subr_witness.c revision 73114
1/*-
2 * Copyright (c) 1998 Berkeley Software Design, Inc. All rights reserved.
3 *
4 * Redistribution and use in source and binary forms, with or without
5 * modification, are permitted provided that the following conditions
6 * are met:
7 * 1. Redistributions of source code must retain the above copyright
8 *    notice, this list of conditions and the following disclaimer.
9 * 2. Redistributions in binary form must reproduce the above copyright
10 *    notice, this list of conditions and the following disclaimer in the
11 *    documentation and/or other materials provided with the distribution.
12 * 3. Berkeley Software Design Inc's name may not be used to endorse or
13 *    promote products derived from this software without specific prior
14 *    written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY BERKELEY SOFTWARE DESIGN INC ``AS IS'' AND
17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED.  IN NO EVENT SHALL BERKELEY SOFTWARE DESIGN INC BE LIABLE
20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 *
28 *	from BSDI $Id: mutex_witness.c,v 1.1.2.20 2000/04/27 03:10:27 cp Exp $
29 *	and BSDI $Id: synch_machdep.c,v 2.3.2.39 2000/04/27 03:10:25 cp Exp $
30 * $FreeBSD: head/sys/kern/subr_witness.c 73114 2001-02-26 23:27:35Z jake $
31 */
32
33/*
34 * Machine independent bits of mutex implementation and implementation of
35 * `witness' structure & related debugging routines.
36 */
37
38/*
39 *	Main Entry: witness
40 *	Pronunciation: 'wit-n&s
41 *	Function: noun
42 *	Etymology: Middle English witnesse, from Old English witnes knowledge,
43 *	    testimony, witness, from 2wit
44 *	Date: before 12th century
45 *	1 : attestation of a fact or event : TESTIMONY
46 *	2 : one that gives evidence; specifically : one who testifies in
47 *	    a cause or before a judicial tribunal
48 *	3 : one asked to be present at a transaction so as to be able to
49 *	    testify to its having taken place
50 *	4 : one who has personal knowledge of something
51 *	5 a : something serving as evidence or proof : SIGN
52 *	  b : public affirmation by word or example of usually
53 *	      religious faith or conviction <the heroic witness to divine
54 *	      life -- Pilot>
55 *	6 capitalized : a member of the Jehovah's Witnesses
56 */
57
58#include "opt_ddb.h"
59#include "opt_witness.h"
60
61#include <sys/param.h>
62#include <sys/bus.h>
63#include <sys/kernel.h>
64#include <sys/malloc.h>
65#include <sys/proc.h>
66#include <sys/sysctl.h>
67#include <sys/systm.h>
68#include <sys/vmmeter.h>
69#include <sys/ktr.h>
70
71#include <machine/atomic.h>
72#include <machine/bus.h>
73#include <machine/clock.h>
74#include <machine/cpu.h>
75
76#include <ddb/ddb.h>
77
78#include <vm/vm.h>
79#include <vm/vm_extern.h>
80
81#include <sys/mutex.h>
82
83/*
84 * The WITNESS-enabled mutex debug structure.
85 */
86#ifdef WITNESS
87struct mtx_debug {
88	struct witness	*mtxd_witness;
89	LIST_ENTRY(mtx)	mtxd_held;
90	const char	*mtxd_file;
91	int		mtxd_line;
92};
93
94#define mtx_held	mtx_debug->mtxd_held
95#define	mtx_file	mtx_debug->mtxd_file
96#define	mtx_line	mtx_debug->mtxd_line
97#define	mtx_witness	mtx_debug->mtxd_witness
98#endif	/* WITNESS */
99
100/*
101 * Internal utility macros.
102 */
103#define mtx_unowned(m)	((m)->mtx_lock == MTX_UNOWNED)
104
105#define mtx_owner(m)	(mtx_unowned((m)) ? NULL \
106	: (struct proc *)((m)->mtx_lock & MTX_FLAGMASK))
107
108#define SET_PRIO(p, pri)	(p)->p_pri.pri_level = (pri)
109
110/*
111 * Early WITNESS-enabled declarations.
112 */
113#ifdef WITNESS
114
115/*
116 * Internal WITNESS routines which must be prototyped early.
117 *
118 * XXX: When/if witness code is cleaned up, it would be wise to place all
119 *	witness prototyping early in this file.
120 */
121static void witness_init(struct mtx *, int flag);
122static void witness_destroy(struct mtx *);
123static void witness_display(void(*)(const char *fmt, ...));
124
125MALLOC_DEFINE(M_WITNESS, "witness", "witness mtx_debug structure");
126
127/* All mutexes in system (used for debug/panic) */
128static struct mtx_debug all_mtx_debug = { NULL, {NULL, NULL}, NULL, 0 };
129
130/*
131 * This global is set to 0 once it becomes safe to use the witness code.
132 */
133static int witness_cold = 1;
134
135#else	/* WITNESS */
136
137/* XXX XXX XXX
138 * flag++ is sleazoid way of shuting up warning
139 */
140#define witness_init(m, flag) flag++
141#define witness_destroy(m)
142#define witness_try_enter(m, t, f, l)
143#endif	/* WITNESS */
144
145/*
146 * All mutex locks in system are kept on the all_mtx list.
147 */
148static struct mtx all_mtx = { MTX_UNOWNED, 0, 0, 0, "All mutexes queue head",
149	TAILQ_HEAD_INITIALIZER(all_mtx.mtx_blocked),
150	{ NULL, NULL }, &all_mtx, &all_mtx,
151#ifdef WITNESS
152	&all_mtx_debug
153#else
154	NULL
155#endif
156	 };
157
158/*
159 * Global variables for book keeping.
160 */
161static int	mtx_cur_cnt;
162static int	mtx_max_cnt;
163
164/*
165 * Couple of strings for KTR_LOCK tracing in order to avoid duplicates.
166 */
167char	STR_mtx_lock_slp[] = "GOT (sleep) %s [%p] r=%d at %s:%d";
168char	STR_mtx_unlock_slp[] = "REL (sleep) %s [%p] r=%d at %s:%d";
169char	STR_mtx_lock_spn[] = "GOT (spin) %s [%p] r=%d at %s:%d";
170char	STR_mtx_unlock_spn[] = "REL (spin) %s [%p] r=%d at %s:%d";
171
172/*
173 * Prototypes for non-exported routines.
174 *
175 * NOTE: Prototypes for witness routines are placed at the bottom of the file.
176 */
177static void	propagate_priority(struct proc *);
178
179static void
180propagate_priority(struct proc *p)
181{
182	int pri = p->p_pri.pri_level;
183	struct mtx *m = p->p_blocked;
184
185	mtx_assert(&sched_lock, MA_OWNED);
186	for (;;) {
187		struct proc *p1;
188
189		p = mtx_owner(m);
190
191		if (p == NULL) {
192			/*
193			 * This really isn't quite right. Really
194			 * ought to bump priority of process that
195			 * next acquires the mutex.
196			 */
197			MPASS(m->mtx_lock == MTX_CONTESTED);
198			return;
199		}
200
201		MPASS(p->p_magic == P_MAGIC);
202		KASSERT(p->p_stat != SSLEEP, ("sleeping process owns a mutex"));
203		if (p->p_pri.pri_level <= pri)
204			return;
205
206		/*
207		 * Bump this process' priority.
