return (0);
453}
454
455/*
456 * unlock a pipe I/O lock
457 */
458static __inline void
459pipeunlock(cpipe)
460	struct pipe *cpipe;
461{
462
463	PIPE_LOCK_ASSERT(cpipe, MA_OWNED);
464	cpipe->pipe_state &= ~PIPE_LOCKFL;
465	if (cpipe->pipe_state & PIPE_LWANT) {
466		cpipe->pipe_state &= ~PIPE_LWANT;
467		wakeup(cpipe);
468	}
469}
470
471static __inline void
472pipeselwakeup(cpipe)
473	struct pipe *cpipe;
474{
475
476	if (cpipe->pipe_state & PIPE_SEL) {
477		cpipe->pipe_state &= ~PIPE_SEL;
478		selwakeup(&cpipe->pipe_sel);
479	}
480	if ((cpipe->pipe_state & PIPE_ASYNC) && cpipe->pipe_sigio)
481		pgsigio(&cpipe->pipe_sigio, SIGIO, 0);
482	KNOTE(&cpipe->pipe_sel.si_note, 0);
483}
484
485/* ARGSUSED */
486static int
487pipe_read(fp, uio, active_cred, flags, td)
488	struct file *fp;
489	struct uio *uio;
490	struct ucred *active_cred;
491	struct thread *td;
492	int flags;
493{
494	struct pipe *rpipe = fp->f_data;
495	int error;
496	int nread = 0;
497	u_int size;
498
499	PIPE_LOCK(rpipe);
500	++rpipe->pipe_busy;
501	error = pipelock(rpipe, 1);
502	if (error)
503		goto unlocked_error;
504
505#ifdef MAC
506	error = mac_check_pipe_read(active_cred, rpipe);
507	if (error)
508		goto locked_error;
509#endif
510
511	while (uio->uio_resid) {
512		/*
513		 * normal pipe buffer receive
514		 */
515		if (rpipe->pipe_buffer.cnt > 0) {
516			size = rpipe->pipe_buffer.size - rpipe->pipe_buffer.out;
517			if (size > rpipe->pipe_buffer.cnt)
518				size = rpipe->pipe_buffer.cnt;
519			if (size > (u_int) uio->uio_resid)
520				size = (u_int) uio->uio_resid;
521
522			PIPE_UNLOCK(rpipe);
523			error = uiomove(
524			    &rpipe->pipe_buffer.buffer[rpipe->pipe_buffer.out],
525			    size, uio);
526			PIPE_LOCK(rpipe);
527			if (error)
528				break;
529
530			rpipe->pipe_buffer.out += size;
531			if (rpipe->pipe_buffer.out >= rpipe->pipe_buffer.size)
532				rpipe->pipe_buffer.out = 0;
533
534			rpipe->pipe_buffer.cnt -= size;
535
536			/*
537			 * If there is no more to read in the pipe, reset
538			 * its pointers to the beginning.  This improves
539			 * cache hit stats.
540			 */
541			if (rpipe->pipe_buffer.cnt == 0) {
542				rpipe->pipe_buffer.in = 0;
543				rpipe->pipe_buffer.out = 0;
544			}
545			nread += size;
546#ifndef PIPE_NODIRECT
547		/*
548		 * Direct copy, bypassing a kernel buffer.
549		 */
550		} else if ((size = rpipe->pipe_map.cnt) &&
551			   (rpipe->pipe_state & PIPE_DIRECTW)) {
552			caddr_t	va;
553			if (size > (u_int) uio->uio_resid)
554				size = (u_int) uio->uio_resid;
555
556			va = (caddr_t) rpipe->pipe_map.kva +
557			    rpipe->pipe_map.pos;
558			PIPE_UNLOCK(rpipe);
559			error = uiomove(va, size, uio);
560			PIPE_LOCK(rpipe);
561			if (error)
562				break;
563			nread += size;
564			rpipe->pipe_map.pos += size;
565			rpipe->pipe_map.cnt -= size;
566			if (rpipe->pipe_map.cnt == 0) {
567				rpipe->pipe_state &= ~PIPE_DIRECTW;
568				wakeup(rpipe);
569			}
570#endif
571		} else {
572			/*
573			 * detect EOF condition
574			 * read returns 0 on EOF, no need to set error
575			 */
576			if (rpipe->pipe_state & PIPE_EOF)
577				break;
578
579			/*
580			 * If the "write-side" has been blocked, wake it up now.
581			 */
582			if (rpipe->pipe_state & PIPE_WANTW) {
583				rpipe->pipe_state &= ~PIPE_WANTW;
584				wakeup(rpipe);
585			}
586
587			/*
588			 * Break if some data was read.
589			 */
590			if (nread > 0)
591				break;
592
593			/*
594			 * Unlock the pipe buffer for our remaining processing.
595			 * We will either break out with an error or we will
596			 * sleep and relock to loop.
597			 */
598			pipeunlock(rpipe);
599
600			/*
601			 * Handle non-blocking mode operation or
602			 * wait for more data.
