sys_pipe.c revision 118230
1/*
2 * Copyright (c) 1996 John S. Dyson
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice immediately at the beginning of the file, without modification,
10 *    this list of conditions, and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 * 3. Absolutely no warranty of function or purpose is made by the author
15 *    John S. Dyson.
16 * 4. Modifications may be freely made to this file if the above conditions
17 *    are met.
18 */
19
20/*
21 * This file contains a high-performance replacement for the socket-based
22 * pipes scheme originally used in FreeBSD/4.4Lite.  It does not support
23 * all features of sockets, but does do everything that pipes normally
24 * do.
25 */
26
27/*
28 * This code has two modes of operation, a small write mode and a large
29 * write mode.  The small write mode acts like conventional pipes with
30 * a kernel buffer.  If the buffer is less than PIPE_MINDIRECT, then the
31 * "normal" pipe buffering is done.  If the buffer is between PIPE_MINDIRECT
32 * and PIPE_SIZE in size, it is fully mapped and wired into the kernel, and
33 * the receiving process can copy it directly from the pages in the sending
34 * process.
35 *
36 * If the sending process receives a signal, it is possible that it will
37 * go away, and certainly its address space can change, because control
38 * is returned back to the user-mode side.  In that case, the pipe code
39 * arranges to copy the buffer supplied by the user process, to a pageable
40 * kernel buffer, and the receiving process will grab the data from the
41 * pageable kernel buffer.  Since signals don't happen all that often,
42 * the copy operation is normally eliminated.
43 *
44 * The constant PIPE_MINDIRECT is chosen to make sure that buffering will
45 * happen for small transfers so that the system will not spend all of
46 * its time context switching.  PIPE_SIZE is constrained by the
47 * amount of kernel virtual memory.
48 *
49 * In order to limit the resource use of pipes, three sysctls exist:
50 *
51 * kern.ipc.maxpipes - A limit on the total number of pipes in the system.
52 * Note that since pipes are bidirectional, the effective value is this
53 * number divided by two.
54 *
55 * kern.ipc.maxpipekva - This value limits the amount of pageable memory that
56 * can be used by pipes.  Whenever the amount in use exceeds this value,
57 * all new pipes will be SMALL_PIPE_SIZE in size, rather than PIPE_SIZE.
58 * Big pipe creation will be limited as well.
59 *
60 * kern.ipc.maxpipekvawired - This value limits the amount of memory that may
61 * be wired in order to facilitate direct copies using page flipping.
62 * Whenever this value is exceeded, pipes will fall back to using regular
63 * copies.
64 *
65 * These values are autotuned in subr_param.c.
66 *
67 * Memory usage may be monitored through the sysctls
68 * kern.ipc.pipes, kern.ipc.pipekva and kern.ipc.pipekvawired.
69 *
70 */
71
72#include <sys/cdefs.h>
73__FBSDID("$FreeBSD: head/sys/kern/sys_pipe.c 118230 2003-07-30 22:50:37Z pb $");
74
75#include "opt_mac.h"
76
77#include <sys/param.h>
78#include <sys/systm.h>
79#include <sys/fcntl.h>
80#include <sys/file.h>
81#include <sys/filedesc.h>
82#include <sys/filio.h>
83#include <sys/kernel.h>
84#include <sys/lock.h>
85#include <sys/mac.h>
86#include <sys/mutex.h>
87#include <sys/ttycom.h>
88#include <sys/stat.h>
89#include <sys/malloc.h>
90#include <sys/poll.h>
91#include <sys/selinfo.h>
92#include <sys/signalvar.h>
93#include <sys/sysctl.h>
94#include <sys/sysproto.h>
95#include <sys/pipe.h>
96#include <sys/proc.h>
97#include <sys/vnode.h>
98#include <sys/uio.h>
99#include <sys/event.h>
100
101#include <vm/vm.h>
102#include <vm/vm_param.h>
103#include <vm/vm_object.h>
104#include <vm/vm_kern.h>
105#include <vm/vm_extern.h>
106#include <vm/pmap.h>
107#include <vm/vm_map.h>
108#include <vm/vm_page.h>
109#include <vm/uma.h>
110
111/*
112 * Use this define if you want to disable *fancy* VM things.  Expect an
113 * approx 30% decrease in transfer rate.  This could be useful for
114 * NetBSD or OpenBSD.
115 */
116/* #define PIPE_NODIRECT */
117
118/*
119 * interfaces to the outside world
120 */
121static fo_rdwr_t	pipe_read;
122static fo_rdwr_t	pipe_write;
123static fo_ioctl_t	pipe_ioctl;
124static fo_poll_t	pipe_poll;
125static fo_kqfilter_t	pipe_kqfilter;
126static fo_stat_t	pipe_stat;
127static fo_close_t	pipe_close;
128
129static struct fileops pipeops = {
130	.fo_read = pipe_read,
131	.fo_write = pipe_write,
132	.fo_ioctl = pipe_ioctl,
133	.fo_poll = pipe_poll,
134	.fo_kqfilter = pipe_kqfilter,
135	.fo_stat = pipe_stat,
136	.fo_close = pipe_close,
137	.fo_flags = DFLAG_PASSABLE
138};
139
140static void	filt_pipedetach(struct knote *kn);
141static int	filt_piperead(struct knote *kn, long hint);
142static int	filt_pipewrite(struct knote *kn, long hint);
143
144static struct filterops pipe_rfiltops =
145	{ 1, NULL, filt_pipedetach, filt_piperead };
146static struct filterops pipe_wfiltops =
147	{ 1, NULL, filt_pipedetach, filt_pipewrite };
148
149#define PIPE_GET_GIANT(pipe)						\
150	do {								\
151		KASSERT(((pipe)->pipe_state & PIPE_LOCKFL) != 0,	\
152		    ("%s:%d PIPE_GET_GIANT: line pipe not locked",	\
153		     __FILE__, __LINE__));				\
154		PIPE_UNLOCK(pipe);					\
155		mtx_lock(&Giant);					\
156	} while (0)
157
158#define PIPE_DROP_GIANT(pipe)						\
159	do {								\
160		mtx_unlock(&Giant);					\
161		PIPE_LOCK(pipe);					\
162	} while (0)
163
164/*
165 * Default pipe buffer size(s), this can be kind-of large now because pipe
166 * space is pageable.  The pipe code will try to maintain locality of
167 * reference for performance reasons, so small amounts of outstanding I/O
168 * will not wipe the cache.