208		 */
209		SET_PRIO(p, pri);
210
211		/*
212		 * If lock holder is actually running, just bump priority.
213		 */
214		if (p->p_oncpu != NOCPU) {
215			MPASS(p->p_stat == SRUN || p->p_stat == SZOMB);
216			return;
217		}
218
219		/*
220		 * If on run queue move to new run queue, and
221		 * quit.
222		 */
223		if (p->p_stat == SRUN) {
224			MPASS(p->p_blocked == NULL);
225			remrunqueue(p);
226			setrunqueue(p);
227			return;
228		}
229
230		/*
231		 * If we aren't blocked on a mutex, we should be.
232		 */
233		KASSERT(p->p_stat == SMTX, (
234		    "process %d(%s):%d holds %s but isn't blocked on a mutex\n",
235		    p->p_pid, p->p_comm, p->p_stat,
236		    m->mtx_description));
237
238		/*
239		 * Pick up the mutex that p is blocked on.
240		 */
241		m = p->p_blocked;
242		MPASS(m != NULL);
243
244		/*
245		 * Check if the proc needs to be moved up on
246		 * the blocked chain
247		 */
248		if (p == TAILQ_FIRST(&m->mtx_blocked)) {
249			continue;
250		}
251
252		p1 = TAILQ_PREV(p, procqueue, p_procq);
253		if (p1->p_pri.pri_level <= pri) {
254			continue;
255		}
256
257		/*
258		 * Remove proc from blocked chain and determine where
259		 * it should be moved up to.  Since we know that p1 has
260		 * a lower priority than p, we know that at least one
261		 * process in the chain has a lower priority and that
262		 * p1 will thus not be NULL after the loop.
263		 */
264		TAILQ_REMOVE(&m->mtx_blocked, p, p_procq);
265		TAILQ_FOREACH(p1, &m->mtx_blocked, p_procq) {
266			MPASS(p1->p_magic == P_MAGIC);
267			if (p1->p_pri.pri_level > pri)
268				break;
269		}
270
271		MPASS(p1 != NULL);
272		TAILQ_INSERT_BEFORE(p1, p, p_procq);
273		CTR4(KTR_LOCK,
274		    "propagate_priority: p %p moved before %p on [%p] %s",
275		    p, p1, m, m->mtx_description);
276	}
277}
278
279/*
280 * The important part of mtx_trylock{,_flags}()
281 * Tries to acquire lock `m.' We do NOT handle recursion here; we assume that
282 * if we're called, it's because we know we don't already own this lock.
283 */
284int
285_mtx_trylock(struct mtx *m, int opts, const char *file, int line)
286{
287	int rval;
288
289	MPASS(curproc != NULL);
290
291	/*
292	 * _mtx_trylock does not accept MTX_NOSWITCH option.
293	 */
294	KASSERT((opts & MTX_NOSWITCH) == 0,
295	    ("mtx_trylock() called with invalid option flag(s) %d", opts));
296
297	rval = _obtain_lock(m, curproc);
298
299#ifdef WITNESS
300	if (rval && m->mtx_witness != NULL) {
301		/*
302		 * We do not handle recursion in _mtx_trylock; see the
303		 * note at the top of the routine.
304		 */
305		KASSERT(!mtx_recursed(m),
306		    ("mtx_trylock() called on a recursed mutex"));
307		witness_try_enter(m, (opts | m->mtx_flags), file, line);
308	}
309#endif	/* WITNESS */
310
311	if ((opts & MTX_QUIET) == 0)
312		CTR5(KTR_LOCK, "TRY_LOCK %s [%p] result=%d at %s:%d",
313		    m->mtx_description, m, rval, file, line);
314
315	return rval;
316}
317
318/*
319 * _mtx_lock_sleep: the tougher part of acquiring an MTX_DEF lock.
320 *
321 * We call this if the lock is either contested (i.e. we need to go to
322 * sleep waiting for it), or if we need to recurse on it.
323 */
324void
325_mtx_lock_sleep(struct mtx *m, int opts, const char *file, int line)
326{
327	struct proc *p = curproc;
328
329	if ((m->mtx_lock & MTX_FLAGMASK) == (uintptr_t)p) {
330		m->mtx_recurse++;
331		atomic_set_ptr(&m->mtx_lock, MTX_RECURSED);
332		if ((opts & MTX_QUIET) == 0)
333			CTR1(KTR_LOCK, "_mtx_lock_sleep: %p recursing", m);
334		return;
335	}
336
337	if ((opts & MTX_QUIET) == 0)
338		CTR4(KTR_LOCK,
339		    "_mtx_lock_sleep: %s contested (lock=%p) at %s:%d",
340		    m->mtx_description, (void *)m->mtx_lock, file, line);
341
342	while (!_obtain_lock(m, p)) {
343		uintptr_t v;
344		struct proc *p1;
345
346		mtx_lock_spin(&sched_lock);
347		/*
348		 * Check if the lock has been released while spinning for
349		 * the sched_lock.
350		 */
351		if ((v = m->mtx_lock) == MTX_UNOWNED) {
352			mtx_unlock_spin(&sched_lock);
353			continue;
354		}
355
356		/*
357		 * The mutex was marked contested on release. This means that
358		 * there are processes blocked on it.
359		 */
360		if (v == MTX_CONTESTED) {
361			p1 = TAILQ_FIRST(&m->mtx_blocked);
362			MPASS(p1 != NULL);
363			m->mtx_lock = (uintptr_t)p | MTX_CONTESTED;
364
365			if (p1->p_pri.pri_level < p->p_pri.pri_level)
366				SET_PRIO(p, p1->p_pri.pri_level);
367			mtx_unlock_spin(&sched_lock);
368			return;
369		}
370
371		/*
372		 * If the mutex isn't already contested and a failure occurs
373		 * setting the contested bit, the mutex was either released
374		 * or the state of the MTX_RECURSED bit changed.
375		 */
376		if ((v & MTX_CONTESTED) == 0 &&
377		    !atomic_cmpset_ptr(&m->mtx_lock, (void *)v,
378			(void *)(v | MTX_CONTESTED))) {
379			mtx_unlock_spin(&sched_lock);
380			continue;
381		}
382
383		/*
384		 * We deffinately must sleep for this lock.
385		 */
386		mtx_assert(m, MA_NOTOWNED);
387
388#ifdef notyet
389		/*
390		 * If we're borrowing an interrupted thread's VM context, we
391		 * must clean up before going to sleep.
392		 */
393		if (p->p_ithd != NULL) {
394			struct ithd *it = p->p_ithd;
395
396			if (it->it_interrupted) {
397				if ((opts & MTX_QUIET) == 0)
398					CTR2(KTR_LOCK,
399				    "_mtx_lock_sleep: %p interrupted %p",
400					    it, it->it_interrupted);
401				intr_thd_fixup(it);
402			}
403		}
404#endif
405
406		/*
407		 * Put us on the list of threads blocked on this mutex.