603			 */
604			if (fp->f_flag & FNONBLOCK) {
605				error = EAGAIN;
606			} else {
607				rpipe->pipe_state |= PIPE_WANTR;
608				if ((error = msleep(rpipe, PIPE_MTX(rpipe),
609				    PRIBIO | PCATCH,
610				    "piperd", 0)) == 0)
611					error = pipelock(rpipe, 1);
612			}
613			if (error)
614				goto unlocked_error;
615		}
616	}
617#ifdef MAC
618locked_error:
619#endif
620	pipeunlock(rpipe);
621
622	/* XXX: should probably do this before getting any locks. */
623	if (error == 0)
624		vfs_timestamp(&rpipe->pipe_atime);
625unlocked_error:
626	--rpipe->pipe_busy;
627
628	/*
629	 * PIPE_WANT processing only makes sense if pipe_busy is 0.
630	 */
631	if ((rpipe->pipe_busy == 0) && (rpipe->pipe_state & PIPE_WANT)) {
632		rpipe->pipe_state &= ~(PIPE_WANT|PIPE_WANTW);
633		wakeup(rpipe);
634	} else if (rpipe->pipe_buffer.cnt < MINPIPESIZE) {
635		/*
636		 * Handle write blocking hysteresis.
637		 */
638		if (rpipe->pipe_state & PIPE_WANTW) {
639			rpipe->pipe_state &= ~PIPE_WANTW;
640			wakeup(rpipe);
641		}
642	}
643
644	if ((rpipe->pipe_buffer.size - rpipe->pipe_buffer.cnt) >= PIPE_BUF)
645		pipeselwakeup(rpipe);
646
647	PIPE_UNLOCK(rpipe);
648	return (error);
649}
650
651#ifndef PIPE_NODIRECT
652/*
653 * Map the sending processes' buffer into kernel space and wire it.
654 * This is similar to a physical write operation.
655 */
656static int
657pipe_build_write_buffer(wpipe, uio)
658	struct pipe *wpipe;
659	struct uio *uio;
660{
661	u_int size;
662	int i;
663	vm_offset_t addr, endaddr;
664	vm_paddr_t paddr;
665
666	GIANT_REQUIRED;
667	PIPE_LOCK_ASSERT(wpipe, MA_NOTOWNED);
668
669	size = (u_int) uio->uio_iov->iov_len;
670	if (size > wpipe->pipe_buffer.size)
671		size = wpipe->pipe_buffer.size;
672
673	endaddr = round_page((vm_offset_t)uio->uio_iov->iov_base + size);
674	addr = trunc_page((vm_offset_t)uio->uio_iov->iov_base);
675	for (i = 0; addr < endaddr; addr += PAGE_SIZE, i++) {
676		vm_page_t m;
677
678		/*
679		 * vm_fault_quick() can sleep.  Consequently,
680		 * vm_page_lock_queue() and vm_page_unlock_queue()
681		 * should not be performed outside of this loop.
682		 */
683		if (vm_fault_quick((caddr_t)addr, VM_PROT_READ) < 0 ||
684		    (paddr = pmap_extract(vmspace_pmap(curproc->p_vmspace),
685		     addr)) == 0) {
686			int j;
687
688			vm_page_lock_queues();
689			for (j = 0; j < i; j++) {
690				vm_page_unhold(wpipe->pipe_map.ms[j]);
691			}
692			vm_page_unlock_queues();
693			return (EFAULT);
694		}
695
696		m = PHYS_TO_VM_PAGE(paddr);
697		vm_page_lock_queues();
698		vm_page_hold(m);
699		vm_page_unlock_queues();
700		wpipe->pipe_map.ms[i] = m;
701	}
702
703/*
704 * set up the control block
705 */
706	wpipe->pipe_map.npages = i;
707	wpipe->pipe_map.pos =
708	    ((vm_offset_t) uio->uio_iov->iov_base) & PAGE_MASK;
709	wpipe->pipe_map.cnt = size;
710
711/*
712 * and map the buffer
713 */
714	if (wpipe->pipe_map.kva == 0) {
715		/*
716		 * We need to allocate space for an extra page because the
717		 * address range might (will) span pages at times.