169 */
170#define MINPIPESIZE (PIPE_SIZE/3)
171#define MAXPIPESIZE (2*PIPE_SIZE/3)
172
173/*
174 * Limit the number of "big" pipes
175 */
176#define LIMITBIGPIPES	32
177static int nbigpipe;
178
179static int amountpipes;
180static int amountpipekva;
181static int amountpipekvawired;
182
183SYSCTL_DECL(_kern_ipc);
184
185SYSCTL_INT(_kern_ipc, OID_AUTO, maxpipes, CTLFLAG_RW,
186	   &maxpipes, 0, "Max # of pipes");
187SYSCTL_INT(_kern_ipc, OID_AUTO, maxpipekva, CTLFLAG_RW,
188	   &maxpipekva, 0, "Pipe KVA limit");
189SYSCTL_INT(_kern_ipc, OID_AUTO, maxpipekvawired, CTLFLAG_RW,
190	   &maxpipekvawired, 0, "Pipe KVA wired limit");
191SYSCTL_INT(_kern_ipc, OID_AUTO, pipes, CTLFLAG_RD,
192	   &amountpipes, 0, "Current # of pipes");
193SYSCTL_INT(_kern_ipc, OID_AUTO, bigpipes, CTLFLAG_RD,
194	   &nbigpipe, 0, "Current # of big pipes");
195SYSCTL_INT(_kern_ipc, OID_AUTO, pipekva, CTLFLAG_RD,
196	   &amountpipekva, 0, "Pipe KVA usage");
197SYSCTL_INT(_kern_ipc, OID_AUTO, pipekvawired, CTLFLAG_RD,
198	   &amountpipekvawired, 0, "Pipe wired KVA usage");
199
200static void pipeinit(void *dummy __unused);
201static void pipeclose(struct pipe *cpipe);
202static void pipe_free_kmem(struct pipe *cpipe);
203static int pipe_create(struct pipe **cpipep);
204static __inline int pipelock(struct pipe *cpipe, int catch);
205static __inline void pipeunlock(struct pipe *cpipe);
206static __inline void pipeselwakeup(struct pipe *cpipe);
207#ifndef PIPE_NODIRECT
208static int pipe_build_write_buffer(struct pipe *wpipe, struct uio *uio);
209static void pipe_destroy_write_buffer(struct pipe *wpipe);
210static int pipe_direct_write(struct pipe *wpipe, struct uio *uio);
211static void pipe_clone_write_buffer(struct pipe *wpipe);
212#endif
213static int pipespace(struct pipe *cpipe, int size);
214
215static uma_zone_t pipe_zone;
216
217SYSINIT(vfs, SI_SUB_VFS, SI_ORDER_ANY, pipeinit, NULL);
218
219static void
220pipeinit(void *dummy __unused)
221{
222	pipe_zone = uma_zcreate("PIPE", sizeof(struct pipe), NULL,
223	    NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
224}
225
226/*
227 * The pipe system call for the DTYPE_PIPE type of pipes
228 */
229
230/* ARGSUSED */
231int
232pipe(td, uap)
233	struct thread *td;
234	struct pipe_args /* {
235		int	dummy;
236	} */ *uap;
237{
238	struct filedesc *fdp = td->td_proc->p_fd;
239	struct file *rf, *wf;
240	struct pipe *rpipe, *wpipe;
241	struct mtx *pmtx;
242	int fd, error;
243
244	KASSERT(pipe_zone != NULL, ("pipe_zone not initialized"));
245
246	pmtx = malloc(sizeof(*pmtx), M_TEMP, M_WAITOK | M_ZERO);
247
248	rpipe = wpipe = NULL;
249	if (pipe_create(&rpipe) || pipe_create(&wpipe)) {
250		pipeclose(rpipe);
251		pipeclose(wpipe);
252		free(pmtx, M_TEMP);
253		return (ENFILE);
254	}
255
256	rpipe->pipe_state |= PIPE_DIRECTOK;
257	wpipe->pipe_state |= PIPE_DIRECTOK;
258
259	error = falloc(td, &rf, &fd);
260	if (error) {
261		pipeclose(rpipe);
262		pipeclose(wpipe);
263		free(pmtx, M_TEMP);
264		return (error);
265	}
266	fhold(rf);
267	td->td_retval[0] = fd;
268
269	/*
270	 * Warning: once we've gotten past allocation of the fd for the
271	 * read-side, we can only drop the read side via fdrop() in order
272	 * to avoid races against processes which manage to dup() the read
273	 * side while we are blocked trying to allocate the write side.
274	 */
275	FILE_LOCK(rf);
276	rf->f_flag = FREAD | FWRITE;
277	rf->f_type = DTYPE_PIPE;
278	rf->f_data = rpipe;
279	rf->f_ops = &pipeops;
280	FILE_UNLOCK(rf);
281	error = falloc(td, &wf, &fd);
282	if (error) {
283		FILEDESC_LOCK(fdp);
284		if (fdp->fd_ofiles[td->td_retval[0]] == rf) {
285			fdp->fd_ofiles[td->td_retval[0]] = NULL;
286			FILEDESC_UNLOCK(fdp);
287			fdrop(rf, td);
288		} else
289			FILEDESC_UNLOCK(fdp);
290		fdrop(rf, td);
291		/* rpipe has been closed by fdrop(). */
292		pipeclose(wpipe);
293		free(pmtx, M_TEMP);
294		return (error);
295	}
296	FILE_LOCK(wf);
297	wf->f_flag = FREAD | FWRITE;
298	wf->f_type = DTYPE_PIPE;
299	wf->f_data = wpipe;
300	wf->f_ops = &pipeops;
301	FILE_UNLOCK(wf);
302	td->td_retval[1] = fd;
303	rpipe->pipe_peer = wpipe;
304	wpipe->pipe_peer = rpipe;
305#ifdef MAC
306	/*
307	 * struct pipe represents a pipe endpoint.  The MAC label is shared
308	 * between the connected endpoints.  As a result mac_init_pipe() and
309	 * mac_create_pipe() should only be called on one of the endpoints
310	 * after they have been connected.
311	 */
312	mac_init_pipe(rpipe);
313	mac_create_pipe(td->td_ucred, rpipe);
314#endif
315	mtx_init(pmtx, "pipe mutex", NULL, MTX_DEF | MTX_RECURSE);
316	rpipe->pipe_mtxp = wpipe->pipe_mtxp = pmtx;
317	fdrop(rf, td);
318
319	return (0);
320}
321
322/*
323 * Allocate kva for pipe circular buffer, the space is pageable
324 * This routine will 'realloc' the size of a pipe safely, if it fails
325 * it will retain the old buffer.
326 * If it fails it will return ENOMEM.
327 */
328static int
329pipespace(cpipe, size)
330	struct pipe *cpipe;
331	int size;
332{
333	struct vm_object *object;
334	caddr_t buffer;
335	int npages, error;
336	static int curfail = 0;
337	static struct timeval lastfail;
338
339	GIANT_REQUIRED;
340	KASSERT(cpipe->pipe_mtxp == NULL || !mtx_owned(PIPE_MTX(cpipe)),
341	       ("pipespace: pipe mutex locked"));
342
343	if (amountpipes > maxpipes) {
344		if (ppsratecheck(&lastfail, &curfail, 1))
345			printf("kern.maxpipes exceeded, please see tuning(7).\n");
346		return (ENOMEM);
347	}
348
349	npages = round_page(size)/PAGE_SIZE;
350	/*
351	 * Create an object, I don't like the idea of paging to/from
352	 * kernel_object.
353	 * XXX -- minor change needed here for NetBSD/OpenBSD VM systems.
354	 */
355	object = vm_object_allocate(OBJT_DEFAULT, npages);
356	buffer = (caddr_t) vm_map_min(kernel_map);
357
358	/*
359	 * Insert the object into the kernel map, and allocate kva for it.
360	 * The map entry is, by default, pageable.
361	 * XXX -- minor change needed here for NetBSD/OpenBSD VM systems.