408		 */
409		if (TAILQ_EMPTY(&m->mtx_blocked)) {
410			p1 = (struct proc *)(m->mtx_lock & MTX_FLAGMASK);
411			LIST_INSERT_HEAD(&p1->p_contested, m, mtx_contested);
412			TAILQ_INSERT_TAIL(&m->mtx_blocked, p, p_procq);
413		} else {
414			TAILQ_FOREACH(p1, &m->mtx_blocked, p_procq)
415				if (p1->p_pri.pri_level > p->p_pri.pri_level)
416					break;
417			if (p1)
418				TAILQ_INSERT_BEFORE(p1, p, p_procq);
419			else
420				TAILQ_INSERT_TAIL(&m->mtx_blocked, p, p_procq);
421		}
422
423		/*
424		 * Save who we're blocked on.
425		 */
426		p->p_blocked = m;
427		p->p_mtxname = m->mtx_description;
428		p->p_stat = SMTX;
429		if (p->p_pri.pri_native == PRI_MAX)
430			p->p_pri.pri_native = p->p_pri.pri_level;
431		propagate_priority(p);
432
433		if ((opts & MTX_QUIET) == 0)
434			CTR3(KTR_LOCK,
435			    "_mtx_lock_sleep: p %p blocked on [%p] %s", p, m,
436			    m->mtx_description);
437
438		mi_switch();
439
440		if ((opts & MTX_QUIET) == 0)
441			CTR3(KTR_LOCK,
442			  "_mtx_lock_sleep: p %p free from blocked on [%p] %s",
443			  p, m, m->mtx_description);
444
445		mtx_unlock_spin(&sched_lock);
446	}
447
448	return;
449}
450
451/*
452 * _mtx_lock_spin: the tougher part of acquiring an MTX_SPIN lock.
453 *
454 * This is only called if we need to actually spin for the lock. Recursion
455 * is handled inline.
456 */
457void
458_mtx_lock_spin(struct mtx *m, int opts, u_int mtx_intr, const char *file,
459	       int line)
460{
461	int i = 0;
462
463	if ((opts & MTX_QUIET) == 0)
464		CTR1(KTR_LOCK, "_mtx_lock_spin: %p spinning", m);
465
466	for (;;) {
467		if (_obtain_lock(m, curproc))
468			break;
469
470		while (m->mtx_lock != MTX_UNOWNED) {
471			if (i++ < 1000000)
472				continue;
473			if (i++ < 6000000)
474				DELAY(1);
475#ifdef DDB
476			else if (!db_active)
477#else
478			else
479#endif
480			panic("spin lock %s held by %p for > 5 seconds",
481			    m->mtx_description, (void *)m->mtx_lock);
482		}
483	}
484
485	m->mtx_saveintr = mtx_intr;
486	if ((opts & MTX_QUIET) == 0)
487		CTR1(KTR_LOCK, "_mtx_lock_spin: %p spin done", m);
488
489	return;
490}
491
492/*
493 * _mtx_unlock_sleep: the tougher part of releasing an MTX_DEF lock.
494 *
495 * We are only called here if the lock is recursed or contested (i.e. we
496 * need to wake up a blocked thread).
497 */
498void
499_mtx_unlock_sleep(struct mtx *m, int opts, const char *file, int line)
500{
501	struct proc *p, *p1;
502	struct mtx *m1;
503	int pri;
504
505	p = curproc;
506	MPASS4(mtx_owned(m), "mtx_owned(mpp)", file, line);
507
508	if (mtx_recursed(m)) {
509		if (--(m->mtx_recurse) == 0)
510			atomic_clear_ptr(&m->mtx_lock, MTX_RECURSED);
511		if ((opts & MTX_QUIET) == 0)
512			CTR1(KTR_LOCK, "_mtx_unlock_sleep: %p unrecurse", m);
513		return;
514	}
515
516	mtx_lock_spin(&sched_lock);
517	if ((opts & MTX_QUIET) == 0)
518		CTR1(KTR_LOCK, "_mtx_unlock_sleep: %p contested", m);
519
520	p1 = TAILQ_FIRST(&m->mtx_blocked);
521	MPASS(p->p_magic == P_MAGIC);
522	MPASS(p1->p_magic == P_MAGIC);
523
524	TAILQ_REMOVE(&m->mtx_blocked, p1, p_procq);
525
526	if (TAILQ_EMPTY(&m->mtx_blocked)) {
527		LIST_REMOVE(m, mtx_contested);
528		_release_lock_quick(m);
529		if ((opts & MTX_QUIET) == 0)
530			CTR1(KTR_LOCK, "_mtx_unlock_sleep: %p not held", m);
531	} else
532		atomic_store_rel_ptr(&m->mtx_lock, (void *)MTX_CONTESTED);
533
534	pri = PRI_MAX;
535	LIST_FOREACH(m1, &p->p_contested, mtx_contested) {
536		int cp = TAILQ_FIRST(&m1->mtx_blocked)->p_pri.pri_level;
537		if (cp < pri)
538			pri = cp;
539	}
540
541	if (pri > p->p_pri.pri_native)
542		pri = p->p_pri.pri_native;
543	SET_PRIO(p, pri);
544
545	if ((opts & MTX_QUIET) == 0)
546		CTR2(KTR_LOCK, "_mtx_unlock_sleep: %p contested setrunqueue %p",
547		    m, p1);
548
549	p1->p_blocked = NULL;
550	p1->p_stat = SRUN;
551	setrunqueue(p1);
552
553	if ((opts & MTX_NOSWITCH) == 0 && p1->p_pri.pri_level < pri) {
554#ifdef notyet
555		if (p->p_ithd != NULL) {
556			struct ithd *it = p->p_ithd;
557
558			if (it->it_interrupted) {
559				if ((opts & MTX_QUIET) == 0)
560					CTR2(KTR_LOCK,
561				    "_mtx_unlock_sleep: %p interrupted %p",
562					    it, it->it_interrupted);
563				intr_thd_fixup(it);
564			}
565		}
566#endif
567		setrunqueue(p);
568		if ((opts & MTX_QUIET) == 0)
569			CTR2(KTR_LOCK,
570			    "_mtx_unlock_sleep: %p switching out lock=%p", m,
571			    (void *)m->mtx_lock);
572
573		mi_switch();
574		if ((opts & MTX_QUIET) == 0)
575			CTR2(KTR_LOCK, "_mtx_unlock_sleep: %p resuming lock=%p",
576			    m, (void *)m->mtx_lock);
577	}
578
579	mtx_unlock_spin(&sched_lock);
580
581	return;
582}
583
584/*
585 * All the unlocking of MTX_SPIN locks is done inline.
586 * See the _rel_spin_lock() macro for the details.