718		 */
719		wpipe->pipe_map.kva = kmem_alloc_nofault(kernel_map,
720			wpipe->pipe_buffer.size + PAGE_SIZE);
721		atomic_add_int(&amountpipekvawired,
722		    wpipe->pipe_buffer.size + PAGE_SIZE);
723	}
724	pmap_qenter(wpipe->pipe_map.kva, wpipe->pipe_map.ms,
725		wpipe->pipe_map.npages);
726
727/*
728 * and update the uio data
729 */
730
731	uio->uio_iov->iov_len -= size;
732	uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + size;
733	if (uio->uio_iov->iov_len == 0)
734		uio->uio_iov++;
735	uio->uio_resid -= size;
736	uio->uio_offset += size;
737	return (0);
738}
739
740/*
741 * unmap and unwire the process buffer
742 */
743static void
744pipe_destroy_write_buffer(wpipe)
745	struct pipe *wpipe;
746{
747	int i;
748
749	GIANT_REQUIRED;
750	PIPE_LOCK_ASSERT(wpipe, MA_NOTOWNED);
751
752	if (wpipe->pipe_map.kva) {
753		pmap_qremove(wpipe->pipe_map.kva, wpipe->pipe_map.npages);
754
755		if (amountpipekvawired > maxpipekvawired / 2) {
756			/* Conserve address space */
757			vm_offset_t kva = wpipe->pipe_map.kva;
758			wpipe->pipe_map.kva = 0;
759			kmem_free(kernel_map, kva,
760				wpipe->pipe_buffer.size + PAGE_SIZE);
761			atomic_subtract_int(&amountpipekvawired,
762			    wpipe->pipe_buffer.size + PAGE_SIZE);
763		}
764	}
765	vm_page_lock_queues();
766	for (i = 0; i < wpipe->pipe_map.npages; i++) {
767		vm_page_unhold(wpipe->pipe_map.ms[i]);
768	}
769	vm_page_unlock_queues();
770	wpipe->pipe_map.npages = 0;
771}
772
773/*
774 * In the case of a signal, the writing process might go away.  This
775 * code copies the data into the circular buffer so that the source
776 * pages can be freed without loss of data.
777 */
778static void
779pipe_clone_write_buffer(wpipe)
780	struct pipe *wpipe;
781{
782	int size;
783	int pos;
784
785	PIPE_LOCK_ASSERT(wpipe, MA_OWNED);
786	size = wpipe->pipe_map.cnt;
787	pos = wpipe->pipe_map.pos;
788
789	wpipe->pipe_buffer.in = size;
790	wpipe->pipe_buffer.out = 0;
791	wpipe->pipe_buffer.cnt = size;
792	wpipe->pipe_state &= ~PIPE_DIRECTW;
793
794	PIPE_GET_GIANT(wpipe);
795	bcopy((caddr_t) wpipe->pipe_map.kva + pos,
796	    wpipe->pipe_buffer.buffer, size);
797	pipe_destroy_write_buffer(wpipe);
798	PIPE_DROP_GIANT(wpipe);
799}
800
801/*
802 * This implements the pipe buffer write mechanism.  Note that only
803 * a direct write OR a normal pipe write can be pending at any given time.
804 * If there are any characters in the pipe buffer, the direct write will
805 * be deferred until the receiving process grabs all of the bytes from
806 * the pipe buffer.  Then the direct mapping write is set-up.
807 */
808static int
809pipe_direct_write(wpipe, uio)
810	struct pipe *wpipe;
811	struct uio *uio;
812{
813	int error;
814
815retry:
816	PIPE_LOCK_ASSERT(wpipe, MA_OWNED);
817	while (wpipe->pipe_state & PIPE_DIRECTW) {
818		if (wpipe->pipe_state & PIPE_WANTR) {
819			wpipe->pipe_state &= ~PIPE_WANTR;
820			wakeup(wpipe);
821		}
822		wpipe->pipe_state |= PIPE_WANTW;
823		error = msleep(wpipe, PIPE_MTX(wpipe),
824		    PRIBIO | PCATCH, "pipdww", 0);
825		if (error)
826			goto error1;
827		if (wpipe->pipe_state & PIPE_EOF) {
828			error = EPIPE;
829			goto error1;
830		}
831	}
832	wpipe->pipe_map.cnt = 0;	/* transfer not ready yet */
833	if (wpipe->pipe_buffer.cnt > 0) {
834		if (wpipe->pipe_state & PIPE_WANTR) {
835			wpipe->pipe_state &= ~PIPE_WANTR;
836			wakeup(wpipe);
837		}
838
839		wpipe->pipe_state |= PIPE_WANTW;
840		error = msleep(wpipe, PIPE_MTX(wpipe),
841		    PRIBIO | PCATCH, "pipdwc", 0);
842		if (error)
843			goto error1;
844		if (wpipe->pipe_state & PIPE_EOF) {
845			error = EPIPE;
846			goto error1;
847		}
848		goto retry;
849	}
850
851	wpipe->pipe_state |= PIPE_DIRECTW;
852
853	pipelock(wpipe, 0);
854	PIPE_GET_GIANT(wpipe);
855	error = pipe_build_write_buffer(wpipe, uio);
856	PIPE_DROP_GIANT(wpipe);
857	pipeunlock(wpipe);
858	if (error) {
859		wpipe->pipe_state &= ~PIPE_DIRECTW;
860		goto error1;
861	}
862
863	error = 0;
864	while (!error && (wpipe->pipe_state & PIPE_DIRECTW)) {
865		if (wpipe->pipe_state & PIPE_EOF) {
866			pipelock(wpipe, 0);
867			PIPE_GET_GIANT(wpipe);
868			pipe_destroy_write_buffer(wpipe);
869			PIPE_DROP_GIANT(wpipe);
870			pipeselwakeup(wpipe);
871			pipeunlock(wpipe);
872			error = EPIPE;
873			goto error1;
874		}
875		if (wpipe->pipe_state & PIPE_WANTR) {
876			wpipe->pipe_state &= ~PIPE_WANTR;
877			wakeup(wpipe);
878		}
879		pipeselwakeup(wpipe);
880		error = msleep(wpipe, PIPE_MTX(wpipe), PRIBIO | PCATCH,
881		    "pipdwt", 0);
882	}
883
884	pipelock(wpipe,0);
885	if (wpipe->pipe_state & PIPE_DIRECTW) {
886		/*
887		 * this bit of trickery substitutes a kernel buffer for
888		 * the process that might be going away.