362	 */
363	error = vm_map_find(kernel_map, object, 0,
364		(vm_offset_t *) &buffer, size, 1,
365		VM_PROT_ALL, VM_PROT_ALL, 0);
366
367	if (error != KERN_SUCCESS) {
368		vm_object_deallocate(object);
369		return (ENOMEM);
370	}
371
372	/* free old resources if we're resizing */
373	pipe_free_kmem(cpipe);
374	cpipe->pipe_buffer.object = object;
375	cpipe->pipe_buffer.buffer = buffer;
376	cpipe->pipe_buffer.size = size;
377	cpipe->pipe_buffer.in = 0;
378	cpipe->pipe_buffer.out = 0;
379	cpipe->pipe_buffer.cnt = 0;
380	atomic_add_int(&amountpipes, 1);
381	atomic_add_int(&amountpipekva, cpipe->pipe_buffer.size);
382	return (0);
383}
384
385/*
386 * initialize and allocate VM and memory for pipe
387 */
388static int
389pipe_create(cpipep)
390	struct pipe **cpipep;
391{
392	struct pipe *cpipe;
393	int error;
394
395	*cpipep = uma_zalloc(pipe_zone, M_WAITOK);
396	if (*cpipep == NULL)
397		return (ENOMEM);
398
399	cpipe = *cpipep;
400
401	/* so pipespace()->pipe_free_kmem() doesn't follow junk pointer */
402	cpipe->pipe_buffer.object = NULL;
403#ifndef PIPE_NODIRECT
404	cpipe->pipe_map.kva = 0;
405#endif
406	/*
407	 * protect so pipeclose() doesn't follow a junk pointer
408	 * if pipespace() fails.
409	 */
410	bzero(&cpipe->pipe_sel, sizeof(cpipe->pipe_sel));
411	cpipe->pipe_state = 0;
412	cpipe->pipe_peer = NULL;
413	cpipe->pipe_busy = 0;
414
415#ifndef PIPE_NODIRECT
416	/*
417	 * pipe data structure initializations to support direct pipe I/O
418	 */
419	cpipe->pipe_map.cnt = 0;
420	cpipe->pipe_map.kva = 0;
421	cpipe->pipe_map.pos = 0;
422	cpipe->pipe_map.npages = 0;
423	/* cpipe->pipe_map.ms[] = invalid */
424#endif
425
426	cpipe->pipe_mtxp = NULL;	/* avoid pipespace assertion */
427	/*
428	 * Reduce to 1/4th pipe size if we're over our global max.
429	 */
430	if (amountpipekva > maxpipekva)
431		error = pipespace(cpipe, SMALL_PIPE_SIZE);
432	else
433		error = pipespace(cpipe, PIPE_SIZE);
434	if (error)
435		return (error);
436
437	vfs_timestamp(&cpipe->pipe_ctime);
438	cpipe->pipe_atime = cpipe->pipe_ctime;
439	cpipe->pipe_mtime = cpipe->pipe_ctime;
440
441	return (0);
442}
443
444
445/*
446 * lock a pipe for I/O, blocking other access
447 */
448static __inline int
449pipelock(cpipe, catch)
450	struct pipe *cpipe;
451	int catch;
452{
453	int error;
454
455	PIPE_LOCK_ASSERT(cpipe, MA_OWNED);
456	while (cpipe->pipe_state & PIPE_LOCKFL) {
457		cpipe->pipe_state |= PIPE_LWANT;
458		error = msleep(cpipe, PIPE_MTX(cpipe),
459		    catch ? (PRIBIO | PCATCH) : PRIBIO,
460		    "pipelk", 0);
461		if (error != 0)
462			return (error);
463	}
464	cpipe->pipe_state |= PIPE_LOCKFL;
465	return (0);
466}
467
468/*
469 * unlock a pipe I/O lock
470 */
471static __inline void
472pipeunlock(cpipe)
473	struct pipe *cpipe;
474{
475
476	PIPE_LOCK_ASSERT(cpipe, MA_OWNED);
477	cpipe->pipe_state &= ~PIPE_LOCKFL;
478	if (cpipe->pipe_state & PIPE_LWANT) {
479		cpipe->pipe_state &= ~PIPE_LWANT;
480		wakeup(cpipe);
481	}
482}
483
484static __inline void
485pipeselwakeup(cpipe)
486	struct pipe *cpipe;
487{
488
489	if (cpipe->pipe_state & PIPE_SEL) {
490		cpipe->pipe_state &= ~PIPE_SEL;
491		selwakeup(&cpipe->pipe_sel);
492	}
493	if ((cpipe->pipe_state & PIPE_ASYNC) && cpipe->pipe_sigio)
494		pgsigio(&cpipe->pipe_sigio, SIGIO, 0);
495	KNOTE(&cpipe->pipe_sel.si_note, 0);
496}
497
498/* ARGSUSED */
499static int
500pipe_read(fp, uio, active_cred, flags, td)
501	struct file *fp;
502	struct uio *uio;
503	struct ucred *active_cred;
504	struct thread *td;
505	int flags;
506{
507	struct pipe *rpipe = fp->f_data;
508	int error;
509	int nread = 0;
510	u_int size;
511
512	PIPE_LOCK(rpipe);
513	++rpipe->pipe_busy;
514	error = pipelock(rpipe, 1);
515	if (error)
516		goto unlocked_error;
517
518#ifdef MAC
519	error = mac_check_pipe_read(active_cred, rpipe);
520	if (error)
521		goto locked_error;
522#endif
523
524	while (uio->uio_resid) {
525		/*
526		 * normal pipe buffer receive
527		 */
528		if (rpipe->pipe_buffer.cnt > 0) {
529			size = rpipe->pipe_buffer.size - rpipe->pipe_buffer.out;
530			if (size > rpipe->pipe_buffer.cnt)
531				size = rpipe->pipe_buffer.cnt;
532			if (size > (u_int) uio->uio_resid)
533				size = (u_int) uio->uio_resid;
534
535			PIPE_UNLOCK(rpipe);
536			error = uiomove(
537			    &rpipe->pipe_buffer.buffer[rpipe->pipe_buffer.out],
538			    size, uio);
539			PIPE_LOCK(rpipe);
540			if (error)
541				break;
542
543			rpipe->pipe_buffer.out += size;
544			if (rpipe->pipe_buffer.out >= rpipe->pipe_buffer.size)
545				rpipe->pipe_buffer.out = 0;
546
547			rpipe->pipe_buffer.cnt -= size;
548
549			/*
550			 * If there is no more to read in the pipe, reset
551			 * its pointers to the beginning.  This improves
552			 * cache hit stats.
553			 */
554			if (rpipe->pipe_buffer.cnt == 0) {
555				rpipe->pipe_buffer.in = 0;
556				rpipe->pipe_buffer.out = 0;
557			}
558			nread += size;
559#ifndef PIPE_NODIRECT
560		/*
561		 * Direct copy, bypassing a kernel buffer.