587 */
588
589/*
590 * The backing function for the INVARIANTS-enabled mtx_assert()
591 */
592#ifdef INVARIANT_SUPPORT
593void
594_mtx_assert(struct mtx *m, int what, const char *file, int line)
595{
596	switch (what) {
597	case MA_OWNED:
598	case MA_OWNED | MA_RECURSED:
599	case MA_OWNED | MA_NOTRECURSED:
600		if (!mtx_owned(m))
601			panic("mutex %s not owned at %s:%d",
602			    m->mtx_description, file, line);
603		if (mtx_recursed(m)) {
604			if ((what & MA_NOTRECURSED) != 0)
605				panic("mutex %s recursed at %s:%d",
606				    m->mtx_description, file, line);
607		} else if ((what & MA_RECURSED) != 0) {
608			panic("mutex %s unrecursed at %s:%d",
609			    m->mtx_description, file, line);
610		}
611		break;
612	case MA_NOTOWNED:
613		if (mtx_owned(m))
614			panic("mutex %s owned at %s:%d",
615			    m->mtx_description, file, line);
616		break;
617	default:
618		panic("unknown mtx_assert at %s:%d", file, line);
619	}
620}
621#endif
622
623/*
624 * The MUTEX_DEBUG-enabled mtx_validate()
625 */
626#define MV_DESTROY	0	/* validate before destory */
627#define MV_INIT		1	/* validate before init */
628
629#ifdef MUTEX_DEBUG
630
631int mtx_validate __P((struct mtx *, int));
632
633int
634mtx_validate(struct mtx *m, int when)
635{
636	struct mtx *mp;
637	int i;
638	int retval = 0;
639
640#ifdef WITNESS
641	if (witness_cold)
642		return 0;
643#endif
644	if (m == &all_mtx || cold)
645		return 0;
646
647	mtx_lock(&all_mtx);
648/*
649 * XXX - When kernacc() is fixed on the alpha to handle K0_SEG memory properly
650 * we can re-enable the kernacc() checks.
651 */
652#ifndef __alpha__
653	MPASS(kernacc((caddr_t)all_mtx.mtx_next, sizeof(uintptr_t),
654	    VM_PROT_READ) == 1);
655#endif
656	MPASS(all_mtx.mtx_next->mtx_prev == &all_mtx);
657	for (i = 0, mp = all_mtx.mtx_next; mp != &all_mtx; mp = mp->mtx_next) {
658#ifndef __alpha__
659		if (kernacc((caddr_t)mp->mtx_next, sizeof(uintptr_t),
660		    VM_PROT_READ) != 1) {
661			panic("mtx_validate: mp=%p mp->mtx_next=%p",
662			    mp, mp->mtx_next);
663		}
664#endif
665		i++;
666		if (i > mtx_cur_cnt) {
667			panic("mtx_validate: too many in chain, known=%d\n",
668			    mtx_cur_cnt);
669		}
670	}
671	MPASS(i == mtx_cur_cnt);
672	switch (when) {
673	case MV_DESTROY:
674		for (mp = all_mtx.mtx_next; mp != &all_mtx; mp = mp->mtx_next)
675			if (mp == m)
676				break;
677		MPASS(mp == m);
678		break;
679	case MV_INIT:
680		for (mp = all_mtx.mtx_next; mp != &all_mtx; mp = mp->mtx_next)
681		if (mp == m) {
682			/*
683			 * Not good. This mutex already exists.
684			 */
685			printf("re-initing existing mutex %s\n",
686			    m->mtx_description);
687			MPASS(m->mtx_lock == MTX_UNOWNED);
688			retval = 1;
689		}
690	}
691	mtx_unlock(&all_mtx);
692	return (retval);
693}
694#endif
695
696/*
697 * Mutex initialization routine; initialize lock `m' of type contained in
698 * `opts' with options contained in `opts' and description `description.'
699 * Place on "all_mtx" queue.
700 */
701void
702mtx_init(struct mtx *m, const char *description, int opts)
703{
704
705	if ((opts & MTX_QUIET) == 0)
706		CTR2(KTR_LOCK, "mtx_init %p (%s)", m, description);
707
708#ifdef MUTEX_DEBUG
709	/* Diagnostic and error correction */
710	if (mtx_validate(m, MV_INIT))
711		return;
712#endif
713
714	bzero((void *)m, sizeof *m);
715	TAILQ_INIT(&m->mtx_blocked);
716
717#ifdef WITNESS
718	if (!witness_cold) {
719		m->mtx_debug = malloc(sizeof(struct mtx_debug),
720		    M_WITNESS, M_NOWAIT | M_ZERO);
721		MPASS(m->mtx_debug != NULL);
722	}
723#endif
724
725	m->mtx_description = description;
726	m->mtx_flags = opts;
727	m->mtx_lock = MTX_UNOWNED;
728
729	/* Put on all mutex queue */
730	mtx_lock(&all_mtx);
731	m->mtx_next = &all_mtx;
732	m->mtx_prev = all_mtx.mtx_prev;
733	m->mtx_prev->mtx_next = m;
734	all_mtx.mtx_prev = m;
735	if (++mtx_cur_cnt > mtx_max_cnt)
736		mtx_max_cnt = mtx_cur_cnt;
737	mtx_unlock(&all_mtx);
738
739#ifdef WITNESS
740	if (!witness_cold)
741		witness_init(m, opts);
742#endif
743}
744
745/*
746 * Remove lock `m' from all_mtx queue.
747 */
748void
749mtx_destroy(struct mtx *m)
750{
751
752#ifdef WITNESS
753	KASSERT(!witness_cold, ("%s: Cannot destroy while still cold\n",
754	    __FUNCTION__));
755#endif
756
757	CTR2(KTR_LOCK, "mtx_destroy %p (%s)", m, m->mtx_description);
758
759#ifdef MUTEX_DEBUG
760	if (m->mtx_next == NULL)
761		panic("mtx_destroy: %p (%s) already destroyed",
762		    m, m->mtx_description);
763
764	if (!mtx_owned(m)) {
765		MPASS(m->mtx_lock == MTX_UNOWNED);
766	} else {
767		MPASS((m->mtx_lock & (MTX_RECURSED|MTX_CONTESTED)) == 0);
768	}
769
770	/* diagnostic */
771	mtx_validate(m, MV_DESTROY);
772#endif
773
774#ifdef WITNESS
775	if (m->mtx_witness)
776		witness_destroy(m);
777#endif /* WITNESS */
778
779	/* Remove from the all mutex queue */
780	mtx_lock(&all_mtx);
781	m->mtx_next->mtx_prev = m->mtx_prev;
782	m->mtx_prev->mtx_next = m->mtx_next;
783
784#ifdef MUTEX_DEBUG
785	m->mtx_next = m->mtx_prev = NULL;
786#endif
787
788#ifdef WITNESS
789	free(m->mtx_debug, M_WITNESS);
790	m->mtx_debug = NULL;
791#endif
792
793	mtx_cur_cnt--;
794	mtx_unlock(&all_mtx);
795}
796
797
798/*
799 * The WITNESS-enabled diagnostic code.
800 */
801#ifdef WITNESS
802static void
803witness_fixup(void *dummy __unused)
804{
805	struct mtx *mp;
806
807	/*
808	 * We have to release Giant before initializing its witness
809	 * structure so that WITNESS doesn't get confused.