889		 */
890		pipe_clone_write_buffer(wpipe);
891	} else {
892		PIPE_GET_GIANT(wpipe);
893		pipe_destroy_write_buffer(wpipe);
894		PIPE_DROP_GIANT(wpipe);
895	}
896	pipeunlock(wpipe);
897	return (error);
898
899error1:
900	wakeup(wpipe);
901	return (error);
902}
903#endif
904
905static int
906pipe_write(fp, uio, active_cred, flags, td)
907	struct file *fp;
908	struct uio *uio;
909	struct ucred *active_cred;
910	struct thread *td;
911	int flags;
912{
913	int error = 0;
914	int orig_resid;
915	struct pipe *wpipe, *rpipe;
916
917	rpipe = fp->f_data;
918	wpipe = rpipe->pipe_peer;
919
920	PIPE_LOCK(rpipe);
921	/*
922	 * detect loss of pipe read side, issue SIGPIPE if lost.
923	 */
924	if ((wpipe == NULL) || (wpipe->pipe_state & PIPE_EOF)) {
925		PIPE_UNLOCK(rpipe);
926		return (EPIPE);
927	}
928#ifdef MAC
929	error = mac_check_pipe_write(active_cred, wpipe);
930	if (error) {
931		PIPE_UNLOCK(rpipe);
932		return (error);
933	}
934#endif
935	++wpipe->pipe_busy;
936
937	/*
938	 * If it is advantageous to resize the pipe buffer, do
939	 * so.
940	 */
941	if ((uio->uio_resid > PIPE_SIZE) &&
942		(amountpipekva < maxpipekva / 2) &&
943		(nbigpipe < LIMITBIGPIPES) &&
944		(wpipe->pipe_state & PIPE_DIRECTW) == 0 &&
945		(wpipe->pipe_buffer.size <= PIPE_SIZE) &&
946		(wpipe->pipe_buffer.cnt == 0)) {
947
948		if ((error = pipelock(wpipe, 1)) == 0) {
949			PIPE_GET_GIANT(wpipe);
950			if (pipespace(wpipe, BIG_PIPE_SIZE) == 0)
951				atomic_add_int(&nbigpipe, 1);
952			PIPE_DROP_GIANT(wpipe);
953			pipeunlock(wpipe);
954		}
955	}
956
957	/*
958	 * If an early error occured unbusy and return, waking up any pending
959	 * readers.
960	 */
961	if (error) {
962		--wpipe->pipe_busy;
963		if ((wpipe->pipe_busy == 0) &&
964		    (wpipe->pipe_state & PIPE_WANT)) {
965			wpipe->pipe_state &= ~(PIPE_WANT | PIPE_WANTR);
966			wakeup(wpipe);
967		}
968		PIPE_UNLOCK(rpipe);
969		return(error);
970	}
971
972	orig_resid = uio->uio_resid;
973
974	while (uio->uio_resid) {
975		int space;
976
977#ifndef PIPE_NODIRECT
978		/*
979		 * If the transfer is large, we can gain performance if
980		 * we do process-to-process copies directly.
981		 * If the write is non-blocking, we don't use the
982		 * direct write mechanism.
983		 *
984		 * The direct write mechanism will detect the reader going
985		 * away on us.
986		 */
987		if ((uio->uio_iov->iov_len >= PIPE_MINDIRECT) &&
988		    (fp->f_flag & FNONBLOCK) == 0 &&
989		    amountpipekvawired + uio->uio_resid < maxpipekvawired) {
990			error = pipe_direct_write(wpipe, uio);
991			if (error)
992				break;
993			continue;
994		}
995#endif
996
997		/*
998		 * Pipe buffered writes cannot be coincidental with
999		 * direct writes.  We wait until the currently executing
1000		 * direct write is completed before we start filling the
1001		 * pipe buffer.  We break out if a signal occurs or the
1002		 * reader goes away.