562		 */
563		} else if ((size = rpipe->pipe_map.cnt) &&
564			   (rpipe->pipe_state & PIPE_DIRECTW)) {
565			caddr_t	va;
566			if (size > (u_int) uio->uio_resid)
567				size = (u_int) uio->uio_resid;
568
569			va = (caddr_t) rpipe->pipe_map.kva +
570			    rpipe->pipe_map.pos;
571			PIPE_UNLOCK(rpipe);
572			error = uiomove(va, size, uio);
573			PIPE_LOCK(rpipe);
574			if (error)
575				break;
576			nread += size;
577			rpipe->pipe_map.pos += size;
578			rpipe->pipe_map.cnt -= size;
579			if (rpipe->pipe_map.cnt == 0) {
580				rpipe->pipe_state &= ~PIPE_DIRECTW;
581				wakeup(rpipe);
582			}
583#endif
584		} else {
585			/*
586			 * detect EOF condition
587			 * read returns 0 on EOF, no need to set error
588			 */
589			if (rpipe->pipe_state & PIPE_EOF)
590				break;
591
592			/*
593			 * If the "write-side" has been blocked, wake it up now.
594			 */
595			if (rpipe->pipe_state & PIPE_WANTW) {
596				rpipe->pipe_state &= ~PIPE_WANTW;
597				wakeup(rpipe);
598			}
599
600			/*
601			 * Break if some data was read.
602			 */
603			if (nread > 0)
604				break;
605
606			/*
607			 * Unlock the pipe buffer for our remaining processing.
608			 * We will either break out with an error or we will
609			 * sleep and relock to loop.
610			 */
611			pipeunlock(rpipe);
612
613			/*
614			 * Handle non-blocking mode operation or
615			 * wait for more data.
616			 */
617			if (fp->f_flag & FNONBLOCK) {
618				error = EAGAIN;
619			} else {
620				rpipe->pipe_state |= PIPE_WANTR;
621				if ((error = msleep(rpipe, PIPE_MTX(rpipe),
622				    PRIBIO | PCATCH,
623				    "piperd", 0)) == 0)
624					error = pipelock(rpipe, 1);
625			}
626			if (error)
627				goto unlocked_error;
628		}
629	}
630#ifdef MAC
631locked_error:
632#endif
633	pipeunlock(rpipe);
634
635	/* XXX: should probably do this before getting any locks. */
636	if (error == 0)
637		vfs_timestamp(&rpipe->pipe_atime);
638unlocked_error:
639	--rpipe->pipe_busy;
640
641	/*
642	 * PIPE_WANT processing only makes sense if pipe_busy is 0.
643	 */
644	if ((rpipe->pipe_busy == 0) && (rpipe->pipe_state & PIPE_WANT)) {
645		rpipe->pipe_state &= ~(PIPE_WANT|PIPE_WANTW);
646		wakeup(rpipe);
647	} else if (rpipe->pipe_buffer.cnt < MINPIPESIZE) {
648		/*
649		 * Handle write blocking hysteresis.
650		 */
651		if (rpipe->pipe_state & PIPE_WANTW) {
652			rpipe->pipe_state &= ~PIPE_WANTW;
653			wakeup(rpipe);
654		}
655	}
656
657	if ((rpipe->pipe_buffer.size - rpipe->pipe_buffer.cnt) >= PIPE_BUF)
658		pipeselwakeup(rpipe);
659
660	PIPE_UNLOCK(rpipe);
661	return (error);
662}
663
664#ifndef PIPE_NODIRECT
665/*
666 * Map the sending processes' buffer into kernel space and wire it.
667 * This is similar to a physical write operation.
668 */
669static int
670pipe_build_write_buffer(wpipe, uio)
671	struct pipe *wpipe;
672	struct uio *uio;
673{
674	u_int size;
675	int i;
676	vm_offset_t addr, endaddr;
677	vm_paddr_t paddr;
678
679	GIANT_REQUIRED;
680	PIPE_LOCK_ASSERT(wpipe, MA_NOTOWNED);
681
682	size = (u_int) uio->uio_iov->iov_len;
683	if (size > wpipe->pipe_buffer.size)
684		size = wpipe->pipe_buffer.size;
685
686	endaddr = round_page((vm_offset_t)uio->uio_iov->iov_base + size);
687	addr = trunc_page((vm_offset_t)uio->uio_iov->iov_base);
688	for (i = 0; addr < endaddr; addr += PAGE_SIZE, i++) {
689		vm_page_t m;
690
691		/*
692		 * vm_fault_quick() can sleep.  Consequently,
693		 * vm_page_lock_queue() and vm_page_unlock_queue()
694		 * should not be performed outside of this loop.
695		 */
696		if (vm_fault_quick((caddr_t)addr, VM_PROT_READ) < 0 ||
697		    (paddr = pmap_extract(vmspace_pmap(curproc->p_vmspace),
698		     addr)) == 0) {
699			int j;
700
701			vm_page_lock_queues();
702			for (j = 0; j < i; j++) {
703				vm_page_unwire(wpipe->pipe_map.ms[j], 1);
704				atomic_subtract_int(&amountpipekvawired,
705					 	    PAGE_SIZE);
706			}
707			vm_page_unlock_queues();
708			return (EFAULT);
709		}
710
711		m = PHYS_TO_VM_PAGE(paddr);
712		vm_page_lock_queues();
713		vm_page_wire(m);
714		atomic_add_int(&amountpipekvawired, PAGE_SIZE);
715		vm_page_unlock_queues();
716		wpipe->pipe_map.ms[i] = m;
717	}
718
719/*
720 * set up the control block
721 */
722	wpipe->pipe_map.npages = i;
723	wpipe->pipe_map.pos =
724	    ((vm_offset_t) uio->uio_iov->iov_base) & PAGE_MASK;
725	wpipe->pipe_map.cnt = size;
726
727/*
728 * and map the buffer
729 */
730	if (wpipe->pipe_map.kva == 0) {
731		/*
732		 * We need to allocate space for an extra page because the
733		 * address range might (will) span pages at times.
734		 */
735		wpipe->pipe_map.kva = kmem_alloc_nofault(kernel_map,
736			wpipe->pipe_buffer.size + PAGE_SIZE);
737		atomic_add_int(&amountpipekva,
738		    wpipe->pipe_buffer.size + PAGE_SIZE);
739	}
740	pmap_qenter(wpipe->pipe_map.kva, wpipe->pipe_map.ms,
741		wpipe->pipe_map.npages);
742
743/*
744 * and update the uio data
745 */
746
747	uio->uio_iov->iov_len -= size;
748	uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + size;
749	if (uio->uio_iov->iov_len == 0)
750		uio->uio_iov++;
751	uio->uio_resid -= size;
752	uio->uio_offset += size;
753	return (0);
754}
755
756/*
757 * unmap and unwire the process buffer
758 */
759static void
760pipe_destroy_write_buffer(wpipe)
761	struct pipe *wpipe;
762{
763	int i;
764
765	GIANT_REQUIRED;
766	PIPE_LOCK_ASSERT(wpipe, MA_NOTOWNED);
767
768	if (wpipe->pipe_map.kva) {
769		pmap_qremove(wpipe->pipe_map.kva, wpipe->pipe_map.npages);
770
771		if (amountpipekva > maxpipekva) {
772			vm_offset_t kva = wpipe->pipe_map.kva;
773			wpipe->pipe_map.kva = 0;
774			kmem_free(kernel_map, kva,
775				wpipe->pipe_buffer.size + PAGE_SIZE);
776			atomic_subtract_int(&amountpipekva,
777			    wpipe->pipe_buffer.size + PAGE_SIZE);
778		}
779	}
780	vm_page_lock_queues();
781	for (i = 0; i < wpipe->pipe_map.npages; i++) {
782		vm_page_unwire(wpipe->pipe_map.ms[i], 1);
783		atomic_subtract_int(&amountpipekvawired, PAGE_SIZE);
784	}
785	vm_page_unlock_queues();
786	wpipe->pipe_map.npages = 0;
787}
788
789/*
790 * In the case of a signal, the writing process might go away.  This
791 * code copies the data into the circular buffer so that the source
792 * pages can be freed without loss of data.