810	 */
811	mtx_unlock(&Giant);
812	mtx_assert(&Giant, MA_NOTOWNED);
813
814	mtx_lock(&all_mtx);
815
816	/* Iterate through all mutexes and finish up mutex initialization. */
817	for (mp = all_mtx.mtx_next; mp != &all_mtx; mp = mp->mtx_next) {
818
819		mp->mtx_debug = malloc(sizeof(struct mtx_debug),
820		    M_WITNESS, M_NOWAIT | M_ZERO);
821		MPASS(mp->mtx_debug != NULL);
822
823		witness_init(mp, mp->mtx_flags);
824	}
825	mtx_unlock(&all_mtx);
826
827	/* Mark the witness code as being ready for use. */
828	atomic_store_rel_int(&witness_cold, 0);
829
830	mtx_lock(&Giant);
831}
832SYSINIT(wtnsfxup, SI_SUB_MUTEX, SI_ORDER_FIRST, witness_fixup, NULL)
833
834#define WITNESS_COUNT 200
835#define	WITNESS_NCHILDREN 2
836
837int witness_watch = 1;
838
839struct witness {
840	struct witness	*w_next;
841	const char	*w_description;
842	const char	*w_file;
843	int		 w_line;
844	struct witness	*w_morechildren;
845	u_char		 w_childcnt;
846	u_char		 w_Giant_squawked:1;
847	u_char		 w_other_squawked:1;
848	u_char		 w_same_squawked:1;
849	u_char		 w_spin:1;	/* MTX_SPIN type mutex. */
850	u_int		 w_level;
851	struct witness	*w_children[WITNESS_NCHILDREN];
852};
853
854struct witness_blessed {
855	char 	*b_lock1;
856	char	*b_lock2;
857};
858
859#ifdef DDB
860/*
861 * When DDB is enabled and witness_ddb is set to 1, it will cause the system to
862 * drop into kdebug() when:
863 *	- a lock heirarchy violation occurs
864 *	- locks are held when going to sleep.
865 */
866int	witness_ddb;
867#ifdef WITNESS_DDB
868TUNABLE_INT_DECL("debug.witness_ddb", 1, witness_ddb);
869#else
870TUNABLE_INT_DECL("debug.witness_ddb", 0, witness_ddb);
871#endif
872SYSCTL_INT(_debug, OID_AUTO, witness_ddb, CTLFLAG_RW, &witness_ddb, 0, "");
873#endif /* DDB */
874
875int	witness_skipspin;
876#ifdef WITNESS_SKIPSPIN
877TUNABLE_INT_DECL("debug.witness_skipspin", 1, witness_skipspin);
878#else
879TUNABLE_INT_DECL("debug.witness_skipspin", 0, witness_skipspin);
880#endif
881SYSCTL_INT(_debug, OID_AUTO, witness_skipspin, CTLFLAG_RD, &witness_skipspin, 0,
882    "");
883
884/*
885 * Witness-enabled globals
886 */
887static struct mtx	w_mtx;
888static struct witness	*w_free;
889static struct witness	*w_all;
890static int		 w_inited;
891static int		 witness_dead;	/* fatal error, probably no memory */
892
893static struct witness	 w_data[WITNESS_COUNT];
894
895/*
896 * Internal witness routine prototypes
897 */
898static struct witness *enroll(const char *description, int flag);
899static int itismychild(struct witness *parent, struct witness *child);
900static void removechild(struct witness *parent, struct witness *child);
901static int isitmychild(struct witness *parent, struct witness *child);
902static int isitmydescendant(struct witness *parent, struct witness *child);
903static int dup_ok(struct witness *);
904static int blessed(struct witness *, struct witness *);
905static void
906    witness_displaydescendants(void(*)(const char *fmt, ...), struct witness *);
907static void witness_leveldescendents(struct witness *parent, int level);
908static void witness_levelall(void);
909static struct witness * witness_get(void);
910static void witness_free(struct witness *m);
911
912static char *ignore_list[] = {
913	"witness lock",
914	NULL
915};
916
917static char *spin_order_list[] = {
918#if defined(__i386__) && defined (SMP)
919	"com",
920#endif
921	"sio",
922#ifdef __i386__
923	"cy",
924#endif
925	"ithread table lock",
926	"ithread list lock",
927	"sched lock",
928#ifdef __i386__
929	"clk",
930#endif
931	"callout",
932	/*
933	 * leaf locks
934	 */
935	"ng_node",
936	"ng_worklist",
937#ifdef SMP
938#ifdef __i386__
939	"ap boot",
940	"imen",
941#endif
942	"smp rendezvous",
943#endif
944	NULL
945};
946
947static char *order_list[] = {
948	"Giant", "proctree", "allproc", "process lock", "uidinfo hash",
949	    "uidinfo struct", NULL,
950	NULL
951};
952
953static char *dup_list[] = {
954	NULL
955};
956
957static char *sleep_list[] = {
958	"Giant",
959	NULL
960};
961
962/*
963 * Pairs of locks which have been blessed
964 * Don't complain about order problems with blessed locks
965 */
966static struct witness_blessed blessed_list[] = {
967};
968static int blessed_count =
969	sizeof(blessed_list) / sizeof(struct witness_blessed);
970
971static void
972witness_init(struct mtx *m, int flag)
973{
974	m->mtx_witness = enroll(m->mtx_description, flag);
975}
976
977static void
978witness_destroy(struct mtx *m)
979{
980	struct mtx *m1;
981	struct proc *p;
982	p = curproc;
983	LIST_FOREACH(m1, &p->p_heldmtx, mtx_held) {
984		if (m1 == m) {
985			LIST_REMOVE(m, mtx_held);
986			break;
987		}
988	}
989	return;
990
991}
992
993static void
994witness_display(void(*prnt)(const char *fmt, ...))
995{
996	struct witness *w, *w1;
997	int level, found;
998
999	KASSERT(!witness_cold, ("%s: witness_cold\n", __FUNCTION__));
1000	witness_levelall();
1001
1002	/*
1003	 * First, handle sleep mutexes which have been acquired at least
1004	 * once.
1005	 */
1006	prnt("Sleep mutexes:\n");
1007	for (w = w_all; w; w = w->w_next) {
1008		if (w->w_file == NULL || w->w_spin)
1009			continue;
1010		for (w1 = w_all; w1; w1 = w1->w_next) {
1011			if (isitmychild(w1, w))
1012				break;
1013		}
1014		if (w1 != NULL)
1015			continue;
1016		/*
1017		 * This lock has no anscestors, display its descendants.
1018		 */
1019		witness_displaydescendants(prnt, w);
1020	}
1021
1022	/*
1023	 * Now do spin mutexes which have been acquired at least once.
1024	 */
1025	prnt("\nSpin mutexes:\n");
1026	level = 0;
1027	while (level < sizeof(spin_order_list) / sizeof(char *)) {
1028		found = 0;
1029		for (w = w_all; w; w = w->w_next) {
1030			if (w->w_file == NULL || !w->w_spin)
1031				continue;
1032			if (w->w_level == 1 << level) {
1033				witness_displaydescendants(prnt, w);
1034				level++;
1035				found = 1;
1036			}
1037		}
1038		if (found == 0)
1039			level++;
1040	}
1041
1042	/*
1043	 * Finally, any mutexes which have not been acquired yet.