1003		 */
1004	retrywrite:
1005		while (wpipe->pipe_state & PIPE_DIRECTW) {
1006			if (wpipe->pipe_state & PIPE_WANTR) {
1007				wpipe->pipe_state &= ~PIPE_WANTR;
1008				wakeup(wpipe);
1009			}
1010			error = msleep(wpipe, PIPE_MTX(rpipe), PRIBIO | PCATCH,
1011			    "pipbww", 0);
1012			if (wpipe->pipe_state & PIPE_EOF)
1013				break;
1014			if (error)
1015				break;
1016		}
1017		if (wpipe->pipe_state & PIPE_EOF) {
1018			error = EPIPE;
1019			break;
1020		}
1021
1022		space = wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt;
1023
1024		/* Writes of size <= PIPE_BUF must be atomic. */
1025		if ((space < uio->uio_resid) && (orig_resid <= PIPE_BUF))
1026			space = 0;
1027
1028		if (space > 0) {
1029			if ((error = pipelock(wpipe,1)) == 0) {
1030				int size;	/* Transfer size */
1031				int segsize;	/* first segment to transfer */
1032
1033				/*
1034				 * It is possible for a direct write to
1035				 * slip in on us... handle it here...
1036				 */
1037				if (wpipe->pipe_state & PIPE_DIRECTW) {
1038					pipeunlock(wpipe);
1039					goto retrywrite;
1040				}
1041				/*
1042				 * If a process blocked in uiomove, our
1043				 * value for space might be bad.
1044				 *
1045				 * XXX will we be ok if the reader has gone
1046				 * away here?
1047				 */
1048				if (space > wpipe->pipe_buffer.size -
1049				    wpipe->pipe_buffer.cnt) {
1050					pipeunlock(wpipe);
1051					goto retrywrite;
1052				}
1053
1054				/*
1055				 * Transfer size is minimum of uio transfer
1056				 * and free space in pipe buffer.
1057				 */
1058				if (space > uio->uio_resid)
1059					size = uio->uio_resid;
1060				else
1061					size = space;
1062				/*
1063				 * First segment to transfer is minimum of
1064				 * transfer size and contiguous space in
1065				 * pipe buffer.  If first segment to transfer
1066				 * is less than the transfer size, we've got
1067				 * a wraparound in the buffer.
1068				 */
1069				segsize = wpipe->pipe_buffer.size -
1070					wpipe->pipe_buffer.in;
1071				if (segsize > size)
1072					segsize = size;
1073
1074				/* Transfer first segment */
1075
1076				PIPE_UNLOCK(rpipe);
1077				error = uiomove(&wpipe->pipe_buffer.buffer[wpipe->pipe_buffer.in],
1078						segsize, uio);
1079				PIPE_LOCK(rpipe);
1080
1081				if (error == 0 && segsize < size) {
1082					/*
1083					 * Transfer remaining part now, to
1084					 * support atomic writes.  Wraparound
1085					 * happened.
1086					 */
1087					if (wpipe->pipe_buffer.in + segsize !=
1088					    wpipe->pipe_buffer.size)
1089						panic("Expected pipe buffer "
1090						    "wraparound disappeared");
1091
1092					PIPE_UNLOCK(rpipe);
1093					error = uiomove(
1094					    &wpipe->pipe_buffer.buffer[0],
1095				    	    size - segsize, uio);
1096					PIPE_LOCK(rpipe);
1097				}
1098				if (error == 0) {
1099					wpipe->pipe_buffer.in += size;
1100					if (wpipe->pipe_buffer.in >=
1101					    wpipe->pipe_buffer.size) {
1102						if (wpipe->pipe_buffer.in !=
1103						    size - segsize +
1104						    wpipe->pipe_buffer.size)
1105							panic("Expected "
1106							    "wraparound bad");
1107						wpipe->pipe_buffer.in = size -
1108						    segsize;
1109					}
1110
1111					wpipe->pipe_buffer.cnt += size;
1112					if (wpipe->pipe_buffer.cnt >
1113					    wpipe->pipe_buffer.size)
1114						panic("Pipe buffer overflow");
1115
1116				}
1117				pipeunlock(wpipe);
1118			}
1119			if (error)
1120				break;
1121
1122		} else {
1123			/*
1124			 * If the "read-side" has been blocked, wake it up now.
1125			 */
1126			if (wpipe->pipe_state & PIPE_WANTR) {
1127				wpipe->pipe_state &= ~PIPE_WANTR;
1128				wakeup(wpipe);
1129			}
1130
1131			/*
1132			 * don't block on non-blocking I/O
1133			 */
1134			if (fp->f_flag & FNONBLOCK) {
1135				error = EAGAIN;
1136				break;
1137			}
1138
1139			/*
1140			 * We have no more space and have something to offer,
1141			 * wake up select/poll.
1142			 */
1143			pipeselwakeup(wpipe);
1144
1145			wpipe->pipe_state |= PIPE_WANTW;
1146			error = msleep(wpipe, PIPE_MTX(rpipe),
1147			    PRIBIO | PCATCH, "pipewr", 0);
1148			if (error != 0)
1149				break;
1150			/*
1151			 * If read side wants to go away, we just issue a signal
1152			 * to ourselves.