793 */
794static void
795pipe_clone_write_buffer(wpipe)
796	struct pipe *wpipe;
797{
798	int size;
799	int pos;
800
801	PIPE_LOCK_ASSERT(wpipe, MA_OWNED);
802	size = wpipe->pipe_map.cnt;
803	pos = wpipe->pipe_map.pos;
804
805	wpipe->pipe_buffer.in = size;
806	wpipe->pipe_buffer.out = 0;
807	wpipe->pipe_buffer.cnt = size;
808	wpipe->pipe_state &= ~PIPE_DIRECTW;
809
810	PIPE_GET_GIANT(wpipe);
811	bcopy((caddr_t) wpipe->pipe_map.kva + pos,
812	    wpipe->pipe_buffer.buffer, size);
813	pipe_destroy_write_buffer(wpipe);
814	PIPE_DROP_GIANT(wpipe);
815}
816
817/*
818 * This implements the pipe buffer write mechanism.  Note that only
819 * a direct write OR a normal pipe write can be pending at any given time.
820 * If there are any characters in the pipe buffer, the direct write will
821 * be deferred until the receiving process grabs all of the bytes from
822 * the pipe buffer.  Then the direct mapping write is set-up.
823 */
824static int
825pipe_direct_write(wpipe, uio)
826	struct pipe *wpipe;
827	struct uio *uio;
828{
829	int error;
830
831retry:
832	PIPE_LOCK_ASSERT(wpipe, MA_OWNED);
833	while (wpipe->pipe_state & PIPE_DIRECTW) {
834		if (wpipe->pipe_state & PIPE_WANTR) {
835			wpipe->pipe_state &= ~PIPE_WANTR;
836			wakeup(wpipe);
837		}
838		wpipe->pipe_state |= PIPE_WANTW;
839		error = msleep(wpipe, PIPE_MTX(wpipe),
840		    PRIBIO | PCATCH, "pipdww", 0);
841		if (error)
842			goto error1;
843		if (wpipe->pipe_state & PIPE_EOF) {
844			error = EPIPE;
845			goto error1;
846		}
847	}
848	wpipe->pipe_map.cnt = 0;	/* transfer not ready yet */
849	if (wpipe->pipe_buffer.cnt > 0) {
850		if (wpipe->pipe_state & PIPE_WANTR) {
851			wpipe->pipe_state &= ~PIPE_WANTR;
852			wakeup(wpipe);
853		}
854
855		wpipe->pipe_state |= PIPE_WANTW;
856		error = msleep(wpipe, PIPE_MTX(wpipe),
857		    PRIBIO | PCATCH, "pipdwc", 0);
858		if (error)
859			goto error1;
860		if (wpipe->pipe_state & PIPE_EOF) {
861			error = EPIPE;
862			goto error1;
863		}
864		goto retry;
865	}
866
867	wpipe->pipe_state |= PIPE_DIRECTW;
868
869	pipelock(wpipe, 0);
870	PIPE_GET_GIANT(wpipe);
871	error = pipe_build_write_buffer(wpipe, uio);
872	PIPE_DROP_GIANT(wpipe);
873	pipeunlock(wpipe);
874	if (error) {
875		wpipe->pipe_state &= ~PIPE_DIRECTW;
876		goto error1;
877	}
878
879	error = 0;
880	while (!error && (wpipe->pipe_state & PIPE_DIRECTW)) {
881		if (wpipe->pipe_state & PIPE_EOF) {
882			pipelock(wpipe, 0);
883			PIPE_GET_GIANT(wpipe);
884			pipe_destroy_write_buffer(wpipe);
885			PIPE_DROP_GIANT(wpipe);
886			pipeselwakeup(wpipe);
887			pipeunlock(wpipe);
888			error = EPIPE;
889			goto error1;
890		}
891		if (wpipe->pipe_state & PIPE_WANTR) {
892			wpipe->pipe_state &= ~PIPE_WANTR;
893			wakeup(wpipe);
894		}
895		pipeselwakeup(wpipe);
896		error = msleep(wpipe, PIPE_MTX(wpipe), PRIBIO | PCATCH,
897		    "pipdwt", 0);
898	}
899
900	pipelock(wpipe,0);
901	if (wpipe->pipe_state & PIPE_DIRECTW) {
902		/*
903		 * this bit of trickery substitutes a kernel buffer for
904		 * the process that might be going away.
905		 */
906		pipe_clone_write_buffer(wpipe);
907	} else {
908		PIPE_GET_GIANT(wpipe);
909		pipe_destroy_write_buffer(wpipe);
910		PIPE_DROP_GIANT(wpipe);
911	}
912	pipeunlock(wpipe);
913	return (error);
914
915error1:
916	wakeup(wpipe);
917	return (error);
918}
919#endif
920
921static int
922pipe_write(fp, uio, active_cred, flags, td)
923	struct file *fp;
924	struct uio *uio;
925	struct ucred *active_cred;
926	struct thread *td;
927	int flags;
928{
929	int error = 0;
930	int orig_resid;
931	struct pipe *wpipe, *rpipe;
932
933	rpipe = fp->f_data;
934	wpipe = rpipe->pipe_peer;
935
936	PIPE_LOCK(rpipe);
937	/*
938	 * detect loss of pipe read side, issue SIGPIPE if lost.
939	 */
940	if ((wpipe == NULL) || (wpipe->pipe_state & PIPE_EOF)) {
941		PIPE_UNLOCK(rpipe);
942		return (EPIPE);
943	}
944#ifdef MAC
945	error = mac_check_pipe_write(active_cred, wpipe);
946	if (error) {
947		PIPE_UNLOCK(rpipe);
948		return (error);
949	}
950#endif
951	++wpipe->pipe_busy;
952
953	/*
954	 * If it is advantageous to resize the pipe buffer, do
955	 * so.
956	 */
957	if ((uio->uio_resid > PIPE_SIZE) &&
958		(amountpipekva < maxpipekva) &&
959		(nbigpipe < LIMITBIGPIPES) &&
960		(wpipe->pipe_state & PIPE_DIRECTW) == 0 &&
961		(wpipe->pipe_buffer.size <= PIPE_SIZE) &&
962		(wpipe->pipe_buffer.cnt == 0)) {
963
964		if ((error = pipelock(wpipe, 1)) == 0) {
965			PIPE_GET_GIANT(wpipe);
966			if (pipespace(wpipe, BIG_PIPE_SIZE) == 0)
967				atomic_add_int(&nbigpipe, 1);
968			PIPE_DROP_GIANT(wpipe);
969			pipeunlock(wpipe);
970		}
971	}
972
973	/*
974	 * If an early error occured unbusy and return, waking up any pending
975	 * readers.