1044	 */
1045	prnt("\nMutexes which were never acquired:\n");
1046	for (w = w_all; w; w = w->w_next) {
1047		if (w->w_file != NULL)
1048			continue;
1049		prnt("%s\n", w->w_description);
1050	}
1051}
1052
1053void
1054witness_enter(struct mtx *m, int flags, const char *file, int line)
1055{
1056	struct witness *w, *w1;
1057	struct mtx *m1;
1058	struct proc *p;
1059	int i;
1060#ifdef DDB
1061	int go_into_ddb = 0;
1062#endif /* DDB */
1063
1064	if (witness_cold || m->mtx_witness == NULL || panicstr)
1065		return;
1066	w = m->mtx_witness;
1067	p = curproc;
1068
1069	if (flags & MTX_SPIN) {
1070		if ((m->mtx_flags & MTX_SPIN) == 0)
1071			panic("mutex_enter: MTX_SPIN on MTX_DEF mutex %s @"
1072			    " %s:%d", m->mtx_description, file, line);
1073		if (mtx_recursed(m)) {
1074			if ((m->mtx_flags & MTX_RECURSE) == 0)
1075				panic("mutex_enter: recursion on non-recursive"
1076				    " mutex %s @ %s:%d", m->mtx_description,
1077				    file, line);
1078			return;
1079		}
1080		mtx_lock_spin_flags(&w_mtx, MTX_QUIET);
1081		i = PCPU_GET(witness_spin_check);
1082		if (i != 0 && w->w_level < i) {
1083			mtx_unlock_spin_flags(&w_mtx, MTX_QUIET);
1084			panic("mutex_enter(%s:%x, MTX_SPIN) out of order @"
1085			    " %s:%d already holding %s:%x",
1086			    m->mtx_description, w->w_level, file, line,
1087			    spin_order_list[ffs(i)-1], i);
1088		}
1089		PCPU_SET(witness_spin_check, i | w->w_level);
1090		mtx_unlock_spin_flags(&w_mtx, MTX_QUIET);
1091		w->w_file = file;
1092		w->w_line = line;
1093		m->mtx_line = line;
1094		m->mtx_file = file;
1095		return;
1096	}
1097	if ((m->mtx_flags & MTX_SPIN) != 0)
1098		panic("mutex_enter: MTX_DEF on MTX_SPIN mutex %s @ %s:%d",
1099		    m->mtx_description, file, line);
1100
1101	if (mtx_recursed(m)) {
1102		if ((m->mtx_flags & MTX_RECURSE) == 0)
1103			panic("mutex_enter: recursion on non-recursive"
1104			    " mutex %s @ %s:%d", m->mtx_description,
1105			    file, line);
1106		return;
1107	}
1108	if (witness_dead)
1109		goto out;
1110	if (cold)
1111		goto out;
1112
1113	if (!mtx_legal2block())
1114		panic("blockable mtx_lock() of %s when not legal @ %s:%d",
1115			    m->mtx_description, file, line);
1116	/*
1117	 * Is this the first mutex acquired
1118	 */
1119	if ((m1 = LIST_FIRST(&p->p_heldmtx)) == NULL)
1120		goto out;
1121
1122	if ((w1 = m1->mtx_witness) == w) {
1123		if (w->w_same_squawked || dup_ok(w))
1124			goto out;
1125		w->w_same_squawked = 1;
1126		printf("acquring duplicate lock of same type: \"%s\"\n",
1127			m->mtx_description);
1128		printf(" 1st @ %s:%d\n", w->w_file, w->w_line);
1129		printf(" 2nd @ %s:%d\n", file, line);
1130#ifdef DDB
1131		go_into_ddb = 1;
1132#endif /* DDB */
1133		goto out;
1134	}
1135	MPASS(!mtx_owned(&w_mtx));
1136	mtx_lock_spin_flags(&w_mtx, MTX_QUIET);
1137	/*
1138	 * If we have a known higher number just say ok
1139	 */
1140	if (witness_watch > 1 && w->w_level > w1->w_level) {
1141		mtx_unlock_spin_flags(&w_mtx, MTX_QUIET);
1142		goto out;
1143	}
1144	if (isitmydescendant(m1->mtx_witness, w)) {
1145		mtx_unlock_spin_flags(&w_mtx, MTX_QUIET);
1146		goto out;
1147	}
1148	for (i = 0; m1 != NULL; m1 = LIST_NEXT(m1, mtx_held), i++) {
1149
1150		MPASS(i < 200);
1151		w1 = m1->mtx_witness;
1152		if (isitmydescendant(w, w1)) {
1153			mtx_unlock_spin_flags(&w_mtx, MTX_QUIET);
1154			if (blessed(w, w1))
1155				goto out;
1156			if (m1 == &Giant) {
1157				if (w1->w_Giant_squawked)
1158					goto out;
1159				else
1160					w1->w_Giant_squawked = 1;
1161			} else {
1162				if (w1->w_other_squawked)
1163					goto out;
1164				else
1165					w1->w_other_squawked = 1;
1166			}
1167			printf("lock order reversal\n");
1168			printf(" 1st %s last acquired @ %s:%d\n",
1169			    w->w_description, w->w_file, w->w_line);
1170			printf(" 2nd %p %s @ %s:%d\n",
1171			    m1, w1->w_description, w1->w_file, w1->w_line);
1172			printf(" 3rd %p %s @ %s:%d\n",
1173			    m, w->w_description, file, line);
1174#ifdef DDB
1175			go_into_ddb = 1;
1176#endif /* DDB */
1177			goto out;
1178		}
1179	}
1180	m1 = LIST_FIRST(&p->p_heldmtx);
1181	if (!itismychild(m1->mtx_witness, w))
1182		mtx_unlock_spin_flags(&w_mtx, MTX_QUIET);
1183
1184out:
1185#ifdef DDB
1186	if (witness_ddb && go_into_ddb)
1187		Debugger("witness_enter");
1188#endif /* DDB */
1189	w->w_file = file;
1190	w->w_line = line;
1191	m->mtx_line = line;
1192	m->mtx_file = file;
1193
1194	/*
1195	 * If this pays off it likely means that a mutex being witnessed
1196	 * is acquired in hardclock. Put it in the ignore list. It is
1197	 * likely not the mutex this assert fails on.