1153			 */
1154			if (wpipe->pipe_state & PIPE_EOF) {
1155				error = EPIPE;
1156				break;
1157			}
1158		}
1159	}
1160
1161	--wpipe->pipe_busy;
1162
1163	if ((wpipe->pipe_busy == 0) && (wpipe->pipe_state & PIPE_WANT)) {
1164		wpipe->pipe_state &= ~(PIPE_WANT | PIPE_WANTR);
1165		wakeup(wpipe);
1166	} else if (wpipe->pipe_buffer.cnt > 0) {
1167		/*
1168		 * If we have put any characters in the buffer, we wake up
1169		 * the reader.
1170		 */
1171		if (wpipe->pipe_state & PIPE_WANTR) {
1172			wpipe->pipe_state &= ~PIPE_WANTR;
1173			wakeup(wpipe);
1174		}
1175	}
1176
1177	/*
1178	 * Don't return EPIPE if I/O was successful
1179	 */
1180	if ((wpipe->pipe_buffer.cnt == 0) &&
1181	    (uio->uio_resid == 0) &&
1182	    (error == EPIPE)) {
1183		error = 0;
1184	}
1185
1186	if (error == 0)
1187		vfs_timestamp(&wpipe->pipe_mtime);
1188
1189	/*
1190	 * We have something to offer,
1191	 * wake up select/poll.
1192	 */
1193	if (wpipe->pipe_buffer.cnt)
1194		pipeselwakeup(wpipe);
1195
1196	PIPE_UNLOCK(rpipe);
1197	return (error);
1198}
1199
1200/*
1201 * we implement a very minimal set of ioctls for compatibility with sockets.
1202 */
1203static int
1204pipe_ioctl(fp, cmd, data, active_cred, td)
1205	struct file *fp;
1206	u_long cmd;
1207	void *data;
1208	struct ucred *active_cred;
1209	struct thread *td;
1210{
1211	struct pipe *mpipe = fp->f_data;
1212#ifdef MAC
1213	int error;
1214#endif
1215
1216	PIPE_LOCK(mpipe);
1217
1218#ifdef MAC
1219	error = mac_check_pipe_ioctl(active_cred, mpipe, cmd, data);
1220	if (error)
1221		return (error);
1222#endif
1223
1224	switch (cmd) {
1225
1226	case FIONBIO:
1227		PIPE_UNLOCK(mpipe);
1228		return (0);
1229
1230	case FIOASYNC:
1231		if (*(int *)data) {
1232			mpipe->pipe_state |= PIPE_ASYNC;
1233		} else {
1234			mpipe->pipe_state &= ~PIPE_ASYNC;
1235		}
1236		PIPE_UNLOCK(mpipe);
1237		return (0);
1238
1239	case FIONREAD:
1240		if (mpipe->pipe_state & PIPE_DIRECTW)
1241			*(int *)data = mpipe->pipe_map.cnt;
1242		else
1243			*(int *)data = mpipe->pipe_buffer.cnt;
1244		PIPE_UNLOCK(mpipe);
1245		return (0);
1246
1247	case FIOSETOWN:
1248		PIPE_UNLOCK(mpipe);
1249		return (fsetown(*(int *)data, &mpipe->pipe_sigio));
1250
1251	case FIOGETOWN:
1252		PIPE_UNLOCK(mpipe);
1253		*(int *)data = fgetown(&mpipe->pipe_sigio);
1254		return (0);
1255
1256	/* This is deprecated, FIOSETOWN should be used instead. */
1257	case TIOCSPGRP:
1258		PIPE_UNLOCK(mpipe);
1259		return (fsetown(-(*(int *)data), &mpipe->pipe_sigio));
1260
1261	/* This is deprecated, FIOGETOWN should be used instead. */
1262	case TIOCGPGRP:
1263		PIPE_UNLOCK(mpipe);
1264		*(int *)data = -fgetown(&mpipe->pipe_sigio);
1265		return (0);
1266
1267	}
1268	PIPE_UNLOCK(mpipe);
1269	return (ENOTTY);
1270}
1271
1272static int
1273pipe_poll(fp, events, active_cred, td)
1274	struct file *fp;
1275	int events;
1276	struct ucred *active_cred;
1277	struct thread *td;
1278{
1279	struct pipe *rpipe = fp->f_data;
1280	struct pipe *wpipe;
1281	int revents = 0;
1282#ifdef MAC
1283	int error;
1284#endif
1285
1286	wpipe = rpipe->pipe_peer;
1287	PIPE_LOCK(rpipe);
1288#ifdef MAC
1289	error = mac_check_pipe_poll(active_cred, rpipe);
1290	if (error)
1291		goto locked_error;
1292#endif
1293	if (events & (POLLIN | POLLRDNORM))
1294		if ((rpipe->pipe_state & PIPE_DIRECTW) ||
1295		    (rpipe->pipe_buffer.cnt > 0) ||
1296		    (rpipe->pipe_state & PIPE_EOF))
1297			revents |= events & (POLLIN | POLLRDNORM);
1298
1299	if (events & (POLLOUT | POLLWRNORM))
1300		if (wpipe == NULL || (wpipe->pipe_state & PIPE_EOF) ||
1301		    (((wpipe->pipe_state & PIPE_DIRECTW) == 0) &&
1302		     (wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt) >= PIPE_BUF))
1303			revents |= events & (POLLOUT | POLLWRNORM);
1304
1305	if ((rpipe->pipe_state & PIPE_EOF) ||
1306	    (wpipe == NULL) ||
1307	    (wpipe->pipe_state & PIPE_EOF))
1308		revents |= POLLHUP;
1309
1310	if (revents == 0) {
1311		if (events & (POLLIN | POLLRDNORM)) {
1312			selrecord(td, &rpipe->pipe_sel);
1313			rpipe->pipe_state |= PIPE_SEL;
1314		}
1315
1316		if (events & (POLLOUT | POLLWRNORM)) {
1317			selrecord(td, &wpipe->pipe_sel);
1318			wpipe->pipe_state |= PIPE_SEL;
1319		}
1320	}
1321#ifdef MAC
1322locked_error:
1323#endif
1324	PIPE_UNLOCK(rpipe);
1325
1326	return (revents);
1327}
1328
1329/*
1330 * We shouldn't need locks here as we're doing a read and this should
1331 * be a natural race.