976	 */
977	if (error) {
978		--wpipe->pipe_busy;
979		if ((wpipe->pipe_busy == 0) &&
980		    (wpipe->pipe_state & PIPE_WANT)) {
981			wpipe->pipe_state &= ~(PIPE_WANT | PIPE_WANTR);
982			wakeup(wpipe);
983		}
984		PIPE_UNLOCK(rpipe);
985		return(error);
986	}
987
988	orig_resid = uio->uio_resid;
989
990	while (uio->uio_resid) {
991		int space;
992
993#ifndef PIPE_NODIRECT
994		/*
995		 * If the transfer is large, we can gain performance if
996		 * we do process-to-process copies directly.
997		 * If the write is non-blocking, we don't use the
998		 * direct write mechanism.
999		 *
1000		 * The direct write mechanism will detect the reader going
1001		 * away on us.
1002		 */
1003		if ((uio->uio_iov->iov_len >= PIPE_MINDIRECT) &&
1004		    (fp->f_flag & FNONBLOCK) == 0 &&
1005		    amountpipekvawired < maxpipekvawired) {
1006			error = pipe_direct_write(wpipe, uio);
1007			if (error)
1008				break;
1009			continue;
1010		}
1011#endif
1012
1013		/*
1014		 * Pipe buffered writes cannot be coincidental with
1015		 * direct writes.  We wait until the currently executing
1016		 * direct write is completed before we start filling the
1017		 * pipe buffer.  We break out if a signal occurs or the
1018		 * reader goes away.
1019		 */
1020	retrywrite:
1021		while (wpipe->pipe_state & PIPE_DIRECTW) {
1022			if (wpipe->pipe_state & PIPE_WANTR) {
1023				wpipe->pipe_state &= ~PIPE_WANTR;
1024				wakeup(wpipe);
1025			}
1026			error = msleep(wpipe, PIPE_MTX(rpipe), PRIBIO | PCATCH,
1027			    "pipbww", 0);
1028			if (wpipe->pipe_state & PIPE_EOF)
1029				break;
1030			if (error)
1031				break;
1032		}
1033		if (wpipe->pipe_state & PIPE_EOF) {
1034			error = EPIPE;
1035			break;
1036		}
1037
1038		space = wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt;
1039
1040		/* Writes of size <= PIPE_BUF must be atomic. */
1041		if ((space < uio->uio_resid) && (orig_resid <= PIPE_BUF))
1042			space = 0;
1043
1044		if (space > 0) {
1045			if ((error = pipelock(wpipe,1)) == 0) {
1046				int size;	/* Transfer size */
1047				int segsize;	/* first segment to transfer */
1048
1049				/*
1050				 * It is possible for a direct write to
1051				 * slip in on us... handle it here...
1052				 */
1053				if (wpipe->pipe_state & PIPE_DIRECTW) {
1054					pipeunlock(wpipe);
1055					goto retrywrite;
1056				}
1057				/*
1058				 * If a process blocked in uiomove, our
1059				 * value for space might be bad.
1060				 *
1061				 * XXX will we be ok if the reader has gone
1062				 * away here?
1063				 */
1064				if (space > wpipe->pipe_buffer.size -
1065				    wpipe->pipe_buffer.cnt) {
1066					pipeunlock(wpipe);
1067					goto retrywrite;
1068				}
1069
1070				/*
1071				 * Transfer size is minimum of uio transfer
1072				 * and free space in pipe buffer.
1073				 */
1074				if (space > uio->uio_resid)
1075					size = uio->uio_resid;
1076				else
1077					size = space;
1078				/*
1079				 * First segment to transfer is minimum of
1080				 * transfer size and contiguous space in
1081				 * pipe buffer.  If first segment to transfer
1082				 * is less than the transfer size, we've got
1083				 * a wraparound in the buffer.
1084				 */
1085				segsize = wpipe->pipe_buffer.size -
1086					wpipe->pipe_buffer.in;
1087				if (segsize > size)
1088					segsize = size;
1089
1090				/* Transfer first segment */
1091
1092				PIPE_UNLOCK(rpipe);
1093				error = uiomove(&wpipe->pipe_buffer.buffer[wpipe->pipe_buffer.in],
1094						segsize, uio);
1095				PIPE_LOCK(rpipe);
1096
1097				if (error == 0 && segsize < size) {
1098					/*
1099					 * Transfer remaining part now, to
1100					 * support atomic writes.  Wraparound
1101					 * happened.
1102					 */
1103					if (wpipe->pipe_buffer.in + segsize !=
1104					    wpipe->pipe_buffer.size)
1105						panic("Expected pipe buffer "
1106						    "wraparound disappeared");
1107
1108					PIPE_UNLOCK(rpipe);
1109					error = uiomove(
1110					    &wpipe->pipe_buffer.buffer[0],
1111				    	    size - segsize, uio);
1112					PIPE_LOCK(rpipe);
1113				}
1114				if (error == 0) {
1115					wpipe->pipe_buffer.in += size;
1116					if (wpipe->pipe_buffer.in >=
1117					    wpipe->pipe_buffer.size) {
1118						if (wpipe->pipe_buffer.in !=
1119						    size - segsize +
1120						    wpipe->pipe_buffer.size)
1121							panic("Expected "
1122							    "wraparound bad");
1123						wpipe->pipe_buffer.in = size -
1124						    segsize;
1125					}
1126
1127					wpipe->pipe_buffer.cnt += size;
1128					if (wpipe->pipe_buffer.cnt >
1129					    wpipe->pipe_buffer.size)
1130						panic("Pipe buffer overflow");
1131
1132				}
1133				pipeunlock(wpipe);
1134			}
1135			if (error)
1136				break;
1137
1138		} else {
1139			/*
1140			 * If the "read-side" has been blocked, wake it up now.
1141			 */
1142			if (wpipe->pipe_state & PIPE_WANTR) {
1143				wpipe->pipe_state &= ~PIPE_WANTR;
1144				wakeup(wpipe);
1145			}
1146
1147			/*
1148			 * don't block on non-blocking I/O
1149			 */
1150			if (fp->f_flag & FNONBLOCK) {
1151				error = EAGAIN;
1152				break;
1153			}
1154
1155			/*
1156			 * We have no more space and have something to offer,
1157			 * wake up select/poll.
1158			 */
1159			pipeselwakeup(wpipe);
1160
1161			wpipe->pipe_state |= PIPE_WANTW;
1162			error = msleep(wpipe, PIPE_MTX(rpipe),
1163			    PRIBIO | PCATCH, "pipewr", 0);
1164			if (error != 0)
1165				break;
1166			/*
1167			 * If read side wants to go away, we just issue a signal
1168			 * to ourselves.
1169			 */
1170			if (wpipe->pipe_state & PIPE_EOF) {
1171				error = EPIPE;
1172				break;
1173			}
1174		}
1175	}
1176
1177	--wpipe->pipe_busy;
1178
1179	if ((wpipe->pipe_busy == 0) && (wpipe->pipe_state & PIPE_WANT)) {
1180		wpipe->pipe_state &= ~(PIPE_WANT | PIPE_WANTR);
1181		wakeup(wpipe);
1182	} else if (wpipe->pipe_buffer.cnt > 0) {
1183		/*
1184		 * If we have put any characters in the buffer, we wake up
1185		 * the reader.