1198	 */
1199	MPASS(m->mtx_held.le_prev == NULL);
1200	LIST_INSERT_HEAD(&p->p_heldmtx, (struct mtx*)m, mtx_held);
1201}
1202
1203void
1204witness_try_enter(struct mtx *m, int flags, const char *file, int line)
1205{
1206	struct proc *p;
1207	struct witness *w = m->mtx_witness;
1208
1209	if (witness_cold)
1210		return;
1211	if (panicstr)
1212		return;
1213	if (flags & MTX_SPIN) {
1214		if ((m->mtx_flags & MTX_SPIN) == 0)
1215			panic("mutex_try_enter: "
1216			    "MTX_SPIN on MTX_DEF mutex %s @ %s:%d",
1217			    m->mtx_description, file, line);
1218		if (mtx_recursed(m)) {
1219			if ((m->mtx_flags & MTX_RECURSE) == 0)
1220				panic("mutex_try_enter: recursion on"
1221				    " non-recursive mutex %s @ %s:%d",
1222				    m->mtx_description, file, line);
1223			return;
1224		}
1225		mtx_lock_spin_flags(&w_mtx, MTX_QUIET);
1226		PCPU_SET(witness_spin_check,
1227		    PCPU_GET(witness_spin_check) | w->w_level);
1228		mtx_unlock_spin_flags(&w_mtx, MTX_QUIET);
1229		w->w_file = file;
1230		w->w_line = line;
1231		m->mtx_line = line;
1232		m->mtx_file = file;
1233		return;
1234	}
1235
1236	if ((m->mtx_flags & MTX_SPIN) != 0)
1237		panic("mutex_try_enter: MTX_DEF on MTX_SPIN mutex %s @ %s:%d",
1238		    m->mtx_description, file, line);
1239
1240	if (mtx_recursed(m)) {
1241		if ((m->mtx_flags & MTX_RECURSE) == 0)
1242			panic("mutex_try_enter: recursion on non-recursive"
1243			    " mutex %s @ %s:%d", m->mtx_description, file,
1244			    line);
1245		return;
1246	}
1247	w->w_file = file;
1248	w->w_line = line;
1249	m->mtx_line = line;
1250	m->mtx_file = file;
1251	p = curproc;
1252	MPASS(m->mtx_held.le_prev == NULL);
1253	LIST_INSERT_HEAD(&p->p_heldmtx, (struct mtx*)m, mtx_held);
1254}
1255
1256void
1257witness_exit(struct mtx *m, int flags, const char *file, int line)
1258{
1259	struct witness *w;
1260
1261	if (witness_cold || m->mtx_witness == NULL || panicstr)
1262		return;
1263	w = m->mtx_witness;
1264
1265	if (flags & MTX_SPIN) {
1266		if ((m->mtx_flags & MTX_SPIN) == 0)
1267			panic("mutex_exit: MTX_SPIN on MTX_DEF mutex %s @"
1268			    " %s:%d", m->mtx_description, file, line);
1269		if (mtx_recursed(m)) {
1270			if ((m->mtx_flags & MTX_RECURSE) == 0)
1271				panic("mutex_exit: recursion on non-recursive"
1272				    " mutex %s @ %s:%d", m->mtx_description,
1273				    file, line);
1274			return;
1275		}
1276		mtx_lock_spin_flags(&w_mtx, MTX_QUIET);
1277		PCPU_SET(witness_spin_check,
1278		    PCPU_GET(witness_spin_check) & ~w->w_level);
1279		mtx_unlock_spin_flags(&w_mtx, MTX_QUIET);
1280		return;
1281	}
1282	if ((m->mtx_flags & MTX_SPIN) != 0)
1283		panic("mutex_exit: MTX_DEF on MTX_SPIN mutex %s @ %s:%d",
1284		    m->mtx_description, file, line);
1285
1286	if (mtx_recursed(m)) {
1287		if ((m->mtx_flags & MTX_RECURSE) == 0)
1288			panic("mutex_exit: recursion on non-recursive"
1289			    " mutex %s @ %s:%d", m->mtx_description,
1290			    file, line);
1291		return;
1292	}
1293
1294	if ((flags & MTX_NOSWITCH) == 0 && !mtx_legal2block() && !cold)
1295		panic("switchable mtx_unlock() of %s when not legal @ %s:%d",
1296			    m->mtx_description, file, line);
1297	LIST_REMOVE(m, mtx_held);
1298	m->mtx_held.le_prev = NULL;
1299}
1300
1301int
1302witness_sleep(int check_only, struct mtx *mtx, const char *file, int line)
1303{
1304	struct mtx *m;
1305	struct proc *p;
1306	char **sleep;
1307	int n = 0;
1308
1309	KASSERT(!witness_cold, ("%s: witness_cold\n", __FUNCTION__));
1310	p = curproc;
1311	LIST_FOREACH(m, &p->p_heldmtx, mtx_held) {
1312		if (m == mtx)
1313			continue;
1314		for (sleep = sleep_list; *sleep!= NULL; sleep++)
1315			if (strcmp(m->mtx_description, *sleep) == 0)
1316				goto next;
1317		if (n == 0)
1318			printf("Whee!\n");
1319		printf("%s:%d: %s with \"%s\" locked from %s:%d\n",
1320			file, line, check_only ? "could sleep" : "sleeping",
1321			m->mtx_description,
1322			m->mtx_witness->w_file, m->mtx_witness->w_line);
1323		n++;
1324	next:
1325	}
1326#ifdef DDB
1327	if (witness_ddb && n)
1328		Debugger("witness_sleep");
1329#endif /* DDB */
1330	return (n);
1331}
1332
1333static struct witness *
1334enroll(const char *description, int flag)
1335{
1336	int i;
1337	struct witness *w, *w1;
1338	char **ignore;
1339	char **order;
1340
1341	if (!witness_watch)
1342		return (NULL);
1343	for (ignore = ignore_list; *ignore != NULL; ignore++)
1344		if (strcmp(description, *ignore) == 0)
1345			return (NULL);
1346
1347	if (w_inited == 0) {
1348		mtx_init(&w_mtx, "witness lock", MTX_SPIN);
1349		for (i = 0; i < WITNESS_COUNT; i++) {
1350			w = &w_data[i];
1351			witness_free(w);
1352		}
1353		w_inited = 1;
1354		for (order = order_list; *order != NULL; order++) {
1355			w = enroll(*order, MTX_DEF);
1356			w->w_file = "order list";
1357			for (order++; *order != NULL; order++) {
1358				w1 = enroll(*order, MTX_DEF);
1359				w1->w_file = "order list";
1360				itismychild(w, w1);
1361				w = w1;
1362    	    	    	}
1363		}
1364	}
1365	if ((flag & MTX_SPIN) && witness_skipspin)
1366		return (NULL);
1367	mtx_lock_spin_flags(&w_mtx, MTX_QUIET);
1368	for (w = w_all; w; w = w->w_next) {
1369		if (strcmp(description, w->w_description) == 0) {
1370			mtx_unlock_spin_flags(&w_mtx, MTX_QUIET);
1371			return (w);
1372		}
1373	}
1374	if ((w = witness_get()) == NULL)
1375		return (NULL);
1376	w->w_next = w_all;
1377	w_all = w;
1378	w->w_description = description;
1379	mtx_unlock_spin_flags(&w_mtx, MTX_QUIET);
1380	if (flag & MTX_SPIN) {
1381		w->w_spin = 1;
1382
1383		i = 1;
1384		for (order = spin_order_list; *order != NULL; order++) {
1385			if (strcmp(description, *order) == 0)
1386				break;
1387			i <<= 1;
1388		}
1389		if (*order == NULL)
1390			panic("spin lock %s not in order list", description);
1391		w->w_level = i;
1392	}
1393
1394	return (w);
1395}
1396
1397static int
1398itismychild(struct witness *parent, struct witness *child)
1399{
1400	static int recursed;
1401
1402	/*
1403	 * Insert "child" after "parent"
1404	 */
1405	while (parent->w_morechildren)
1406		parent = parent->w_morechildren;
1407
1408	if (parent->w_childcnt == WITNESS_NCHILDREN) {
1409		if ((parent->w_morechildren = witness_get()) == NULL)
1410			return (1);