1332 */
1333static int
1334pipe_stat(fp, ub, active_cred, td)
1335	struct file *fp;
1336	struct stat *ub;
1337	struct ucred *active_cred;
1338	struct thread *td;
1339{
1340	struct pipe *pipe = fp->f_data;
1341#ifdef MAC
1342	int error;
1343
1344	PIPE_LOCK(pipe);
1345	error = mac_check_pipe_stat(active_cred, pipe);
1346	PIPE_UNLOCK(pipe);
1347	if (error)
1348		return (error);
1349#endif
1350	bzero(ub, sizeof(*ub));
1351	ub->st_mode = S_IFIFO;
1352	ub->st_blksize = pipe->pipe_buffer.size;
1353	ub->st_size = pipe->pipe_buffer.cnt;
1354	ub->st_blocks = (ub->st_size + ub->st_blksize - 1) / ub->st_blksize;
1355	ub->st_atimespec = pipe->pipe_atime;
1356	ub->st_mtimespec = pipe->pipe_mtime;
1357	ub->st_ctimespec = pipe->pipe_ctime;
1358	ub->st_uid = fp->f_cred->cr_uid;
1359	ub->st_gid = fp->f_cred->cr_gid;
1360	/*
1361	 * Left as 0: st_dev, st_ino, st_nlink, st_rdev, st_flags, st_gen.
1362	 * XXX (st_dev, st_ino) should be unique.
1363	 */
1364	return (0);
1365}
1366
1367/* ARGSUSED */
1368static int
1369pipe_close(fp, td)
1370	struct file *fp;
1371	struct thread *td;
1372{
1373	struct pipe *cpipe = fp->f_data;
1374
1375	fp->f_ops = &badfileops;
1376	fp->f_data = NULL;
1377	funsetown(&cpipe->pipe_sigio);
1378	pipeclose(cpipe);
1379	return (0);
1380}
1381
1382static void
1383pipe_free_kmem(cpipe)
1384	struct pipe *cpipe;
1385{
1386
1387	KASSERT(cpipe->pipe_mtxp == NULL || !mtx_owned(PIPE_MTX(cpipe)),
1388	       ("pipespace: pipe mutex locked"));
1389
1390	if (cpipe->pipe_buffer.buffer != NULL) {
1391		if (cpipe->pipe_buffer.size > PIPE_SIZE)
1392			atomic_subtract_int(&nbigpipe, 1);
1393		atomic_subtract_int(&amountpipekva, cpipe->pipe_buffer.size);
1394		atomic_subtract_int(&amountpipes, 1);
1395		vm_map_remove(pipe_map,
1396		    (vm_offset_t)cpipe->pipe_buffer.buffer,
1397		    (vm_offset_t)cpipe->pipe_buffer.buffer + cpipe->pipe_buffer.size);
1398		cpipe->pipe_buffer.buffer = NULL;
1399	}
1400#ifndef PIPE_NODIRECT
1401	if (cpipe->pipe_map.kva != 0) {
1402		atomic_subtract_int(&amountpipekvawired,
1403		    cpipe->pipe_buffer.size + PAGE_SIZE);
1404		kmem_free(kernel_map,
1405			cpipe->pipe_map.kva,
1406			cpipe->pipe_buffer.size + PAGE_SIZE);
1407		cpipe->pipe_map.cnt = 0;
1408		cpipe->pipe_map.kva = 0;
1409		cpipe->pipe_map.pos = 0;
1410		cpipe->pipe_map.npages = 0;
1411	}
1412#endif
1413}
1414
1415/*
1416 * shutdown the pipe
1417 */
1418static void
1419pipeclose(cpipe)
1420	struct pipe *cpipe;
1421{
1422	struct pipe *ppipe;
1423	int hadpeer;
1424
1425	if (cpipe == NULL)
1426		return;
1427
1428	hadpeer = 0;
1429
1430	/* partially created pipes won't have a valid mutex. */
1431	if (PIPE_MTX(cpipe) != NULL)
1432		PIPE_LOCK(cpipe);
1433
1434	pipeselwakeup(cpipe);
1435
1436	/*
1437	 * If the other side is blocked, wake it up saying that
1438	 * we want to close it down.