1186		 */
1187		if (wpipe->pipe_state & PIPE_WANTR) {
1188			wpipe->pipe_state &= ~PIPE_WANTR;
1189			wakeup(wpipe);
1190		}
1191	}
1192
1193	/*
1194	 * Don't return EPIPE if I/O was successful
1195	 */
1196	if ((wpipe->pipe_buffer.cnt == 0) &&
1197	    (uio->uio_resid == 0) &&
1198	    (error == EPIPE)) {
1199		error = 0;
1200	}
1201
1202	if (error == 0)
1203		vfs_timestamp(&wpipe->pipe_mtime);
1204
1205	/*
1206	 * We have something to offer,
1207	 * wake up select/poll.
1208	 */
1209	if (wpipe->pipe_buffer.cnt)
1210		pipeselwakeup(wpipe);
1211
1212	PIPE_UNLOCK(rpipe);
1213	return (error);
1214}
1215
1216/*
1217 * we implement a very minimal set of ioctls for compatibility with sockets.
1218 */
1219static int
1220pipe_ioctl(fp, cmd, data, active_cred, td)
1221	struct file *fp;
1222	u_long cmd;
1223	void *data;
1224	struct ucred *active_cred;
1225	struct thread *td;
1226{
1227	struct pipe *mpipe = fp->f_data;
1228#ifdef MAC
1229	int error;
1230#endif
1231
1232	PIPE_LOCK(mpipe);
1233
1234#ifdef MAC
1235	error = mac_check_pipe_ioctl(active_cred, mpipe, cmd, data);
1236	if (error)
1237		return (error);
1238#endif
1239
1240	switch (cmd) {
1241
1242	case FIONBIO:
1243		PIPE_UNLOCK(mpipe);
1244		return (0);
1245
1246	case FIOASYNC:
1247		if (*(int *)data) {
1248			mpipe->pipe_state |= PIPE_ASYNC;
1249		} else {
1250			mpipe->pipe_state &= ~PIPE_ASYNC;
1251		}
1252		PIPE_UNLOCK(mpipe);
1253		return (0);
1254
1255	case FIONREAD:
1256		if (mpipe->pipe_state & PIPE_DIRECTW)
1257			*(int *)data = mpipe->pipe_map.cnt;
1258		else
1259			*(int *)data = mpipe->pipe_buffer.cnt;
1260		PIPE_UNLOCK(mpipe);
1261		return (0);
1262
1263	case FIOSETOWN:
1264		PIPE_UNLOCK(mpipe);
1265		return (fsetown(*(int *)data, &mpipe->pipe_sigio));
1266
1267	case FIOGETOWN:
1268		PIPE_UNLOCK(mpipe);
1269		*(int *)data = fgetown(&mpipe->pipe_sigio);
1270		return (0);
1271
1272	/* This is deprecated, FIOSETOWN should be used instead. */
1273	case TIOCSPGRP:
1274		PIPE_UNLOCK(mpipe);
1275		return (fsetown(-(*(int *)data), &mpipe->pipe_sigio));
1276
1277	/* This is deprecated, FIOGETOWN should be used instead. */
1278	case TIOCGPGRP:
1279		PIPE_UNLOCK(mpipe);
1280		*(int *)data = -fgetown(&mpipe->pipe_sigio);
1281		return (0);
1282
1283	}
1284	PIPE_UNLOCK(mpipe);
1285	return (ENOTTY);
1286}
1287
1288static int
1289pipe_poll(fp, events, active_cred, td)
1290	struct file *fp;
1291	int events;
1292	struct ucred *active_cred;
1293	struct thread *td;
1294{
1295	struct pipe *rpipe = fp->f_data;
1296	struct pipe *wpipe;
1297	int revents = 0;
1298#ifdef MAC
1299	int error;
1300#endif
1301
1302	wpipe = rpipe->pipe_peer;
1303	PIPE_LOCK(rpipe);
1304#ifdef MAC
1305	error = mac_check_pipe_poll(active_cred, rpipe);
1306	if (error)
1307		goto locked_error;
1308#endif
1309	if (events & (POLLIN | POLLRDNORM))
1310		if ((rpipe->pipe_state & PIPE_DIRECTW) ||
1311		    (rpipe->pipe_buffer.cnt > 0) ||
1312		    (rpipe->pipe_state & PIPE_EOF))
1313			revents |= events & (POLLIN | POLLRDNORM);
1314
1315	if (events & (POLLOUT | POLLWRNORM))
1316		if (wpipe == NULL || (wpipe->pipe_state & PIPE_EOF) ||
1317		    (((wpipe->pipe_state & PIPE_DIRECTW) == 0) &&
1318		     (wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt) >= PIPE_BUF))
1319			revents |= events & (POLLOUT | POLLWRNORM);
1320
1321	if ((rpipe->pipe_state & PIPE_EOF) ||
1322	    (wpipe == NULL) ||
1323	    (wpipe->pipe_state & PIPE_EOF))
1324		revents |= POLLHUP;
1325
1326	if (revents == 0) {
1327		if (events & (POLLIN | POLLRDNORM)) {
1328			selrecord(td, &rpipe->pipe_sel);
1329			rpipe->pipe_state |= PIPE_SEL;
1330		}
1331
1332		if (events & (POLLOUT | POLLWRNORM)) {
1333			selrecord(td, &wpipe->pipe_sel);
1334			wpipe->pipe_state |= PIPE_SEL;
1335		}
1336	}
1337#ifdef MAC
1338locked_error:
1339#endif
1340	PIPE_UNLOCK(rpipe);
1341
1342	return (revents);
1343}
1344
1345/*
1346 * We shouldn't need locks here as we're doing a read and this should
1347 * be a natural race.
1348 */
1349static int
1350pipe_stat(fp, ub, active_cred, td)
1351	struct file *fp;
1352	struct stat *ub;
1353	struct ucred *active_cred;
1354	struct thread *td;
1355{
1356	struct pipe *pipe = fp->f_data;
1357#ifdef MAC
1358	int error;
1359
1360	PIPE_LOCK(pipe);
1361	error = mac_check_pipe_stat(active_cred, pipe);
1362	PIPE_UNLOCK(pipe);
1363	if (error)
1364		return (error);
1365#endif
1366	bzero(ub, sizeof(*ub));
1367	ub->st_mode = S_IFIFO;
1368	ub->st_blksize = pipe->pipe_buffer.size;
1369	ub->st_size = pipe->pipe_buffer.cnt;
1370	ub->st_blocks = (ub->st_size + ub->st_blksize - 1) / ub->st_blksize;
1371	ub->st_atimespec = pipe->pipe_atime;
1372	ub->st_mtimespec = pipe->pipe_mtime;
1373	ub->st_ctimespec = pipe->pipe_ctime;
1374	ub->st_uid = fp->f_cred->cr_uid;
1375	ub->st_gid = fp->f_cred->cr_gid;
1376	/*
1377	 * Left as 0: st_dev, st_ino, st_nlink, st_rdev, st_flags, st_gen.
1378	 * XXX (st_dev, st_ino) should be unique.