1411		parent = parent->w_morechildren;
1412	}
1413	MPASS(child != NULL);
1414	parent->w_children[parent->w_childcnt++] = child;
1415	/*
1416	 * now prune whole tree
1417	 */
1418	if (recursed)
1419		return (0);
1420	recursed = 1;
1421	for (child = w_all; child != NULL; child = child->w_next) {
1422		for (parent = w_all; parent != NULL;
1423		    parent = parent->w_next) {
1424			if (!isitmychild(parent, child))
1425				continue;
1426			removechild(parent, child);
1427			if (isitmydescendant(parent, child))
1428				continue;
1429			itismychild(parent, child);
1430		}
1431	}
1432	recursed = 0;
1433	witness_levelall();
1434	return (0);
1435}
1436
1437static void
1438removechild(struct witness *parent, struct witness *child)
1439{
1440	struct witness *w, *w1;
1441	int i;
1442
1443	for (w = parent; w != NULL; w = w->w_morechildren)
1444		for (i = 0; i < w->w_childcnt; i++)
1445			if (w->w_children[i] == child)
1446				goto found;
1447	return;
1448found:
1449	for (w1 = w; w1->w_morechildren != NULL; w1 = w1->w_morechildren)
1450		continue;
1451	w->w_children[i] = w1->w_children[--w1->w_childcnt];
1452	MPASS(w->w_children[i] != NULL);
1453
1454	if (w1->w_childcnt != 0)
1455		return;
1456
1457	if (w1 == parent)
1458		return;
1459	for (w = parent; w->w_morechildren != w1; w = w->w_morechildren)
1460		continue;
1461	w->w_morechildren = 0;
1462	witness_free(w1);
1463}
1464
1465static int
1466isitmychild(struct witness *parent, struct witness *child)
1467{
1468	struct witness *w;
1469	int i;
1470
1471	for (w = parent; w != NULL; w = w->w_morechildren) {
1472		for (i = 0; i < w->w_childcnt; i++) {
1473			if (w->w_children[i] == child)
1474				return (1);
1475		}
1476	}
1477	return (0);
1478}
1479
1480static int
1481isitmydescendant(struct witness *parent, struct witness *child)
1482{
1483	struct witness *w;
1484	int i;
1485	int j;
1486
1487	for (j = 0, w = parent; w != NULL; w = w->w_morechildren, j++) {
1488		MPASS(j < 1000);
1489		for (i = 0; i < w->w_childcnt; i++) {
1490			if (w->w_children[i] == child)
1491				return (1);
1492		}
1493		for (i = 0; i < w->w_childcnt; i++) {
1494			if (isitmydescendant(w->w_children[i], child))
1495				return (1);
1496		}
1497	}
1498	return (0);
1499}
1500
1501void
1502witness_levelall (void)
1503{
1504	struct witness *w, *w1;
1505
1506	for (w = w_all; w; w = w->w_next)
1507		if (!(w->w_spin))
1508			w->w_level = 0;
1509	for (w = w_all; w; w = w->w_next) {
1510		if (w->w_spin)
1511			continue;
1512		for (w1 = w_all; w1; w1 = w1->w_next) {
1513			if (isitmychild(w1, w))
1514				break;
1515		}
1516		if (w1 != NULL)
1517			continue;
1518		witness_leveldescendents(w, 0);
1519	}
1520}
1521
1522static void
1523witness_leveldescendents(struct witness *parent, int level)
1524{
1525	int i;
1526	struct witness *w;
1527
1528	if (parent->w_level < level)
1529		parent->w_level = level;
1530	level++;
1531	for (w = parent; w != NULL; w = w->w_morechildren)
1532		for (i = 0; i < w->w_childcnt; i++)
1533			witness_leveldescendents(w->w_children[i], level);
1534}
1535
1536static void
1537witness_displaydescendants(void(*prnt)(const char *fmt, ...),
1538			   struct witness *parent)
1539{
1540	struct witness *w;
1541	int i;
1542	int level;
1543
1544	level = parent->w_spin ? ffs(parent->w_level) : parent->w_level;
1545
1546	prnt("%d", level);
1547	if (level < 10)
1548		prnt(" ");
1549	for (i = 0; i < level; i++)
1550		prnt(" ");
1551	prnt("%s", parent->w_description);
1552	if (parent->w_file != NULL)
1553		prnt(" -- last acquired @ %s:%d\n", parent->w_file,
1554		    parent->w_line);
1555
1556	for (w = parent; w != NULL; w = w->w_morechildren)
1557		for (i = 0; i < w->w_childcnt; i++)
1558			    witness_displaydescendants(prnt, w->w_children[i]);
1559    }
1560
1561static int
1562dup_ok(struct witness *w)
1563{
1564	char **dup;
1565
1566	for (dup = dup_list; *dup!= NULL; dup++)
1567		if (strcmp(w->w_description, *dup) == 0)
1568			return (1);
1569	return (0);
1570}
1571
1572static int
1573blessed(struct witness *w1, struct witness *w2)
1574{
1575	int i;
1576	struct witness_blessed *b;
1577
1578	for (i = 0; i < blessed_count; i++) {
1579		b = &blessed_list[i];
1580		if (strcmp(w1->w_description, b->b_lock1) == 0) {
1581			if (strcmp(w2->w_description, b->b_lock2) == 0)
1582				return (1);
1583			continue;
1584		}
1585		if (strcmp(w1->w_description, b->b_lock2) == 0)
1586			if (strcmp(w2->w_description, b->b_lock1) == 0)
1587				return (1);
1588	}
1589	return (0);
1590}
1591
1592static struct witness *
1593witness_get()
1594{
1595	struct witness *w;
1596
1597	if ((w = w_free) == NULL) {
1598		witness_dead = 1;
1599		mtx_unlock_spin_flags(&w_mtx, MTX_QUIET);
1600		printf("witness exhausted\n");
1601		return (NULL);
1602	}
1603	w_free = w->w_next;
1604	bzero(w, sizeof(*w));
1605	return (w);
1606}
1607
1608static void
1609witness_free(struct witness *w)
1610{
1611	w->w_next = w_free;
1612	w_free = w;
1613}
1614
1615int
1616witness_list(struct proc *p)
1617{
1618	struct mtx *m;
1619	int nheld;
1620
1621	KASSERT(!witness_cold, ("%s: witness_cold\n", __FUNCTION__));
1622	nheld = 0;
1623	LIST_FOREACH(m, &p->p_heldmtx, mtx_held) {
1624		printf("\t\"%s\" (%p) locked at %s:%d\n",
1625		    m->mtx_description, m,
1626		    m->mtx_witness->w_file, m->mtx_witness->w_line);
1627		nheld++;
1628	}
1629
1630	return (nheld);
1631}
1632
1633#ifdef DDB
1634
1635DB_SHOW_COMMAND(mutexes, db_witness_list)
1636{
1637
1638	witness_list(curproc);
1639}
1640
1641DB_SHOW_COMMAND(witness, db_witness_display)
1642{
1643
1644	witness_display(db_printf);
1645}
1646#endif
1647
1648void
1649witness_save(struct mtx *m, const char **filep, int *linep)
1650{
1651
1652	KASSERT(!witness_cold, ("%s: witness_cold\n", __FUNCTION__));
1653	if (m->mtx_witness == NULL)
1654		return;
1655
1656	*filep = m->mtx_witness->w_file;
1657	*linep = m->mtx_witness->w_line;
1658}
1659
1660void
1661witness_restore(struct mtx *m, const char *file, int line)
1662{
1663
1664	KASSERT(!witness_cold, ("%s: witness_cold\n", __FUNCTION__));
1665	if (m->mtx_witness == NULL)
1666		return;
1667
1668	m->mtx_witness->w_file = file;
1669	m->mtx_witness->w_line = line;
1670}
1671
1672#endif	/* WITNESS */
1673