1439	 */
1440	while (cpipe->pipe_busy) {
1441		wakeup(cpipe);
1442		cpipe->pipe_state |= PIPE_WANT | PIPE_EOF;
1443		msleep(cpipe, PIPE_MTX(cpipe), PRIBIO, "pipecl", 0);
1444	}
1445
1446#ifdef MAC
1447	if (cpipe->pipe_label != NULL && cpipe->pipe_peer == NULL)
1448		mac_destroy_pipe(cpipe);
1449#endif
1450
1451	/*
1452	 * Disconnect from peer
1453	 */
1454	if ((ppipe = cpipe->pipe_peer) != NULL) {
1455		hadpeer++;
1456		pipeselwakeup(ppipe);
1457
1458		ppipe->pipe_state |= PIPE_EOF;
1459		wakeup(ppipe);
1460		KNOTE(&ppipe->pipe_sel.si_note, 0);
1461		ppipe->pipe_peer = NULL;
1462	}
1463	/*
1464	 * free resources
1465	 */
1466	if (PIPE_MTX(cpipe) != NULL) {
1467		PIPE_UNLOCK(cpipe);
1468		if (!hadpeer) {
1469			mtx_destroy(PIPE_MTX(cpipe));
1470			free(PIPE_MTX(cpipe), M_TEMP);
1471		}
1472	}
1473	pipe_free_kmem(cpipe);
1474	uma_zfree(pipe_zone, cpipe);
1475}
1476
1477/*ARGSUSED*/
1478static int
1479pipe_kqfilter(struct file *fp, struct knote *kn)
1480{
1481	struct pipe *cpipe;
1482
1483	cpipe = kn->kn_fp->f_data;
1484	switch (kn->kn_filter) {
1485	case EVFILT_READ:
1486		kn->kn_fop = &pipe_rfiltops;
1487		break;
1488	case EVFILT_WRITE:
1489		kn->kn_fop = &pipe_wfiltops;
1490		cpipe = cpipe->pipe_peer;
1491		if (cpipe == NULL)
1492			/* other end of pipe has been closed */
1493			return (EBADF);
1494		break;
1495	default:
1496		return (1);
1497	}
1498	kn->kn_hook = cpipe;
1499
1500	PIPE_LOCK(cpipe);
1501	SLIST_INSERT_HEAD(&cpipe->pipe_sel.si_note, kn, kn_selnext);
1502	PIPE_UNLOCK(cpipe);
1503	return (0);
1504}
1505
1506static void
1507filt_pipedetach(struct knote *kn)
1508{
1509	struct pipe *cpipe = (struct pipe *)kn->kn_hook;
1510
1511	PIPE_LOCK(cpipe);
1512	SLIST_REMOVE(&cpipe->pipe_sel.si_note, kn, knote, kn_selnext);
1513	PIPE_UNLOCK(cpipe);
1514}
1515
1516/*ARGSUSED*/
1517static int
1518filt_piperead(struct knote *kn, long hint)
1519{
1520	struct pipe *rpipe = kn->kn_fp->f_data;
1521	struct pipe *wpipe = rpipe->pipe_peer;
1522
1523	PIPE_LOCK(rpipe);
1524	kn->kn_data = rpipe->pipe_buffer.cnt;
1525	if ((kn->kn_data == 0) && (rpipe->pipe_state & PIPE_DIRECTW))
1526		kn->kn_data = rpipe->pipe_map.cnt;
1527
1528	if ((rpipe->pipe_state & PIPE_EOF) ||
1529	    (wpipe == NULL) || (wpipe->pipe_state & PIPE_EOF)) {
1530		kn->kn_flags |= EV_EOF;
1531		PIPE_UNLOCK(rpipe);
1532		return (1);
1533	}
1534	PIPE_UNLOCK(rpipe);
1535	return (kn->kn_data > 0);
1536}
1537
1538/*ARGSUSED*/
1539static int
1540filt_pipewrite(struct knote *kn, long hint)
1541{
1542	struct pipe *rpipe = kn->kn_fp->f_data;
1543	struct pipe *wpipe = rpipe->pipe_peer;
1544
1545	PIPE_LOCK(rpipe);
1546	if ((wpipe == NULL) || (wpipe->pipe_state & PIPE_EOF)) {
1547		kn->kn_data = 0;
1548		kn->kn_flags |= EV_EOF;
1549		PIPE_UNLOCK(rpipe);
1550		return (1);
1551	}
1552	kn->kn_data = wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt;
1553	if (wpipe->pipe_state & PIPE_DIRECTW)
1554		kn->kn_data = 0;
1555
1556	PIPE_UNLOCK(rpipe);
1557	return (kn->kn_data >= PIPE_BUF);
1558}
1559