1379	 */
1380	return (0);
1381}
1382
1383/* ARGSUSED */
1384static int
1385pipe_close(fp, td)
1386	struct file *fp;
1387	struct thread *td;
1388{
1389	struct pipe *cpipe = fp->f_data;
1390
1391	fp->f_ops = &badfileops;
1392	fp->f_data = NULL;
1393	funsetown(&cpipe->pipe_sigio);
1394	pipeclose(cpipe);
1395	return (0);
1396}
1397
1398static void
1399pipe_free_kmem(cpipe)
1400	struct pipe *cpipe;
1401{
1402
1403	GIANT_REQUIRED;
1404	KASSERT(cpipe->pipe_mtxp == NULL || !mtx_owned(PIPE_MTX(cpipe)),
1405	       ("pipespace: pipe mutex locked"));
1406
1407	if (cpipe->pipe_buffer.buffer != NULL) {
1408		if (cpipe->pipe_buffer.size > PIPE_SIZE)
1409			atomic_subtract_int(&nbigpipe, 1);
1410		atomic_subtract_int(&amountpipekva, cpipe->pipe_buffer.size);
1411		atomic_subtract_int(&amountpipes, 1);
1412		kmem_free(kernel_map,
1413			(vm_offset_t)cpipe->pipe_buffer.buffer,
1414			cpipe->pipe_buffer.size);
1415		cpipe->pipe_buffer.buffer = NULL;
1416	}
1417#ifndef PIPE_NODIRECT
1418	if (cpipe->pipe_map.kva != 0) {
1419		atomic_subtract_int(&amountpipekva,
1420		    cpipe->pipe_buffer.size + PAGE_SIZE);
1421		kmem_free(kernel_map,
1422			cpipe->pipe_map.kva,
1423			cpipe->pipe_buffer.size + PAGE_SIZE);
1424		cpipe->pipe_map.cnt = 0;
1425		cpipe->pipe_map.kva = 0;
1426		cpipe->pipe_map.pos = 0;
1427		cpipe->pipe_map.npages = 0;
1428	}
1429#endif
1430}
1431
1432/*
1433 * shutdown the pipe
1434 */
1435static void
1436pipeclose(cpipe)
1437	struct pipe *cpipe;
1438{
1439	struct pipe *ppipe;
1440	int hadpeer;
1441
1442	if (cpipe == NULL)
1443		return;
1444
1445	hadpeer = 0;
1446
1447	/* partially created pipes won't have a valid mutex. */
1448	if (PIPE_MTX(cpipe) != NULL)
1449		PIPE_LOCK(cpipe);
1450
1451	pipeselwakeup(cpipe);
1452
1453	/*
1454	 * If the other side is blocked, wake it up saying that
1455	 * we want to close it down.
1456	 */
1457	while (cpipe->pipe_busy) {
1458		wakeup(cpipe);
1459		cpipe->pipe_state |= PIPE_WANT | PIPE_EOF;
1460		msleep(cpipe, PIPE_MTX(cpipe), PRIBIO, "pipecl", 0);
1461	}
1462
1463#ifdef MAC
1464	if (cpipe->pipe_label != NULL && cpipe->pipe_peer == NULL)
1465		mac_destroy_pipe(cpipe);
1466#endif
1467
1468	/*
1469	 * Disconnect from peer
1470	 */
1471	if ((ppipe = cpipe->pipe_peer) != NULL) {
1472		hadpeer++;
1473		pipeselwakeup(ppipe);
1474
1475		ppipe->pipe_state |= PIPE_EOF;
1476		wakeup(ppipe);
1477		KNOTE(&ppipe->pipe_sel.si_note, 0);
1478		ppipe->pipe_peer = NULL;
1479	}
1480	/*
1481	 * free resources
1482	 */
1483	if (PIPE_MTX(cpipe) != NULL) {
1484		PIPE_UNLOCK(cpipe);
1485		if (!hadpeer) {
1486			mtx_destroy(PIPE_MTX(cpipe));
1487			free(PIPE_MTX(cpipe), M_TEMP);
1488		}
1489	}
1490	mtx_lock(&Giant);
1491	pipe_free_kmem(cpipe);
1492	uma_zfree(pipe_zone, cpipe);
1493	mtx_unlock(&Giant);
1494}
1495
1496/*ARGSUSED*/
1497static int
1498pipe_kqfilter(struct file *fp, struct knote *kn)
1499{
1500	struct pipe *cpipe;
1501
1502	cpipe = kn->kn_fp->f_data;
1503	switch (kn->kn_filter) {
1504	case EVFILT_READ:
1505		kn->kn_fop = &pipe_rfiltops;
1506		break;
1507	case EVFILT_WRITE:
1508		kn->kn_fop = &pipe_wfiltops;
1509		cpipe = cpipe->pipe_peer;
1510		if (cpipe == NULL)
1511			/* other end of pipe has been closed */
1512			return (EBADF);
1513		break;
1514	default:
1515		return (1);
1516	}
1517	kn->kn_hook = cpipe;
1518
1519	PIPE_LOCK(cpipe);
1520	SLIST_INSERT_HEAD(&cpipe->pipe_sel.si_note, kn, kn_selnext);
1521	PIPE_UNLOCK(cpipe);
1522	return (0);
1523}
1524
1525static void
1526filt_pipedetach(struct knote *kn)
1527{
1528	struct pipe *cpipe = (struct pipe *)kn->kn_hook;
1529
1530	PIPE_LOCK(cpipe);
1531	SLIST_REMOVE(&cpipe->pipe_sel.si_note, kn, knote, kn_selnext);
1532	PIPE_UNLOCK(cpipe);
1533}
1534
1535/*ARGSUSED*/
1536static int
1537filt_piperead(struct knote *kn, long hint)
1538{
1539	struct pipe *rpipe = kn->kn_fp->f_data;
1540	struct pipe *wpipe = rpipe->pipe_peer;
1541
1542	PIPE_LOCK(rpipe);
1543	kn->kn_data = rpipe->pipe_buffer.cnt;
1544	if ((kn->kn_data == 0) && (rpipe->pipe_state & PIPE_DIRECTW))
1545		kn->kn_data = rpipe->pipe_map.cnt;
1546
1547	if ((rpipe->pipe_state & PIPE_EOF) ||
1548	    (wpipe == NULL) || (wpipe->pipe_state & PIPE_EOF)) {
1549		kn->kn_flags |= EV_EOF;
1550		PIPE_UNLOCK(rpipe);
1551		return (1);
1552	}
1553	PIPE_UNLOCK(rpipe);
1554	return (kn->kn_data > 0);
1555}
1556
1557/*ARGSUSED*/
1558static int
1559filt_pipewrite(struct knote *kn, long hint)
1560{
1561	struct pipe *rpipe = kn->kn_fp->f_data;
1562	struct pipe *wpipe = rpipe->pipe_peer;
1563
1564	PIPE_LOCK(rpipe);
1565	if ((wpipe == NULL) || (wpipe->pipe_state & PIPE_EOF)) {
1566		kn->kn_data = 0;
1567		kn->kn_flags |= EV_EOF;
1568		PIPE_UNLOCK(rpipe);
1569		return (1);
1570	}
1571	kn->kn_data = wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt;
1572	if (wpipe->pipe_state & PIPE_DIRECTW)
1573		kn->kn_data = 0;
1574
1575	PIPE_UNLOCK(rpipe);
1576	return (kn->kn_data >= PIPE_BUF);
1577}
1578